JP2004028533A - Absorption type water chiller/heater - Google Patents

Absorption type water chiller/heater Download PDF

Info

Publication number
JP2004028533A
JP2004028533A JP2002189400A JP2002189400A JP2004028533A JP 2004028533 A JP2004028533 A JP 2004028533A JP 2002189400 A JP2002189400 A JP 2002189400A JP 2002189400 A JP2002189400 A JP 2002189400A JP 2004028533 A JP2004028533 A JP 2004028533A
Authority
JP
Japan
Prior art keywords
solution
temperature regenerator
spray pump
pump
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189400A
Other languages
Japanese (ja)
Other versions
JP4167856B2 (en
Inventor
Satoshi Miyake
三宅 聡
Akira Nishioka
西岡 明
Masahiro Oka
岡 雅博
Kenji Yamada
山田 研治
Yuji Ozawa
小沢 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP2002189400A priority Critical patent/JP4167856B2/en
Publication of JP2004028533A publication Critical patent/JP2004028533A/en
Application granted granted Critical
Publication of JP4167856B2 publication Critical patent/JP4167856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type water chiller/heater securing a self-circulation solution amount of a solution spray pump regardless of a solution flow rate to increase a service life of the solution spray pump. <P>SOLUTION: In this absorption type water chiller/heater, a high-temperature regenerator 1, a low-temperature regenerator 2, a solution circulation pump 8 for sending a solution to the low-temperature regenerator 2, an absorber 5, and the solution spray pump 9 for sending a concentrated solution to the absorber 5 are operably piping-connected, and the solution circulation amount is variably controlled according to a load. A discharge side of the solution circulation pump 8 and a lubrication liquid intake port of the solution spray pump 9 are connected, and the solution on the discharge side of the solution circulation pump 8 is used as a self-lubricating solution of the solution spray pump 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビル空調用空気調和装置等に用いられる吸収冷温水機に関する。
【0002】
【従来の技術】
例えば、特開平8−68572号公報(従来技術1)に記載されるように、二重効用吸収冷凍機において、高温再生器および低温再生器の溶液循環量を冷房負荷に応じて制御する技術が知られている。また、特開平11−257781号公報(従来技術2)、特にその図7に示されるように、溶液スプレーポンプを備えるサイクルも知られている。すなわちこの技術は、低負荷時にも低温再生器の戻り液が循環できるように、低温再生器および高温再生器の戻り溶液を混合した後の配管に溶液スプレーポンプを設置し、戻り溶液を溶液スプレーポンプで吸い込んで強制的に吸収器に送り込むものである。
【0003】
【発明が解決しようとする課題】
一般に吸収冷温水機には、密閉型のキャンドポンプが採用されている。このためキャンドポンプでは、ベアリングの潤滑とモータの冷却とのためにポンプ自身の吐出溶液を取り出し、ポンプの後部から吸い込んで循環させる、いわゆる自己循環(自己サーキュレーション)による溶液を用いてベアリングの潤滑、モータ冷却とを行なう自己循環式が一般的である。
【0004】
ところで上記従来技術1に記載されるように、冷房負荷に応じて溶液循環量をインバータ等によって制御すると、ポンプの吐出圧力が下がり、このため自己循環による溶液が不足しがちになる。特に従来技術2の図7に示されように、高温再生器および低温再生器からの溶液を吸収器へ還流させる溶液スプレーポンプを備えた吸収冷温水機では、元来、吸収器の圧力が低いため溶液スプレーポンプの揚程が小さい。従って、溶液流量が減ると溶液スプレーポンプの吐出圧も低下する。このため、自己循環溶液量が不足し、溶液スプレーポンプのベアリング潤滑、モータ冷却が不足しがちになる。この不足を補うために、ベアリング材質に潤滑特性の高い高価なセラミックの材質を用いたり、モータコイルの過熱に耐える高温の絶縁特性を有するモータに変更する必要があるなど、費用のかかる対策が必要となる。
【0005】
本発明の目的は、溶液流量に関係なく、すなわち負荷の大小に関係なく溶液スプレーポンプの自己循環溶液量を確保し、溶液スプレーポンプの高寿命化を図る吸収式冷温水機を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を解決するために本発明に係る吸収冷温水機の発明は、高温再生器と、低温再生器と、これら高温再生器、低温再生器へ溶液を送るための溶液循環ポンプと、吸収器と、この吸収器へ濃溶液を送るための溶液スプレーポンプとを動作可能に配管接続し、溶液循環量を負荷に応じて可変制御する吸収冷温水機において、前記溶液循環ポンプの吐出側と前記溶液スプレーポンプの潤滑液取り込み口とを接続し、前記溶液スプレーポンプの自己潤滑液に前記溶液循環ポンプの吐出側の溶液を用いるものである。
【0007】
また上記目的を解決するために本発明に係る吸収冷温水機の他の発明は、高温再生器と、低温再生器と、これら高温再生器、低温再生器へ溶液を送るための溶液循環ポンプと、吸収器と、この吸収器へ濃溶液を送るための自己潤滑式の溶液スプレーポンプとを動作可能に配管接続し、溶液循環量を負荷に応じて可変制御する吸収冷温水機において、前記溶液循環ポンプの吐出側と前記溶液スプレーポンプの潤滑液取り込み口とを弁を介して接続し、前記溶液スプレーポンプの吐出側と潤滑液取り込み口とを弁を介して接続し、前記溶液の循環量に応じて前記弁の開閉を制御するものである。
より好ましくは、前記溶液循環量は、冷房負荷、高温再生器の圧力もしくは温度、冷房サイクル中の溶液温度のいずれかによって検知して制御するものである。
【0008】
さらに上記目的を解決するために本発明に係る吸収冷温水機のさらに他の発明は、高温再生器と、低温再生器と、これら高温再生器、低温再生器へ溶液を送るための溶液循環ポンプと、吸収器と、この吸収器へ濃溶液を送るための自己潤滑式の溶液スプレーポンプとを動作可能に配管接続し、溶液循環量を負荷に応じて可変制御する吸収冷温水機において、前記溶液スプレーポンプは吐出側に可変制御弁を備え、前記溶液の循環量に応じて前記可変制御弁の開閉量を制御するものである。
より好ましくは、前記溶液循環量を、冷房負荷、高温再生器の圧力もしくは温度、冷房サイクル中の溶液温度、溶液スプレーポンプ吸い込み側の液位を検知して制御するものである。
また、前記溶液スプレーポンプの吐出側の可変制御弁は、溶液スプレーポンプ吸い込み側の液位を検知して開閉制御するフロート弁とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
まず図13によって、高温再生器および低温再生器に希溶液を並行に流す方式、いわゆるパラレルフロー方式の一般的な吸収冷温水機の構成と、冷房サイクル時の溶液フローとについて説明する。
【0010】
吸収冷温水機は、高温再生器1と、熱交換器2aを内蔵する低温再生器2と、凝縮器3と、熱交換器4aを内蔵する蒸発器4と、熱交換器5aを内蔵する吸収器5とを備えている。また吸収冷温水機は、低温熱交換器6および高温熱交換器7の2つの液−液熱交換器要素と、前記高温再生器1および低温再生器2へ希溶液を送るための溶液循環ポンプ8とを備えている。さらに吸収冷温水機は、前記吸収器5へ濃溶液を送るための自己潤滑式(溶液の自己潤滑によってベアリングの潤滑、モータの冷却を行なう)の溶液スプレーポンプ9と、冷媒ポンプ10と、これらをサイクル動作可能に結ぶ配管P1〜P10とを備えている。
【0011】
上記構成において、冷房サイクル時の溶液フロー(矢印で示す)について説明する。
高温再生器1内の希溶液はバーナ等の外部熱源によって加熱され、希溶液は冷媒蒸気を発生して濃縮される。発生した冷媒蒸気は、配管P1を経由して低温再生器2内の熱交換器2aに導かれる。熱交換器2aに導かれた冷媒蒸気は、低温再生器2内の溶液を加熱・濃縮して冷媒蒸気を発生させ、高温再生器1から導かれた冷媒蒸気は凝縮液化し、配管P2を経由して凝縮器3に流入する。低温再生器2で発生した冷媒蒸気は凝縮器3に導かれ、冷却水で冷却されて凝縮液化し、配管P3を経由して蒸発器4に送られる。蒸発器4内の液冷媒は配管P4に設けられている冷媒ポンプ10で圧送され、蒸発器4内の熱交換器4a上に散布される。
【0012】
散布された液冷媒は、熱交換器4a内を流れる冷水と熱交換して蒸発気化し、吸収器5に流入する。その際、蒸発潜熱により冷房作用を発揮する。吸収器5では、高温再生器1および低温再生器2で濃縮された濃溶液が配管P5、P6を経由して溶液スプレーポンプ9に送られる。溶液スプレーポンプ9で加圧された濃溶液は配管P7を経由して吸収器5内の熱交換器5a上に散布される。散布された濃容液は、熱交換器5a内を流れる冷却水で冷却され、蒸発器4からの冷媒蒸気を吸収して希溶液が生成される。
【0013】
吸収器5で生成された希溶液は、配管P8の途中に設けられている溶液循環ポンプ8によって加圧される。加圧された希溶液は低温熱交換器6を出て配管P8を流れるが、配管P8が二分された後は、一方は配管P9を経由して低温再生器2に供給され、他方は配管P10と高温熱交換器7とを経由して高温再生器1に供給される。
【0014】
以上が冷房サイクル時の溶液フローである。一般に、設計仕様点における機内運転圧力は、吸収器5で1/100気圧、高温再生器1で、0.8〜0.9気圧である。このため、溶液循環ポンプ8の吐出圧力は10〜20m液柱と高く設計され、一方、溶液スプレーポンプ9の吐出圧力は3〜6m液柱と低く設計されている。
【0015】
これら溶液循環ポンプ8、溶液スプレーポンプ9、冷媒ポンプ10は高い気密性が求められ、一般に全密閉型のキャンドポンプが採用されている。従って、自己循環溶液を用いてベアリングの潤滑、モータの冷却が可能なように、各ポンプ8、9、10には冷却配管C8、C9、C10が設けられている。このような配管系で冷房負荷に応じて適切な溶液循環量を制御すると、溶液スプレーポンプ9の吐出圧力が低下し、自己循環溶液が不足する。
【0016】
図1は、本発明の吸収冷温水機に係るパラレルフロー方式の第1の実施例の系統図で、自己循環溶液の流量不足を解消するように構成したものである。
図1の実施例が、前記図13に示すものと異なる点は、溶液循環ポンプ8の冷却配管C8から分岐した冷却配管11から溶液スプレーポンプ9の自己循環用溶液を取り込む構成にしたことである。自己循環用溶液の取り出し位置は、循環に必要な圧力を有する部位なら他の配管からでもよく、例えば冷却配管11a(破線で示す)で示す部位からも取り入れることができる。すなわち、より高い圧力で運転されている溶液循環ポンプ8の吐出側から溶液を取っているので自己循環溶液の不足を起こすことはなくなる。
【0017】
本実施例によれば、冷房負荷に応じて溶液循環量が減少し、溶液スプレーポンプ9の吐出圧力が低下しても、より高い圧力で運転されている溶液循環ポンプ8の吐出側から溶液を取り入れるという簡単な機構で自己循環溶液の不足を起こすことがなくなる。すなわち、溶液流量(冷房負荷)に関係なく、溶液スプレーポンプの自己循環溶液量を確保でき、溶液スプレーポンプの高寿命化を図ることができる。
【0018】
図2は、本発明の第2の実施例の系統図を示す。図2が、図1に示す実施例と異なる点は、溶液スプレーポンプ9の自己循環溶液を溶液循環ポンプ8の吐出側から取り入れている冷却配管11と、溶液スプレーポンプ9の吐出側から取り入れている冷却配管Cとを備え、それぞれに希溶液切り替え弁12および濃溶液切替弁13を設けた点である。溶液スプレーポンプ9の自己循環溶液を溶液循環ポンプ8の吐き出し側から取り入れると、濃縮した溶液に希溶液が混入してしまうためサイクル効率を低下させてしまう。
そこで本実施例では、溶液循環量の少ないときは希溶液切り替え弁12を開き、濃溶液切替弁13を閉じる。溶液循環量の多いときは希溶液切り替え弁12を閉じ、濃溶液切替弁13を開くように制御する。
【0019】
このように弁を開閉制御することによって、自己循環溶液の不足を起こさずに、また、サイクル効率の低下を減らすことができる。ここで、切り替えのタイミングは、入熱量や冷水の出入り口温度差等で冷房負荷が大きいと判断されるとき、高温再生器1の圧力が高いとき、高温再生器1の温度が高いとき、冷房サイクル中のいずれかの部位の溶液温度が高いとき、あるいは溶液循環ポンプ8や溶液スプレーポンプ9をインバータ制御している場合はその運転周波数指令信号をとって、制御装置14で溶液循環量が多いか少ないかを判断して行なう。なお図2には、各配管に設けられた圧力や温度を計測するセンサからの信号線(破線で示す)、溶液切替弁やバーナ等の駆動信号を送るための信号線(破線で示す)等が制御装置14に接続されている。
本実施例によれば、溶液循環ポンプの吐出側と前記溶液スプレーポンプの潤滑液取り込み口とを弁を介して接続し、前記溶液スプレーポンプの吐出側と潤滑液取り込み口とを弁を介して接続し、前記溶液の循環量に応じて前記いずれかの弁の開閉を制御することで、サイクル効率の低下を減らして上記第1の実施例と同様の効果を得ることができる。
【0020】
図3は、本発明の第3の実施例の系統図である。
図3が、第1、第2の実施例と異なる点は、溶液スプレーポンプ9の吐出側の配管P7に可変絞り弁15を設けた点である。溶液循環量が少ない場合、可変絞り弁15を閉じ加減に、溶液循環量が多い場合、可変絞り弁15を開き加減に制御する。このように可変絞り弁15の開閉量を制御することによって、溶液スプレーポンプ9の吐出圧は高く保たれるので、自己循環溶液の不足を起こすことはない。
【0021】
ここで、可変絞り弁15の開閉量の制御は、入熱量や冷水の出入り口温度差等で冷房負荷が大きいと判断されとき、高温再生器1の圧力が高いとき、高温再生器1の温度が高いときに行う。あるいは、冷房サイクル中のいずれかの部位の溶液温度が高いとき行う。溶液循環ポンプ8や溶液スプレーポンプ9をインバータ制御している場合はその運転周波数指令信号に基づいて制御装置14が循環量が多いか少ないかを判断して行う。あるいは、溶液スプレーポンプ9の吸い込み液位を何れかの信号によって、制御装置14で循環量が多いか少ないかを判断して行う。
本実施例によれば、溶液スプレーポンプは吐出側に可変制御弁を備え、前記溶液の循環量に応じて前記可変制御弁の開閉量を制御することで、サイクル効率の低下を減らして、上記第1の実施例と同様の効果を得ることができる。
【0022】
図4は、本発明の第4の実施例の系統図である。
図4が、第3の実施例と異なる点は、溶液スプレーポンプ9の吐出側配管P7の絞り弁16を、溶液スプレーポンプ9の吸込側の液位を検知して作動するフロート弁16にした点である。
本実施例によれば、可変制御弁を、溶液スプレーポンプ吸い込み側の液位を検知して開閉制御するフロート弁とすることで、簡単な機構で上記第1の実施例と同様の効果を得ることができる。
【0023】
以上で説明した第1ないし第4の実施例は、パラレルフロー方式についてのものであるが、これと異なった冷凍サイクルフローの吸収冷温水機にも適用できる。
図5は、いわゆるシリーズフローと称される冷房サイクルフローに、前記第1の実施例で示す自己循環溶液の流路構成を適用した第5の実施例である。
シリーズフローとパラレルフローとの溶液循環の違いは、シリーズフロー方式では希溶液が、吸収器5から配管P8の途中に設けられている溶液循環ポンプ8、低温熱交換器6、高温熱交換器7を経由し高温再生器1に流入する点である。高温再生器1で濃縮された溶液は配管P5の途中に設けられている高温熱交換器7を経由し低温再生器2でさらに濃縮される。この濃縮された溶液は、配管P6の途中に設けられている溶液スプレーポンプ9、低温熱交換器6を経由して吸収器5に還流する点である。このような溶液の流れでは、循環制御が比較的容易である。その反面、全液量が高温再生器1に送られるため、高温熱交換器1が大きくなる。前述の通り溶液の流れは異なっているが、各部の動作は図1のものと略同様である。
【0024】
図6は、図5で示すシリーズフロー方式に前記第2の実施例で説明する自己循環溶液の流路構成を適用した第6の実施例である。図7は、同様にシリーズフローに前記第3の実施例で示す自己循環溶液の流路構成を適用した第7の実施例である。図8は、さらにシリーズフローに前記第4の実施例で示す自己循環溶液の流路構成を適用した第8の実施例である。
上記第5ないし第8のいずれの実施例においても、前記第1ないし第4のパラレルフローのそれぞれの実施例と同様の効果が得られる。
【0025】
図9は、いわゆるリバースフローと称される冷房サイクルフローに前記第1の実施例を適用した第9の実施例である。
リバースフローとパラレルフローとの溶液循環の違いは、吸収器5から配管P8の途中に設けられている希溶液が溶液循環ポンプ8、低温熱交換器6を経由して低温再生器2に流入する点である。低温再生器2で濃縮された溶液は二分され、一部は、配管P6の途中に設けられている溶液再循環ポンプ8a、高温熱交換器7を経由して高温再生器1でさらに濃縮される。この高温再生器1で濃縮された溶液は、配管P5の途中に設けられている高温熱交換器7を経由して、前記二分された溶液のうちの一方の低温再生器2で濃縮された溶液と合流し、溶液スプレーポンプ9、低温熱交換器6を経由して吸収器5に還流する点である。
なおリバースフロー方式の吸収冷温水機では、全ての希溶液が低温再生器に送られるため、高温再生器の運転圧力を下げられる効果がある反面、新たに溶液再循環用のポンプが必要になる。
【0026】
図9において、溶液スプレーポンプ9の自己循環溶液は溶液循環ポンプ8の吐出側から取り入れているが、溶液再循環ポンプ8の吐出側の他の部位から取っても、溶液スプレーポンプ9の自己循環に関しては同様の効果を得ることができる。
図10は、図9で説明したリバースフロー方式に前記第2の実施例を適用した第10の実施例である。図11は、同様にリバースフローに前記第2の実施例を適用した第11の実施例である。図12は、さらにリバースフローに前記第3の実施例を適用した第12の実施例である。溶液スプレーポンプ9の自己循環に関する作用・効果は図1ないし図4のものと同様である。
【0027】
図11では、溶液スプレーポンプ9の自己潤滑の溶液液は溶液循環ポンプ8の吐出側から取り入れているが、溶液再循環ポンプ8aの他の吐出側からとっても同様の効果を得ることができる。
上記第9ないし第12の実施例においても、前記第1ないし第4のパラレルフローのそれぞれの実施例と同様の効果が得られる。
【0028】
【発明の効果】
以上説明したように本発明によれば、吸収器の熱交換器に溶液を散布するため液スプレーポンプを有する吸収冷温水機において、吸収冷温水機に流れる溶液流量に関係なく、すなわち負荷の大小に関係なく溶液スプレーポンプの自己循環溶液量を確保し、溶液スプレーポンプの高寿命化を図ることができる。
【図面の簡単な説明】
【図1】本発明のパラレルフローの吸収冷温水機に係る第1の実施例の系統図である。
【図2】本発明のパラレルフローの吸収冷温水機に係る第2の実施例の系統図である。
【図3】本発明のパラレルフローの吸収冷温水機に係る第3の実施例の系統図である。
【図4】本発明のパラレルフローの吸収冷温水機に係る第4の実施例の系統図である。
【図5】本発明のシリーズフローの吸収冷温水機に係る第5の実施例の系統図である。
【図6】本発明のシリーズフローの吸収冷温水機に係る第6の実施例の系統図である。
【図7】本発明のシリーズフローの吸収冷温水機に係る第7の実施例の系統図である。
【図8】本発明のシリーズフローの吸収冷温水機に係る第8の実施例の系統図である。
【図9】本発明のリバースフローの吸収冷温水機に係る第9の実施例の系統図である。
【図10】本発明のリバースフローの吸収冷温水機に係る第10の実施例の系統図である。
【図11】本発明のリバースフローの吸収冷温水機に係る第11の実施例の系統図である。
【図12】本発明のリバースフローの吸収冷温水機に係る第12の実施例の系統図である。
【図13】パラレルフローの一般的な吸収冷温水機の系統図である。
【符号の説明】
1…高温再生器、2…低温再生器、3…凝縮器、4…蒸発器、5…吸収器、6…低温熱交換器、7…高温熱交換器、8…溶液循環ポンプ、8a…溶液再循環ポンプ、9…溶液スプレーポンプ、10…冷媒ポンプ、2a、4a、5a…熱交換器、11,11a…冷却配管、12…希溶液切り替え弁、13…濃溶液切替弁、14…制御装置、15…可変絞り弁、16…フロート弁。C1,C8,C10…冷却配管、P1〜P10…配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption chiller / heater used for an air conditioner for building air conditioning and the like.
[0002]
[Prior art]
For example, as described in Japanese Patent Application Laid-Open No. H8-68572 (prior art 1), in a double effect absorption refrigerator, a technique of controlling the solution circulation amount of a high-temperature regenerator and a low-temperature regenerator in accordance with a cooling load is known. Are known. Further, as shown in JP-A-11-257781 (prior art 2), in particular, as shown in FIG. 7, a cycle including a solution spray pump is also known. In other words, this technology installs a solution spray pump on the pipe after mixing the return solution of the low-temperature regenerator and the high-temperature regenerator so that the return solution of the low-temperature regenerator can be circulated even at a low load, and sprays the return solution with the solution. It is sucked by a pump and forcibly sent to an absorber.
[0003]
[Problems to be solved by the invention]
Generally, a closed type canned pump is employed in an absorption chiller / heater. For this reason, in the canned pump, the lubrication of the bearing is performed by using a so-called self-circulation (self-circulation) solution in which the discharge solution of the pump itself is taken out for lubrication of the bearing and cooling of the motor, and is sucked and circulated from the rear of the pump. In general, a self-circulation system for cooling the motor is used.
[0004]
By the way, as described in the above-mentioned prior art 1, when the amount of circulating solution is controlled by an inverter or the like according to the cooling load, the discharge pressure of the pump decreases, and therefore the solution due to self-circulation tends to run short. In particular, as shown in FIG. 7 of the prior art 2, in an absorption chiller / heater equipped with a solution spray pump for refluxing the solution from the high temperature regenerator and the low temperature regenerator to the absorber, the pressure of the absorber is originally low. Therefore, the head of the solution spray pump is small. Therefore, the discharge pressure of the solution spray pump decreases as the solution flow rate decreases. Therefore, the amount of the self-circulating solution is insufficient, and the bearing lubrication of the solution spray pump and the cooling of the motor tend to be insufficient. To compensate for this shortage, costly measures are required, such as using an expensive ceramic material with high lubrication properties for the bearing material or changing to a motor with high-temperature insulation properties that can withstand overheating of the motor coil It becomes.
[0005]
An object of the present invention is to provide an absorption-type water cooler / heater that secures a self-circulating solution amount of a solution spray pump regardless of the flow rate of a solution, that is, regardless of the magnitude of a load, and prolongs the life of the solution spray pump. is there.
[0006]
[Means for Solving the Problems]
In order to solve the above object, the invention of an absorption chiller / heater according to the present invention comprises a high-temperature regenerator, a low-temperature regenerator, a high-temperature regenerator, a solution circulation pump for sending a solution to the low-temperature regenerator, and an absorber. And, in an absorption chiller / heater which operably connects a solution spray pump for sending a concentrated solution to the absorber and variably controls a solution circulation amount according to a load, a discharge side of the solution circulation pump and the solution The lubricating liquid intake of the solution spray pump is connected, and the solution on the discharge side of the solution circulation pump is used as the self-lubricating liquid of the solution spray pump.
[0007]
Another solution of the absorption chiller / heater according to the present invention for solving the above-mentioned object is to provide a high-temperature regenerator, a low-temperature regenerator, a high-temperature regenerator, and a solution circulation pump for sending a solution to the low-temperature regenerator. An absorber and a self-lubricating solution spray pump for sending a concentrated solution to the absorber, operably connected to a pipe, and an absorption chiller / heater for variably controlling a solution circulation amount according to a load. The discharge side of the circulation pump and the lubricating liquid intake port of the solution spray pump are connected via a valve, and the discharge side of the solution spray pump and the lubricating liquid intake port are connected via a valve. The opening and closing of the valve is controlled in accordance with
More preferably, the solution circulation amount is detected and controlled by any one of a cooling load, a pressure or temperature of a high-temperature regenerator, and a solution temperature during a cooling cycle.
[0008]
In order to further solve the above-mentioned object, still another invention of an absorption chiller / heater according to the present invention includes a high-temperature regenerator, a low-temperature regenerator, and a solution circulation pump for sending a solution to the high-temperature regenerator and the low-temperature regenerator. And an absorber and a self-lubricating solution spray pump for sending a concentrated solution to the absorber, operably connected to a pipe, and an absorption chiller / heater that variably controls a solution circulation amount according to a load. The solution spray pump has a variable control valve on the discharge side, and controls the amount of opening and closing of the variable control valve according to the amount of circulation of the solution.
More preferably, the circulation amount of the solution is controlled by detecting a cooling load, a pressure or temperature of a high-temperature regenerator, a solution temperature during a cooling cycle, and a liquid level on a suction side of a solution spray pump.
The variable control valve on the discharge side of the solution spray pump is a float valve that detects and detects the liquid level on the suction side of the solution spray pump and controls opening and closing.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a configuration of a general absorption chiller / heater of a so-called parallel flow type, in which a dilute solution flows in parallel to a high-temperature regenerator and a low-temperature regenerator, and a solution flow in a cooling cycle will be described with reference to FIG.
[0010]
The absorption chiller / heater includes a high-temperature regenerator 1, a low-temperature regenerator 2 containing a heat exchanger 2a, a condenser 3, an evaporator 4 containing a heat exchanger 4a, and an absorption containing a heat exchanger 5a. Vessel 5. The absorption chiller / heater has two liquid-liquid heat exchanger elements, a low-temperature heat exchanger 6 and a high-temperature heat exchanger 7, and a solution circulation pump for sending a dilute solution to the high-temperature regenerator 1 and the low-temperature regenerator 2. 8 is provided. Further, the absorption chiller / heater has a self-lubricating type solution spray pump 9 (to lubricate the bearings and cool the motor by self-lubrication of the solution) for sending the concentrated solution to the absorber 5, a refrigerant pump 10, And pipes P1 to P10 for operable in a cycle operation.
[0011]
In the above configuration, a solution flow (indicated by an arrow) during a cooling cycle will be described.
The dilute solution in the high-temperature regenerator 1 is heated by an external heat source such as a burner, and the dilute solution generates refrigerant vapor and is concentrated. The generated refrigerant vapor is led to the heat exchanger 2a in the low-temperature regenerator 2 via the pipe P1. The refrigerant vapor guided to the heat exchanger 2a heats and concentrates the solution in the low-temperature regenerator 2 to generate refrigerant vapor, and the refrigerant vapor guided from the high-temperature regenerator 1 is condensed and liquefied and passes through a pipe P2. And flows into the condenser 3. Refrigerant vapor generated in the low-temperature regenerator 2 is guided to the condenser 3, cooled by cooling water to be condensed and liquefied, and sent to the evaporator 4 via the pipe P3. The liquid refrigerant in the evaporator 4 is pressure-fed by the refrigerant pump 10 provided in the pipe P4, and is sprayed on the heat exchanger 4a in the evaporator 4.
[0012]
The sprayed liquid refrigerant exchanges heat with the cold water flowing in the heat exchanger 4a to evaporate and flow into the absorber 5. At that time, a cooling effect is exerted by latent heat of evaporation. In the absorber 5, the concentrated solution concentrated in the high temperature regenerator 1 and the low temperature regenerator 2 is sent to the solution spray pump 9 via the pipes P5 and P6. The concentrated solution pressurized by the solution spray pump 9 is sprayed on the heat exchanger 5a in the absorber 5 via the pipe P7. The sprayed concentrated solution is cooled by cooling water flowing in the heat exchanger 5a, and absorbs refrigerant vapor from the evaporator 4 to generate a dilute solution.
[0013]
The dilute solution generated by the absorber 5 is pressurized by a solution circulation pump 8 provided in the middle of the pipe P8. The pressurized dilute solution exits the low-temperature heat exchanger 6 and flows through the pipe P8. After the pipe P8 is divided into two, one is supplied to the low-temperature regenerator 2 via the pipe P9 and the other is connected to the pipe P10. Is supplied to the high-temperature regenerator 1 via the high-temperature heat exchanger 7.
[0014]
The above is the solution flow during the cooling cycle. Generally, the in-machine operating pressure at the design specification point is 1/100 atm for the absorber 5 and 0.8 to 0.9 atm for the high temperature regenerator 1. For this reason, the discharge pressure of the solution circulation pump 8 is designed as high as 10 to 20 m liquid column, while the discharge pressure of the solution spray pump 9 is designed as low as 3 to 6 m liquid column.
[0015]
The solution circulation pump 8, the solution spray pump 9, and the refrigerant pump 10 are required to have high airtightness, and generally a completely hermetic canned pump is employed. Therefore, the pumps 8, 9, and 10 are provided with cooling pipes C8, C9, and C10 so that the bearings can be lubricated and the motor can be cooled using the self-circulating solution. When an appropriate solution circulation amount is controlled according to the cooling load in such a piping system, the discharge pressure of the solution spray pump 9 decreases, and the amount of the self-circulating solution becomes insufficient.
[0016]
FIG. 1 is a system diagram of a first embodiment of a parallel flow system according to an absorption chiller / heater of the present invention, which is configured to eliminate a shortage of flow rate of a self-circulating solution.
The embodiment of FIG. 1 is different from that shown in FIG. 13 in that a configuration is adopted in which a solution for self-circulation of a solution spray pump 9 is taken in from a cooling pipe 11 branched from a cooling pipe C8 of a solution circulation pump 8. . The take-out position of the solution for self-circulation may be from another pipe as long as it has a pressure necessary for circulation, and may be taken from, for example, a part indicated by a cooling pipe 11a (shown by a broken line). That is, since the solution is taken from the discharge side of the solution circulation pump 8 operated at a higher pressure, the shortage of the self-circulating solution does not occur.
[0017]
According to the present embodiment, even if the solution circulation amount decreases according to the cooling load and the discharge pressure of the solution spray pump 9 decreases, the solution is discharged from the discharge side of the solution circulation pump 8 operated at a higher pressure. With the simple mechanism of taking in, there is no shortage of self-circulating solution. That is, the amount of the self-circulating solution of the solution spray pump can be secured regardless of the solution flow rate (cooling load), and the life of the solution spray pump can be extended.
[0018]
FIG. 2 shows a system diagram of a second embodiment of the present invention. FIG. 2 differs from the embodiment shown in FIG. 1 in that the self-circulating solution of the solution spray pump 9 is taken in from the discharge side of the solution circulation pump 8 and the cooling pipe 11 is taken in from the discharge side of the solution spray pump 9. And a concentrated solution switching valve 13 are provided for each of them. If the self-circulating solution of the solution spray pump 9 is taken in from the discharge side of the solution circulation pump 8, the dilute solution is mixed into the concentrated solution, thereby lowering the cycle efficiency.
Therefore, in this embodiment, when the solution circulation amount is small, the dilute solution switching valve 12 is opened and the concentrated solution switching valve 13 is closed. When the amount of circulating solution is large, control is performed such that the dilute solution switching valve 12 is closed and the concentrated solution switching valve 13 is opened.
[0019]
By controlling the opening and closing of the valve in this way, a shortage of the self-circulating solution does not occur, and a decrease in cycle efficiency can be reduced. Here, the switching timing is determined when the cooling load is determined to be large based on the heat input amount, the difference between the inlet and outlet temperatures of the chilled water, the pressure of the high-temperature regenerator 1 is high, the temperature of the high-temperature regenerator 1 is high, the cooling cycle. When the solution temperature of any of the parts is high, or when the solution circulation pump 8 or the solution spray pump 9 is inverter-controlled, the operation frequency command signal is taken and the controller 14 determines whether the solution circulation amount is large. Judge whether it is small. FIG. 2 shows a signal line (shown by a broken line) from a sensor for measuring pressure and temperature provided in each pipe, a signal line (shown by a broken line) for sending a drive signal for a solution switching valve, a burner, and the like. Are connected to the control device 14.
According to this embodiment, the discharge side of the solution circulation pump and the lubricating liquid intake of the solution spray pump are connected via a valve, and the discharge side of the solution spray pump and the lubricating liquid intake are connected via a valve. By connecting and controlling the opening and closing of any one of the valves according to the amount of circulation of the solution, a decrease in cycle efficiency can be reduced and the same effect as in the first embodiment can be obtained.
[0020]
FIG. 3 is a system diagram of a third embodiment of the present invention.
FIG. 3 differs from the first and second embodiments in that a variable throttle valve 15 is provided in a pipe P7 on the discharge side of the solution spray pump 9. When the amount of circulating solution is small, the variable throttle valve 15 is closed and adjusted. When the amount of circulated solution is large, the variable throttle valve 15 is opened and adjusted. By controlling the opening / closing amount of the variable throttle valve 15 in this manner, the discharge pressure of the solution spray pump 9 is kept high, so that the shortage of the self-circulating solution does not occur.
[0021]
Here, the control of the opening / closing amount of the variable throttle valve 15 is performed when the cooling load is determined to be large based on the heat input amount, the difference between the inlet and outlet temperatures of the chilled water, the pressure of the high-temperature regenerator 1 is high, Perform when high. Alternatively, it is performed when the solution temperature at any part in the cooling cycle is high. When the solution circulation pump 8 and the solution spray pump 9 are controlled by an inverter, the controller 14 determines whether the circulation amount is large or small based on the operation frequency command signal. Alternatively, the suction level of the solution spray pump 9 is determined based on one of the signals by the control device 14 to determine whether the circulation amount is large or small.
According to the present embodiment, the solution spray pump is provided with a variable control valve on the discharge side, and by controlling the opening and closing amount of the variable control valve according to the circulation amount of the solution, the decrease in cycle efficiency is reduced. The same effect as in the first embodiment can be obtained.
[0022]
FIG. 4 is a system diagram of a fourth embodiment of the present invention.
FIG. 4 is different from the third embodiment in that the throttle valve 16 of the discharge side pipe P7 of the solution spray pump 9 is a float valve 16 which operates by detecting the liquid level on the suction side of the solution spray pump 9. Is a point.
According to this embodiment, the same effect as that of the first embodiment can be obtained with a simple mechanism by using a float valve that detects and controls the liquid level on the suction side of the solution spray pump as the variable control valve. be able to.
[0023]
The first to fourth embodiments described above relate to the parallel flow system, but can also be applied to absorption chillers / heaters having a different refrigeration cycle flow.
FIG. 5 shows a fifth embodiment in which the flow path configuration of the self-circulating solution shown in the first embodiment is applied to a cooling cycle flow called a so-called series flow.
The difference between the solution circulation between the series flow and the parallel flow is that, in the series flow method, the dilute solution is supplied to the solution circulation pump 8, the low-temperature heat exchanger 6, and the high-temperature heat exchanger 7 provided in the pipe P 8 from the absorber 5. And flows into the high-temperature regenerator 1 via the The solution concentrated in the high-temperature regenerator 1 is further concentrated in the low-temperature regenerator 2 via the high-temperature heat exchanger 7 provided in the middle of the pipe P5. This concentrated solution returns to the absorber 5 via the solution spray pump 9 and the low-temperature heat exchanger 6 provided in the middle of the pipe P6. In such a flow of the solution, the circulation control is relatively easy. On the other hand, since the entire liquid amount is sent to the high-temperature regenerator 1, the high-temperature heat exchanger 1 becomes large. As described above, the flow of the solution is different, but the operation of each part is substantially the same as that of FIG.
[0024]
FIG. 6 shows a sixth embodiment in which the channel configuration of the self-circulating solution described in the second embodiment is applied to the series flow system shown in FIG. FIG. 7 shows a seventh embodiment in which the channel configuration of the self-circulating solution shown in the third embodiment is similarly applied to the series flow. FIG. 8 shows an eighth embodiment in which the channel configuration of the self-circulating solution shown in the fourth embodiment is further applied to the series flow.
In each of the fifth to eighth embodiments, the same effects as those of the first to fourth parallel flows can be obtained.
[0025]
FIG. 9 shows a ninth embodiment in which the first embodiment is applied to a cooling cycle flow called a reverse flow.
The difference between the solution circulation between the reverse flow and the parallel flow is that the dilute solution provided in the middle of the pipe P8 from the absorber 5 flows into the low temperature regenerator 2 via the solution circulation pump 8 and the low temperature heat exchanger 6. Is a point. The solution concentrated in the low-temperature regenerator 2 is divided into two parts, and a part of the solution is further concentrated in the high-temperature regenerator 1 via the solution recirculation pump 8a and the high-temperature heat exchanger 7 provided in the middle of the pipe P6. . The solution concentrated in the high-temperature regenerator 1 passes through the high-temperature heat exchanger 7 provided in the middle of the pipe P5, and the solution concentrated in the low-temperature regenerator 2 of one of the bisected solutions. And is returned to the absorber 5 via the solution spray pump 9 and the low-temperature heat exchanger 6.
In the reverse flow type absorption chiller / heater, all the dilute solution is sent to the low temperature regenerator, which has the effect of lowering the operating pressure of the high temperature regenerator, but requires a new solution recirculation pump. .
[0026]
In FIG. 9, the self-circulating solution of the solution spray pump 9 is taken in from the discharge side of the solution circulation pump 8. Can obtain the same effect.
FIG. 10 shows a tenth embodiment in which the second embodiment is applied to the reverse flow system described in FIG. FIG. 11 shows an eleventh embodiment in which the second embodiment is similarly applied to the reverse flow. FIG. 12 shows a twelfth embodiment in which the third embodiment is further applied to a reverse flow. The operation and effect of the solution spray pump 9 relating to the self-circulation are the same as those in FIGS.
[0027]
In FIG. 11, the self-lubricating solution liquid of the solution spray pump 9 is taken in from the discharge side of the solution circulation pump 8, but the same effect can be obtained from the other discharge side of the solution recirculation pump 8a.
Also in the ninth to twelfth embodiments, the same effects as those of the first to fourth parallel flows can be obtained.
[0028]
【The invention's effect】
As described above, according to the present invention, in an absorption chiller / heater having a liquid spray pump for spraying a solution to a heat exchanger of an absorber, regardless of the flow rate of the solution flowing through the absorption chiller / heater, that is, the magnitude of the load is small. Irrespective of the above, the amount of self-circulating solution of the solution spray pump can be ensured, and the life of the solution spray pump can be extended.
[Brief description of the drawings]
FIG. 1 is a system diagram of a first embodiment according to a parallel flow absorption chiller / heater of the present invention.
FIG. 2 is a system diagram of a second embodiment according to a parallel flow absorption chiller / heater of the present invention.
FIG. 3 is a system diagram of a third embodiment of a parallel flow absorption chiller / heater of the present invention.
FIG. 4 is a system diagram of a fourth embodiment of the parallel flow absorption chiller / heater of the present invention.
FIG. 5 is a system diagram of a fifth embodiment of a series flow absorption chiller / heater of the present invention.
FIG. 6 is a system diagram of a sixth embodiment relating to a series flow absorption chiller / heater of the present invention.
FIG. 7 is a system diagram of a seventh embodiment relating to a series flow absorption chiller / heater of the present invention.
FIG. 8 is a system diagram of an eighth embodiment relating to a series flow absorption chiller / heater of the present invention.
FIG. 9 is a system diagram of a ninth embodiment of the reverse flow absorption chiller / heater of the present invention.
FIG. 10 is a system diagram of a tenth embodiment according to the reverse flow absorption chiller / heater of the present invention.
FIG. 11 is a system diagram of an eleventh embodiment according to the reverse flow absorption chiller / heater of the present invention.
FIG. 12 is a system diagram of a twelfth embodiment according to the reverse flow absorption chiller / heater of the present invention.
FIG. 13 is a system diagram of a general absorption chiller / heater of a parallel flow.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... High temperature regenerator, 2 ... Low temperature regenerator, 3 ... Condenser, 4 ... Evaporator, 5 ... Absorber, 6 ... Low temperature heat exchanger, 7 ... High temperature heat exchanger, 8 ... Solution circulation pump, 8a ... Solution Recirculation pump, 9 solution spray pump, 10 refrigerant pump, 2a, 4a, 5a heat exchanger, 11, 11a cooling pipe, 12 dilute solution switching valve, 13 concentrated solution switching valve, 14 control device , 15: Variable throttle valve, 16: Float valve. C1, C8, C10: cooling pipes, P1 to P10: pipes.

Claims (6)

高温再生器と、低温再生器と、これら高温再生器、低温再生器へ溶液を送るための溶液循環ポンプと、吸収器と、この吸収器へ濃溶液を送るための溶液スプレーポンプとを動作可能に配管接続し、溶液循環量を負荷に応じて可変制御する吸収冷温水機において、
前記溶液循環ポンプの吐出側と前記溶液スプレーポンプの潤滑液取り込み口とを接続し、前記溶液スプレーポンプの自己潤滑溶液に前記溶液循環ポンプの吐出側の溶液を用いることを特徴とする吸収冷温水機。
A high-temperature regenerator, a low-temperature regenerator, a solution circulation pump for sending a solution to the high-temperature regenerator and a low-temperature regenerator, an absorber, and a solution spray pump for sending a concentrated solution to the absorber can be operated. In the absorption chiller / heater, which is connected to the pipe and variably controls the solution circulation amount according to the load,
A discharge side of the solution circulation pump and a lubricating liquid intake of the solution spray pump are connected to each other, and a solution on the discharge side of the solution circulation pump is used as a self-lubricating solution of the solution spray pump. Machine.
高温再生器と、低温再生器と、これら高温再生器、低温再生器へ溶液を送るための溶液循環ポンプと、吸収器と、この吸収器へ濃溶液を送るための自己潤滑式の溶液スプレーポンプとを動作可能に配管接続し、溶液循環量を負荷に応じて可変制御する吸収冷温水機において、
前記溶液循環ポンプの吐出側と前記溶液スプレーポンプの潤滑液取り込み口とを弁を介して接続し、
前記溶液スプレーポンプの吐出側と潤滑液取り込み口とを弁を介して接続し、前記溶液の循環量に応じて前記弁の開閉を制御することを特徴とする吸収冷温水機。
High-temperature regenerator, low-temperature regenerator, solution circulation pump for sending solution to these high-temperature regenerator and low-temperature regenerator, absorber, and self-lubricating solution spray pump for sending concentrated solution to this absorber In an absorption chiller / heater that operably connects pipes and variably controls the solution circulation amount according to the load,
A discharge side of the solution circulation pump and a lubricating liquid intake of the solution spray pump are connected via a valve,
An absorption chiller / heater, wherein the discharge side of the solution spray pump and the lubricating liquid intake port are connected via a valve, and the opening and closing of the valve is controlled according to the amount of circulation of the solution.
前記溶液循環量は、冷房負荷、高温再生器の圧力もしくは温度、冷房サイクル中の溶液温度のいずれかによって検知して制御することを特徴とする請求項2記載の吸収冷温水機。3. The absorption chiller / heater according to claim 2, wherein the solution circulation amount is detected and controlled by any one of a cooling load, a pressure or temperature of a high-temperature regenerator, and a solution temperature during a cooling cycle. 高温再生器と、低温再生器と、これら高温再生器、低温再生器へ溶液を送るための溶液循環ポンプと、吸収器と、この吸収器へ濃溶液を送るための自己潤滑式の溶液スプレーポンプとを動作可能に配管接続し、溶液循環量を負荷に応じて可変制御する吸収冷温水機において、
前記溶液スプレーポンプは吐出側に可変制御弁を備え、前記溶液の循環量に応じて前記可変制御弁の開閉量を制御することを特徴とする吸収冷温水機。
High-temperature regenerator, low-temperature regenerator, solution circulation pump for sending solution to these high-temperature regenerator and low-temperature regenerator, absorber, and self-lubricating solution spray pump for sending concentrated solution to this absorber In an absorption chiller / heater that operably connects pipes and variably controls the solution circulation amount according to the load,
An absorption chiller / heater, wherein the solution spray pump includes a variable control valve on a discharge side, and controls an opening / closing amount of the variable control valve according to a circulation amount of the solution.
前記溶液循環量を、冷房負荷、高温再生器の圧力もしくは温度、冷房サイクル中の溶液温度、溶液スプレーポンプ吸い込み側の液位を検知して制御することを特徴とする請求項4記載の吸収冷温水機。The absorption cooling temperature according to claim 4, wherein the amount of circulating the solution is controlled by detecting a cooling load, a pressure or temperature of a high-temperature regenerator, a solution temperature during a cooling cycle, and a liquid level at a suction side of a solution spray pump. Water machine. 前記溶液スプレーポンプの吐出側の可変制御弁は、溶液スプレーポンプ吸い込み側の液位を検知して開閉制御するフロート弁とすることを特徴とする請求項4記載の吸収冷温水機。The absorption chiller / heater according to claim 4, wherein the variable control valve on the discharge side of the solution spray pump is a float valve that detects and controls the liquid level on the solution spray pump suction side.
JP2002189400A 2002-06-28 2002-06-28 Absorption chiller / heater Expired - Lifetime JP4167856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189400A JP4167856B2 (en) 2002-06-28 2002-06-28 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189400A JP4167856B2 (en) 2002-06-28 2002-06-28 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2004028533A true JP2004028533A (en) 2004-01-29
JP4167856B2 JP4167856B2 (en) 2008-10-22

Family

ID=31183836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189400A Expired - Lifetime JP4167856B2 (en) 2002-06-28 2002-06-28 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP4167856B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060204A (en) * 2008-09-03 2010-03-18 Yazaki Corp Cooling tower and heat source machine system
JP2010243044A (en) * 2009-04-03 2010-10-28 Kawasaki Thermal Engineering Co Ltd Method and device for controlling switching of set number of absorption chiller/heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060204A (en) * 2008-09-03 2010-03-18 Yazaki Corp Cooling tower and heat source machine system
JP2010243044A (en) * 2009-04-03 2010-10-28 Kawasaki Thermal Engineering Co Ltd Method and device for controlling switching of set number of absorption chiller/heater

Also Published As

Publication number Publication date
JP4167856B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
JP4592617B2 (en) Cooling and heating device
KR100337210B1 (en) Absorption refrigerating/heating apparatus
CN109682106B (en) Refrigerant circulation system for slowing down surge of compressor, control method thereof and air conditioner
JP2009014298A (en) Refrigerator and chiller using the same
JP2009174769A (en) Chiller
JP2011017455A (en) Turbo refrigerator
CN216522078U (en) Air conditioner
CN117847813A (en) Refrigerant circulation system, control method thereof and refrigeration equipment
US20200263916A1 (en) Refrigeration machine
CN117213168A (en) ice water system
JP2001311567A (en) Freezer device and environmental test device using the same
JP2008138979A (en) Refrigeration system
CN215892838U (en) Compressor system
JP2004028533A (en) Absorption type water chiller/heater
JP3434281B2 (en) Absorption refrigerator
JP4074422B2 (en) Air conditioner and its control method
CN211011723U (en) Air conditioner and cold liquid integrated system
CN109827275B (en) Air treatment device
JP4513441B2 (en) Vending machine with cooling and heating system
CN111947377A (en) Diversified refrigeration equipment and control method and device thereof
CN112066458A (en) Air conditioning unit adopting throttle valve and control method thereof
JP3273131B2 (en) Absorption chiller / heater
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JPH109695A (en) Turbo refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Ref document number: 4167856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term