JP2015138668A - alkaline battery - Google Patents

alkaline battery Download PDF

Info

Publication number
JP2015138668A
JP2015138668A JP2014009705A JP2014009705A JP2015138668A JP 2015138668 A JP2015138668 A JP 2015138668A JP 2014009705 A JP2014009705 A JP 2014009705A JP 2014009705 A JP2014009705 A JP 2014009705A JP 2015138668 A JP2015138668 A JP 2015138668A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
negative electrode
alkaline battery
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014009705A
Other languages
Japanese (ja)
Other versions
JP6259670B2 (en
Inventor
賢大 遠藤
Takahiro Endo
賢大 遠藤
祐紀 夏目
Yuki Natsume
祐紀 夏目
武男 野上
Takeo Nogami
武男 野上
秀典 都築
Shusuke Tsuzuki
秀典 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2014009705A priority Critical patent/JP6259670B2/en
Publication of JP2015138668A publication Critical patent/JP2015138668A/en
Application granted granted Critical
Publication of JP6259670B2 publication Critical patent/JP6259670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline battery superior in heavy load discharge performance.SOLUTION: An alkaline battery 1 comprises: a positive electrode mixture 21 including a manganese dioxide and a conductive material; a separator 22 provided on an inner peripheral side of the positive electrode mixture 21; a negative electrode mixture 23 filled on the inner peripheral side of the separator 22, and including powder having zinc as a primary component; and a negative electrode current collector 31 put in the negative electrode mixture 23, which are inserted in a bottomed cylindrical positive electrode can 11. The alkaline battery further comprises: a negative electrode terminal plate 32 sealing an opening of the positive electrode can 11; and an alkaline electrolytic solution. The powder includes particles of 75 μm or smaller in particle size in a range of 25-40 mass%. The positive electrode mixture 21 includes hollow cylindrical pellets 21a, 21b, 21c coaxially stacked and inserted in the positive electrode can 11. The total length "s" of gaps 51, 52 between the pellets in an axial direction of the positive electrode can 11 is 1-14% of the total length "d" of the pellets in the axial direction.

Description

本発明は、アルカリ電池の放電性能、とくに重負荷放電性能の改善に関する。   The present invention relates to an improvement in discharge performance of an alkaline battery, particularly heavy load discharge performance.

昨今、デジタルカメラ、ビデオカメラ、携帯電話機、スマートフォン等の電子機器の高性能化及び小型化が進んでおり、こうした電子機器の電源として用いられるアルカリ電池に対する性能向上、とくに重負荷放電性能(高負荷放電特性)の改善に対する要求が高まっている。   In recent years, electronic devices such as digital cameras, video cameras, mobile phones, and smartphones have been improved in performance and miniaturization. The performance of alkaline batteries used as power sources for such electronic devices has been improved, especially heavy load discharge performance (high load). There is an increasing demand for improvement in discharge characteristics.

アルカリ電池の高負荷放電特性を改善に関する技術として、例えば、特許文献1には、粒径75μm以下の微粉末を20〜50重量%含む亜鉛合金粉末を含む負極と、正極と、負極と正極との間に配されるセパレータと、電解液とを具備し、定抵抗放電において、負極の電位が立ち上がる時間が正極の電位が立ち下がる時間よりも短くなるようにアルカリ電池を構成することが記載されている。   As a technique for improving the high-load discharge characteristics of an alkaline battery, for example, Patent Document 1 includes a negative electrode including a zinc alloy powder containing 20 to 50% by weight of a fine powder having a particle size of 75 μm or less, a positive electrode, a negative electrode, and a positive electrode. In the constant resistance discharge, the alkaline battery is configured so that the time when the potential of the negative electrode rises is shorter than the time when the potential of the positive electrode falls. ing.

特許第5172181号公報Japanese Patent No. 5172181

ここで上記の特許文献1では、負極材料として粒径75μm以下の微粉末を20〜50重量%含む亜鉛合金粉末を用いることで重負荷放電特性の向上を図っているが、このように負極材料として微粉末を用いた場合でも、重負荷放電特性が改善されないことがある。これは小粒径の微粉末は比表面積が大きいために負極側に電解液が保持されやすくなり、それにより正極側の電解液が減少して正極側の電気抵抗が上昇するためであると考えられる。   In the above-mentioned Patent Document 1, the heavy load discharge characteristics are improved by using a zinc alloy powder containing 20 to 50% by weight of a fine powder having a particle size of 75 μm or less as the negative electrode material. Even when a fine powder is used, the heavy load discharge characteristics may not be improved. This is thought to be because the fine powder with a small particle size has a large specific surface area, so that the electrolyte is easily held on the negative electrode side, thereby reducing the electrolyte on the positive electrode side and increasing the electrical resistance on the positive electrode side. It is done.

本発明はアルカリ電池の放電性能の向上、とくに重負荷放電性能に優れたアルカリ電池を提供することを目的としている。   The object of the present invention is to provide an alkaline battery with improved discharge performance of the alkaline battery, in particular, excellent heavy load discharge performance.

上記目的を達成するための本発明のうちの一つは、有底筒状の正極缶内に装填される正極合剤と、前記正極合剤の内周側に設けられるセパレータと、前記セパレータの内周側に充填される、亜鉛を主成分とする粉末を含む負極合剤と、前記負極合剤に挿入される負極集電体と、前記正極缶の開口部を封口する負極端子板と、アルカリ性の電解液と、を備えて構成されるアルカリ電池であって、前記正極合剤は、二酸化マンガン及び導電材を含み、前記粉末は、粒度が75μm以下の粒子を25〜40質量%の範囲で含み、前記正極合剤は、前記正極缶内に前記正極缶と同軸に積層されて装填される複数の中空円筒状のペレットからなり、前記ペレットの間に隙間が設けられ、前記隙間の前記正極缶の軸方向に沿った長さの合計sが、前記ペレットの夫々の前記軸方向に沿った長さの合計dに対して1〜14%であることを特徴としている。   One aspect of the present invention for achieving the above object is that a positive electrode mixture loaded in a bottomed cylindrical positive electrode can, a separator provided on an inner peripheral side of the positive electrode mixture, and the separator A negative electrode mixture containing powder containing zinc as a main component, filled in the inner peripheral side, a negative electrode current collector inserted into the negative electrode mixture, a negative electrode terminal plate for sealing the opening of the positive electrode can, An alkaline battery comprising an alkaline electrolyte, wherein the positive electrode mixture includes manganese dioxide and a conductive material, and the powder has a particle size of 25 to 40% by mass in a range of 75 μm or less. The positive electrode mixture is composed of a plurality of hollow cylindrical pellets that are stacked and loaded coaxially with the positive electrode can in the positive electrode can, a gap is provided between the pellets, and the gap The total length s along the axial direction of the positive electrode can is the pellet It is characterized in that 1 to 14% based on the total d of the length along the bets of each said axial.

また本発明の他の一つは、上記アルカリ電池であって、前記ペレットの密度が3.0〜3.7g/cmの範囲であることを特徴としている。 Another aspect of the present invention is the alkaline battery, wherein the density of the pellets is in a range of 3.0 to 3.7 g / cm 3 .

また本発明の他の一つは、上記アルカリ電池であって、前記ペレットは、前記導電材となる黒鉛を前記二酸化マンガンに対して5〜20質量%の範囲で含むことを特徴としている。   Another aspect of the present invention is the alkaline battery, wherein the pellet includes graphite as the conductive material in a range of 5 to 20% by mass with respect to the manganese dioxide.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、放電性能、とくに重負荷放電性能に優れたアルカリ電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the alkaline battery excellent in discharge performance, especially heavy load discharge performance can be provided.

一般的な円筒形アルカリ電池の構造を示す図である。It is a figure which shows the structure of a general cylindrical alkaline battery.

図1に本発明の適用対象となる一般的な円筒形アルカリ電池(LR6型(単三形)アルカリ電池)の構成(以下、アルカリ電池1と称する。)を示している。尚、同図ではアルカリ電池1を縦断面図(アルカリ電池1の円筒軸の延長方向を上下(縦)方向としたときの断面図)として示している。   FIG. 1 shows a configuration of a general cylindrical alkaline battery (LR6 type (AA) alkaline battery) (hereinafter referred to as alkaline battery 1) to which the present invention is applied. In the figure, the alkaline battery 1 is shown as a vertical cross-sectional view (a cross-sectional view when the extending direction of the cylindrical axis of the alkaline battery 1 is the vertical (vertical) direction).

同図に示すように、アルカリ電池1は、有底筒状の金属製の電池缶(以下、正極缶11と称する。)、正極缶11に挿入される正極合剤21、正極合剤21の内周側に設けられる有底円筒状のセパレータ22、セパレータ22の内周側に充填される負極合剤23、正極缶11の開口部に樹脂製の封口ガスケット35を介して嵌着される負極端子板32、及び負極端子板32の内側にスポット溶接等によって固設される、真鍮等の素材からなる棒状の負極集電子31を備えている。正極合剤21、セパレータ22、及び負極合剤23は、アルカリ電池1の発電要素20を構成している。   As shown in FIG. 1, the alkaline battery 1 includes a bottomed cylindrical metal battery can (hereinafter referred to as a positive electrode can 11), a positive electrode mixture 21 inserted into the positive electrode can 11, and a positive electrode mixture 21. A bottomed cylindrical separator 22 provided on the inner peripheral side, a negative electrode mixture 23 filled on the inner peripheral side of the separator 22, and a negative electrode fitted into the opening of the positive electrode can 11 via a resin sealing gasket 35 A terminal plate 32 and a rod-shaped negative electrode current collector 31 made of a material such as brass, which is fixed inside the negative electrode terminal plate 32 by spot welding or the like, are provided. The positive electrode mixture 21, the separator 22, and the negative electrode mixture 23 constitute the power generation element 20 of the alkaline battery 1.

正極缶11は導電性であり、例えば、ニッケルメッキ鋼板等の金属材をプレス加工することにより形成したものである。正極缶11は、正極集電体並びに正極端子としての機能を兼ねており、その底部に凸状の正極端子部12が一体形成されている。   The positive electrode can 11 is conductive and is formed, for example, by pressing a metal material such as a nickel-plated steel plate. The positive electrode can 11 also functions as a positive electrode current collector and a positive electrode terminal, and a convex positive electrode terminal portion 12 is integrally formed at the bottom thereof.

正極合剤21は、正極活物質としての電解二酸化マンガン(EMD)、導電材としての黒鉛、及び水酸化カリウム(KOH)を主成分とする電解液を、ポリアクリル酸などのバインダーとともに混合し、その混合物を圧延、解砕、造粒、分級等の工程にて処理した後、圧縮し環状に成形したものである。同図に示すように、正極缶11内には、正極合剤21を構成する複数の中空円筒状の3つのペレット21a,21b,21cが、その円筒軸が正極缶11の円筒軸と同軸となるように上下方向に積層されて圧入されている。各ペレット21a,21b,21cの夫々の正極缶11の軸方向に沿った長さは、順にd1,d2,d3である。本実施形態では各ペレット21a,21b,21cの長さを一致(d1=d2=d2)させているが、これらは一致していなくてもよい。   The positive electrode mixture 21 is a mixture of electrolytic manganese dioxide (EMD) as a positive electrode active material, graphite as a conductive material, and an electrolytic solution mainly composed of potassium hydroxide (KOH) together with a binder such as polyacrylic acid, The mixture is processed in steps such as rolling, crushing, granulating, and classifying, and then compressed and formed into an annular shape. As shown in the drawing, in the positive electrode can 11, a plurality of hollow cylindrical three pellets 21 a, 21 b, 21 c constituting the positive electrode mixture 21 are coaxial with the cylindrical axis of the positive electrode can 11. In such a manner, they are stacked in the vertical direction and press-fitted. The length along the axial direction of each positive electrode can 11 of each pellet 21a, 21b, 21c is d1, d2, d3 in order. In the present embodiment, the lengths of the pellets 21a, 21b, and 21c are matched (d1 = d2 = d2), but they may not be matched.

同図に示すように、ペレット21aとペレット21bとの間、及びペレット21bとペレット21cとの間には隙間51,52が設けられている。ペレット21aとペレット21bとの間の隙間51の正極缶11の軸方向に沿った長さはs1であり、ペレット21bとペレット21cとの間の隙間52の正極缶11の軸方向に沿った長さはs2である。ペレット21cの正極端子部12側の面は正極缶11に密着している。   As shown in the figure, gaps 51 and 52 are provided between the pellet 21a and the pellet 21b and between the pellet 21b and the pellet 21c. The length along the axial direction of the positive electrode can 11 of the gap 51 between the pellet 21a and the pellet 21b is s1, and the length along the axial direction of the positive electrode can 11 of the gap 52 between the pellet 21b and the pellet 21c. The length is s2. The surface of the pellet 21 c on the positive electrode terminal portion 12 side is in close contact with the positive electrode can 11.

負極合剤23は、負極活物質としての亜鉛合金粉末をゲル化したものである。亜鉛合金粉末は、ガスアトマイズ法や遠心噴霧法によって造粉されたものであり、亜鉛、ガスの発生の抑制(漏液防止)等を目的として添加される合金成分(ビスマス、アルミニウム、インジウム等)、及び電解液としての水酸化カリウムを含む。負極集電子31は、負極合剤23の中心部に貫入されている。   The negative electrode mixture 23 is a gelled zinc alloy powder as a negative electrode active material. Zinc alloy powder is powdered by gas atomization method or centrifugal spray method, zinc, alloy components added for the purpose of suppressing gas generation (leakage prevention), etc. (bismuth, aluminum, indium, etc.), And potassium hydroxide as an electrolyte. The negative electrode current collector 31 is inserted into the central portion of the negative electrode mixture 23.

以上の構成からなるアルカリ電池1について、放電性能、とくに重負荷放電性能の改善効果を検証すべく、以下の試験1〜3を行った。   About the alkaline battery 1 which consists of the above structure, in order to verify the improvement effect of discharge performance, especially heavy load discharge performance, the following tests 1-3 were performed.

<試験1>
試験1では、負極合剤23の亜鉛合金粉末の粒度、並びに正極合剤21を構成するペレット間の隙間51,52として適切な範囲を検証すべく、負極合剤23の亜鉛合金粉末の粒度を変える(粒度が75μm以下の粒子の含有率(以下、「75μm以下の粒子の割合」とも称する。)を20.0〜45.0質量%の範囲で変える)とともに、隙間51,52の大きさを変えた(隙間51,52の正極缶11の軸方向に沿った長さの合計s=s1+s2と上記ペレットの夫々の正極缶11の軸方向に沿った長さの合計d=d1+d2+d3との比(以下、「隙間/合剤高さ」とも称する。)を変えた)、複数のアルカリ電池1を作製し、夫々の放電性能を比較した。尚、いずれのアルカリ電池1についても、正極合剤21として、密度(以下、「正極合剤密度」とも称する。)が3.2g/cmであり、正極合剤21に含まれる二酸化マンガンと黒鉛との比(以下、「黒鉛/二酸化マンガン」とも称する。)が10.0質量%であるものを用いた。
<Test 1>
In Test 1, the particle size of the zinc alloy powder of the negative electrode mixture 23 and the particle size of the zinc alloy powder of the negative electrode mixture 23 are verified in order to verify an appropriate range as the gaps 51 and 52 between the pellets constituting the positive electrode mixture 21. (Change the content ratio of particles having a particle size of 75 μm or less (hereinafter also referred to as “the ratio of particles of 75 μm or less”) in the range of 20.0 to 45.0 mass%) and the size of the gaps 51 and 52 (The ratio of the total length s = s1 + s2 of the gaps 51 and 52 along the axial direction of the positive electrode can 11 to the total length of the pellets along the axial direction of the positive electrode can 11 d = d1 + d2 + d3) (Hereinafter also referred to as “gap / mixture height”)), a plurality of alkaline batteries 1 were produced, and the discharge performances were compared. In any alkaline battery 1, the positive electrode mixture 21 has a density (hereinafter also referred to as “positive electrode mixture density”) of 3.2 g / cm 3 , and manganese dioxide contained in the positive electrode mixture 21 A graphite having a ratio (hereinafter also referred to as “graphite / manganese dioxide”) of 10.0% by mass was used.

放電性能の比較は、デジタルカメラの使用時等における重負荷放電を想定したサイクル放電試験(1500mWで2秒放電、650mWで28秒放電のサイクルを1時間当たり10回(一時間当たりの休止期間は約55分))を行い、終止電圧(1.05V)に至るまでのサイクル数を計数し、これを比較することにより行った。   Comparison of discharge performance is based on a cycle discharge test assuming heavy load discharge when using a digital camera (2 discharges at 1500 mW, 28 discharges at 650 mW 10 times per hour (the rest period per hour is About 55 minutes)), and the number of cycles up to the end voltage (1.05 V) was counted and compared.

表1に各アルカリ電池1の放電性能を比較した結果を示す。尚、放電性能を表す表中の数値は、表中の比較例3のアルカリ電池1の放電性能を100としたときの相対値である。   Table 1 shows the result of comparing the discharge performance of each alkaline battery 1. In addition, the numerical value in the table | surface showing discharge performance is a relative value when the discharge performance of the alkaline battery 1 of the comparative example 3 in a table | surface is set to 100. FIG.

表1

Figure 2015138668

表1に示すように、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を25〜40質量%の範囲で含み、かつ、隙間51,52の合計sとペレットの軸方向長さの合計dとの比(隙間/合剤高さ)を1〜14%としたアルカリ電池1について、放電性能が高くなることが確認された(実施例1〜7)。また、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を30質量%の範囲で含むものを用い、かつ、隙間51,52の合計sとペレットの軸方向長さの合計dとの比(隙間/合剤高さ)を8.0%とした場合に、放電性能がとくに高くなることが確認された(実施例5)。 Table 1
Figure 2015138668

As shown in Table 1, the zinc alloy powder of the negative electrode mixture 23 contains particles having a particle size of 75 μm or less in a range of 25 to 40% by mass, and the total s of the gaps 51 and 52 and the axial length of the pellet It was confirmed that the discharge performance of the alkaline battery 1 in which the ratio (gap / mixture height) to the total d was 1 to 14% was high (Examples 1 to 7). Further, as the zinc alloy powder of the negative electrode mixture 23, a powder containing particles having a particle size of 75 μm or less in a range of 30% by mass, and the total s of the gaps 51 and 52 and the total d of the axial lengths of the pellets It was confirmed that the discharge performance was particularly improved when the ratio (gap / mixture height) was 8.0% (Example 5).

また、比較例2から、負極合剤23の微粉末の量が多すぎると放電性能が改善されないことがわかった。これは比表面積が大きい小粒径の微粉末によって負極側に電解液が保持されやすくなり、それにより正極側の電解液が減少して正極側の電気抵抗が上昇したためであると考えられる。   Moreover, from Comparative Example 2, it was found that the discharge performance was not improved when the amount of the fine powder of the negative electrode mixture 23 was too large. This is presumably because the fine powder having a small specific particle size with a large specific surface area makes it easier to hold the electrolytic solution on the negative electrode side, thereby reducing the electrolytic solution on the positive electrode side and increasing the electrical resistance on the positive electrode side.

また、比較例3,4から、隙間51,52が小さすぎると放電性能が改善されないことがわかった。これは隙間51,52が小さすぎると正極側に十分な量の電解液が保持されなくなるからであると考えられる。   Moreover, from Comparative Examples 3 and 4, it was found that if the gaps 51 and 52 are too small, the discharge performance is not improved. This is considered to be because when the gaps 51 and 52 are too small, a sufficient amount of the electrolyte is not retained on the positive electrode side.

また、比較例5から、隙間51,52が大きすぎると放電性能が改善されないことがわかった。これは隙間51,52が大きすぎると正極活物質に対向する負極活物質の量が減少し電流密度が高まるからであると考えられる。   Further, it was found from Comparative Example 5 that the discharge performance is not improved if the gaps 51 and 52 are too large. This is considered to be because if the gaps 51 and 52 are too large, the amount of the negative electrode active material facing the positive electrode active material is reduced and the current density is increased.

<試験2>
続いて、正極合剤21の密度(正極合剤密度)として適切な範囲を検証すべく、正極合剤21の密度を変えた(正極合剤21の密度を2.8〜3.7g/cmの範囲で変えた)複数のアルカリ電池1を作製し、夫々の放電性能を比較した。尚、いずれのアルカリ電池1についても、隙間51,52の合計sとペレットの軸方向長さの合計dとの比(隙間/合剤高さ)は5.0%とした。また、いずれのアルカリ電池1についても、正極合剤21として、これに含まれる二酸化マンガンと黒鉛との比(黒鉛/二酸化マンガン)が10.0質量%のものを用いた。放電性能については試験1と同様の方法で求めた。
<Test 2>
Subsequently, in order to verify an appropriate range as the density of the positive electrode mixture 21 (positive electrode mixture density), the density of the positive electrode mixture 21 was changed (the density of the positive electrode mixture 21 was 2.8 to 3.7 g / cm). A plurality of alkaline batteries 1 (changed in the range of 3 ) were prepared, and their discharge performances were compared. In any of the alkaline batteries 1, the ratio (gap / mixture height) of the total s of the gaps 51 and 52 to the total d of the axial lengths of the pellets was 5.0%. In any alkaline battery 1, a positive electrode mixture 21 having a ratio of manganese dioxide to graphite contained therein (graphite / manganese dioxide) of 10.0% by mass was used. The discharge performance was determined by the same method as in Test 1.

表2に各アルカリ電池1の放電性能を比較した結果を示す。尚、放電性能を表す表中の数値は、表1に示した比較例3のアルカリ電池1の放電性能を100としたときの相対値である。   Table 2 shows the results of comparing the discharge performance of each alkaline battery 1. In addition, the numerical value in the table | surface showing discharge performance is a relative value when the discharge performance of the alkaline battery 1 of the comparative example 3 shown in Table 1 is set to 100. FIG.

表2

Figure 2015138668

表2に示すように、正極合剤21の密度(正極合剤密度)が3.0〜3.7g/cmの範囲においてアルカリ電池1の放電性能が高くなることが確認された(実施例8,9)。また正極合剤21の密度が3.0g/cmの場合に、とくに放電性能が高くなることが確認された(実施例8)。 Table 2
Figure 2015138668

As shown in Table 2, it was confirmed that the discharge performance of the alkaline battery 1 is high when the density of the positive electrode mixture 21 (positive electrode mixture density) is in the range of 3.0 to 3.7 g / cm 3 (Examples). 8, 9). It was also confirmed that the discharge performance was particularly improved when the density of the positive electrode mixture 21 was 3.0 g / cm 3 (Example 8).

また、正極合剤21の密度が高すぎると割れが生じやすくなって圧縮成型が困難となり、ペレットを作製することができなかった(比較例6)。   On the other hand, if the density of the positive electrode mixture 21 was too high, cracking was likely to occur and compression molding became difficult, and pellets could not be produced (Comparative Example 6).

また、正極合剤21の密度が低すぎると十分な放電性能が得られなかった(比較例7)。これは正極合剤21の密度が低すぎると正極合剤21内部で導電性が不十分になるためであると考えられる。   Moreover, when the density of the positive electrode mixture 21 was too low, sufficient discharge performance could not be obtained (Comparative Example 7). This is probably because if the density of the positive electrode mixture 21 is too low, the conductivity inside the positive electrode mixture 21 becomes insufficient.

<試験3>
続いて、正極合剤21に含まれる二酸化マンガンと黒鉛との比(黒鉛/二酸化マンガン)として適切な範囲を検証すべく、上記比を変えた(上記比を2.0〜25.0質量%の範囲で変えた)複数のアルカリ電池1を作製し、夫々の放電性能を比較した。放電性能については前述と同様の方法で求めた。尚、いずれのアルカリ電池1についても、隙間51,52の合計sとペレットの軸方向長さの合計dとの比(隙間/合剤高さ)は5.0%とした。また、いずれのアルカリ電池1についても、正極合剤21の密度(正極合剤密度)が3.2g/cmであるものを用いた。
<Test 3>
Subsequently, the ratio was changed in order to verify an appropriate range as the ratio of manganese dioxide to graphite (graphite / manganese dioxide) contained in the positive electrode mixture 21 (the ratio was 2.0 to 25.0 mass%). A plurality of alkaline batteries 1 were prepared and their discharge performances were compared. The discharge performance was determined by the same method as described above. In any of the alkaline batteries 1, the ratio (gap / mixture height) of the total s of the gaps 51 and 52 to the total d of the axial lengths of the pellets was 5.0%. Moreover, about any alkaline battery 1, the thing whose density (positive electrode mixture density) of the positive electrode mixture 21 is 3.2 g / cm < 3 > was used.

表3に各アルカリ電池1の放電性能を比較した結果を示す。尚、放電性能を表す表中の数値は、表1に示した比較例3のアルカリ電池1の放電性能を100としたときの相対値である。   Table 3 shows the results of comparing the discharge performance of the alkaline batteries 1. In addition, the numerical value in the table | surface showing discharge performance is a relative value when the discharge performance of the alkaline battery 1 of the comparative example 3 shown in Table 1 is set to 100. FIG.

表3

Figure 2015138668

表3に示すように、正極合剤21に含まれる二酸化マンガンと黒鉛との比(黒鉛/二酸化マンガン)が5〜20質量%の範囲において放電性能が高くなることが確認された(実施例10〜12)。また正極合剤21に含まれる二酸化マンガンと黒鉛との比(黒鉛/二酸化マンガン)が15.0質量%の場合に、とくに放電性能が高くなることが確認された(実施例11)。 Table 3
Figure 2015138668

As shown in Table 3, it was confirmed that the discharge performance was enhanced when the ratio of manganese dioxide to graphite (graphite / manganese dioxide) contained in the positive electrode mixture 21 was 5 to 20% by mass (Example 10). ~ 12). Further, it was confirmed that discharge performance was particularly improved when the ratio of manganese dioxide to graphite (graphite / manganese dioxide) contained in the positive electrode mixture 21 was 15.0 mass% (Example 11).

また、黒鉛の割合が少なすぎると十分な放電性能が得られなかった(比較例8)。これは正極合剤21内部で導電性が不十分になるためであると考えられる。   Moreover, when the ratio of graphite was too small, sufficient discharge performance could not be obtained (Comparative Example 8). This is considered to be due to insufficient conductivity inside the positive electrode mixture 21.

また、黒鉛の割合が多すぎても十分な放電性能が得られなかった(比較例9)。これは撥水性の黒鉛の影響により正極合剤21内の電解液の量が減少したためであると考えられる。   Moreover, even if there was too much ratio of graphite, sufficient discharge performance was not obtained (comparative example 9). This is presumably because the amount of the electrolytic solution in the positive electrode mixture 21 decreased due to the influence of water-repellent graphite.

<効果>
以上の通り、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を25〜40質量%の範囲で含み、かつ、隙間51,52の合計sとペレットの軸方向長さの合計dとの比を1〜14%とした場合にアルカリ電池1の放電性能が高くなり、とくに負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を30質量%の範囲で含むものを用い、かつ、隙間51,52の合計sとペレットの軸方向長さの合計dとの比を8.0%とした場合に良好な結果が得られることがわかった。
<Effect>
As described above, the zinc alloy powder of the negative electrode mixture 23 contains particles having a particle size of 75 μm or less in a range of 25 to 40% by mass, and the total s of the gaps 51 and 52 and the total d of the axial lengths of the pellets The discharge performance of the alkaline battery 1 is increased when the ratio is 1 to 14%, and in particular, the zinc alloy powder of the negative electrode mixture 23 containing particles having a particle size of 75 μm or less in the range of 30% by mass, and It was found that good results were obtained when the ratio of the total s of the gaps 51 and 52 to the total length d of the pellets in the axial direction was 8.0%.

また、正極合剤21の密度が3.0〜3.7g/cmの範囲において放電性能が高くなることが確認され、とくに正極合剤21の密度が3.0g/cmの場合に良好な結果が得られることがわかった。 Further, it was confirmed that the density of the positive electrode mixture 21 becomes higher discharge performance in a range of 3.0~3.7g / cm 3, particularly good when the density of the positive electrode mixture 21 is 3.0 g / cm 3 It was found that a good result was obtained.

また、正極合剤21に含まれる二酸化マンガンと黒鉛との比(黒鉛/二酸化マンガン)が5〜20質量%の範囲において放電性能が高くなることが確認され、とくに正極合剤21に含まれる二酸化マンガンと黒鉛との比(黒鉛/二酸化マンガン)が15.0質量%の場合に良好な結果が得られることがわかった。   Further, it was confirmed that the discharge performance was enhanced when the ratio of manganese dioxide to graphite (graphite / manganese dioxide) contained in the positive electrode mixture 21 was in the range of 5 to 20% by mass, and in particular, the dioxide dioxide contained in the positive electrode mixture 21. It was found that good results were obtained when the ratio of manganese to graphite (graphite / manganese dioxide) was 15.0% by mass.

尚、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   In addition, the above description is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

例えば、以上の実施形態では、正極合剤21を構成するペレットの数を3つとしたが、ペレットの数は2つもしくは4つ以上であってもよい。要は他の必要条件とともに、ペレット間の隙間の正極缶11の軸方向に沿った長さの合計sとペレットの軸方向に沿った長さの合計dとの比が上記の条件を満たすようにすることで、上記の効果を得ることができる。   For example, although the number of pellets constituting the positive electrode mixture 21 is three in the above embodiment, the number of pellets may be two or four or more. In short, together with other necessary conditions, the ratio of the total length s along the axial direction of the positive electrode can 11 of the gap between the pellets to the total length d along the axial direction of the pellets should satisfy the above condition. By doing so, the above effect can be obtained.

1 アルカリ電池、11 正極缶、12 正極端子部、20 発電要素、21 正極合剤、21a,21b,21c ペレット、22 セパレータ、23 負極合剤、31 負極集電子、32 負極端子板、35 封口ガスケット、51,52 隙間 DESCRIPTION OF SYMBOLS 1 Alkaline battery, 11 Positive electrode can, 12 Positive electrode terminal part, 20 Electric power generation element, 21 Positive electrode mixture, 21a, 21b, 21c Pellet, 22 Separator, 23 Negative electrode mixture, 31 Negative electrode current collector, 32 Negative electrode terminal plate, 35 Sealing gasket , 51,52 Clearance

Claims (3)

有底筒状の正極缶内に装填される正極合剤と、前記正極合剤の内周側に設けられるセパレータと、前記セパレータの内周側に充填される、亜鉛を主成分とする粉末を含む負極合剤と、前記負極合剤に挿入される負極集電体と、前記正極缶の開口部を封口する負極端子板と、アルカリ性の電解液と、を備えて構成されるアルカリ電池であって、
前記正極合剤は、二酸化マンガン及び導電材を含み、
前記粉末は、粒度が75μm以下の粒子を25〜40質量%の範囲で含み、
前記正極合剤は、前記正極缶内に前記正極缶と同軸に積層されて装填される複数の中空円筒状のペレットからなり、
前記ペレットの間に隙間が設けられ、前記隙間の前記正極缶の軸方向に沿った長さの合計sが、前記ペレットの夫々の前記軸方向に沿った長さの合計dに対して1〜14%である
ことを特徴とするアルカリ電池。
A positive electrode mixture loaded in a bottomed cylindrical positive electrode can; a separator provided on an inner peripheral side of the positive electrode mixture; and a powder containing zinc as a main component, which is filled on the inner peripheral side of the separator. A negative electrode material mixture, a negative electrode current collector inserted into the negative electrode material mixture, a negative electrode terminal plate that seals an opening of the positive electrode can, and an alkaline electrolyte. And
The positive electrode mixture includes manganese dioxide and a conductive material,
The powder includes particles having a particle size of 75 μm or less in a range of 25 to 40% by mass,
The positive electrode mixture consists of a plurality of hollow cylindrical pellets that are stacked and loaded coaxially with the positive electrode can in the positive electrode can,
A gap is provided between the pellets, and the total length s of the gap along the axial direction of the positive electrode can is 1 to 1 with respect to the total length d of the pellets along the axial direction. An alkaline battery characterized by being 14%.
前記ペレットの密度が3.0〜3.7g/cmの範囲であることを特徴とする請求項1に記載のアルカリ電池。 The alkaline battery according to claim 1, wherein the density of the pellet is in a range of 3.0 to 3.7 g / cm 3 . 前記ペレットは、前記導電材となる黒鉛を前記二酸化マンガンに対して5〜20質量%の範囲で含むことを特徴とする請求項1または2に記載のアルカリ電池。   3. The alkaline battery according to claim 1, wherein the pellet includes graphite as the conductive material in a range of 5 to 20 mass% with respect to the manganese dioxide.
JP2014009705A 2014-01-22 2014-01-22 Alkaline battery Active JP6259670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009705A JP6259670B2 (en) 2014-01-22 2014-01-22 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009705A JP6259670B2 (en) 2014-01-22 2014-01-22 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2015138668A true JP2015138668A (en) 2015-07-30
JP6259670B2 JP6259670B2 (en) 2018-01-10

Family

ID=53769543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009705A Active JP6259670B2 (en) 2014-01-22 2014-01-22 Alkaline battery

Country Status (1)

Country Link
JP (1) JP6259670B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110024A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
WO2017110023A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
WO2017119018A1 (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Alkaline dry battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324559A (en) * 1986-07-17 1988-02-01 Fuji Elelctrochem Co Ltd Cylindrical alkaline cell
JPH02100264A (en) * 1988-10-07 1990-04-12 Matsushita Electric Ind Co Ltd Alkaline-manganese battery
JP2000036301A (en) * 1998-07-21 2000-02-02 Matsushita Electric Ind Co Ltd Alkaline dry cell
US6472099B1 (en) * 2000-06-13 2002-10-29 The Gillette Company Cathode indentations in alkaline cell
JP2008041490A (en) * 2006-08-08 2008-02-21 Fdk Energy Co Ltd Alkaline battery
JP2009064756A (en) * 2007-09-10 2009-03-26 Panasonic Corp Alkaline dry battery
JP2010218946A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Alkaline storage battery
JP2011165530A (en) * 2010-02-12 2011-08-25 Fdk Energy Co Ltd Alkaline dry battery and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324559A (en) * 1986-07-17 1988-02-01 Fuji Elelctrochem Co Ltd Cylindrical alkaline cell
JPH02100264A (en) * 1988-10-07 1990-04-12 Matsushita Electric Ind Co Ltd Alkaline-manganese battery
JP2000036301A (en) * 1998-07-21 2000-02-02 Matsushita Electric Ind Co Ltd Alkaline dry cell
US6472099B1 (en) * 2000-06-13 2002-10-29 The Gillette Company Cathode indentations in alkaline cell
JP2008041490A (en) * 2006-08-08 2008-02-21 Fdk Energy Co Ltd Alkaline battery
JP2009064756A (en) * 2007-09-10 2009-03-26 Panasonic Corp Alkaline dry battery
JP2010218946A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Alkaline storage battery
JP2011165530A (en) * 2010-02-12 2011-08-25 Fdk Energy Co Ltd Alkaline dry battery and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110024A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
WO2017110023A1 (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Alkaline dry cell
JPWO2017110023A1 (en) * 2015-12-21 2018-05-10 パナソニックIpマネジメント株式会社 Alkaline battery
CN108140849A (en) * 2015-12-21 2018-06-08 松下知识产权经营株式会社 Alkaline dry battery
US10340530B2 (en) * 2015-12-21 2019-07-02 Panasonic Intellectual Property Management Co., Ltd. Alkaline dry cell
CN108140849B (en) * 2015-12-21 2020-10-13 松下知识产权经营株式会社 Alkaline dry cell
WO2017119018A1 (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Alkaline dry battery
JPWO2017119018A1 (en) * 2016-01-08 2018-05-10 パナソニックIpマネジメント株式会社 Alkaline battery
CN108292758A (en) * 2016-01-08 2018-07-17 松下知识产权经营株式会社 Alkaline dry battery
US20180309138A1 (en) * 2016-01-08 2018-10-25 Panasonic Intellectual Property Management Co., Ltd. Alkaline dry battery
US10516173B2 (en) * 2016-01-08 2019-12-24 Panasonic Intellectual Property Management Co., Ltd. Alkaline dry battery
CN108292758B (en) * 2016-01-08 2020-11-27 松下知识产权经营株式会社 Alkaline dry cell

Also Published As

Publication number Publication date
JP6259670B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
JP6259670B2 (en) Alkaline battery
US11387496B2 (en) Method of making alkaline battery with gap between pellets
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2018156854A (en) Alkaline battery
US9040196B2 (en) Alkaline primary battery
JP2008262732A (en) Alkaline dry battery
JP6691738B2 (en) Alkaline battery
JP5081384B2 (en) Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery
JP6322430B2 (en) Alkaline battery
JP2009266661A (en) Alkaline dry cell
JPWO2014097511A1 (en) Alkaline battery
JP2008041490A (en) Alkaline battery
JP6335531B2 (en) Alkaline battery
JP6622976B2 (en) Alkaline battery
JP6883441B2 (en) Flat alkaline primary battery
JP2009043547A (en) Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
JP2008071541A (en) Alkaline battery
JP6349192B2 (en) Steel plate for battery electrode terminal and battery constructed using the same
JP2007048623A (en) Alkaline dry cell
JP2007220373A (en) Sealed alkaline zinc primary cell
JP2011181373A (en) Alkaline battery
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2017069097A (en) Alkaline battery
JP2013020866A (en) Alkaline dry battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250