JP2015140972A - heat exchanger - Google Patents

heat exchanger Download PDF

Info

Publication number
JP2015140972A
JP2015140972A JP2014014396A JP2014014396A JP2015140972A JP 2015140972 A JP2015140972 A JP 2015140972A JP 2014014396 A JP2014014396 A JP 2014014396A JP 2014014396 A JP2014014396 A JP 2014014396A JP 2015140972 A JP2015140972 A JP 2015140972A
Authority
JP
Japan
Prior art keywords
side wall
opening
heat exchanger
honeycomb structure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014014396A
Other languages
Japanese (ja)
Inventor
真 大石
Makoto Oishi
真 大石
高木 俊
Takashi Takagi
俊 高木
祥啓 古賀
Yoshihiro Koga
祥啓 古賀
久保 修一
Shuichi Kubo
修一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2014014396A priority Critical patent/JP2015140972A/en
Priority to PCT/JP2015/051444 priority patent/WO2015115254A1/en
Publication of JP2015140972A publication Critical patent/JP2015140972A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger composed of a honeycomb structure, in which the honeycomb structure has a new function, and new fluid flow can be provided.SOLUTION: A heat exchanger 1000 composed of a honeycomb structure, has a first space 41 composed of a first flow channel, and a pair of connection holes 30 extended from a first opening 31 to a second opening 32, and a second space 42 composed of a second flow channel partitioned from the first flow channel by an inner wall 50. A pair of virtual lines connecting middle points of short sides at a side far from sealing portions, of the first opening 31 and the second opening 32 are straight lines in parallel with each other. A pair of second virtual lines connecting middle points of short sides at a side close to the sealing portions of the first opening and the second opening are straight lines vertical to a first side wall and intersecting the first virtual lines in the first side wall or a second side wall.

Description

本発明は、セラミック製のハニカム構造体からなる熱交換器に関する。   The present invention relates to a heat exchanger composed of a ceramic honeycomb structure.

ハニカム構造体は、内部が内壁によって仕切られた多数の流路で構成されている。ハニカム構造体の流路を流体が通過する際に、内壁を介して熱、物質などを移動させることができるので、熱交換器として広く利用されている。   The honeycomb structure is composed of a large number of flow paths whose interior is partitioned by inner walls. When a fluid passes through the flow path of the honeycomb structure, heat, a substance, and the like can be moved through the inner wall, so that it is widely used as a heat exchanger.

中でもセラミック製のハニカム構造体は、耐熱性、化学的安定性に優れるので、高い温度、腐食性環境下で使用される熱交換器に用いられている。
特許文献1には、内側を貫流する流体と外側に存在する流体との間で熱量の交換を行わせる多孔質炭化珪素焼結体製のエレメントを備えた高温用熱交換器であって、前記エレメントは長手方向に延びた複数のセルを有するハニカム構造体であることを特徴とした高温用熱交換器が記載されている。
このようなハニカム構造体を用いた熱交換器によれば強度に優れると共に、温度の異なる流体間での熱量の交換を効率良く行わせることができることが記載されている。
Among them, ceramic honeycomb structures are excellent in heat resistance and chemical stability, and are therefore used in heat exchangers used under high temperature and corrosive environments.
Patent Document 1 is a high-temperature heat exchanger including an element made of a porous silicon carbide sintered body that exchanges heat between a fluid flowing through the inside and a fluid existing outside. A high temperature heat exchanger is described in which the element is a honeycomb structure having a plurality of cells extending in the longitudinal direction.
It is described that a heat exchanger using such a honeycomb structure is excellent in strength and can efficiently exchange heat between fluids having different temperatures.

特開平6−345555号公報JP-A-6-345555

セラミックがハニカム構造体に用いられるのは、材料を構成する原子が共有結合で強く結合し、高強度、耐熱性、耐腐食性を有しているからである。一方、このような共有結合の特長によって、セラミック材料は、硬く、脆い材料となる。
このため、セラミック製のハニカム構造体は、押出成形など単純な成形方法によって製造され、一方向に流路が並んだ単純な形状である。このような形状であるため、ハニカム構造体を適用する部品は一方向に並んだ流路を前提に設計され、ハニカム構造体を用いた熱交換器の設計の自由度は小さい。
The ceramic is used in the honeycomb structure because the atoms constituting the material are strongly bonded by a covalent bond and have high strength, heat resistance, and corrosion resistance. On the other hand, the ceramic material becomes a hard and brittle material due to such a feature of the covalent bond.
For this reason, the ceramic honeycomb structure is manufactured by a simple forming method such as extrusion, and has a simple shape in which flow paths are arranged in one direction. Because of this shape, the parts to which the honeycomb structure is applied are designed on the assumption that the flow paths are aligned in one direction, and the degree of freedom in designing a heat exchanger using the honeycomb structure is small.

本発明では、このような従来のセラミック製のハニカム構造体からなる熱交換器の適用範囲を超え、ハニカム構造体に新しい機能を付与し、新しい流体の流れを扱うことのできるハニカム構造体からなる熱交換器を提供することを目的とする。   The present invention exceeds the application range of such a conventional heat exchanger composed of a ceramic honeycomb structure, and has a honeycomb structure that can give a new function to the honeycomb structure and handle a new fluid flow. An object is to provide a heat exchanger.

前記課題を解決するための本発明の熱交換器は、少なくとも第1端面と第2端面と第1側壁と第2側壁とを有するセラミック製のハニカム構造体からなる熱交換器であって、前記ハニカム構造体は内壁によって仕切られ前記第1端面から前記第2端面に延びる両端が封止部によって封孔された第1の流路と、両端が開放した第2の流路と、を有し、前記第1の流路および前記第2の流路は、それぞれ前記第1側壁から前記第2側壁に向かって並ぶ列を構成するとともに、交互に配置される列となって構成される熱交換器において、前記ハニカム構造体は、前記第1の流路と、前記第1側壁の前記第1端面側および前記第2側壁の前記第2端面側にそれぞれ形成された長方形の第1の開口から前記内壁に形成された長方形の第2の開口に延びる一対の接続孔と、からなる第1の空間と、前記第1の流路と前記内壁で隔離された第2の流路とからなる第2の空間と、を有し、前記第1の開口および前記第2の開口の前記封止部に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、前記第1の開口および前記第2の開口の前記封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は、前記第1側壁に垂直であるとともに第1側壁または前記第2側壁の中で前記第1仮想線と交差する直線である。   The heat exchanger of the present invention for solving the above-mentioned problems is a heat exchanger comprising a ceramic honeycomb structure having at least a first end face, a second end face, a first side wall, and a second side wall, The honeycomb structure has a first flow path partitioned by an inner wall and extending from the first end face to the second end face and sealed by sealing portions, and a second flow path open at both ends. The first flow path and the second flow path each constitute a row aligned from the first side wall toward the second side wall, and heat exchange configured as alternately arranged rows In the vessel, the honeycomb structure includes the first flow path, and a rectangular first opening formed on the first end face side of the first side wall and on the second end face side of the second side wall, respectively. Extends to a rectangular second opening formed in the inner wall A first space comprising a pair of connection holes, and a second space comprising a first flow path and a second flow path separated by the inner wall, and the first opening And the pair of first imaginary lines connecting the midpoints of the short sides on the side far from the sealing portion of the second opening are straight lines parallel to each other, and the first opening and the second opening A pair of second imaginary lines connecting the midpoints of the short sides closer to the sealing portion are perpendicular to the first side wall and intersect the first imaginary line in the first side wall or the second side wall. It is a straight line.

本発明のハニカム構造体からなる熱交換器によれば、従来の一方向に流路の延びたハニカム構造体とは異なり、ハニカム構造体を横切る方向に流体の流れをつくることができる。また、このようなハニカム構造体は、第1の開口および第1の開口の内側に第2の開口が形成されているので、最外周に位置する第1の流路のみならず、内側の第1の流路にも流体の流れをつくることができる。また、第2の開口は第1の開口に対向する位置に形成されているので、第2の開口の内側の第1の流路との流体の移動を最短距離で行うことができ、効率良く流体が流れることができる熱交換器を提供することができる。   According to the heat exchanger composed of the honeycomb structure of the present invention, unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in a direction crossing the honeycomb structure. Further, in such a honeycomb structure, since the first opening and the second opening are formed inside the first opening, not only the first flow channel located at the outermost periphery but also the inner first A fluid flow can also be created in one channel. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved with the first flow path inside the second opening in the shortest distance, and efficiently. A heat exchanger through which a fluid can flow can be provided.

また、本発明の熱交換器は、セラミックからなるので、耐熱性、耐蝕性を備え、高強度であるので、高温環境下あるいは腐食性環境下など過酷な環境下でも流体を扱うことができる。
さらに、本発明の熱交換器は、第1の空間が、第1端面および第2端面にそれぞれ封止部を有することによって、第1の空間に第1端面および第2端面側からの流体の侵入を防止することができる。さらに第1の空間は、第2の空間と内壁によって隔てられるため、第1の空間を流れる流体(第1の流体)と第2の空間を流れる流体(第2の流体)とが直接接することない。このため、内壁に伝熱、濾過などの機能を保有させることができる。
In addition, since the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
Furthermore, in the heat exchanger according to the present invention, the first space has the sealing portions on the first end surface and the second end surface, respectively, so that the fluid from the first end surface and the second end surface side is in the first space. Intrusion can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.

本発明の熱交換器は、第1の空間に一対の接続孔を有することにより、一対の接続孔が、第1の空間を流れる流体の入口と出口となることができる。第1の空間に一対の接続孔により入口と出口を設けることによって、第1の空間を流れる流体(第1の流体)を連続的に使用することができる。   Since the heat exchanger of the present invention has a pair of connection holes in the first space, the pair of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing an inlet and an outlet with a pair of connection holes in the first space, the fluid flowing in the first space (first fluid) can be used continuously.

また、第1の空間に一対の接続孔を有することにより、内壁を通過する熱量を大きくする効果もある。第1の空間と第2の空間を隔てる内壁を通過する熱量は、第1の空間と第2の空間の温度差に比例する。第1の空間を流れる流体に入口から入り出口への流れを形成することにより、常に新しい第1の流体を供給し、内壁に温度差が生させ移動する熱量を大きくすることができる。   In addition, by having a pair of connection holes in the first space, there is an effect of increasing the amount of heat passing through the inner wall. The amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space. By forming a flow from the inlet to the outlet in the fluid flowing through the first space, a new first fluid can be constantly supplied, and a temperature difference can be generated on the inner wall to increase the amount of heat that moves.

本発明の熱交換器は、接続孔を第1側壁および第2側壁にそれぞれ有することにより、入口と出口を結ぶ第1の流体の流れる距離が、どの第1の流路を通っても同等にすることができる。このため、内壁全体に第1の流体を行き渡らせることができるので効率良く熱移動または物質移動のできる熱交換器を提供することができる。   The heat exchanger according to the present invention has the connection holes on the first and second side walls, respectively, so that the distance that the first fluid that connects the inlet and the outlet flows is equal regardless of the first flow path. can do. For this reason, since the 1st fluid can be spread over the whole inner wall, the heat exchanger which can perform heat transfer or mass transfer efficiently can be provided.

本発明の熱交換器は、第1の空間および第2の空間が前記第1側壁または前記第2側壁が交互に面していることにより、ハニカム構造体の流路を横切る方向への流れを交互の流路に配置することができる。このため、第2の流路に沿って流れる流体(第2の流体)と、流路を横切る方向に流れる第1の流体(第1の流体)を隔てる内壁の面積を大きくとることができる。   In the heat exchanger according to the present invention, the first space and the second space face the first sidewall or the second sidewall alternately so that the flow in the direction crossing the flow path of the honeycomb structure is performed. They can be arranged in alternate flow paths. For this reason, the area of the inner wall that separates the fluid flowing along the second flow path (second fluid) and the first fluid flowing in the direction crossing the flow path (first fluid) can be increased.

本発明の熱交換器は、第1の開口および第2の開口の形状が流路の方向に長い長方形である。第1の開口および第2の開口であるので、細長い流路に圧力損失を少なくしながら効率良く流体を出し入れすることができる。   In the heat exchanger of the present invention, the shape of the first opening and the second opening is a rectangle that is long in the direction of the flow path. Since the opening is the first opening and the second opening, the fluid can be efficiently put in and out of the elongated channel while reducing the pressure loss.

本発明の熱交換器は、第1の開口および第2の開口の封止部に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、第1の開口および第2の開口の封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は第1側壁に対し垂直であるとともに第1側壁または前記第2側壁の中で前記第1仮想線と交差する直線であるので、第1の開口および第2の開口によって形成される接続孔の流路に沿った深さ方向への断面は、第1の開口の封止部に近い角が直角である直角三角形となる。接続孔が底に近いほど狭くなるので、接続孔の底部で流体が停滞する部分ができにくいので効率良く流体を流すことができる。また、第1の開口および第2の開口の封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は、第1側壁に対し垂直であるので、接続孔を第1端部または第2端部に近づけることができ、流体の流れにくい無駄な第1の流路を小さくすることができる。   In the heat exchanger of the present invention, the pair of first imaginary lines connecting the midpoints of the short sides on the side far from the sealing portions of the first opening and the second opening are straight lines parallel to each other. A pair of second imaginary lines connecting the midpoints of the short sides of the opening and the second opening close to the sealing portion are perpendicular to the first side wall and the first side wall or the second side wall Since it is a straight line intersecting with one imaginary line, the cross section in the depth direction along the flow path of the connection hole formed by the first opening and the second opening is close to the sealing portion of the first opening. It becomes a right triangle with a right angle. The closer the connection hole is to the bottom, the narrower it becomes, so it is difficult to form a portion where the fluid stagnates at the bottom of the connection hole, so that the fluid can flow efficiently. In addition, since the pair of second imaginary lines connecting the midpoints of the short sides closer to the sealing portion of the first opening and the second opening are perpendicular to the first side wall, the connection hole is connected to the first end. It is possible to approach the first end portion or the second end portion, and it is possible to reduce the useless first flow path in which the fluid does not flow easily.

さらに、本発明のハニカム構造体は、以下の態様であることが望ましい。
(1)前記第1側壁または前記第2側壁に対する前記第1仮想線の傾斜角θが35度〜50度である。
傾斜角θが50度以下であると、第一の流体の圧力損失を小さくすることができ、傾斜角が35度以上であると、流路の長さを大きくとることができ、熱交換効率を高めることができる。
Furthermore, the honeycomb structure of the present invention desirably has the following aspect.
(1) The inclination angle θ of the first imaginary line with respect to the first side wall or the second side wall is 35 degrees to 50 degrees.
When the inclination angle θ is 50 degrees or less, the pressure loss of the first fluid can be reduced, and when the inclination angle is 35 degrees or more, the length of the flow path can be increased and the heat exchange efficiency can be increased. Can be increased.

(2)前記接続孔は、5層以上の前記第2の開口が積み重なっていることを特徴とする請求項2または請求項2に記載の熱交換器。
本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1側壁側から数えて6個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積を大きくすることができる。
(2) The heat exchanger according to claim 2 or 2, wherein the connection hole is formed by stacking the second openings having five or more layers.
The heat exchanger of the present invention can supply the first fluid to the sixth flow path counted from the first side wall side by stacking the second openings of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.

(3)前記接続孔は、10層以上の前記第2の開口が積み重なっている。
本発明の熱交換器は、10層以上の第2の開口を積み重ねることによって第1側壁側から数えて11個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積をさらに大きくすることができる。
(3) In the connection hole, the second openings having ten or more layers are stacked.
The heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall side by stacking the second openings of 10 layers or more. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.

(4)前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなる。
本発明の熱交換器は、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることにより、耐熱性、耐食性を備え、高強度な熱交換器を提供することができる。
(4) The ceramic is made of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
The heat exchanger according to the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Can be provided.

本発明によれば、熱交換器を構成するハニカム構造体の内壁によって形成される流路のみならず、流路を横切る方向に流体の流れを引き出すことができるので、従来のセラミック製のハニカム構造体からなる熱交換器にない新しい機能を付与することができる。また、接続孔は流体の停滞する部分ができにくい形状であるので、効率良く熱交換することができる。   According to the present invention, since the flow of the fluid can be drawn not only in the flow path formed by the inner wall of the honeycomb structure constituting the heat exchanger but also in the direction crossing the flow path, the conventional ceramic honeycomb structure New functions can be added that are not found in heat exchangers made of body. In addition, since the connection hole has a shape in which a portion where the fluid stagnates is difficult to be formed, heat can be exchanged efficiently.

本発明に係る第1実施形態の熱交換器の斜視図であり、(a)は上方(第1側面側)から見た斜視図、(b)は下方(第2側面側)から見た斜視図である。It is the perspective view of the heat exchanger of 1st Embodiment which concerns on this invention, (a) is the perspective view seen from upper direction (1st side surface side), (b) is the perspective view seen from the downward direction (2nd side surface side). FIG. 本発明に係る第1実施形態の熱交換器の断面図であり、(a)は図1(a)および(b)におけるA−A’位置の断面図、(b)は図1(a)および(b)におけるB−B’位置の断面図である。It is sectional drawing of the heat exchanger of 1st Embodiment which concerns on this invention, (a) is sectional drawing of the AA 'position in Fig.1 (a) and (b), (b) is FIG.1 (a). It is sectional drawing of the BB 'position in (b). (a)、(b)、(c)は図1の断面図である図2の切断位置および切断方向を詳しく示す説明図である。(A), (b), (c) is explanatory drawing which shows the cutting position and cutting direction of FIG. 2 which are sectional drawings of FIG. 1 in detail. (a)および(b)は本発明に係る熱交換器の接続孔の製造方法の一例を示す説明図である。(A) And (b) is explanatory drawing which shows an example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の接続孔の製造方法の別の例を示す説明図である。It is explanatory drawing which shows another example of the manufacturing method of the connection hole of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の接続孔を、レーザー光によって製造する方法の一例を示す説明図であり、(a)は流路内に曲面を有する光透過性のある棒が挿入されている場合、(b)は流路内に失透ガラスが挿入されている場合、(c)は流路内に水が入れられている場合である。It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger which concerns on this invention with a laser beam, (a) is the case where the light-transmitting stick | rod which has a curved surface in the flow path is inserted (B) shows the case where devitrified glass is inserted in the flow path, and (c) shows the case where water is put in the flow path. 本発明に係るハニカム構造体よりなる熱交換器の接続孔を、水流(ウォータージェット)によって導かれたレーザー光によって製造する方法の一例を示す説明図であり、(a)は流路内に曲面を有する光透過性のある棒が挿入されている場合、(b)は流路内に失透ガラスが挿入されている場合、(c)は流路内に水が入れられている場合である。It is explanatory drawing which shows an example of the method of manufacturing the connection hole of the heat exchanger which consists of a honeycomb structure which concerns on this invention with the laser beam guide | induced by the water flow (water jet), (a) is a curved surface in a flow path (B) is a case where devitrified glass is inserted in the flow path, and (c) is a case where water is placed in the flow path. . (a)は本発明に係る実施例のハニカム構造体よりなる熱交換器の外観写真であり、(b)はその説明図である。(A) is the external appearance photograph of the heat exchanger which consists of a honeycomb structure of the Example which concerns on this invention, (b) is the explanatory drawing. 傾斜角θと熱交換効率比の関係を示すグラフである。It is a graph which shows the relationship between inclination-angle (theta) and heat exchange efficiency ratio. 傾斜角θと圧力損失比の関係を示すグラフである。It is a graph which shows the relationship between inclination-angle (theta) and a pressure loss ratio.

本明細書において、ハニカム構造体の断面は、流路に沿って接続孔の深さ方向に切断された断面を示す。例えば、図3(a)、(b)に図1の断面図である図2の切断位置が詳しく記載されている。
本発明の熱交換器のハニカム構造体は、第1端面から第2端面に向かって第1の流路および第2の流路が延びている。また、ハニカム構造体の側面は、第1側壁と第2側壁を有し、第2側壁は、第1側壁の反対に位置する。
In the present specification, the cross section of the honeycomb structure indicates a cross section cut in the depth direction of the connection hole along the flow path. For example, FIGS. 3A and 3B describe in detail the cutting position of FIG. 2, which is a cross-sectional view of FIG.
In the honeycomb structure of the heat exchanger of the present invention, the first flow path and the second flow path extend from the first end face toward the second end face. Moreover, the side surface of the honeycomb structure has a first side wall and a second side wall, and the second side wall is located opposite to the first side wall.

本発明の熱交換器は、少なくとも第1端面と第2端面と第1側壁と第2側壁とを有するセラミック製のハニカム構造体からなる熱交換器であって、前記ハニカム構造体は内壁によって仕切られ前記第1端面から前記第2端面に延びる両端が封止部によって封孔された第1の流路と、両端が開放した第2の流路と、を有し、前記第1の流路および前記第2の流路は、それぞれ前記第1側壁から前記第2側壁に向かって並ぶ列を構成するとともに、交互に配置される列となって構成される熱交換器において、前記ハニカム構造体は、前記第1の流路と、前記第1側壁の前記第1端面側および前記第2側壁の前記第2端面側にそれぞれ形成された長方形の第1の開口から前記内壁に形成された長方形の第2の開口に延びる一対の接続孔と、からなる第1の空間と、前記第1の流路と前記内壁で隔離された第2の流路とからなる第2の空間と、を有し、前記第1の開口および前記第2の開口の前記封止部に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、前記第1の開口および前記第2の開口の前記封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は、前記第1側壁に垂直であるとともに第1側壁または前記第2側壁の中で前記第1仮想線と交差する直線である。   The heat exchanger of the present invention is a heat exchanger composed of a ceramic honeycomb structure having at least a first end face, a second end face, a first side wall, and a second side wall, and the honeycomb structure is partitioned by an inner wall. A first channel having both ends extending from the first end surface to the second end surface sealed by a sealing portion, and a second channel having both ends opened, and the first channel. And in the heat exchanger configured such that the second flow paths constitute rows arranged from the first side wall toward the second side wall and are arranged alternately, the honeycomb structure The rectangular formed on the inner wall from the first opening formed on the first channel and the first end surface side of the first side wall and the second end surface side of the second side wall, respectively. And a pair of connection holes extending to the second opening 1 space and a second space composed of the first flow path and the second flow path separated by the inner wall, and the sealing of the first opening and the second opening. The pair of first imaginary lines connecting the midpoints of the short sides on the side far from the stop are straight lines parallel to each other, and the short sides on the side close to the sealing portion of the first opening and the second opening A pair of second imaginary lines connecting the midpoints are straight lines that are perpendicular to the first side wall and intersect the first imaginary line in the first side wall or the second side wall.

本発明のハニカム構造体からなる熱交換器によれば、従来の一方向に流路の延びたハニカム構造体とは異なり、ハニカム構造体を横切る方向に流体の流れをつくることができる。また、このようなハニカム構造体は、第1の開口および第1の開口の内側に第2の開口が形成されているので、最外周に位置する第1の流路のみならず、内側の第1の流路にも流体の流れをつくることができる。また、第2の開口は第1の開口に対向する位置に形成されているので、第2の開口の内側の第1の流路との流体の移動を最短距離で行うことができ、効率良く流体が流れることができる熱交換器を提供することができる。   According to the heat exchanger composed of the honeycomb structure of the present invention, unlike the conventional honeycomb structure in which the flow path extends in one direction, a fluid flow can be created in a direction crossing the honeycomb structure. Further, in such a honeycomb structure, since the first opening and the second opening are formed inside the first opening, not only the first flow channel located at the outermost periphery but also the inner first A fluid flow can also be created in one channel. In addition, since the second opening is formed at a position facing the first opening, the fluid can be moved with the first flow path inside the second opening in the shortest distance, and efficiently. A heat exchanger through which a fluid can flow can be provided.

また、本発明の熱交換器は、セラミックからなるので、耐熱性、耐蝕性を備え、高強度であるので、高温環境下あるいは腐食性環境下など過酷な環境下でも流体を扱うことができる。
さらに、本発明の熱交換器は、第1の空間が、第1端面および第2端面にそれぞれ封止部を有することによって、第1の空間に第1端面および第2端面側からの流体の侵入を防止することができる。さらに第1の空間は、第2の空間と内壁によって隔てられるため、第1の空間を流れる流体(第1の流体)と第2の空間を流れる流体(第2の流体)とが直接接することない。このため、内壁に伝熱、濾過などの機能を保有させることができる。
In addition, since the heat exchanger of the present invention is made of ceramic and has heat resistance and corrosion resistance and high strength, it can handle a fluid even in a severe environment such as a high temperature environment or a corrosive environment.
Furthermore, in the heat exchanger according to the present invention, the first space has the sealing portions on the first end surface and the second end surface, respectively, so that the fluid from the first end surface and the second end surface side is in the first space. Intrusion can be prevented. Furthermore, since the first space is separated from the second space by the inner wall, the fluid flowing in the first space (first fluid) and the fluid flowing in the second space (second fluid) are in direct contact with each other. Absent. For this reason, functions, such as heat transfer and filtration, can be held in the inner wall.

本発明の熱交換器は、第1の空間に一対の接続孔を有することにより、一対の接続孔が、第1の空間を流れる流体の入口と出口となることができる。第1の空間に一対の接続孔により入口と出口を設けることによって、第1の空間を流れる流体(第1の流体)を連続的に使用することができる。   Since the heat exchanger of the present invention has a pair of connection holes in the first space, the pair of connection holes can serve as an inlet and an outlet for the fluid flowing in the first space. By providing an inlet and an outlet with a pair of connection holes in the first space, the fluid flowing in the first space (first fluid) can be used continuously.

また、第1の空間に一対の接続孔を有することにより、内壁を通過する熱量を大きくする効果もある。第1の空間と第2の空間を隔てる内壁を通過する熱量は、第1の空間と第2の空間の温度差に比例する。第1の空間を流れる流体に入口から入り出口への流れを形成することにより、常に新しい第1の流体を供給し、内壁に温度差が生させ移動する熱量を大きくすることができる。   In addition, by having a pair of connection holes in the first space, there is an effect of increasing the amount of heat passing through the inner wall. The amount of heat passing through the inner wall that separates the first space and the second space is proportional to the temperature difference between the first space and the second space. By forming a flow from the inlet to the outlet in the fluid flowing through the first space, a new first fluid can be constantly supplied, and a temperature difference can be generated on the inner wall to increase the amount of heat that moves.

本発明の熱交換器は、接続孔を第1側壁および第2側壁にそれぞれ有することにより、入口と出口を結ぶ第1の流体の流れる距離が、どの第1の流路を通っても同等にすることができる。このため、内壁全体に第1の流体を行き渡らせることができるので効率良く熱移動または物質移動のできる熱交換器を提供することができる。   The heat exchanger according to the present invention has the connection holes on the first and second side walls, respectively, so that the distance that the first fluid that connects the inlet and the outlet flows is equal regardless of the first flow path. can do. For this reason, since the 1st fluid can be spread over the whole inner wall, the heat exchanger which can perform heat transfer or mass transfer efficiently can be provided.

本発明の熱交換器は、第1の空間および第2の空間が前記第1側壁または前記第2側壁が交互に面していることにより、ハニカム構造体の流路を横切る方向への流れを交互の流路に配置することができる。このため、第2の流路に沿って流れる流体(第2の流体)と、流路を横切る方向に流れる第1の流体(第1の流体)を隔てる内壁の面積を大きくとることができる。   In the heat exchanger according to the present invention, the first space and the second space face the first sidewall or the second sidewall alternately so that the flow in the direction crossing the flow path of the honeycomb structure is performed. They can be arranged in alternate flow paths. For this reason, the area of the inner wall that separates the fluid flowing along the second flow path (second fluid) and the first fluid flowing in the direction crossing the flow path (first fluid) can be increased.

本発明の熱交換器は、第1の開口および第2の開口の形状が流路の方向に長い長方形である。第1の開口および第2の開口であるので、細長い流路に圧力損失を少なくしながら効率良く流体を出し入れすることができる。   In the heat exchanger of the present invention, the shape of the first opening and the second opening is a rectangle that is long in the direction of the flow path. Since the opening is the first opening and the second opening, the fluid can be efficiently put in and out of the elongated channel while reducing the pressure loss.

本発明の熱交換器は、第1の開口および第2の開口の封止部に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、第1の開口および第2の開口の封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は第1側壁に対し垂直であるとともに第1側壁または前記第2側壁の中で前記第1仮想線と交差する直線であるので、第1の開口および第2の開口によって形成される接続孔の流路に沿った深さ方向への断面は、第1の開口の封止部に近い角が直角である直角三角形となる。接続孔が底に近いほど狭くなるので、接続孔の底部で流体が停滞する部分ができにくいので効率良く流体を流すことができる。また、第1の開口および第2の開口の封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は、第1側壁に対し垂直であるので、接続孔を第1端部または第2端部に近づけることができ、流体の流れにくい熱交換に寄与しにくい第1の流路を小さくすることができる。   In the heat exchanger of the present invention, the pair of first imaginary lines connecting the midpoints of the short sides on the side far from the sealing portions of the first opening and the second opening are straight lines parallel to each other. A pair of second imaginary lines connecting the midpoints of the short sides of the opening and the second opening close to the sealing portion are perpendicular to the first side wall and the first side wall or the second side wall Since it is a straight line intersecting with one imaginary line, the cross section in the depth direction along the flow path of the connection hole formed by the first opening and the second opening is close to the sealing portion of the first opening. It becomes a right triangle with a right angle. The closer the connection hole is to the bottom, the narrower it becomes, so it is difficult to form a portion where the fluid stagnates at the bottom of the connection hole, so that the fluid can flow efficiently. In addition, since the pair of second imaginary lines connecting the midpoints of the short sides closer to the sealing portion of the first opening and the second opening are perpendicular to the first side wall, the connection hole is connected to the first end. 1st flow path which can be brought close to a part or a 2nd end part, and is hard to contribute to heat exchange with which a fluid does not flow easily can be made small.

さらに、本発明のハニカム構造体は、以下の態様であることが望ましい。
(1)前記第1側壁または前記第2側壁に対する前記第1仮想線の傾斜角θが35度〜50度である。
傾斜角θが50度以下であると、第一の流体の圧力損失を小さくすることができ、傾斜角が35度以上であると、流路の長さを大きくとることができ、熱交換効率を高めることができる。
Furthermore, the honeycomb structure of the present invention desirably has the following aspect.
(1) The inclination angle θ of the first imaginary line with respect to the first side wall or the second side wall is 35 degrees to 50 degrees.
When the inclination angle θ is 50 degrees or less, the pressure loss of the first fluid can be reduced, and when the inclination angle is 35 degrees or more, the length of the flow path can be increased and the heat exchange efficiency can be increased. Can be increased.

(2)前記接続孔は、5層以上の前記第2の開口が積み重なっていることを特徴とする請求項2または請求項2に記載の熱交換器。
本発明の熱交換器は、5層以上の第2の開口を積み重ねることによって第1側壁側から数えて6個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積を大きくすることができる。
(2) The heat exchanger according to claim 2 or 2, wherein the connection hole is formed by stacking the second openings having five or more layers.
The heat exchanger of the present invention can supply the first fluid to the sixth flow path counted from the first side wall side by stacking the second openings of five layers or more. By adopting such a configuration, the area of the inner wall that separates the first space and the second space can be increased.

(3)前記接続孔は、10層以上の前記第2の開口が積み重なっている。
本発明の熱交換器は、10層以上の第2の開口を積み重ねることによって第1側壁側から数えて11個目の流路に第1の流体を供給することができる。このような構成にすることによって、第1の空間と第2の空間を隔てる内壁の面積をさらに大きくすることができる。
(3) In the connection hole, the second openings having ten or more layers are stacked.
The heat exchanger of the present invention can supply the first fluid to the eleventh channel counted from the first side wall side by stacking the second openings of 10 layers or more. With such a configuration, the area of the inner wall separating the first space and the second space can be further increased.

(4)前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなる。
本発明の熱交換器は、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることにより、耐熱性、耐食性を備え、高強度な熱交換器を提供することができる。
(4) The ceramic is made of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia.
The heat exchanger according to the present invention is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Can be provided.

本発明の熱交換器は、ハニカム状のセラミックの第1側壁または第2側壁に接続孔を形成することにより得ることができる。第1および第2の開口を形成することにより得ることができる。ハニカム状のセラミックに第1側壁または第2側壁にレーザー加工によって接続孔を形成することができる。レーザー加工に用いるレーザー加工機は特に限定されない。広く使用される高出力のレーザー光を用いることによってハニカム状のセラミックを加工することができる。レーザー加工機のレーザー光の波長、出力は、ハニカム状のセラミックに応じて適宜選択することができる。   The heat exchanger of the present invention can be obtained by forming connection holes in the first side wall or the second side wall of the honeycomb-shaped ceramic. It can be obtained by forming the first and second openings. Connection holes can be formed in the honeycomb-shaped ceramic on the first side wall or the second side wall by laser processing. The laser processing machine used for laser processing is not particularly limited. A honeycomb-shaped ceramic can be processed by using a widely used high-power laser beam. The wavelength and output of the laser beam of the laser processing machine can be appropriately selected according to the honeycomb ceramic.

また、近年利用されるようになったウォータージェットの水流を併用したレーザー加工機を利用するとより効率良く加工することができる。ウォータージェットの水流を併用したレーザー加工法は、ウォータージェットの水流中にレーザー光を導き、全反射させながら加工点に導くことができ、レーザー光が拡散することなく、細い水流中を通過するので、焦点の深度が深く、レーザー光だけの加工機よりも高い加工性能を有している。   Further, it is possible to perform processing more efficiently by using a laser processing machine combined with a water flow of a water jet that has recently been used. The laser processing method combined with the water jet water flow guides the laser light into the water jet water flow and can guide it to the processing point while totally reflecting it, so that the laser light passes through a thin water flow without diffusing. The depth of focus is deep, and it has higher processing performance than a processing machine using only laser light.

本発明の熱交換器は、高い加工性能のウォータージェットの水流を併用したレーザー加工機を用いて、接続孔の底を貫通させることなく加工することによって得ることができる。
接続孔の底を残して加工するには、レーザー光を所定の箇所で散乱させ、光エネルギーを分散させることにより実現できる。所定の箇所に光拡散媒体を挿入することによりそれより下側ではレーザー光が弱められ、加工することができない。光拡散媒体は光を分散させることができれば特に限定されない。例えば、ガラス棒などの曲面を有する光透過性のある棒、失透ガラス、気泡を内部に有するガラス、水などが利用できる。光透過性のある物質は、レーザー光で加熱されることがない上に、曲面で光が散乱されるので、レーザー光の加工の能力を低下させることができ、貫通させることなく接続孔の底を残して加工することができる。
The heat exchanger of the present invention can be obtained by processing without penetrating the bottom of the connection hole by using a laser processing machine combined with a water flow of a high processing performance water jet.
Processing while leaving the bottom of the connection hole can be realized by scattering laser light at a predetermined location and dispersing light energy. By inserting the light diffusing medium at a predetermined location, the laser light is weakened below and cannot be processed. The light diffusion medium is not particularly limited as long as light can be dispersed. For example, a light-transmitting rod having a curved surface such as a glass rod, devitrified glass, glass having bubbles inside, water, and the like can be used. A light-transmitting substance is not heated by laser light, and light is scattered on a curved surface, so that the ability to process laser light can be reduced, and the bottom of the connection hole can be formed without penetrating. Can be processed.

また、失透ガラスは、表面が曲面でなくても内部が相分離しているので、光が散乱しやすく、レーザー光の加工の能力を低下させることができ、貫通させることなく底を形成することができる。また、水を所定の箇所に充填することにより接続孔の底を残して加工することができる。水を充填すると、ウォータージェットの水流との混合および加工により加熱された水の沸騰により、大量の気泡を発生させる。このため、充填された水の中でレーザー光が急速に減衰し、接続孔の底を残して加工することができる。なお、水を充填していない場合でも、レーザー光とともに水流によって水が供給されるが、水流に用いられる水は量が少なくレーザー光がセラミックを加工する箇所(加工点)近傍で速やか飛散するので、レーザー光を弱めるほど区間に気泡を形成することができない。   In addition, devitrified glass has a phase-separated interior even if the surface is not curved, so that light is easily scattered, the ability to process laser light can be reduced, and the bottom is formed without penetrating. be able to. Moreover, it can process by leaving the bottom of a connection hole by filling water in a predetermined location. When filled with water, a large amount of bubbles are generated by boiling water heated by mixing and processing with a water jet stream. For this reason, the laser beam is rapidly attenuated in the filled water, and processing can be performed while leaving the bottom of the connection hole. Even when water is not filled, water is supplied by the water flow along with the laser light, but the amount of water used for the water flow is small and the laser light scatters quickly near the place where the ceramic is processed (processing point). As the laser beam is weakened, bubbles cannot be formed in the section.

本発明の熱交換器は、様々な接続孔の変形例があるが、形状に応じてレーザー光を、傾斜させたり、走査することにより加工することができる。   The heat exchanger of the present invention has various modifications of the connection holes, but can be processed by tilting or scanning the laser beam according to the shape.

また、レーザー光を走査しながら加工する際に、それぞれの流路に挿入する光拡散媒体の長さを適宜変更することにより目的の形状の接続孔を形成することもできる。
本発明の熱交換器の封止部はどのように形成してもよく特に限定されない。例えば内壁を構成する材料と同じセラミック材料からなる栓を挿入してもよい。例えば、ハニカム構造体が炭化珪素、窒化珪素、シリコン含浸した炭化珪素からなる場合は、シリコンの粉末を接着材として栓に塗布したのち、焼成しても良い。シリコンが溶融し、接着材として機能する。
また、例えば、無機バインダと有機バインダと無機粒子の混合したペーストを注入し、焼成することによって得ることもできる。無機バインダは、アルミナゾル、シリカゾルなどが利用でき、有機バインダは、ポリビニールアルコール、フェノール樹脂などが利用でき、無機粒子は炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウム、ジルコニアなどが利用できる。
Further, when processing while scanning with laser light, the connection hole having a desired shape can be formed by appropriately changing the length of the light diffusion medium inserted into each flow path.
The sealing part of the heat exchanger of the present invention may be formed in any way and is not particularly limited. For example, a plug made of the same ceramic material as that constituting the inner wall may be inserted. For example, when the honeycomb structure is made of silicon carbide, silicon nitride, or silicon carbide impregnated with silicon, silicon powder may be applied to the plug as an adhesive and then fired. Silicon melts and functions as an adhesive.
Further, for example, it can be obtained by injecting and baking a paste in which an inorganic binder, an organic binder, and inorganic particles are mixed. As the inorganic binder, alumina sol, silica sol or the like can be used. As the organic binder, polyvinyl alcohol, phenol resin or the like can be used. As the inorganic particles, silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, zirconia or the like can be used.

次に、本発明の第1実施形態について、説明する。第1実施形態は、以下の構成の熱交換器である。
<第1実施形態>
第1側壁における第1端面および第2端面の一方の端面側および第2側壁における他方の端面側に第1の開口および第2の開口からなる接続孔を各々設ける。第1の開口は、封止部から長手方向内側に向かってスリット状に設けられた長方形の開口である。そして、第1の開口は第2の開口よりも長く、複数の第2の開口が第1の開口に向かって順に長くなるように接続孔を設ける。このとき、接続孔の底は、第1側壁又は第2側壁まで達している。
これにより、第1の開口および第2の開口の封止部に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、第1の開口および第2の開口の封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は、第1側壁に対し垂直であるとともに第1側壁または前記第2側壁の中で前記第1仮想線と交差する直線であるように配置される。
Next, a first embodiment of the present invention will be described. The first embodiment is a heat exchanger having the following configuration.
<First Embodiment>
A connection hole including a first opening and a second opening is provided on one end face side of the first end face and the second end face in the first side wall and on the other end face side in the second side wall. The first opening is a rectangular opening provided in a slit shape from the sealing portion toward the inside in the longitudinal direction. The first opening is longer than the second opening, and the connection holes are provided so that the plurality of second openings become longer in order toward the first opening. At this time, the bottom of the connection hole reaches the first side wall or the second side wall.
Thus, the pair of first imaginary lines connecting the midpoints of the short sides on the side far from the sealing portion of the first opening and the second opening are straight lines parallel to each other, and the first opening and the second opening The pair of second imaginary lines connecting the midpoints of the short sides on the side close to the sealing portion of the opening is perpendicular to the first side wall and is connected to the first imaginary line in the first side wall or the second side wall. Arranged to be intersecting straight lines.

第1実施形態の熱交換器について、図を用いながら説明する。
図1(a)は本発明に係る第1実施形態の熱交換器を上方(第1側壁側)から見た斜視図であり、(b)は下方(第2側壁側)から見た斜視図である。図2(a)は図1(a)および(b)におけるA−A’位置の断面図であり、図2(b)は図1(a)および(b)におけるB−B’位置の断面図である。図9は、傾斜角と熱交換効率比の関係を示すグラフである。また、図10は、傾斜角と圧力損失比の関係を示すグラフである。いずれも傾斜角45°の時の値を基準とし偏差を%表示している。
The heat exchanger of 1st Embodiment is demonstrated using a figure.
FIG. 1A is a perspective view of the heat exchanger according to the first embodiment of the present invention viewed from above (first side wall side), and FIG. 1B is a perspective view of the heat exchanger viewed from below (second side wall side). It is. 2A is a cross-sectional view taken along the line AA ′ in FIGS. 1A and 1B, and FIG. 2B is a cross-sectional view taken along the line BB ′ in FIGS. 1A and 1B. FIG. FIG. 9 is a graph showing the relationship between the inclination angle and the heat exchange efficiency ratio. FIG. 10 is a graph showing the relationship between the tilt angle and the pressure loss ratio. In both cases, the deviation is displayed in% with reference to the value at an inclination angle of 45 °.

図1(a)および(b)に示すように、第1側壁21における第1端面11および第2端面12の一方の端面側および第2側壁22における他方の端面側に第1の開口31を各々設ける。
例えば、第1側壁21における第1端面11側端部に、接続孔30の第1の開口31を設けるとともに、第2側壁22における第2端面12側端部にも接続孔30の第1の開口31を設ける。
熱交換器(1000)には、例えば、8列×8行の64の流路60が設けられており、第1端面11における図1中左側から1列目、3列目、5列目および7列目には、封止部70が設けられている。第2端面12においても同様に、1列目、3列目、5列目および7列目に、封止部70が設けられている。
As shown in FIGS. 1A and 1B, a first opening 31 is formed on one end face side of the first end face 11 and the second end face 12 on the first side wall 21 and on the other end face side of the second side wall 22. Provide each.
For example, the first opening 31 of the connection hole 30 is provided at the first end surface 11 side end portion of the first side wall 21, and the first end of the connection hole 30 is also provided at the second end surface 12 side end portion of the second side wall 22. An opening 31 is provided.
In the heat exchanger (1000), for example, 64 flow paths 60 of 8 columns × 8 rows are provided, and the first end surface 11 from the left side in FIG. A sealing portion 70 is provided in the seventh row. Similarly, in the second end surface 12, the sealing portions 70 are provided in the first row, the third row, the fifth row, and the seventh row.

図2(a)に示すように、第1側壁21および第2側壁22に設けられている接続孔30は、封止部70が設けられている列に位置する。
第1の開口31は、封止部70から長手方向内側にスリット状に設けられた長方形の開口である。そして、第1の開口31は第2の開口32よりも長く、複数の第2の開口32は、第1の開口31に向かって順に長くなるように設けられている。このとき、接続孔30の底は、第1側壁21又は第2側壁22まで達している。
As shown in FIG. 2A, the connection holes 30 provided in the first side wall 21 and the second side wall 22 are located in a row where the sealing portion 70 is provided.
The first opening 31 is a rectangular opening provided in a slit shape on the inner side in the longitudinal direction from the sealing portion 70. The first opening 31 is longer than the second opening 32, and the plurality of second openings 32 are provided so as to become longer in order toward the first opening 31. At this time, the bottom of the connection hole 30 reaches the first side wall 21 or the second side wall 22.

これにより、第1の開口31および第2の開口32の封止部70に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、第1の開口31および第2の開口32の封止部70に近い側の短辺の中点を結ぶ一対の第2仮想線は、第1側壁21に対し垂直であるとともに第1側壁21または第2側壁22の中で第1仮想線と交差する直線であるように配置される。   As a result, the pair of first imaginary lines connecting the midpoints of the short sides of the first opening 31 and the second opening 32 on the side far from the sealing portion 70 are straight lines parallel to each other. A pair of second imaginary lines that connect the midpoints of the short sides of the second opening 32 closer to the sealing portion 70 are perpendicular to the first side wall 21 and the first side wall 21 or the second side wall 22. It arrange | positions so that it may be a straight line which cross | intersects a 1st virtual line.

従って、第1端面11側の三角柱形状の領域R1(R)、流路60および第2端面12側の三角形状の領域R2(R)により、クランク形状の第1の空間41が形成される。これにより、流体は、第1の空間41を通ってクランク状に流れる。
ここで、第1側壁21または第2側壁22に対する第1仮想線なす角を傾斜角θと云う。傾斜角θは、後述するように、35度〜50度が望ましい。ハニカム構造体は直方体であるので第1側壁21および第2側壁22は平行である。
Therefore, the crank-shaped first space 41 is formed by the triangular prism-shaped region R1 (R) on the first end surface 11 side, the flow path 60, and the triangular region R2 (R) on the second end surface 12 side. As a result, the fluid flows in a crank shape through the first space 41.
Here, an angle formed by the first imaginary line with respect to the first side wall 21 or the second side wall 22 is referred to as an inclination angle θ. As will be described later, the inclination angle θ is desirably 35 to 50 degrees. Since the honeycomb structure is a rectangular parallelepiped, the first side wall 21 and the second side wall 22 are parallel.

なお、接続孔30が設けられていない断面では、図2(b)に示すように、複数の流路60により、第2の空間42が形成される。
第2の空間42では、流路60は、第1の端面11および第2の端面12において、開口しており、第2の空間42を流れる流体は直線状に流れる。
In the cross section in which the connection hole 30 is not provided, the second space 42 is formed by the plurality of flow paths 60 as shown in FIG.
In the second space 42, the flow path 60 is open at the first end surface 11 and the second end surface 12, and the fluid flowing through the second space 42 flows linearly.

図9には、傾斜角θと熱交換効率比の関係を示すグラフが示されている。なお、図9においては、50mm×50mmで、長さが210mmで、10mil、300cpsiのハニカム構造体1000(熱交換器)を対象とする。また、横軸は傾斜角θ(度)、縦軸は熱交換効率比である。熱交換効率比とは傾斜角45°の時の熱交換効率を基準とし偏差を%表示している。
図10には、傾斜角θと圧力損失比の関係を示すグラフが示されている。なお、図9においては、50mm×50mmで、長さが210mmで、10mil、300cpsiのハニカム構造体1000(熱交換器)を対象とする。また、横軸は傾斜角θ(度)、縦軸は圧力損失比である。圧力損失比とは傾斜角45°の時の圧力損失を基準とし偏差を%表示している。
FIG. 9 shows a graph showing the relationship between the inclination angle θ and the heat exchange efficiency ratio. In FIG. 9, a honeycomb structure 1000 (heat exchanger) of 50 mm × 50 mm, length of 210 mm, 10 mil, and 300 cpsi is targeted. Further, the horizontal axis represents the inclination angle θ (degrees), and the vertical axis represents the heat exchange efficiency ratio. With respect to the heat exchange efficiency ratio, the deviation is expressed in% on the basis of the heat exchange efficiency when the inclination angle is 45 °.
FIG. 10 is a graph showing the relationship between the inclination angle θ and the pressure loss ratio. In FIG. 9, a honeycomb structure 1000 (heat exchanger) of 50 mm × 50 mm, length of 210 mm, 10 mil, and 300 cpsi is targeted. Further, the horizontal axis represents the inclination angle θ (degrees), and the vertical axis represents the pressure loss ratio. With respect to the pressure loss ratio, the deviation is expressed in% on the basis of the pressure loss when the inclination angle is 45 °.

なおこのときの条件は、流体が層流として流れる条件を想定している。このため、層流として流体が流れている限りはこの傾向に変化はなく、ピーク位置、傾きの正負は変わらない。本発明に係る構成の熱交換器においては流路におけるレイノルズ数が2300以下であれば流体が層流として流れることができる。   The condition at this time assumes a condition in which the fluid flows as a laminar flow. For this reason, as long as the fluid flows as a laminar flow, this tendency does not change, and the peak position and the sign of the slope do not change. In the heat exchanger having the configuration according to the present invention, if the Reynolds number in the flow path is 2300 or less, the fluid can flow as a laminar flow.

図9、図10に示すように、傾斜角θが20度では、傾斜角θが35度〜50度の場合に比べて、圧力損失は小さいが、熱交換効率が低い。また、傾斜角θが60度では、傾斜角θが35度〜50度の場合に比べて、圧力損失が大きく、熱交換効率が低い。
以上の結果から、傾斜角θは、35度〜50度であることが望ましい。さらに、傾斜角θは40〜45度であることが一層望ましい。
As shown in FIGS. 9 and 10, when the inclination angle θ is 20 degrees, the pressure loss is small but the heat exchange efficiency is low as compared with the case where the inclination angle θ is 35 degrees to 50 degrees. Further, when the inclination angle θ is 60 degrees, the pressure loss is large and the heat exchange efficiency is low as compared with the case where the inclination angle θ is 35 degrees to 50 degrees.
From the above results, the inclination angle θ is desirably 35 degrees to 50 degrees. Furthermore, the inclination angle θ is more preferably 40 to 45 degrees.

次に、第1の空間41を形成する方法について説明する。なお、図2(a)中、左側の三角柱形状の領域R1と、右側の領域R2は、ハニカム構造体1000(熱交換器)の中心に対して点対称と考えられるので、同じ方法で加工することができる。従って、左側の領域R1について説明する。
領域R1の形成には、図4(a)、(b)あるいは図5の形成方法を用いることができる。すなわち、図4(a)、(b)に示すように光拡散媒体90を第1の流路に挿入し、レーザー光を用いて加工することにより図10に示したように、光拡散媒体90の挿入する長さを適宜変えることによって三角柱形状の接続孔30を得ることができる。あるいは、レーザー光80を適宜傾斜させながら走査することにより、三角柱形状の接続孔30を得ることができる。
Next, a method for forming the first space 41 will be described. In FIG. 2A, the left triangular prism-shaped region R1 and the right region R2 are considered to be point-symmetric with respect to the center of the honeycomb structure 1000 (heat exchanger), and thus are processed by the same method. be able to. Accordingly, the left region R1 will be described.
For the formation of the region R1, the formation method shown in FIGS. 4A, 4B or 5 can be used. That is, as shown in FIGS. 4A and 4B, the light diffusion medium 90 is inserted into the first flow path and processed using laser light, as shown in FIG. The connection hole 30 having a triangular prism shape can be obtained by appropriately changing the insertion length. Alternatively, the triangular prism-shaped connection hole 30 can be obtained by scanning the laser beam 80 while appropriately tilting it.

光拡散媒体90を用いてレーザー光80を遮断することにより、領域R1を形成する方法として、以下のものが適用できる。
図6(a)、図7(a)は、光拡散媒体90にガラス棒91を用いた場合であり、ガラスの凸面によるレーザー光80の拡散によってレーザー光80を遮断することができる。
図6(b)、図7(b)は、光拡散媒体90に失透ガラス92を用いた説明図であり、ガラス内部の乱反射によってレーザー光80を拡散させレーザー光80を遮断することができる。
図6(c)、図7(c)は、光拡散媒体90に水93を用いた説明図であり、加工による熱、水の乱流によって発生した気泡の乱反射によってレーザー光80を拡散させレーザー光80を遮断することができる。
As a method of forming the region R1 by blocking the laser beam 80 using the light diffusion medium 90, the following can be applied.
6A and 7A show a case where a glass rod 91 is used as the light diffusion medium 90, and the laser light 80 can be blocked by the diffusion of the laser light 80 by the convex surface of the glass.
FIGS. 6B and 7B are explanatory diagrams in which a devitrifying glass 92 is used for the light diffusion medium 90. The laser light 80 can be diffused and blocked by the irregular reflection inside the glass. .
FIGS. 6C and 7C are explanatory diagrams in which water 93 is used for the light diffusing medium 90, and the laser light 80 is diffused by the diffuse reflection of bubbles generated by the turbulent flow of heat and water by processing. The light 80 can be blocked.

本実施形態のハニカム構造体(熱交換器)1000は、第1の空間41をクランク状に形成することにより、流路60を横切る方向に流体の流れを引き出すことができる。
これにより、従来のセラミック製のハニカム構造体からなる熱交換器にない新しい機能を付与することができる。また、接続孔30は流体の停滞する部分ができにくい形状であるので、効率良く熱交換することができる。
The honeycomb structure (heat exchanger) 1000 of the present embodiment can draw the fluid flow in the direction crossing the flow path 60 by forming the first space 41 in a crank shape.
Thereby, a new function not provided in the heat exchanger made of the conventional ceramic honeycomb structure can be provided. Further, since the connection hole 30 has a shape in which a portion where the fluid stagnates is difficult to be formed, heat exchange can be performed efficiently.

本実施例では、実際に多孔質の炭化珪素からなるハニカム状のセラミックに台形の断面を有する接続孔30を形成し、本発明に係るハニカム構造体(熱交換器)1000を製造した結果について、図8(a)、(b)を用いて説明する。
24×24個、計576個の正方形の流路60を有し、34mm×34mm×130mmの炭化珪素からなるハニカム状のセラミックを用いて、本発明に係るハニカム構造体1000(熱交換器)を製作した。なお、長手方向の端面は、流路60の開口を有し、第1端面11および第2端面12である。第1端面11および第2端面12以外の4つの面は側壁であり、そのうち接続孔30を形成する面が第1側壁21、その反対側の面が第2側壁22となる。内壁50の厚さは0.25mm、第1側壁21および第2側壁22の厚さは、0.3mmである。流路の大きさは、一辺が1.14mmの正方形である。
In this example, the result of manufacturing the honeycomb structure (heat exchanger) 1000 according to the present invention by forming the connection hole 30 having a trapezoidal cross section in the honeycomb-shaped ceramic actually made of porous silicon carbide, This will be described with reference to FIGS.
A honeycomb structure 1000 (heat exchanger) according to the present invention is formed using a honeycomb-shaped ceramic made of silicon carbide of 34 mm × 34 mm × 130 mm, having 24 × 24, a total of 576 square flow paths 60. Produced. The end face in the longitudinal direction has an opening of the flow path 60 and is the first end face 11 and the second end face 12. The four surfaces other than the first end surface 11 and the second end surface 12 are side walls, of which the surface forming the connection hole 30 is the first side wall 21, and the opposite surface is the second side wall 22. The inner wall 50 has a thickness of 0.25 mm, and the first side wall 21 and the second side wall 22 have a thickness of 0.3 mm. The size of the flow path is a square having a side of 1.14 mm.

図8(a)、(b)に示すように、このハニカム状のセラミックに接続孔30を形成した。第1側壁21に面する24本の流路60のうち、交互となるよう12本の流路60に第1の開口31を形成し、さらに第2の開口32を形成することにより、12個の接続孔30を形成した。接続孔30の底は、第2側壁22であり、全ての内壁50には第2の開口32が形成されている。第1の開口31および第2の開口32と第1端面11との距離は10mm、第1の開口31は第1端面11から40mmの位置まで延びている。第2の開口32は第1の開口31に向かって順に長くなり、接続孔30の断面は、ハニカム構造体の流路の方向の中央側を斜辺とする直角三角形である。また、第1の開口31の幅は、0.6mmである。   As shown in FIGS. 8A and 8B, connection holes 30 were formed in the honeycomb-shaped ceramic. By forming the first openings 31 in the twelve channels 60 out of the twenty-four channels 60 facing the first side wall 21 and further forming the second openings 32, 12 The connection hole 30 was formed. The bottom of the connection hole 30 is the second side wall 22, and the second openings 32 are formed in all the inner walls 50. The distance between the first opening 31 and the second opening 32 and the first end surface 11 is 10 mm, and the first opening 31 extends from the first end surface 11 to a position of 40 mm. The second opening 32 becomes longer in the order toward the first opening 31, and the cross section of the connection hole 30 is a right triangle having a hypotenuse on the center side in the direction of the flow path of the honeycomb structure. The width of the first opening 31 is 0.6 mm.

詳しい加工方法は以下に説明する。接続孔30を形成する際、第2側壁22に面する流路60には、流路60よりも長い円形のガラス棒91を挿入し、その他の流路60には、台形の流域以外の部分まで円形のガラス棒91を挿入した。
次に第1側壁21に面する流路60に沿って牧野フライス社製MCS300型レーザー加工機を用いて加工した。レーザーの波長は532nm、出力80W、水流82のノズル径はφ80μm、走査速度は300mm/minで加工した。
A detailed processing method will be described below. When forming the connection hole 30, a circular glass rod 91 longer than the flow path 60 is inserted into the flow path 60 facing the second side wall 22, and the other flow paths 60 have portions other than the trapezoidal basin. A circular glass rod 91 was inserted up to.
Next, it processed using the MCS300 type | mold laser processing machine by Makino milling company along the flow path 60 which faces the 1st side wall 21. FIG. Processing was performed at a laser wavelength of 532 nm, an output of 80 W, a nozzle diameter of the water flow 82 of φ80 μm, and a scanning speed of 300 mm / min.

このように加工して得られたハニカム構造体1000(熱交換器)を接続孔30に沿って切断し、接続孔30を確認した。図2(a)に示すように接続孔30の断面は台形であり、内壁50は全て貫通し、第1の開口31が長さ30mm、最下層の第2の開口32が長さ15mmであった。
このように水流82を用いたレーザー加工機で接続孔30を形成できることが確認できた。ハニカム構造体1000(熱交換器)に接続孔30を形成する方法は水流82を用いたレーザー光に限定されず、時間をかけ、高出力のレーザー加工機であれば、水流82を併用することなく加工することができる。
The honeycomb structure 1000 (heat exchanger) obtained by processing in this way was cut along the connection holes 30 to confirm the connection holes 30. As shown in FIG. 2A, the connection hole 30 has a trapezoidal cross section, the entire inner wall 50 penetrates, the first opening 31 has a length of 30 mm, and the lowermost second opening 32 has a length of 15 mm. It was.
Thus, it was confirmed that the connection hole 30 could be formed with a laser processing machine using the water flow 82. The method of forming the connection hole 30 in the honeycomb structure 1000 (heat exchanger) is not limited to the laser beam using the water flow 82. If the laser processing machine takes a long time and has a high output, the water flow 82 is used in combination. Can be processed without any problems.

また、接続孔30の大きさ、配置、数は適宜選択することができる。   Further, the size, arrangement, and number of the connection holes 30 can be selected as appropriate.

本発明の熱交換器は、内燃機関、燃焼炉などの熱交換器として利用することができる。   The heat exchanger of the present invention can be used as a heat exchanger for an internal combustion engine, a combustion furnace, or the like.

11 第1端面
12 第2端面
21 第1側壁
22 第2側壁
30 接続孔
31 第1の開口
32 第2の開口
41 第1の空間
42 第2の空間
50 内壁
60 流路
70 封止部
80 レーザー光
82 水流(ウォータジェット)
85 レーザー源
90 光拡散媒体
91 ガラス棒
92 失透ガラス
93 水
1000 ハニカム構造体(熱交換器)
P 交差部
R 領域
θ 傾斜角
11 1st end surface 12 2nd end surface 21 1st side wall 22 2nd side wall 30 Connection hole 31 1st opening 32 2nd opening 41 1st space 42 2nd space 50 Inner wall 60 Flow path 70 Sealing part 80 Laser Light 82 water stream (water jet)
85 Laser source 90 Light diffusion medium 91 Glass rod 92 Devitrified glass 93 Water 1000 Honeycomb structure (heat exchanger)
P Intersection R region θ Inclination angle

Claims (5)

少なくとも第1端面と第2端面と第1側壁と第2側壁とを有するセラミック製のハニカム構造体からなる熱交換器であって、前記ハニカム構造体は内壁によって仕切られ前記第1端面から前記第2端面に延びる両端が封止部によって封孔された第1の流路と、両端が開放した第2の流路と、を有し、前記第1の流路および前記第2の流路は、それぞれ前記第1側壁から前記第2側壁に向かって並ぶ列であるととともに、交互に配置される列となって構成される熱交換器において、
前記ハニカム構造体は、
前記第1の流路と、前記第1側壁の前記第1端面側および前記第2側壁の前記第2端面側にそれぞれ形成された長方形の第1の開口から前記内壁に形成された長方形の第2の開口に延びる一対の接続孔と、からなる第1の空間と、
前記第1の流路と前記内壁で隔離された第2の流路とからなる第2の空間と、
を有し、
前記第1の開口および前記第2の開口の前記封止部に遠い側の短辺の中点を結ぶ一対の第1仮想線は、互いに平行な直線であり、前記第1の開口および前記第2の開口の前記封止部に近い側の短辺の中点を結ぶ一対の第2仮想線は、前記第1側壁に対し垂直であるとともに前記第1側壁または前記第2側壁の中で前記第1仮想線と交差する直線であることを特徴とする熱交換器。
A heat exchanger comprising a ceramic honeycomb structure having at least a first end face, a second end face, a first side wall, and a second side wall, wherein the honeycomb structure is partitioned by an inner wall and the first end face is separated from the first end face. A first channel having both ends extending to the two end faces sealed by a sealing portion; and a second channel having both ends opened, wherein the first channel and the second channel are In each of the heat exchangers that are arranged in rows arranged alternately from the first side wall toward the second side wall,
The honeycomb structure is
A rectangular first formed on the inner wall from the first flow path and a first rectangular opening formed on the first end surface side of the first side wall and the second end surface side of the second side wall, respectively. A first space comprising a pair of connection holes extending to the two openings;
A second space composed of the first flow path and the second flow path separated by the inner wall;
Have
A pair of first imaginary lines connecting the midpoints of the short sides of the first opening and the second opening on the side far from the sealing portion are straight lines parallel to each other, and the first opening and the second opening A pair of second imaginary lines connecting the midpoints of the short sides of the two openings close to the sealing portion are perpendicular to the first side wall and the first side wall or the second side wall A heat exchanger characterized by being a straight line intersecting the first imaginary line.
前記第1側壁または前記第2側壁に対する前記第1仮想線の傾斜角θが35度〜50度であることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein an inclination angle θ of the first imaginary line with respect to the first side wall or the second side wall is 35 degrees to 50 degrees. 前記接続孔は、5層以上の前記第2の開口が積み重なっていることを特徴とする請求項1または請求項2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the connection hole is formed by stacking the second openings having five or more layers. 前記接続孔は、10層以上の前記第2の開口が積み重なっていることを特徴とする請求項3に記載の熱交換器。   4. The heat exchanger according to claim 3, wherein the connection hole is formed by stacking the second openings of ten layers or more. 前記セラミックは、炭化珪素、シリコン含浸した炭化珪素、アルミナ、コージェライト、窒化珪素、窒化アルミニウムまたはジルコニアのいずれかよりなることを特徴とする請求項1ないし請求項4のいずれか1項に記載の熱交換器。   5. The ceramic according to claim 1, wherein the ceramic is made of any one of silicon carbide, silicon-impregnated silicon carbide, alumina, cordierite, silicon nitride, aluminum nitride, or zirconia. Heat exchanger.
JP2014014396A 2014-01-29 2014-01-29 heat exchanger Pending JP2015140972A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014014396A JP2015140972A (en) 2014-01-29 2014-01-29 heat exchanger
PCT/JP2015/051444 WO2015115254A1 (en) 2014-01-29 2015-01-21 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014396A JP2015140972A (en) 2014-01-29 2014-01-29 heat exchanger

Publications (1)

Publication Number Publication Date
JP2015140972A true JP2015140972A (en) 2015-08-03

Family

ID=53756831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014396A Pending JP2015140972A (en) 2014-01-29 2014-01-29 heat exchanger

Country Status (2)

Country Link
JP (1) JP2015140972A (en)
WO (1) WO2015115254A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008771A (en) * 2013-07-15 2015-01-23 삼성전기주식회사 Printed Circuit Board Having Embedded Electronic Device And Manufacturing Method Thereof
EP3473962A2 (en) 2017-10-17 2019-04-24 Toyota Jidosha Kabushiki Kaisha Heat exchanger
WO2019078227A1 (en) * 2017-10-17 2019-04-25 イビデン株式会社 Heat exchanger
JP2019074036A (en) * 2017-10-17 2019-05-16 イビデン株式会社 Heat exchanger
US20220178620A1 (en) * 2019-05-10 2022-06-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Fluid flow path device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041591A (en) * 1976-02-24 1977-08-16 Corning Glass Works Method of fabricating a multiple flow path body
JPS55102891A (en) * 1978-09-22 1980-08-06 Ceraver Method of making indirect heat exchange element
JPS6091969U (en) * 1983-11-24 1985-06-24 川崎重工業株式会社 Ceramic honeycomb heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141541A (en) * 1983-12-29 1985-07-26 Nippon Soken Inc Manufacture of block-type heat exchanger elements
IL114613A (en) * 1995-07-16 1999-09-22 Tat Ind Ltd Parallel flow condenser heat exchanger
KR100885499B1 (en) * 2002-07-15 2009-02-26 한라공조주식회사 Heat exchanger
EP2413079B1 (en) * 2009-03-23 2016-06-01 IHI Corporation Ceramic heat exchanger and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041591A (en) * 1976-02-24 1977-08-16 Corning Glass Works Method of fabricating a multiple flow path body
JPS55102891A (en) * 1978-09-22 1980-08-06 Ceraver Method of making indirect heat exchange element
JPS6091969U (en) * 1983-11-24 1985-06-24 川崎重工業株式会社 Ceramic honeycomb heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008771A (en) * 2013-07-15 2015-01-23 삼성전기주식회사 Printed Circuit Board Having Embedded Electronic Device And Manufacturing Method Thereof
EP3473962A2 (en) 2017-10-17 2019-04-24 Toyota Jidosha Kabushiki Kaisha Heat exchanger
WO2019078227A1 (en) * 2017-10-17 2019-04-25 イビデン株式会社 Heat exchanger
JP2019074036A (en) * 2017-10-17 2019-05-16 イビデン株式会社 Heat exchanger
JP2019074268A (en) * 2017-10-17 2019-05-16 イビデン株式会社 Heat exchanger
US10690419B2 (en) 2017-10-17 2020-06-23 Toyota Jidosha Kabushiki Kaisha Heat exchanger
US20220178620A1 (en) * 2019-05-10 2022-06-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Fluid flow path device
US11927403B2 (en) * 2019-05-10 2024-03-12 Kobelco Eco-Solutions Co., Ltd. Fluid flow path device

Also Published As

Publication number Publication date
WO2015115254A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
WO2015115254A1 (en) Heat exchanger
WO2015115257A1 (en) Heat exchanger
US7578337B2 (en) Heat dissipating device
EP1379787A1 (en) Porous microfluidic valves
KR100991113B1 (en) Micro-channel heat exchanger
WO2015115258A1 (en) Heat exchanger
WO2015115256A1 (en) Heat exchanger
US9643288B2 (en) Heat exchange reactor using thin plate provided with flow path therein and method of manufacturing the same
WO2015115255A1 (en) Honeycomb structure
WO2016037150A1 (en) Microstructure separation filters
WO2015068780A1 (en) Honeycomb structure
US20140104975A1 (en) Twist flow microfluidic mixer and module
KR20160093616A (en) Heat exchanging plate with varying pitch
EP3473962A2 (en) Heat exchanger
WO2015068783A1 (en) Heat exchanger
CN104203516B (en) Extruded body devices including sheet material hole masking
WO2015068782A1 (en) Method for producing honeycomb structure
JP6249611B2 (en) Laminated structure
US20140233348A1 (en) Fluid control device and fluid mixer
ES2333593T3 (en) STACKABLE MOLDED BODY AND ITS USE.
WO2017184635A1 (en) Laminated microchannel heat exchangers
CN110121383B (en) Porous honeycomb filter
KR20090049989A (en) Oilcooler
KR100594185B1 (en) Plate with three-dimensional microchannel and heat exchanger using the same
US11110375B2 (en) Microstructure separation filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306