JP2012217944A - Method and apparatus for treating clean water - Google Patents

Method and apparatus for treating clean water Download PDF

Info

Publication number
JP2012217944A
JP2012217944A JP2011087065A JP2011087065A JP2012217944A JP 2012217944 A JP2012217944 A JP 2012217944A JP 2011087065 A JP2011087065 A JP 2011087065A JP 2011087065 A JP2011087065 A JP 2011087065A JP 2012217944 A JP2012217944 A JP 2012217944A
Authority
JP
Japan
Prior art keywords
water
membrane
manganese
treated water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011087065A
Other languages
Japanese (ja)
Inventor
Yoshifusa Kaitani
吉英 貝谷
Koji Kashimada
浩二 鹿島田
Takashi Yamamoto
崇史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011087065A priority Critical patent/JP2012217944A/en
Publication of JP2012217944A publication Critical patent/JP2012217944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating clean water capable of simply and stably obtaining clean water by which the concentration of manganese is reduced further than usual from city raw water and an apparatus for treating clean water.SOLUTION: In the method for treating clean water, treated water obtained by water conduction treatment of the city raw water into a catalytic manganese oxidation reactor is filtrated by a membrane the pore size of which is 0.01 μm or larger and 0.08 μm or smaller to obtain clean water. In the method for treating clean water, coagulation treated water obtained by coagulation treatment of treated water obtained by conduction treatment of the city raw water into the catalytic manganese oxidation reactor is filtrated by the membrane the pore size of which is 0.01 μm or larger and 0.08 μm or smaller to obtain clean water. The apparatus for treating clean water includes a membrane filtration device having the catalytic manganese oxidation reactor in which the city raw water is subjected to water conduction treatment to obtain treated water and the membrane the pore size of which is 0.01 μm or larger and 0.08 μm or smaller by which the treated water is filtrated to obtain clean water. The apparatus for treating clean water includes a membrane filtration device having the catalytic manganese oxidation reactor in which the city raw water is subjected to water conduction treatment to obtain treated water, the coagulation treatment device by which the treated water is subjected to coagulation treatment to obtain the coagulation treated water, and the membrane the pore size of which is 0.01 μm or larger and 0.08 μm or smaller by which the coagulation treated water is filtrated to obtain clean water.

Description

本発明は、水道原水の浄水処理方法及び浄水処理装置に関するものである。   The present invention relates to a water purification method and water purification apparatus for raw water.

水道原水である地下水や河川水には、マンガンが含まれている場合がある。天然水中のマンガンは、主に溶解性の二価のマンガンイオン(Mn2+)として存在しているが、マンガンイオンは酸化されると黒褐色の酸化物となり、微量であっても高色度を呈したり、いわゆる黒水の原因となる。このようなマンガン含有水の浄水処理方法としては、従来から接触ろ過除マンガン法が知られている(非特許文献1)。 Manganese may be contained in groundwater or river water that is raw water supply. Manganese in natural water exists mainly as soluble divalent manganese ions (Mn 2+ ), but when manganese ions are oxidized, they become black-brown oxides and exhibit high chromaticity even in trace amounts. Or cause so-called black water. As such a method for water purification treatment of manganese-containing water, a contact filtration manganese removal method has been conventionally known (Non-Patent Document 1).

この接触ろ過除マンガン法は、溶解性マンガンを含む原水に連続的に塩素を添加しながら、二酸化マンガンを付着させたろ過砂、いわゆる“マンガン砂”を充填したろ過塔に下向流で通水する方法である。二価のマンガンイオンは、ろ材に付着した二酸化マンガン水和物が触媒となって酸化され、二酸化マンガン水和物としてマンガン砂表面に結合する事により除去される。
この接触ろ過除マンガン法は、原水中のマンガンを酸化析出させて濁度成分と共にマンガン砂の充填層で除去する方法なので、マンガン及び濁度成分の除去率を確保するためには、ろ過速度を150m/日程度としなければならない。このため比較的大きな水槽を必要とし、また、降雨時のように原水濁度が上昇する場合には、充填層の閉塞防止、ろ過水水質維持のために頻繁に洗浄を行わなければならない。
また、近年、クリプトスポリジウムなどの病原性微生物の対策として、ろ過水の濁度を常に0.1度以下にする必要が生じ、スロースタート、スローダウン、捨て水工程の導入などその運転管理が難しくなってきている。
This manganese removal by contact filtration is a method in which chlorine is continuously added to raw water containing soluble manganese, and water is passed downward through a filtration tower packed with manganese dioxide, so-called “manganese sand”. It is a method to do. The divalent manganese ions are oxidized by manganese dioxide hydrate adhering to the filter medium as a catalyst, and are removed by binding to the manganese sand surface as manganese dioxide hydrate.
Since this contact filtration removal manganese method is a method of oxidizing and precipitating manganese in raw water and removing it with a packed bed of manganese sand together with turbidity components, in order to ensure the removal rate of manganese and turbidity components, the filtration rate must be increased. It must be about 150m / day. For this reason, a relatively large water tank is required, and when the raw water turbidity rises, such as during rainfall, it must be frequently washed to prevent clogging of the packed bed and maintain the filtered water quality.
In recent years, as a countermeasure against pathogenic microorganisms such as Cryptosporidium, the turbidity of filtered water has to be kept below 0.1 degree, and it is difficult to manage the operation such as slow start, slow down and introduction of waste water process. It has become to.

そこで、近年、マンガンを含む原水に塩素を添加しながら、二酸化マンガン触媒粒子の充填層に上向流で通水し、この充填層通過水をセラミック製MF膜でろ過することにより、充填層において酸化不溶化されたマンガン粒子を分離する浄水処理方法が考案されている(特許文献1)。
この方法では、上向流で比較的速いろ過速度で通水するため充填層が常に流動化状態にあり、酸化不溶化したマンガン粒子、濁度成分は充填層をそのまま通過し、充填層の閉塞は生じない。
また、最終段にMF膜を使用しているため、運転管理は容易であり、濁度管理、病原性微生物に関してもほぼ完全なバリアーとなる。
Therefore, in recent years, while adding chlorine to raw water containing manganese, water is passed through the packed bed of manganese dioxide catalyst particles in an upward flow, and the packed bed passing water is filtered through a ceramic MF membrane. A water purification method for separating oxidized and insolubilized manganese particles has been devised (Patent Document 1).
In this method, the packed bed is always in a fluidized state because water flows at a relatively high filtration rate in an upward flow. Oxidized insolubilized manganese particles and turbidity components pass through the packed bed as they are. Does not occur.
Moreover, since the MF membrane is used in the final stage, the operation management is easy, and the turbidity management and pathogenic microorganisms are almost complete barriers.

特許第3705590号公報Japanese Patent No. 3705590

厚生省監修「水道施設設計指針2000」日本水道協会、5.6急速ろ過池及び5.17除鉄・除マンガン設備Supervision of Ministry of Health and Welfare “Water Supply Facility Design Guidelines 2000” Japan Waterworks Association, 5.6 Rapid Filtration Tank, and 5.17 Iron and Manganese Removal Equipment

現在のマンガンの水道水質基準は0.05mg/L以下であるが、水道事業体では、黒水対策を含めた施設管理の観点から、水道水質基準の1/5〜1/10程度の0.005〜0.01mg/L程度を自らの目標処理水質に設定している場合が多い。
しかし、マンガンに関しては、水質基準と共に水質管理目標設定項目の目標値として0.01mg/L以下が定められており、昨今の分析機器の進歩による検出限界の向上、より高度な施設維持管理体制の構築、安全・安心でおいしい水を望む消費者ニーズなどの観点から、目標処理水質を水質管理目標設定項目の1/10未満の0.001mg/L未満とする事業体も散見されるようになってきており、給水人口の多い比較的大規模浄水場においてその傾向が見受けられる。
上向流式マンガン接触塔とMF膜の組み合わせは、高速処理、濁度成分除去、病原性微生物除去の観点からは、優れた浄水処理システムである。しかしながら、従来多く使用されてきた目標処理水質である0.005〜0.01mg/Lは満足できるものの、それ未満の値を目標とした場合、安定して達成できないという問題があった。
The current tap water quality standard for manganese is 0.05 mg / L or less. However, in the water service enterprise, from the viewpoint of facility management including black water countermeasures, it is about 1/5 to 1/10 of the tap water quality standard. In many cases, 005 to 0.01 mg / L is set as the target treated water quality.
However, with respect to manganese, the target value of the water quality management target setting item is set to 0.01 mg / L or less together with the water quality standard, and the detection limit has been improved due to recent advances in analytical instruments, and a more advanced facility maintenance management system has been established. From the standpoint of consumers who want safe, secure and delicious water, there are some enterprises whose target treated water quality is less than 1/10 of the water quality management target setting item and less than 0.001 mg / L. This tendency is seen in relatively large water treatment plants with a large water supply population.
The combination of the upflow type manganese contact tower and the MF membrane is an excellent water purification system from the viewpoint of high-speed treatment, turbidity component removal, and pathogenic microorganism removal. However, although the target treated water quality of 0.005 to 0.01 mg / L, which has been widely used in the past, is satisfactory, there is a problem that it cannot be stably achieved when a value less than that is targeted.

本発明はかかる問題点に鑑みてなされたもので、その目的は、水道原水からマンガン濃度を従来より更に低減した浄水を簡易かつ安定して得ることができる、浄水処理方法及び浄水処理装置を提供することにある。   The present invention has been made in view of such problems, and its purpose is to provide a water purification treatment method and a water purification treatment apparatus capable of easily and stably obtaining purified water having a manganese concentration further reduced from conventional tap water. There is to do.

本発明は、以下のとおりである。
1)水道原水をマンガン接触酸化反応器に通水処理した処理水を、孔径が0.01μm以上0.08μm以下の膜によりろ過して浄水を得る、浄水処理方法。
2)水道原水をマンガン接触酸化反応器に通水処理した処理水を凝集処理して得た凝集処理水を、孔径が0.01μm以上0.08μm以下の膜によりろ過して浄水を得る、浄水処理方法。
3)水道原水を通水処理して処理水を得るためのマンガン接触酸化反応器、及び前記処理水をろ過して浄水を得るための、孔径0.01μm以上0.08μm以下の膜を有する膜ろ過装置を含む、浄水処理装置。
4)水道原水を通水処理して処理水を得るためのマンガン接触酸化反応器、前記処理水を凝集処理して凝集処理水を得るための凝集処理装置、及び前記凝集処理水をろ過して浄水を得るための、孔径0.01μm以上0.08μm以下の膜を有する膜ろ過装置を含む、浄水処理装置。
The present invention is as follows.
1) A water purification treatment method for obtaining purified water by filtering treated water obtained by passing raw water from a tap water through a manganese catalytic oxidation reactor through a membrane having a pore size of 0.01 μm or more and 0.08 μm or less.
2) Purified water is obtained by filtering the agglomerated treated water obtained by aggregating the treated water obtained by passing the raw water from the tap water through a manganese catalytic oxidation reactor through a membrane having a pore size of 0.01 μm or more and 0.08 μm or less. Processing method.
3) Manganese catalytic oxidation reactor for obtaining treated water by passing raw water through water, and a membrane having a membrane with a pore diameter of 0.01 μm or more and 0.08 μm or less for filtering the treated water to obtain purified water Water purification equipment including filtration equipment.
4) Manganese contact oxidation reactor for obtaining treated water by passing raw water through water, a coagulation treatment device for coagulating the treated water to obtain agglomerated treated water, and filtering the agglomerated treated water A water purification apparatus comprising a membrane filtration device having a membrane having a pore diameter of 0.01 μm or more and 0.08 μm or less for obtaining purified water.

本発明は、特に孔径0.01μm以上0.08μm以下の膜を用いることが従来では見られない重要な技術思想である。
本発明者は、従来法では、前記濃度を安定して達成できない原因が、マンガン接触酸化反応器のろ材表面から微細マンガン粒子が剥離することにあることを見出した。この微細マンガン粒子の大きさや濃度は、原水水質、ろ過速度、通水方向(下向流、上向流)、ろ材種類などの影響を受けるものの、その粒子径には大きく二つの分布があり、一つは、0.08μmより大きなマンガン粒子であり、もう一つは、0.01μmよりも小さいマンガン粒子である事を初めて知見し、本発明を想起するに至ったものである。
孔径が0.08μm以下の膜を用いれば、マンガン濃度を従来より更に低減する事が可能であるが、孔径が0.01μmより小さくなると膜の透水性能が極端に低下する場合がほとんどであり、ろ過圧力及び動力コストの低減の観点から孔径0.01μm以上の膜が実用的であり、採用した。
In the present invention, it is an important technical idea that a membrane having a pore diameter of 0.01 μm or more and 0.08 μm or less has not been conventionally found.
The present inventor has found that the reason why the concentration cannot be stably achieved in the conventional method is that fine manganese particles are peeled off from the surface of the filter medium of the manganese catalytic oxidation reactor. Although the size and concentration of fine manganese particles are affected by the raw water quality, filtration rate, water flow direction (downflow, upward flow), filter media type, etc., the particle size has two distributions. One is a manganese particle larger than 0.08 μm, and the other is a manganese particle smaller than 0.01 μm for the first time, and the present invention has been recalled.
If a membrane having a pore size of 0.08 μm or less can be used, the manganese concentration can be further reduced as compared with the conventional case, but if the pore size is smaller than 0.01 μm, the water permeability of the membrane is extremely lowered in most cases. From the viewpoint of reducing filtration pressure and power cost, a membrane having a pore size of 0.01 μm or more was practical and adopted.

本発明者は、また、凝集処理を併用することで、0.01μmより小さい微細マンガン粒子を集塊化し、それらの集塊粒子を分離できる膜の孔径を鋭意探索した結果、従来から浄水処理で使用されている孔径0.1μmの膜では満足できないものの、0.08μm以下の孔径の膜を用いることにより目標処理水質0.001mg/L未満とした場合でも達成する事が可能である事を見出した。
本発明は、上述のように膜孔径が0.01μm以上0.08μm以下の膜であれば凝集処理無しで使用して、従来より低減したマンガン濃度を達成する事は可能であるが、膜汚染低減の観点からも併用が好ましい。
The present inventor also agglomerated fine manganese particles smaller than 0.01 μm by using agglomeration treatment together, and as a result of earnestly searching for the pore size of the membrane that can separate these agglomerated particles, Although it is not satisfactory with a membrane having a pore diameter of 0.1 μm, it has been found that it can be achieved even when the target treated water quality is less than 0.001 mg / L by using a membrane with a pore diameter of 0.08 μm or less. It was.
In the present invention, as described above, if the membrane has a pore diameter of 0.01 μm or more and 0.08 μm or less, it can be used without agglomeration treatment to achieve a manganese concentration lower than the conventional one. The combined use is preferable from the viewpoint of reduction.

具体的には、水道原水中には、膜汚染を引き起こす有機物が広い分子量分布を持ち存在する場合があるが、影響力が大きいのは0.01〜0.1μm程度の比較的高分子の有機物である。
本発明で使用する膜の孔径は、0.01μm以上0.08μm以下であり、該高分子有機物の大きさと同じ範囲となるので、膜閉塞の原因となる。
本発明では、該高分子有機物は凝集処理で除去する事ができるので、膜汚染低減の観点からも凝集処理を併用した方が良い。
Specifically, in tap raw water, organic substances that cause membrane contamination may exist with a wide molecular weight distribution, but the influence is relatively large. It is.
The pore diameter of the membrane used in the present invention is 0.01 μm or more and 0.08 μm or less, which is in the same range as the size of the high molecular organic substance, which causes membrane clogging.
In the present invention, since the high molecular organic substance can be removed by agglomeration treatment, it is better to use agglomeration treatment together from the viewpoint of reducing film contamination.

本発明において、該膜の孔径は、水処理分野で一般的に用いられている孔径を意味し、例えば、膜の製造メーカー等が提示しているものである。また、膜の形状としては、特に制限はなく、中空糸、平膜等が挙げられる。   In the present invention, the pore size of the membrane means a pore size generally used in the field of water treatment, and is provided by, for example, a membrane manufacturer. Moreover, there is no restriction | limiting in particular as a shape of a film | membrane, A hollow fiber, a flat film, etc. are mentioned.

本発明において、マンガン接触酸化反応器、必要に応じて凝集処理装置、及び膜ろ過装置は、この順に適宜、配管、バルブ、ポンプ等に接続されることにより、水道原水及びその処理水並びに必要に応じて凝集処理水が順次移送されるように構成される。
上記処理フローは、自動制御であってよいし、バッチ処理であってもよいし、その組み合わせであってもよい。
In the present invention, a manganese contact oxidation reactor, an agglomeration treatment device, and a membrane filtration device, if necessary, are appropriately connected in this order to pipes, valves, pumps, etc. Accordingly, the flocculated water is configured to be sequentially transferred.
The processing flow may be automatic control, batch processing, or a combination thereof.

本発明は、従来法に劣ることのない、容易な運転管理性、安全性を満たすとともに、従来の浄水処理よりもより清澄な水道水を得る事が可能となる。   The present invention can obtain easy operation controllability and safety that are not inferior to conventional methods, and can obtain tap water that is clearer than conventional water purification treatment.

以下、本発明を詳細に説明する。
本発明において、水道原水とは、表流水、湖沼水、伏流水、井水、湧水等であり、マンガン濃度が少なくとも0.001mg/L以上であり、上限は通常、2〜3mg/L程度であるものを意味する。
Hereinafter, the present invention will be described in detail.
In the present invention, the raw water supply is surface water, lake water, underground water, well water, spring water, etc., the manganese concentration is at least 0.001 mg / L or more, and the upper limit is usually about 2 to 3 mg / L. Means something.

本発明において、水道原水はマンガン接触酸化反応器にて通水処理が施され、マンガンイオンが除去された処理水が得られる。
本発明は、マンガン接触酸化反応器、並びそれに用いられるろ材の種類に特に限定されない。ろ材としては、非結晶型の二酸化マンガンが付着しているマンガン砂はもちろん適用可能であり、また、β型の結晶構造からなる二酸化マンガンを付着させた特殊ろ材などでも構わない。また、ろ材の基材の種類にも特に限定は無く、砂、シャモネット、セラミックのいずれでも良い。
In the present invention, raw tap water is subjected to water treatment in a manganese catalytic oxidation reactor to obtain treated water from which manganese ions have been removed.
The present invention is not particularly limited to the manganese catalytic oxidation reactor and the type of filter medium used therefor. As the filter medium, manganese sand to which amorphous manganese dioxide is attached is of course applicable, and a special filter medium to which manganese dioxide having a β-type crystal structure is attached may be used. Moreover, there is no limitation in particular also in the kind of base material of a filter medium, Any of sand, a chamonet, and a ceramic may be sufficient.

本発明に用いられるマンガン接触酸化反応器は、本質的には通水方向(下向流、上向流など)に制約されるものではない。下向流で通水速度が速くない場合、剥離した微細マンガン粒子の生成が少ない傾向があるので、上向流の場合よりも該反応器による処理水のマンガン濃度が低くなる傾向があり、通水速度が速くなると、微細マンガン粒子の生成が多くなる傾向があるので、該マンガン濃度が上記より上昇する傾向がある。   The manganese catalytic oxidation reactor used in the present invention is not essentially restricted in the direction of water flow (downflow, upflow, etc.). When the water flow rate is not fast in the downward flow, the production of fine manganese particles tends to be less, so the manganese concentration of the treated water in the reactor tends to be lower than that in the upward flow. When the water speed increases, the production of fine manganese particles tends to increase, so that the manganese concentration tends to increase from the above.

本発明において、マンガン接触酸化反応器により通水処理して得られた処理水を凝集処理しないで、孔径が0.01μm以上0.08μm以下の膜によりろ過する場合について説明する。
該処理水は、孔径が0.01μm以上0.08μm以下の膜によりろ過処理が施され、マンガン濃度が従来より低減された浄水を得ることができる。
本発明において、該膜によるろ過処理を以下、膜ろ過処理といい、該膜によるろ過処理を行う装置を膜ろ過装置という。
In the present invention, a case will be described in which treated water obtained by passing water through a manganese catalytic oxidation reactor is filtered through a membrane having a pore diameter of 0.01 μm or more and 0.08 μm or less without agglomeration treatment.
The treated water is filtered with a membrane having a pore size of 0.01 μm or more and 0.08 μm or less, and purified water having a manganese concentration reduced as compared with the prior art can be obtained.
In the present invention, the filtration treatment using the membrane is hereinafter referred to as a membrane filtration treatment, and the device for performing the filtration treatment using the membrane is referred to as a membrane filtration device.

次に、本発明において、マンガン接触酸化反応器により通水処理して得られた処理水を凝集処理する場合について説明する。
本発明において、凝集処理水は、マンガン接触酸化反応器により通水処理した処理水を凝集処理して得られるものを意味する。凝集処理は、凝集剤を該処理水に添加して、凝集フロックを生成させる処理である。凝集処理水は、凝集フロックを含むものであっても、凝集フロックが除去されているものであってもよい。
この凝集処理水を得るための凝集処理は、凝集処理装置を用いても、本発明の膜を備えた膜ろ過装置で行っても、それら両者で行っても良い。
凝集処理水は、孔径が0.01μm以上0.08μm以下の膜によりろ過処理が施され、マンガン濃度0.001mg/L未満の浄水を安定して得ることができる。
Next, in the present invention, a case where the treated water obtained by passing water through the manganese catalytic oxidation reactor is subjected to agglomeration treatment will be described.
In the present invention, the agglomerated water means water obtained by agglomeration treatment of treated water that has been subjected to water treatment using a manganese catalytic oxidation reactor. The agglomeration treatment is a treatment in which a flocculant is added to the treated water to produce agglomeration floc. The agglomerated water may contain agglomerated floc or may have agglomerated floc removed.
The agglomeration treatment for obtaining the agglomerated water may be performed by using an agglomeration apparatus, a membrane filtration apparatus provided with the membrane of the present invention, or both.
The agglomerated water is filtered through a membrane having a pore size of 0.01 μm or more and 0.08 μm or less, and purified water having a manganese concentration of less than 0.001 mg / L can be stably obtained.

本発明に用いる膜ろ過装置は、膜モジュールの種類や形状に特に限定されるものではないが、浸漬型膜ろ過装置の方が好ましい。従来のケーシング型膜モジュールを用いた装置では、濁質成分や二酸化マンガン粒子などが膜面に堆積し易く、降雨などにより水道原水の濁質成分の濃度が上昇した時には、膜の流路閉塞が生じ、膜ろ過装置の運転ができない状態になる事もある。
浸漬型膜ろ過装置は高濃度のSS成分の保持が可能な形状を有しており、水道原水の濁質成分の濃度が上昇しても安定した運転が可能である事から、凝集処理を行う場合にはより好ましい。
浸漬型膜ろ過装置は、凝集処理により生成した高濃度の凝集フロックを保持でき、水道原水のマンガン濃度などの変動に伴い微細マンガン粒子の濃度が急激に高くなった場合でもそれらが凝集フロックに取り込まれることにより対応でき、有利である。例えば、微細マンガン粒子の凝集フロックへの取り込みは、必要により設けられる凝集処理装置からの微細マンガン粒子のリークにも対応できる。加えて、同浸漬型膜ろ過装置は、同装置内で微細マンガン粒子自身の凝集も促進されるのでより好ましい。
The membrane filtration device used in the present invention is not particularly limited to the type and shape of the membrane module, but an immersion type membrane filtration device is preferred. In a conventional apparatus using a casing-type membrane module, turbid components and manganese dioxide particles are likely to accumulate on the membrane surface, and when the concentration of turbid components in tap raw water rises due to rain, etc., the flow path of the membrane is blocked. It may occur and the membrane filtration device may not be operated.
The submerged membrane filtration device has a shape that can hold a high concentration of SS component, and since it can operate stably even if the concentration of turbid components in raw tap water is increased, it performs coagulation treatment. More preferred in some cases.
The submerged membrane filtration device can retain high-concentration flocs generated by the agglomeration treatment, and even if the concentration of fine manganese particles increases rapidly due to fluctuations in the manganese concentration of raw tap water, they are taken into the flocs This is advantageous because it can be handled. For example, incorporation of fine manganese particles into agglomeration floc can cope with leakage of fine manganese particles from an aggregating treatment apparatus provided as necessary. In addition, the submerged membrane filtration apparatus is more preferable because aggregation of the fine manganese particles themselves is promoted in the apparatus.

本発明は、前記孔径を満たすものであれば、膜ろ過処理に使用する膜材質に特に限定されるものではなく、無機膜及び有機膜を用いることができるが、膜汚染抑制の観点から有機高分子膜が好ましい。
前記特許文献1では、膜ろ過装置の膜としてセラミック膜を使用しているが、セラミック膜の表面は正荷電を有しており、負荷電を有する水道原水中の有機物が吸着し易く、膜汚染が生じ易いため、メンテナンスに難点がある。逆に、有機高分子膜は、膜表面が負荷電を有しており、膜汚染が生じ難く、メンテナンスが容易であるという利点がある。
このような有機高分子膜としては、何ら材質に限定されないが、膜表面の性状が疎水性の膜である方が凝集剤による膜汚染の影響を受け難いのでさらに好ましい。該有機高分子としては、例えば、ポリエチレン、ポリ弗化ビニリデン、ポリ塩化ビニル、ポリスルフォン、ポリエーテルスルフォン、ポリテトラフルオロエチレンなどがある。
The present invention is not particularly limited to the membrane material used for the membrane filtration treatment as long as the pore diameter is satisfied, and inorganic membranes and organic membranes can be used. Molecular membranes are preferred.
In the said patent document 1, although the ceramic membrane is used as a membrane of a membrane filtration apparatus, the surface of a ceramic membrane has a positive charge, and it is easy to adsorb | suck the organic substance in the tap water which has a negative charge, and membrane contamination Since this tends to occur, there is a difficulty in maintenance. On the contrary, the organic polymer film has an advantage that the film surface has a negative charge, film contamination hardly occurs, and maintenance is easy.
Such an organic polymer film is not limited to any material, but it is more preferable that the film surface is a hydrophobic film because it is less susceptible to film contamination by the flocculant. Examples of the organic polymer include polyethylene, polyvinylidene fluoride, polyvinyl chloride, polysulfone, polyether sulfone, and polytetrafluoroethylene.

本発明の凝集処理における凝集剤の注入率は、水道原水の性状及び凝集剤の種類によって異なるため、現場もしくは事前実験において評価する必要があるが、経験的には、ポリ塩化アルミニウム(PACl)の場合で概ね30mg/L以下が好ましく、有機物濃度が高く注入率が多く必要な場合でも30〜60mg/L程度が好ましい。また、硫酸などの酸注入を行い、凝集処理時のpHを調整しても何ら構わない。   The injection rate of the flocculant in the flocculation treatment of the present invention varies depending on the properties of the raw water of the tap water and the type of the flocculant, and therefore needs to be evaluated in the field or in advance experiments. In some cases, approximately 30 mg / L or less is preferable, and even when the organic matter concentration is high and a large injection rate is required, approximately 30 to 60 mg / L is preferable. Also, it does not matter if the pH during the agglomeration treatment is adjusted by injecting acid such as sulfuric acid.

凝集剤は、凝集処理装置を用いる場合には、凝集処理装置に具備される凝集剤投入装置により投入され、凝集処理装置を用いない場合は、膜ろ過処理装置あるいはマンガン接触酸化反応器と膜ろ過装置の間の配管等に具備される凝集剤投入装置により投入される。凝集処理装置、膜ろ過装置は、適宜、攪拌装置を具備することができる。また、凝集処理装置は、凝集フロックを分離する装置(例えば、遠心装置、スクリーン装置等)を具備していてもよい。また、膜ろ過装置は、膜を洗浄するための散気装置等を具備していてもよい。   The flocculant is charged by the flocculant charging device provided in the flocculant treatment device when the flocculant treatment device is used. It is charged by a flocculant charging device provided in piping between the devices. The aggregation treatment device and the membrane filtration device can be appropriately equipped with a stirring device. In addition, the aggregation processing apparatus may include a device (for example, a centrifugal device, a screen device, or the like) that separates the aggregation floc. Moreover, the membrane filtration apparatus may be equipped with an air diffuser for cleaning the membrane.

以下、本発明の実施例を説明する。なお、本発明はこの実施例により何等制限されるものではない。   Examples of the present invention will be described below. In addition, this invention is not restrict | limited at all by this Example.

実施例1、比較例1
マンガン(Mn)濃度0.021mg/Lの水道原水(原水)を、ろ材としてマンガン砂を有するマンガン接触酸化反応器(Mn塔)に、線速(LV)1400m/日にて、通水処理(上向流Mn処理)した処理水(除Mn塔処理水)を、孔径が0.1μm、0.08μm、0.03μm、又は0.01μmの膜により膜ろ過水を得た。
膜は、ポリ弗化ビニリデン(PVDF)製である。原水、除Mn塔処理水、後述の凝集処理水、及び膜ろ過水のマンガン濃度の測定にはICP(誘導結合プラズマ発光分析装置)を使用した(定量下限値0.001mg/L)。なお、膜の孔径は、表1の膜ろ過水のMn濃度の欄に示した。
なお、原水、除マンガン塔処理水のマンガン濃度は、0.1μmのメンブレンフィルタ−でろ過して測定したので、マンガン粒子の最大サイズは0.1μm未満であり、ICP(誘導結合プラズマ発光分析装置)により測定した。
表1に、Mn塔のろ材の種類、上記処理フロー、Mn塔LV、PACl注入率、各水のマンガン濃度、及び膜ろ過水のマンガン濃度を示した。
実施例2、比較例2
実施例1、比較例1において、原水濃度を変更した以外は、実施例1、比較例1と同様に浄水を得た。
実施例3〜4、比較例3〜4
実施例1、比較例1において、処理フロー(上向流を下向流に)及びMn塔LV並びに原水濃度を変更した以外は、実施例1、比較例1と同様に浄水を得た。
Example 1 and Comparative Example 1
A tap water (raw water) having a manganese (Mn) concentration of 0.021 mg / L is passed through a manganese contact oxidation reactor (Mn tower) having manganese sand as a filter medium at a linear velocity (LV) of 1400 m / day (through water treatment ( Membrane filtrate was obtained from the treated water (upstream Mn treatment) (removed Mn tower treated water) with a membrane having a pore size of 0.1 μm, 0.08 μm, 0.03 μm, or 0.01 μm.
The membrane is made of polyvinylidene fluoride (PVDF). An ICP (inductively coupled plasma emission analyzer) was used for the measurement of the manganese concentration of raw water, removed Mn tower treated water, agglomerated treated water described later, and membrane filtered water (lower limit of quantification 0.001 mg / L). The pore diameter of the membrane is shown in the column of Mn concentration of membrane filtrate in Table 1.
In addition, since the manganese concentration of raw water and manganese removal tower treated water was measured by filtration through a 0.1 μm membrane filter, the maximum size of manganese particles was less than 0.1 μm, and an ICP (inductively coupled plasma emission spectrometer) was used. ).
Table 1 shows the type of the filter medium of the Mn tower, the above-described treatment flow, the Mn tower LV, the PACl injection rate, the manganese concentration of each water, and the manganese concentration of the membrane filtration water.
Example 2 and Comparative Example 2
In Example 1 and Comparative Example 1, purified water was obtained in the same manner as Example 1 and Comparative Example 1 except that the raw water concentration was changed.
Examples 3-4, Comparative Examples 3-4
In Example 1 and Comparative Example 1, purified water was obtained in the same manner as in Example 1 and Comparative Example 1 except that the treatment flow (upward flow into downward flow), the Mn tower LV, and the raw water concentration were changed.

実施例5、比較例5
Mn濃度0.020mg/Lの原水を、ろ材としてマンガン砂を有するMn塔に上向流で、LV1400m/日にて、上向流Mn処理した除Mn塔処理水を、PAClの30mg/L注入率にて凝集処理して得た凝集処理水を、孔径が0.1μm、0.08μm、0.03μm、又は0.01μmの膜により膜ろ過して膜ろ過水を得た。
膜の種類並びに原水、除Mn塔処理水、凝集処理水、及び膜ろ過水のマンガン濃度の測定は、実施例1と同様とし、結果を表1に示した。また、凝集処理水のマンガン濃度は、凝集フロックを0.1μmのメンブレンフィルタ−で除去して測定した。
Example 5, Comparative Example 5
Raw water with a Mn concentration of 0.020 mg / L was flowed upward into a Mn tower having manganese sand as a filter medium, and the treated Mn tower treated water treated with Mn with an upward flow of LV 1400 m / day was injected with 30 mg / L of PACl. The agglomerated water obtained by aggregating at a rate was subjected to membrane filtration with a membrane having a pore size of 0.1 μm, 0.08 μm, 0.03 μm, or 0.01 μm to obtain membrane filtered water.
The measurement of the type of membrane and the manganese concentration of raw water, Mn removal tower treated water, agglomerated treated water, and membrane filtered water was the same as in Example 1, and the results are shown in Table 1. Further, the manganese concentration of the flocculated water was measured by removing the flocculated floc with a 0.1 μm membrane filter.

実施例6、比較例6
実施例5、比較例5において、原水濃度を変更した以外は、実施例5、比較例5と同様に浄水を得た。
実施例7、比較例7
実施例5、比較例5において、ろ材及び原水濃度を変更した以外は、実施例5、比較例5と同様に浄水を得た。ろ材は、β型の結晶構造を持つ酸化マンガンを付着させた特殊ろ材を使用した。
実施例8、比較例8
実施例6、比較例6において、処理フロー(上向流を下向流に)及びMn塔LVを変更した以外は、実施例6、比較例6と同様に浄水を得た。
以上の結果を以下の表1に示す。
Example 6 and Comparative Example 6
In Example 5 and Comparative Example 5, purified water was obtained in the same manner as Example 5 and Comparative Example 5 except that the raw water concentration was changed.
Example 7 and Comparative Example 7
In Example 5 and Comparative Example 5, purified water was obtained in the same manner as Example 5 and Comparative Example 5 except that the filter medium and raw water concentration were changed. As the filter medium, a special filter medium to which manganese oxide having a β-type crystal structure was attached was used.
Example 8 and Comparative Example 8
In Example 6 and Comparative Example 6, purified water was obtained in the same manner as in Example 6 and Comparative Example 6 except that the treatment flow (upward flow into downward flow) and the Mn tower LV were changed.
The above results are shown in Table 1 below.

Figure 2012217944
Figure 2012217944

表1から孔径が0.01μm以上0.08μm以下の膜を用いた場合は、凝集処理の有無にかかわらず、0.005mg/L未満のマンガン濃度である浄水を得ることでき、孔径が0.08μmの膜を用いた場合でも、凝集処理を行うことにより0.001mg/L未満のマンガン濃度である浄水を安定して得ることできることが分かる。   From Table 1, when a membrane having a pore size of 0.01 μm or more and 0.08 μm or less is used, purified water having a manganese concentration of less than 0.005 mg / L can be obtained regardless of the presence or absence of the agglomeration treatment. It can be seen that purified water having a manganese concentration of less than 0.001 mg / L can be stably obtained by carrying out the agglomeration treatment even when a 08 μm membrane is used.

Claims (6)

水道原水をマンガン接触酸化反応器に通水処理した処理水を、孔径が0.01μm以上0.08μm以下の膜によりろ過して浄水を得る、浄水処理方法。   A water purification method for obtaining purified water by filtering treated water obtained by passing raw water from a tap water through a manganese catalytic oxidation reactor through a membrane having a pore size of 0.01 μm or more and 0.08 μm or less. 水道原水をマンガン接触酸化反応器に通水処理した処理水を凝集処理して得た凝集処理水を、孔径が0.01μm以上0.08μm以下の膜によりろ過して浄水を得る、浄水処理方法。   A purified water treatment method for obtaining purified water by filtering the agglomerated treated water obtained by aggregating treated water obtained by passing raw water through a manganese contact oxidation reactor through a membrane having a pore size of 0.01 μm or more and 0.08 μm or less . 前記膜は、有機高分子膜である、請求項1又は2の浄水処理方法。   The water purification method according to claim 1 or 2, wherein the membrane is an organic polymer membrane. 水道原水を通水処理して処理水を得るためのマンガン接触酸化反応器、及び前記処理水をろ過して浄水を得るための、孔径0.01μm以上0.08μm以下の膜を有する膜ろ過装置を含む、浄水処理装置。   Manganese contact oxidation reactor for obtaining treated water by passing raw water through water, and a membrane filtration device having a membrane having a pore diameter of 0.01 μm or more and 0.08 μm or less for filtering the treated water to obtain purified water Including water purification equipment. 水道原水を通水処理して処理水を得るためのマンガン接触酸化反応器、前記処理水を凝集処理して凝集処理水を得るための凝集処理装置、及び前記凝集処理水をろ過して浄水を得るための、孔径0.01μm以上0.08μm以下の膜を有する膜ろ過装置を含む、浄水処理装置。   A manganese contact oxidation reactor for obtaining treated water by passing raw water through water, a coagulation treatment device for obtaining coagulated treated water by coagulating the treated water, and filtering the coagulated treated water to obtain purified water A water purification apparatus comprising a membrane filtration apparatus having a membrane having a pore diameter of 0.01 μm or more and 0.08 μm or less for obtaining. 前記膜は、有機高分子膜である、請求項4又は5の浄水処理装置。   The water purification apparatus according to claim 4 or 5, wherein the membrane is an organic polymer membrane.
JP2011087065A 2011-04-11 2011-04-11 Method and apparatus for treating clean water Pending JP2012217944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087065A JP2012217944A (en) 2011-04-11 2011-04-11 Method and apparatus for treating clean water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087065A JP2012217944A (en) 2011-04-11 2011-04-11 Method and apparatus for treating clean water

Publications (1)

Publication Number Publication Date
JP2012217944A true JP2012217944A (en) 2012-11-12

Family

ID=47270061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087065A Pending JP2012217944A (en) 2011-04-11 2011-04-11 Method and apparatus for treating clean water

Country Status (1)

Country Link
JP (1) JP2012217944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147156A (en) * 2014-02-04 2015-08-20 オルガノ株式会社 Apparatus and method for treating water containing iron/manganese
JP2018065137A (en) * 2018-01-23 2018-04-26 オルガノ株式会社 Apparatus and method for treating water containing iron/manganese

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150162A (en) * 1995-11-29 1997-06-10 Toray Ind Inc Water treating method and device therefor
JP3705590B2 (en) * 2001-07-24 2005-10-12 日本碍子株式会社 Water purification method for manganese-containing water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150162A (en) * 1995-11-29 1997-06-10 Toray Ind Inc Water treating method and device therefor
JP3705590B2 (en) * 2001-07-24 2005-10-12 日本碍子株式会社 Water purification method for manganese-containing water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147156A (en) * 2014-02-04 2015-08-20 オルガノ株式会社 Apparatus and method for treating water containing iron/manganese
JP2018065137A (en) * 2018-01-23 2018-04-26 オルガノ株式会社 Apparatus and method for treating water containing iron/manganese

Similar Documents

Publication Publication Date Title
JP5218731B2 (en) Water treatment method and water treatment apparatus
CN102674626B (en) System and method for treatment and recovery of electronic electroplating wastewater
CN104528987A (en) Nickel-containing wastewater treatment method and equipment
JP2009248028A (en) Water treating method and its device
WO2013054810A1 (en) Organic sewage collection processing device and collection processing method
JP2018015684A (en) Wastewater treatment apparatus and method
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
JP2012217944A (en) Method and apparatus for treating clean water
CN206624737U (en) A kind of organic wastewater reverse osmosis concentrated water oxidation and desalination system
CN101781031B (en) Purification treatment method of reclaimed papermaking water
CN201309875Y (en) Recycling device of biological pharmaceutical wastewater
CN208762364U (en) Dyeing waste water advanced treatment system
JP2014168729A (en) Water treatment method and water treatment apparatus
JP2007098270A (en) Method and apparatus for producing pure water
CN102060417A (en) Process and device for treating waste water in CLT acid production
JP2009220020A (en) Wastewater treatment system and its operation method
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
KR101726482B1 (en) Pressurized membrane filtration system with submerged membrane filtration process and water treatment method using the same
CN210012712U (en) Wastewater desalination treatment system
CN202808534U (en) Electronic electroplating wastewater recycling system
JP3697938B2 (en) Wastewater treatment equipment
JP2014046235A (en) Fresh water generating method
JP2004267830A (en) Method for treating biological treatment water-containing water
KR101768989B1 (en) Method for removing titanium oxide in sewage or wastewater
JP2016159241A (en) Membrane filtration system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104