JP2015147156A - Apparatus and method for treating water containing iron/manganese - Google Patents
Apparatus and method for treating water containing iron/manganese Download PDFInfo
- Publication number
- JP2015147156A JP2015147156A JP2014019668A JP2014019668A JP2015147156A JP 2015147156 A JP2015147156 A JP 2015147156A JP 2014019668 A JP2014019668 A JP 2014019668A JP 2014019668 A JP2014019668 A JP 2014019668A JP 2015147156 A JP2015147156 A JP 2015147156A
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- water
- iron
- membrane
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 173
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 122
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 239000011572 manganese Substances 0.000 title claims abstract description 68
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 68
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000003647 oxidation Effects 0.000 claims abstract description 84
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 84
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000007800 oxidant agent Substances 0.000 claims abstract description 38
- 239000003054 catalyst Substances 0.000 claims abstract description 35
- 238000005374 membrane filtration Methods 0.000 claims abstract description 31
- 239000012528 membrane Substances 0.000 claims abstract description 24
- 230000001590 oxidative effect Effects 0.000 claims abstract description 22
- 239000011148 porous material Substances 0.000 claims abstract description 17
- 238000003672 processing method Methods 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 8
- 238000001914 filtration Methods 0.000 abstract description 5
- 239000002245 particle Substances 0.000 description 13
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- BZDIAFGKSAYYFC-UHFFFAOYSA-N manganese;hydrate Chemical compound O.[Mn] BZDIAFGKSAYYFC-UHFFFAOYSA-N 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000009287 sand filtration Methods 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、浄水処理場等で用いられる、鉄/マンガン含有水の処理装置および処理方法に関する。 The present invention relates to a treatment apparatus and treatment method for iron / manganese-containing water used in water purification plants and the like.
上水源となる河川水や地下水等には溶解性鉄や溶解性マンガンが含まれている場合がある。このような鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水中の溶解性鉄や溶解性マンガンを除去する方法としては、接触マンガン砂ろ過法が知られている。接触マンガン砂ろ過法は、原水をマンガン砂の酸化処理槽中を下向流で通過させる間に、溶解性マンガンを酸化析出させ、マンガン砂に捕捉させる方法である。 River water, groundwater, etc., which are water sources, may contain soluble iron and soluble manganese. As a method of removing soluble iron and soluble manganese in iron / manganese-containing water containing at least one of iron and manganese, a contact manganese sand filtration method is known. The contact manganese sand filtration method is a method in which soluble manganese is oxidized and precipitated and trapped in manganese sand while raw water is passed through the manganese sand oxidation treatment tank in a downward flow.
また、鉄/マンガン含有水の高速処理を行う方法として、鉄/マンガン含有水に塩素等の酸化剤を添加しながら、二酸化マンガンを含む酸化触媒が充填された酸化処理槽に例えば1,000m/日以上の高線速の上向流として通水して、原水中の鉄およびマンガンを酸化析出させ、この酸化処理槽の通過水をセラミック製MF膜(孔径0.1μm)により膜ろ過することにより、酸化析出物を除去する方法が知られている(例えば、特許文献1,2参照)。この方法は、従来型の接触マンガン砂ろ過法と比べて、高線速で酸化処理槽に原水を通水できるため、設備を小型化することができるうえ、原水中の濁質による閉塞が少ないため、酸化処理槽の洗浄頻度も少なくできるという利点を持つ。 In addition, as a method for performing high-speed treatment of iron / manganese-containing water, an oxidation treatment tank filled with an oxidation catalyst containing manganese dioxide is added to an iron / manganese-containing water while adding an oxidizing agent such as chlorine, for example, 1,000 m / Pass water as an upward flow at a high linear velocity of more than a day to oxidize and precipitate iron and manganese in the raw water, and filter the water passing through this oxidation treatment tank through a ceramic MF membrane (pore diameter 0.1 μm) (See, for example, Patent Documents 1 and 2). Compared with the conventional contact manganese sand filtration method, this method can pass raw water through the oxidation treatment tank at a high linear velocity, so the equipment can be downsized and there is less blockage due to turbidity in the raw water. Therefore, there is an advantage that the cleaning frequency of the oxidation treatment tank can be reduced.
しかし、特許文献1のように、酸化処理槽の通過水をセラミック製MF膜によりろ過する方法では、処理水のマンガン含有濃度を水道事業体が目標処理水質に設定していることの多い0.005mg/L未満の値にしようとした場合、酸化処理槽の通水SVを100(1/h)程度としなければならず、触媒使用量が増えてしまうという課題があった。また、触媒使用量の増加に伴い、酸化処理槽の装置高さも高くなってしまうという課題もあった。 However, as in Patent Document 1, in the method of filtering the passing water of the oxidation treatment tank with a ceramic MF membrane, the water supply entity often sets the manganese content concentration of the treated water as the target treated water quality. When trying to make the value less than 005 mg / L, the water flow SV of the oxidation treatment tank has to be about 100 (1 / h), and there is a problem that the amount of catalyst used increases. In addition, with the increase in the amount of catalyst used, there is also a problem that the height of the oxidation treatment tank increases.
本発明の目的は、従来装置と比べ、酸化触媒の使用量を大幅に削減することができ、酸化処理槽の装置高さも抑制可能な鉄/マンガン含有水の処理装置および処理方法を提供することにある。 An object of the present invention is to provide a treatment apparatus and treatment method for iron / manganese-containing water that can significantly reduce the amount of oxidation catalyst used and can suppress the height of the oxidation treatment tank. It is in.
本発明は、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水に酸化剤を添加する酸化剤添加手段と、前記酸化剤が添加された酸化剤添加水を酸化処理する、二酸化マンガンを含む酸化触媒が充填された酸化処理槽と、前記酸化処理された酸化処理水を膜ろ過する膜ろ過手段と、を備え、前記酸化処理槽の通水SVが、100〜300(1/h)の範囲であり、前記膜ろ過に使用する膜が、孔径0.03μm以下の膜である鉄/マンガン含有水の処理装置である。 The present invention provides an oxidizing agent adding means for adding an oxidizing agent to iron / manganese-containing water containing at least one of iron and manganese, and manganese dioxide for oxidizing the oxidizing agent-added water to which the oxidizing agent is added. An oxidation treatment tank filled with an oxidation catalyst containing, and a membrane filtration means for membrane-filtering the oxidation-treated water subjected to oxidation treatment, and a water flow SV of the oxidation treatment tank is 100 to 300 (1 / h) The membrane used for the membrane filtration is an iron / manganese-containing water treatment apparatus having a pore size of 0.03 μm or less.
また、前記鉄/マンガン含有水の処理装置において、前記通水SVは、処理目標水質に応じて次式(1)により求められるSV以下であることが好ましい。
通水SV=(処理目標水質+0.01)÷0.00005 式(1)
Moreover, in the said iron / manganese containing water processing apparatus, it is preferable that the said water flow SV is below SV calculated | required by following Formula (1) according to a process target water quality.
Water flow SV = (target water quality + 0.01) ÷ 0.00005 Formula (1)
また、本発明は、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水に酸化剤を添加する酸化剤添加工程と、前記酸化剤が添加された酸化剤添加水を、二酸化マンガンを含む酸化触媒が充填された酸化処理槽に通水して酸化処理する酸化処理工程と、前記酸化処理された酸化処理水を膜ろ過する膜ろ過工程と、を含み、前記酸化処理槽の通水SVが、100〜300(1/h)の範囲であり、前記膜ろ過に使用する膜が、孔径0.03μm以下の膜である鉄/マンガン含有水の処理方法である。 Moreover, this invention contains manganese dioxide, the oxidizing agent addition process which adds an oxidizing agent to the iron / manganese containing water containing at least 1 among iron and manganese, and the oxidizing agent addition water to which the said oxidizing agent was added An oxidation treatment step of passing through an oxidation treatment tank filled with an oxidation catalyst to oxidize, and a membrane filtration step of membrane-filtering the oxidized treatment water; However, it is the range of 100-300 (1 / h), and the film | membrane used for the said membrane filtration is a processing method of the iron / manganese containing water which is a film | membrane with a pore diameter of 0.03 micrometer or less.
また、前記鉄/マンガン含有水の処理方法において、前記通水SVは、処理目標水質に応じて次式(1)により求められるSV以下であることが好ましい。
通水SV=(処理目標水質+0.01)÷0.00005 式(1)
Moreover, in the said iron / manganese containing water processing method, it is preferable that the said water flow SV is below SV calculated | required by following Formula (1) according to a process target water quality.
Water flow SV = (target water quality + 0.01) ÷ 0.00005 Formula (1)
本発明では、鉄/マンガン含有水の処理において、酸化処理槽の通水SVを100〜300(1/h)の範囲とし、膜ろ過に使用する膜を孔径0.03μm以下の膜とすることにより、従来装置と比べ、酸化触媒の使用量を大幅に削減することができ、酸化処理槽の装置高さも抑制することが可能となる。 In the present invention, in the treatment of iron / manganese-containing water, the water flow SV of the oxidation treatment tank is in the range of 100 to 300 (1 / h), and the membrane used for membrane filtration is a membrane having a pore diameter of 0.03 μm or less. As a result, the amount of the oxidation catalyst used can be significantly reduced as compared with the conventional apparatus, and the apparatus height of the oxidation treatment tank can be suppressed.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
本発明の実施形態に係る鉄/マンガン含有水の処理装置の一例の概略を図1に示し、その構成について説明する。鉄/マンガン含有水処理装置1は、二酸化マンガンを含む酸化触媒が充填された酸化処理槽12と、膜ろ過手段としての膜ろ過装置14とを備える。鉄/マンガン含有水処理装置1は、原水槽10と、処理水槽16とを備えてもよい。 An outline of an example of the iron / manganese-containing water treatment apparatus according to the embodiment of the present invention is shown in FIG. The iron / manganese-containing water treatment device 1 includes an oxidation treatment tank 12 filled with an oxidation catalyst containing manganese dioxide, and a membrane filtration device 14 as membrane filtration means. The iron / manganese-containing water treatment apparatus 1 may include a raw water tank 10 and a treated water tank 16.
鉄/マンガン含有水処理装置1において、原水槽10の入口には、原水配管26が接続され、原水槽1の出口と酸化処理槽12の下部入口とは、ポンプ20を介して、原水供給配管28により接続され、酸化処理槽12の上部出口と膜ろ過装置14の入口とは、酸化処理水配管30により接続され、膜ろ過装置14の出口と処理水槽16の入口とは、処理水配管32により接続され、処理水槽16の出口には処理水排出配管34が接続されている。処理水槽16の下部は、ポンプ22を介して逆洗配管36により、処理水配管32の途中に接続されている。原水供給配管28の途中には、酸化剤添加手段としての酸化剤槽18の出口がポンプ24を介して酸化剤供給配管38により接続されている。 In the iron / manganese-containing water treatment apparatus 1, a raw water pipe 26 is connected to an inlet of the raw water tank 10, and an outlet of the raw water tank 1 and a lower inlet of the oxidation treatment tank 12 are connected to a raw water supply pipe via a pump 20. 28, the upper outlet of the oxidation treatment tank 12 and the inlet of the membrane filtration device 14 are connected by an oxidation treatment water pipe 30, and the outlet of the membrane filtration device 14 and the inlet of the treatment water tank 16 are treated water piping 32. A treated water discharge pipe 34 is connected to the outlet of the treated water tank 16. The lower part of the treated water tank 16 is connected to the treated water pipe 32 in the middle by a backwash pipe 36 via the pump 22. In the middle of the raw water supply pipe 28, an outlet of the oxidant tank 18 as an oxidant addition means is connected by an oxidant supply pipe 38 via a pump 24.
本実施形態に係る鉄/マンガン含有水の処理方法および鉄/マンガン含有水処理装置1の動作について説明する。 The operation of the iron / manganese-containing water treatment method and the iron / manganese-containing water treatment apparatus 1 according to the present embodiment will be described.
原水である、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水は、必要に応じて原水配管26を通して原水槽10に貯留された後、ポンプ20により原水供給配管28を通して酸化処理槽12へ送液される。この際、原水には原水供給配管28の途中で、酸化剤槽18から酸化剤がポンプ24により酸化剤供給配管38を通して添加され(酸化剤添加工程)、酸化剤添加水として酸化処理槽12に送液される。本実施形態では、酸化剤槽18、ポンプ24および酸化剤供給配管38が酸化剤添加手段として機能する。なお、原水への酸化剤の添加は、原水槽10において行われてもよいし、原水槽10と酸化処理槽12との間に別途、酸化剤混合槽を設けて、酸化剤混合槽において行われてもよい。 The iron / manganese-containing water containing at least one of iron and manganese, which is raw water, is stored in the raw water tank 10 through the raw water pipe 26 as needed, and then the oxidation treatment tank 12 through the raw water supply pipe 28 by the pump 20. The liquid is sent to. At this time, oxidant is added to the raw water from the oxidant tank 18 through the oxidant supply pipe 38 by the pump 24 in the middle of the raw water supply pipe 28 (oxidant addition process), and is supplied to the oxidation treatment tank 12 as oxidant added water. The liquid is sent. In the present embodiment, the oxidant tank 18, the pump 24, and the oxidant supply pipe 38 function as an oxidant addition unit. The addition of the oxidant to the raw water may be performed in the raw water tank 10, or a separate oxidant mixing tank is provided between the raw water tank 10 and the oxidation treatment tank 12, and is performed in the oxidant mixing tank. It may be broken.
酸化処理槽12において、二酸化マンガンを含む酸化触媒により触媒層が形成され、酸化剤添加水は上向流により触媒層に通水され、二酸化マンガンを含む酸化触媒により酸化処理される(酸化処理工程)。鉄/マンガン含有水に酸化剤が添加されながら、二酸化マンガンを含む酸化触媒が充填された酸化処理槽12に通水されることにより、溶存鉄および溶存マンガンが酸化析出される。 In the oxidation treatment tank 12, a catalyst layer is formed by an oxidation catalyst containing manganese dioxide, and the oxidant-added water is passed through the catalyst layer by an upward flow and is oxidized by an oxidation catalyst containing manganese dioxide (oxidation treatment step). ). While the oxidizing agent is added to the iron / manganese-containing water, water is passed through the oxidation treatment tank 12 filled with the oxidation catalyst containing manganese dioxide, so that dissolved iron and dissolved manganese are oxidized and precipitated.
酸化処理された酸化処理水は、酸化処理水配管30を通して膜ろ過装置14へ送液され、膜ろ過装置14において酸化析出された鉄およびマンガン等の析出物がろ過され、除去される(膜ろ過工程)。 Oxidized water that has undergone oxidation treatment is sent to the membrane filtration device 14 through the oxidation treatment water pipe 30, and precipitates such as iron and manganese that are oxidized and precipitated in the membrane filtration device 14 are filtered and removed (membrane filtration). Process).
膜ろ過された処理水は、処理水配管32を通して処理水槽16へ送液され、貯留される。処理水槽16の処理水の少なくとも一部は、処理水排出配管34を通して系外へ排出され、膜ろ過装置14の膜の洗浄が必要となった場合、処理水の少なくとも一部は、ポンプ22により逆洗配管36を通して膜ろ過装置14へ出口側から送液されて、膜ろ過装置14の逆洗に用いられてもよい(逆洗工程)。逆洗排水は、逆洗排水出口より逆洗排水配管40を通して排出される。 The membrane-filtered treated water is sent to the treated water tank 16 through the treated water pipe 32 and stored. When at least a part of the treated water in the treated water tank 16 is discharged out of the system through the treated water discharge pipe 34 and the membrane of the membrane filtration device 14 needs to be cleaned, at least a part of the treated water is supplied by the pump 22. The liquid may be fed from the outlet side to the membrane filtration device 14 through the backwash pipe 36 and used for backwashing the membrane filtration device 14 (backwashing step). The backwash drainage is discharged from the backwash drain outlet through the backwash drain pipe 40.
本実施形態では、鉄/マンガン含有水に酸化剤を添加しながら、二酸化マンガンを含む酸化触媒が充填された酸化処理槽12に通水することにより、溶存鉄および溶存マンガンを酸化析出させ、その酸化処理水を膜ろ過する鉄/マンガン含有水の処理において、酸化処理槽12の通水SVを100〜300(1/h)の範囲とし、膜ろ過には孔径0.03μm以下の膜、好ましくは孔径0.01μmのUF膜を使用する。 In this embodiment, while adding an oxidizing agent to iron / manganese-containing water, water is passed through an oxidation treatment tank 12 filled with an oxidation catalyst containing manganese dioxide, so that dissolved iron and dissolved manganese are oxidized and precipitated. In the treatment of iron / manganese-containing water for membrane filtration of the oxidation-treated water, the water flow SV of the oxidation treatment tank 12 is in the range of 100 to 300 (1 / h), and membrane filtration has a pore size of 0.03 μm or less, preferably Uses a UF membrane with a pore size of 0.01 μm.
酸化処理槽12の後段の膜ろ過装置14として孔径0.03μm以下の膜、好ましくは孔径0.01μmのUF膜を使用することにより、MF膜(孔径0.1μm)では除去することが困難であった微細なマンガン粒子も除去することができるため、より良好な処理水質を得ることができる。酸化処理水中のマンガン粒子径は酸化処理槽12の通水SVが大きくなるほど、小さくなる傾向にあるため、例えば特許文献1に記載の運転方法で、酸化処理槽の通水SVを100とした場合は、処理水質0.005mg/L未満を達成できても、SV200とした場合には、処理水質が0.005mg/L以上となってしまう。一方、酸化処理槽12の後段の膜ろ過装置14で孔径0.03μm以下の膜、好ましくは孔径0.01μmのUF膜を用いた場合は、酸化処理槽12の通水SVを200とした場合でも、酸化処理水中のマンガン粒子径は0.01μm以上となり、処理水質0.005mg/L未満を十分に達成することができる。 By using a membrane having a pore size of 0.03 μm or less, preferably a UF membrane having a pore size of 0.01 μm, as the membrane filtration device 14 subsequent to the oxidation treatment tank 12, it is difficult to remove with an MF membrane (pore size 0.1 μm). Since the fine manganese particles that have existed can also be removed, a better quality of treated water can be obtained. Since the manganese particle diameter in the oxidation-treated water tends to decrease as the water flow SV in the oxidation treatment tank 12 increases, for example, in the operation method described in Patent Document 1, the water flow SV in the oxidation treatment tank is set to 100. Even if the treated water quality is less than 0.005 mg / L, the treated water quality becomes 0.005 mg / L or more in the case of SV200. On the other hand, when a membrane having a pore size of 0.03 μm or less, preferably a UF membrane having a pore size of 0.01 μm, is used in the membrane filtration device 14 subsequent to the oxidation treatment bath 12, the water flow SV of the oxidation treatment bath 12 is set to 200 However, the manganese particle diameter in the oxidation-treated water becomes 0.01 μm or more, and it is possible to sufficiently achieve the treated water quality of less than 0.005 mg / L.
酸化処理槽12の通水SVは、100〜300(1/h)の範囲である。酸化処理槽12の通水SVが100(1/h)未満であると、触媒使用量が増加して装置高さが高くなり、300(1/h)を超えると、処理水質が0.005mg/Lを上回ってしまう場合がある。 The water flow SV of the oxidation treatment tank 12 is in the range of 100 to 300 (1 / h). When the water flow SV of the oxidation treatment tank 12 is less than 100 (1 / h), the amount of catalyst used increases and the height of the apparatus increases, and when it exceeds 300 (1 / h), the treated water quality is 0.005 mg. / L may be exceeded.
また目標処理水質がそこまで厳しくない場合は、その水質に応じて通水SVを変化させることが可能となり、より触媒使用量の削減、酸化処理槽12の装置高さの低下が可能となる。通水SVは以下の式(1)から決定でき、目標処理水質との関係は表1のようになる。
通水SV =(処理目標水質+0.01)÷0.00005 式(1)
Further, when the target treated water quality is not so severe, it is possible to change the water flow SV according to the water quality, and it is possible to further reduce the amount of catalyst used and the apparatus height of the oxidation treatment tank 12. The water flow SV can be determined from the following equation (1), and the relationship with the target treated water quality is as shown in Table 1.
Water flow SV = (treatment target water quality + 0.01) ÷ 0.00005 Formula (1)
酸化剤としては、次亜塩素酸ナトリウム、さらし粉、過マンガン酸カリウム、二酸化塩素等が挙げられ、ランニングコスト、汎用性等の点から、次亜塩素酸ナトリウムが好ましい。 Examples of the oxidizing agent include sodium hypochlorite, bleached powder, potassium permanganate, chlorine dioxide and the like, and sodium hypochlorite is preferable from the viewpoint of running cost, versatility and the like.
酸化剤の添加量は、例えば、鉄/マンガン含有水中の溶解性鉄に対しては、鉄の含有量1モルに対して0.5モル以上2モル以下の範囲、溶解性マンガンに対しては、マンガン含有量1モルに対して1モル以上4モル以下の範囲である。酸化剤の添加量が上記の値未満であると、反応が不十分となる場合があり、過剰に入れすぎると、コスト面で不利となる上に、トリハロメタン生成量が増大する場合がある。 The amount of oxidant added is, for example, in the range of 0.5 mol to 2 mol with respect to 1 mol of iron for soluble iron in iron / manganese-containing water, The range is from 1 mol to 4 mol with respect to 1 mol of manganese content. If the addition amount of the oxidizing agent is less than the above value, the reaction may be insufficient. If it is excessively added, the cost may be disadvantageous and the amount of trihalomethane generated may increase.
酸化処理槽12で用いられる二酸化マンガンを含む酸化触媒としては、例えば、二酸化マンガンが粒状、固形状となった酸化触媒や、マンガン砂等が挙げられる。また、二酸化マンガンとしては、特に制限はなく、α型、β型、ε型、γ型、λ型、δ型およびR型の結晶構造を有する二酸化マンガンが挙げられ、これらのうち、反応性等の点から、β型の結晶構造を有する二酸化マンガンが好ましい。 Examples of the oxidation catalyst containing manganese dioxide used in the oxidation treatment tank 12 include an oxidation catalyst in which manganese dioxide is granular and solid, manganese sand, and the like. Further, the manganese dioxide is not particularly limited, and examples thereof include manganese dioxide having α-type, β-type, ε-type, γ-type, λ-type, δ-type, and R-type crystal structures. From this point, manganese dioxide having a β-type crystal structure is preferable.
酸化処理槽12では、二酸化マンガンを含む酸化触媒は上向流で原水が触媒層に通水されることにより、流動状態となり膨張床が形成される。 In the oxidation treatment tank 12, the oxidation catalyst containing manganese dioxide is in an upward flow, and raw water is passed through the catalyst layer to be in a fluid state to form an expanded bed.
二酸化マンガンを含む酸化触媒の密度は、2.8g/cm3以上であることが好ましい。二酸化マンガンを含む酸化触媒の密度が2.8g/cm3未満であると、高速で通水した場合に触媒が展開し、酸化処理槽12の槽高が高くなる場合がある。 The density of the oxidation catalyst containing manganese dioxide is preferably 2.8 g / cm 3 or more. When the density of the oxidation catalyst containing manganese dioxide is less than 2.8 g / cm 3 , the catalyst develops when water is passed at high speed, and the tank height of the oxidation treatment tank 12 may increase.
二酸化マンガンを含む酸化触媒の粒径は、0.4mm〜2.0mmの範囲であることが好ましい。二酸化マンガンを含む酸化触媒の粒径が0.4mm未満であると、触媒の展開率が上がり、粒径の小さいものが流出する場合があり、2.0mmを超えると、触媒表面積が減り、反応効率が低下する場合がある。 The particle diameter of the oxidation catalyst containing manganese dioxide is preferably in the range of 0.4 mm to 2.0 mm. If the particle size of the oxidation catalyst containing manganese dioxide is less than 0.4 mm, the rate of expansion of the catalyst may increase, and particles having a small particle size may flow out. Efficiency may be reduced.
酸化処理槽12における反応温度は、例えば、1℃〜50℃の範囲である。 The reaction temperature in the oxidation treatment tank 12 is, for example, in the range of 1 ° C to 50 ° C.
膜ろ過装置14で用いられるろ過膜は、孔径0.03μm以下の膜であり、孔径0.01μm以下のUF膜であることが好ましい。 The filtration membrane used in the membrane filtration device 14 is a membrane having a pore size of 0.03 μm or less, and is preferably a UF membrane having a pore size of 0.01 μm or less.
処理対象となる鉄/マンガン含有水は、鉄およびマンガンのうち少なくとも1つを含み、少なくともマンガンを含むことが好ましく、通常は鉄およびマンガンの両方を含む。鉄/マンガン含有水中の溶解性鉄の含有量は、例えば0.1〜10mg/Lの範囲であり、溶解性マンガンの含有量は、例えば0.01〜5mg/Lの範囲である。 The iron / manganese-containing water to be treated contains at least one of iron and manganese, preferably contains at least manganese, and usually contains both iron and manganese. The content of soluble iron in the iron / manganese-containing water is, for example, in the range of 0.1 to 10 mg / L, and the content of soluble manganese is, for example, in the range of 0.01 to 5 mg / L.
処理対象となる鉄/マンガン含有水としては、例えば、河川水、地下水、湖沼水等が挙げられる。 Examples of the iron / manganese-containing water to be treated include river water, groundwater, lake water, and the like.
本実施形態に係る鉄/マンガン含有水の処理装置および処理方法は、例えば、浄水処理場、地下水の用水処理等において好適に適用可能である。 The treatment apparatus and treatment method for iron / manganese-containing water according to the present embodiment can be suitably applied in, for example, a water purification plant, groundwater use water treatment, and the like.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.
酸化処理槽内の二酸化マンガンを含む酸化触媒の充填量を変えて、通水SVと酸化処理水のマンガン粒子径との関係を確認した。二酸化マンガンを含む酸化触媒として、粒径(有効径)0.5mm、密度4.0g/cm3のβ型の結晶構造を有する酸化マンガン粒子を用い、カラム(φ26mm×2000mm)にその酸化マンガン粒子を充填して触媒層を形成し、流速1,200m/日で、上向流で通水を行った。原水マンガン濃度は0.5mg/L、酸化剤として次亜塩素酸ナトリウムを注入し、残留塩素濃度が0.4mg/Lとなるようにした。酸化処理水を、孔径がそれぞれ1.0、0.20、0.10、0.01μmのフィルタでろ過し、処理水のマンガン濃度を測定した。結果を図1、表2に示す。 By changing the filling amount of the oxidation catalyst containing manganese dioxide in the oxidation treatment tank, the relationship between the water flow SV and the manganese particle size of the oxidation treatment water was confirmed. As an oxidation catalyst containing manganese dioxide, manganese oxide particles having a β-type crystal structure having a particle size (effective diameter) of 0.5 mm and a density of 4.0 g / cm 3 are used, and the manganese oxide particles are used in a column (φ26 mm × 2000 mm). And a catalyst layer was formed, and water was passed in an upward flow at a flow rate of 1,200 m / day. The raw water manganese concentration was 0.5 mg / L, and sodium hypochlorite was injected as an oxidizing agent so that the residual chlorine concentration was 0.4 mg / L. Oxidized water was filtered through filters having pore sizes of 1.0, 0.20, 0.10, and 0.01 μm, respectively, and the manganese concentration of the treated water was measured. The results are shown in FIG.
酸化処理槽の通水SVを高くするほど、処理水中に粒子径の小さいマンガン粒子が増えることがわかった。目標処理水マンガン濃度を0.001mg/L未満とした場合、MF膜ろ過相当の0.1μmフィルタを用いた場合は、SV100を超えると目標を達成できないという結果であったが、UF膜ろ過相当の0.01μmフィルタを用いた場合は、SV200でも目標達成可能という結果となった。 It was found that the higher the water flow SV in the oxidation treatment tank, the more manganese particles with a small particle size increase in the treated water. When the target treated water manganese concentration was less than 0.001 mg / L, when a 0.1 μm filter equivalent to MF membrane filtration was used, the target could not be achieved when SV100 was exceeded, but it was equivalent to UF membrane filtration. When the 0.01 μm filter was used, the target could be achieved even with SV200.
すなわち本装置を用いることにより、従来装置と比べ、酸化触媒の使用量を大幅に削減でき、装置高さも抑制可能な鉄/マンガン含有水の処理装置および処理方法が実現可能となることが確認できた。 That is, it can be confirmed that the use of this apparatus makes it possible to realize an iron / manganese-containing water treatment apparatus and treatment method capable of significantly reducing the amount of oxidation catalyst used and suppressing the height of the apparatus compared to the conventional apparatus. It was.
また、表2のφ<0.01μmのマンガン濃度と通水SVの値から、UF膜を使用した場合の処理目標水質と通水SVとの関係について近似直線を求め、上記式(1)で計算されるSV以下で通水すれば処理目標水質を達成できることがわかった。処理目標水質がそこまで厳しくない場合は、さらに酸化触媒の使用量を削減できることがわかった。 In addition, from the manganese concentration of φ <0.01 μm in Table 2 and the value of the water flow SV, an approximate straight line is obtained for the relationship between the treatment target water quality and the water flow SV when the UF membrane is used, and the above equation (1) is used. It was found that the treatment target water quality can be achieved by passing water below the calculated SV. It was found that the amount of oxidation catalyst used can be further reduced if the target water quality is not so strict.
1 鉄/マンガン含有水処理装置、10 原水槽、12 酸化処理槽、14 膜ろ過装置、16 処理水槽、18 酸化剤槽、20,22,24 ポンプ、26 原水配管、28 原水供給配管、30 酸化処理水配管、32 処理水配管、34 処理水排出配管、36 逆洗配管、38 酸化剤供給配管、40 逆洗排水配管。 DESCRIPTION OF SYMBOLS 1 Iron / manganese containing water processing apparatus, 10 Raw water tank, 12 Oxidation processing tank, 14 Membrane filtration apparatus, 16 Treated water tank, 18 Oxidant tank, 20, 22, 24 Pump, 26 Raw water piping, 28 Raw water supply piping, 30 Oxidation Treated water piping, 32 treated water piping, 34 treated water discharge piping, 36 backwash piping, 38 oxidant supply piping, 40 backwash drainage piping.
Claims (4)
前記酸化剤が添加された酸化剤添加水を酸化処理する、二酸化マンガンを含む酸化触媒が充填された酸化処理槽と、
前記酸化処理された酸化処理水を膜ろ過する膜ろ過手段と、
を備え、
前記酸化処理槽の通水SVが、100〜300(1/h)の範囲であり、
前記膜ろ過に使用する膜が、孔径0.03μm以下の膜であることを特徴とする鉄/マンガン含有水の処理装置。 An oxidizing agent adding means for adding an oxidizing agent to iron / manganese-containing water containing at least one of iron and manganese;
An oxidation treatment tank filled with an oxidation catalyst containing manganese dioxide, which oxidizes the oxidant-added water to which the oxidant is added;
A membrane filtration means for membrane filtration of the oxidized treated water;
With
The water flow SV of the oxidation treatment tank is in the range of 100 to 300 (1 / h),
A treatment apparatus for iron / manganese-containing water, wherein the membrane used for the membrane filtration is a membrane having a pore size of 0.03 μm or less.
前記通水SVは、処理目標水質に応じて次式(1)により求められるSV以下であることを特徴とする鉄/マンガン含有水の処理装置。
通水SV=(処理目標水質+0.01)÷0.00005 式(1) The iron / manganese-containing water treatment apparatus according to claim 1,
The said water flow SV is below the SV calculated | required by following Formula (1) according to a process target water quality, The iron / manganese containing water processing apparatus characterized by the above-mentioned.
Water flow SV = (target water quality + 0.01) ÷ 0.00005 Formula (1)
前記酸化剤が添加された酸化剤添加水を、二酸化マンガンを含む酸化触媒が充填された酸化処理槽に通水して酸化処理する酸化処理工程と、
前記酸化処理された酸化処理水を膜ろ過する膜ろ過工程と、
を含み、
前記酸化処理槽の通水SVが、100〜300(1/h)の範囲であり、
前記膜ろ過に使用する膜が、孔径0.03μm以下の膜であることを特徴とする鉄/マンガン含有水の処理方法。 An oxidizing agent adding step of adding an oxidizing agent to iron / manganese-containing water containing at least one of iron and manganese;
An oxidation treatment step in which the oxidant-added water to which the oxidant is added is passed through an oxidation treatment tank filled with an oxidation catalyst containing manganese dioxide, and is oxidized.
A membrane filtration step for membrane filtration of the oxidized treated water;
Including
The water flow SV of the oxidation treatment tank is in the range of 100 to 300 (1 / h),
A method for treating iron / manganese-containing water, wherein the membrane used for membrane filtration is a membrane having a pore size of 0.03 μm or less.
前記通水SVは、処理目標水質に応じて次式(1)により求められるSV以下であることを特徴とする鉄/マンガン含有水の処理方法。
通水SV=(処理目標水質+0.01)÷0.00005 式(1) It is a processing method of the iron / manganese containing water of Claim 3, Comprising:
The method of treating iron / manganese-containing water is characterized in that the water flow SV is equal to or less than SV obtained by the following equation (1) according to the treatment target water quality.
Water flow SV = (target water quality + 0.01) ÷ 0.00005 Formula (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014019668A JP6301668B2 (en) | 2014-02-04 | 2014-02-04 | Manganese-containing water treatment apparatus and treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014019668A JP6301668B2 (en) | 2014-02-04 | 2014-02-04 | Manganese-containing water treatment apparatus and treatment method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018008679A Division JP6484355B2 (en) | 2018-01-23 | 2018-01-23 | Iron / manganese-containing water treatment apparatus and treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015147156A true JP2015147156A (en) | 2015-08-20 |
JP6301668B2 JP6301668B2 (en) | 2018-03-28 |
Family
ID=53891005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014019668A Active JP6301668B2 (en) | 2014-02-04 | 2014-02-04 | Manganese-containing water treatment apparatus and treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6301668B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020075218A (en) * | 2018-11-08 | 2020-05-21 | オルガノ株式会社 | Iron/manganese-containing water treatment apparatus and treatment method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09150165A (en) * | 1995-11-28 | 1997-06-10 | Toray Ind Inc | Water treating method and device therefor |
JP2003103275A (en) * | 2001-07-24 | 2003-04-08 | Ngk Insulators Ltd | Cleaning treatment method for manganese-containing water |
JP2012217944A (en) * | 2011-04-11 | 2012-11-12 | Swing Corp | Method and apparatus for treating clean water |
-
2014
- 2014-02-04 JP JP2014019668A patent/JP6301668B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09150165A (en) * | 1995-11-28 | 1997-06-10 | Toray Ind Inc | Water treating method and device therefor |
JP2003103275A (en) * | 2001-07-24 | 2003-04-08 | Ngk Insulators Ltd | Cleaning treatment method for manganese-containing water |
JP2012217944A (en) * | 2011-04-11 | 2012-11-12 | Swing Corp | Method and apparatus for treating clean water |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020075218A (en) * | 2018-11-08 | 2020-05-21 | オルガノ株式会社 | Iron/manganese-containing water treatment apparatus and treatment method |
JP7090015B2 (en) | 2018-11-08 | 2022-06-23 | オルガノ株式会社 | Iron / manganese-containing water treatment equipment and treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP6301668B2 (en) | 2018-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6128964B2 (en) | Apparatus and method for treating water containing organic matter | |
JP6153386B2 (en) | Iron / manganese-containing water treatment apparatus and treatment method | |
CN108046458A (en) | The sewage water treatment method and system that a kind of membrane filtration is combined with Fenton oxidation | |
JP2009006209A (en) | Cleaning method of hollow fiber membrane module | |
JP6301668B2 (en) | Manganese-containing water treatment apparatus and treatment method | |
JP2014087787A (en) | Processing method and processing device for manganese-containing water | |
JP6242227B2 (en) | Iron / manganese-containing water treatment apparatus and treatment method | |
JPH09150165A (en) | Water treating method and device therefor | |
JP6484355B2 (en) | Iron / manganese-containing water treatment apparatus and treatment method | |
JP7063994B2 (en) | Pickling method for steel sheet | |
JP2007268359A (en) | Membrane separation method | |
JP6606367B2 (en) | Iron / manganese-containing water treatment apparatus and treatment method | |
JPH10192851A (en) | Water purifying treatment apparatus | |
JP6329807B2 (en) | Iron / manganese-containing water treatment apparatus and treatment method | |
JP5237164B2 (en) | Filtration membrane cleaning method | |
JP6616593B2 (en) | Membrane cleaning method | |
JP7117099B2 (en) | Apparatus and method for treating iron/manganese-containing water | |
JP7090015B2 (en) | Iron / manganese-containing water treatment equipment and treatment method | |
JP6329814B2 (en) | Iron / manganese-containing water treatment apparatus and treatment method | |
WO2012057176A1 (en) | Water-treatment method and desalinization method | |
JP3786885B2 (en) | Water purification method for manganese-containing water | |
JP7079644B2 (en) | Iron / manganese-containing water treatment equipment and treatment method | |
JP3826497B2 (en) | Pure water production method | |
JP2005021805A (en) | Method and system for treating waste water | |
JP2001252536A (en) | Method for cleaning filter membrane and apparatus for filtering seawater using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171006 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180123 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6301668 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |