JP2013020866A - Alkaline dry battery - Google Patents

Alkaline dry battery Download PDF

Info

Publication number
JP2013020866A
JP2013020866A JP2011154535A JP2011154535A JP2013020866A JP 2013020866 A JP2013020866 A JP 2013020866A JP 2011154535 A JP2011154535 A JP 2011154535A JP 2011154535 A JP2011154535 A JP 2011154535A JP 2013020866 A JP2013020866 A JP 2013020866A
Authority
JP
Japan
Prior art keywords
positive electrode
weight
battery
graphite
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011154535A
Other languages
Japanese (ja)
Inventor
Miyuki Nakai
美有紀 中井
Fumio Kato
文生 加藤
Machiko Tsukiji
真知子 築地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011154535A priority Critical patent/JP2013020866A/en
Publication of JP2013020866A publication Critical patent/JP2013020866A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To suppress generation of gas and liquid leakage caused when an alkaline dry battery is mistakenly connected in reverse polarity and is over charged, thereby securing battery safety.SOLUTION: In an alkaline dry battery, a hollow cylindrical positive electrode mixture, a negative electrode mixture arranged in a hollow part of the positive electrode mixture, a separator arranged between a positive electrode and a negative electrode, and an alkaline electrolyte are received in a closed-end cylindrical positive electrode can body. The alkaline dry battery includes a high resistance portion at at least a part of an outer peripheral surface of the positive electrode mixture.

Description

本発明は、アルカリ乾電池に関する。   The present invention relates to an alkaline battery.

アルカリ乾電池では、誤って電池を逆接続や過充電した場合にはその構造上の理由から水素ガスが発生するおそれがあり、水素ガスが発生すると内圧が上昇して危険な状態に陥るので、水素ガスが発生してもアルカリ乾電池の安全性を確保できるように工夫されている。   In alkaline batteries, if the battery is accidentally reverse-connected or overcharged, hydrogen gas may be generated for structural reasons, and if hydrogen gas is generated, the internal pressure will rise and fall into a dangerous state. It is devised to ensure the safety of alkaline batteries even when gas is generated.

詳細には、アルカリ乾電池では、負極の活物質として亜鉛を用い、電解液として強アルカリ電解液を用いており、電解液は負極に接触している。アルカリ乾電池を誤って逆接続や過充電した場合には、通常の電池反応とは反対の反応が進行し、負極側では亜鉛電析反応が進行する。亜鉛電析後には水素過電圧以上に負極電位が下がることで水素発生電位に到達し、水素ガスが発生する場合がある。アルカリ乾電池は密閉されているので、アルカリ乾電池内で水素ガスが発生するとアルカリ乾電池内の気圧が上昇し、アルカリ乾電池の危険性が高い状態に陥ってしまう。アルカリ乾電池では、万一アルカリ乾電池の内圧が上昇したときには、安全弁が開いてアルカリ乾電池内の気圧を下げるように構成されている。   Specifically, in an alkaline battery, zinc is used as the negative electrode active material, and a strong alkaline electrolyte is used as the electrolytic solution. The electrolytic solution is in contact with the negative electrode. When an alkaline battery is reversely connected or overcharged by mistake, a reaction opposite to the normal battery reaction proceeds, and a zinc electrodeposition reaction proceeds on the negative electrode side. After zinc electrodeposition, the negative electrode potential drops below the hydrogen overvoltage, so that the hydrogen generation potential is reached and hydrogen gas may be generated. Since the alkaline battery is sealed, when hydrogen gas is generated in the alkaline battery, the atmospheric pressure in the alkaline battery increases, and the danger of the alkaline battery becomes high. The alkaline battery is configured such that when the internal pressure of the alkaline battery increases, the safety valve is opened to lower the atmospheric pressure in the alkaline battery.

特開昭59−98452号公報JP 59-98452 A

上記構成のアルカリ乾電池を誤って逆接続や過充電した場合には、発生するガスは安全弁の開裂によって放出され、アルカリ乾電池内の気圧の上昇は抑制される。しかしながら、逆接続に伴うガス発生反応は抑制していないので、逆接続に伴う電池内部反応が急速に進行した場合には、ガス放出と共に電解液が漏出する可能性があった。   When the alkaline dry battery having the above configuration is erroneously reversely connected or overcharged, the generated gas is released by the cleavage of the safety valve, and the increase in the atmospheric pressure in the alkaline dry battery is suppressed. However, since the gas generation reaction associated with the reverse connection is not suppressed, when the battery internal reaction associated with the reverse connection proceeds rapidly, there is a possibility that the electrolyte leaks as the gas is released.

また、上記構成のアルカリ乾電池を、水中ライトやカメラを水中で撮影する際に用いる水中ハウジングのような気密性の高い構造を有する構造体で逆接続や過充電した場合には、アルカリ乾電池から放出されるガスにより構造体の内圧が上昇し、高気密構造体自体が破損する可能性があった。   In addition, when the alkaline battery having the above structure is reversely connected or overcharged with a structure having a highly airtight structure such as an underwater housing used when photographing an underwater light or camera underwater, it is discharged from the alkaline battery. As a result, the internal pressure of the structure is increased by the generated gas, and the highly airtight structure itself may be damaged.

本発明は、かかる点に鑑みてなされたものであり、アルカリ乾電池において逆接続や過充電によって発生するガスの抑制と、漏液の抑制をすることにある。   The present invention has been made in view of such a point, and is to suppress gas generated by reverse connection or overcharge in an alkaline dry battery and to suppress leakage.

本発明のアルカリ乾電池は、有底筒状の正極缶体に、中空円筒状の正極と、前記正極の中空部分に配置された負極と、前記正極と前記負極との間に配置されたセパレータと、アルカリ電解液と、を収容したアルカリ乾電池であって、前記正極の外周面の少なくとも一部に高抵抗部を有する。   The alkaline dry battery of the present invention comprises a bottomed cylindrical positive electrode can, a hollow cylindrical positive electrode, a negative electrode disposed in a hollow portion of the positive electrode, and a separator disposed between the positive electrode and the negative electrode. The alkaline dry battery containing an alkaline electrolyte has a high resistance portion on at least a part of the outer peripheral surface of the positive electrode.

本発明によれば、アルカリ乾電池が逆接続状態となっても、水素ガス発生を抑制し、アルカリ電解液が漏出することを抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, even if an alkaline dry battery will be in a reverse connection state, generation | occurrence | production of hydrogen gas can be suppressed and it can suppress that an alkaline electrolyte leaks out.

本実施形態における単3形アルカリ乾電池の構成を示す半断面図Half sectional view showing the configuration of the AA alkaline battery in this embodiment

本発明の実施形態を説明する前に、本発明を完成させるに至った経緯を示す。   Before describing the embodiments of the present invention, the background to the completion of the present invention will be described.

上述のように、アルカリ乾電池を誤って逆接続や過充電した場合には、水素ガスが発生するおそれがある。水素ガスが発生すると内圧が上昇して危険な状態に陥るので、水素ガスが発生してもアルカリ乾電池の安全性を確保できるように工夫されている。しかし、ガス発生そのものを抑制しているわけではない。以下では、本発明者らが考えている事項を説明する前に、まず、アルカリ乾電池を逆接続させるとアルカリ電解液が漏れる理由を示す。   As described above, when an alkaline battery is erroneously reverse-connected or overcharged, hydrogen gas may be generated. When hydrogen gas is generated, the internal pressure rises and falls into a dangerous state. Therefore, it is devised to ensure the safety of the alkaline battery even if hydrogen gas is generated. However, gas generation itself is not suppressed. In the following, before explaining the matters considered by the present inventors, first, the reason why the alkaline electrolyte leaks when the alkaline dry battery is reversely connected will be described.

例えば複数のアルカリ乾電池を直列に接続させる回路において、1本のみ逆に接続させて回路を構成した場合を考える。このとき、逆接続させたアルカリ乾電池では、そのアルカリ乾電池とは逆に接続されたことになる他のアルカリ乾電池の電圧が強制的に加わる。その結果、逆接続させたアルカリ乾電池では、通常とは逆の反応が進行する。すなわち、負極側では亜鉛電析反応が進行し、水素過電圧以上に負極電位が下がることで水素発生電位に到達して水素ガスが発生する。一方、正極側では正極活物質の酸化反応が進行し、酸素発生過電圧以上に正極電位が上昇することで酸素発生電位に到達し、酸素ガスが発生する。   For example, consider a case in which a circuit is configured by connecting only one battery in the reverse direction in a circuit in which a plurality of alkaline batteries are connected in series. At this time, in the alkaline battery that is reversely connected, the voltage of another alkaline battery that is connected in reverse to the alkaline battery is forcibly applied. As a result, the reverse reaction proceeds in the reversely connected alkaline battery. In other words, the zinc electrodeposition reaction proceeds on the negative electrode side, and the negative electrode potential drops below the hydrogen overvoltage, thereby reaching the hydrogen generation potential and generating hydrogen gas. On the other hand, on the positive electrode side, the oxidation reaction of the positive electrode active material proceeds, the positive electrode potential rises above the oxygen generation overvoltage, reaches the oxygen generation potential, and oxygen gas is generated.

本発明者らは、逆接続状態において水素ガス発生している負極に電解液に溶存させた酸素ガスを供給した場合、負極側の水素ガス発生が停止することを確認している。また本願発明者らは、逆接続状態において正極側での酸素ガス発生は、正極缶体1の内壁表面で気泡として発生することを確認している。   The present inventors have confirmed that generation of hydrogen gas on the negative electrode side stops when oxygen gas dissolved in the electrolyte is supplied to the negative electrode in which hydrogen gas is generated in a reverse connection state. The inventors of the present application have also confirmed that oxygen gas generation on the positive electrode side occurs as bubbles on the inner wall surface of the positive electrode can body 1 in the reverse connection state.

以上の事実をふまえて、本発明者らは、アルカリ乾電池の逆接続放電の際には、正極缶体1内壁表面で気泡として発生した酸素ガスは負極側へ到達しにくく、負極側の水素ガスの発生を抑制できないのみならず、正極側の酸素ガスの発生も加わることで、アルカリ電解液が漏れやすくなると考えた。   Based on the above facts, the present inventors have found that oxygen gas generated as bubbles on the inner wall surface of the positive electrode can body 1 hardly reaches the negative electrode side during reverse connection discharge of an alkaline dry battery, and hydrogen gas on the negative electrode side. It was thought that the alkaline electrolyte easily leaks by adding not only the generation of oxygen gas on the positive electrode side, but also the generation of oxygen gas on the positive electrode side.

そして、本発明者らは詳細検討した結果、正極の構成を工夫すれば逆接時における水素ガスの発生を抑制できることを見い出した。以下では、図面を参照しながら本発明の実施形態を説明する。   As a result of detailed studies, the present inventors have found that the generation of hydrogen gas during reverse connection can be suppressed by devising the configuration of the positive electrode. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態における単3形アルカリ乾電池の構成を示す半断面図である。   FIG. 1 is a half cross-sectional view showing the configuration of an AA alkaline battery in this embodiment.

単3形アルカリ乾電池は、図1に示すように、一端(図1における下端)が封じられた筒状の正極缶体1を備えており、正極缶体1の外周面には外装ラベル8が被覆されている。正極缶体1は正極端子と正極集電体とを兼ねており、正極缶体1には中空円筒状の正極2が内接している。正極2の中空部にはセパレータ4が設けられており、セパレータ4は一端が封じられた筒状に形成されており、セパレータ4の中空部には負極3が設けられている。以上より、正極缶体1では、周縁から中心に向かうに従って、正極2、セパレータ4および負極3の順に配置されている。   As shown in FIG. 1, the AA alkaline battery includes a cylindrical positive electrode can 1 that is sealed at one end (the lower end in FIG. 1). It is covered. The positive electrode can 1 serves as both a positive electrode terminal and a positive electrode current collector, and a hollow cylindrical positive electrode 2 is inscribed in the positive electrode can 1. A separator 4 is provided in the hollow portion of the positive electrode 2, the separator 4 is formed in a cylindrical shape with one end sealed, and a negative electrode 3 is provided in the hollow portion of the separator 4. As described above, in the positive electrode can 1, the positive electrode 2, the separator 4, and the negative electrode 3 are arranged in this order from the periphery toward the center.

正極缶体1の開口(図1における上端)は、組立封口体9により封じられている。組立封口体9は、釘型の負極集電体6と負極端子板7と樹脂性の封口体5とが一体化されたものであり、負極端子板7は負極集電体6に電気的に接続されており、封口体5は負極集電
体6および負極端子板7に物理的に固定されている。単3形アルカリ乾電池を製造する際には、まず正極2および負極3等の発電要素を正極缶体1内に収容し、次に組立封口体9を用いて正極缶体1の開口を封じる。
The opening (upper end in FIG. 1) of the positive electrode can body 1 is sealed by an assembly sealing body 9. The assembly sealing body 9 is obtained by integrating a nail-type negative electrode current collector 6, a negative electrode terminal plate 7, and a resinous sealing body 5. The negative electrode terminal plate 7 is electrically connected to the negative electrode current collector 6. The sealing body 5 is physically fixed to the negative electrode current collector 6 and the negative electrode terminal plate 7. When manufacturing an AA alkaline battery, power generation elements such as the positive electrode 2 and the negative electrode 3 are first accommodated in the positive electrode can body 1, and then the opening of the positive electrode can body 1 is sealed using the assembly sealing body 9.

正極2、負極3およびセパレータ4には、アルカリ電解液(不図示)が含まれている。アルカリ電解液としては、水酸化カリウムを30〜40重量%含有し、酸化亜鉛を1〜3重量%含有する水溶液が用いられる。   The positive electrode 2, the negative electrode 3 and the separator 4 contain an alkaline electrolyte (not shown). As the alkaline electrolyte, an aqueous solution containing 30 to 40% by weight of potassium hydroxide and 1 to 3% by weight of zinc oxide is used.

本実施形態における単3形アルカリ乾電池の構成要素を順に説明する。   The components of the AA alkaline battery in this embodiment will be described in order.

正極缶体1は、例えば、ニッケルがめっきされた鋼板を用いて特開昭60−180058号公報または特開平11−144690号公報に記載の公知の方法を用いて所定の寸法および形状にプレス成形して得られる。   The positive electrode can body 1 is press-molded into a predetermined size and shape using, for example, a known method described in JP-A-60-180058 or JP-A-11-144690 using a steel plate plated with nickel. Is obtained.

正極2には、例えば、電解二酸化マンガンの粉末などの正極活物質、黒鉛粉末などの導電剤、およびアルカリ電解液の混合物が含まれている。また適宜、ポリエチレン粉末等の結着剤またはステアリン酸塩等の滑沢剤が正極2に添加されていても差し支えない。なお、正極2の詳細については、あとで記述する。   The positive electrode 2 includes, for example, a mixture of a positive electrode active material such as electrolytic manganese dioxide powder, a conductive agent such as graphite powder, and an alkaline electrolyte. Further, a binder such as polyethylene powder or a lubricant such as stearate may be added to the positive electrode 2 as appropriate. The details of the positive electrode 2 will be described later.

負極3としては、例えば、アルカリ電解液にポリアクリル酸等のゲル化剤を添加してゲル状に加工し、そのゲル状の物質に亜鉛(負極の活物質)を分散させたものが用いられる。また、亜鉛デンドライトの発生を抑制するためには、微量のケイ酸またはその塩などのケイ素化合物を負極3に適宜添加するとよい。   As the negative electrode 3, for example, a gelling agent such as polyacrylic acid is added to an alkaline electrolyte and processed into a gel, and zinc (negative electrode active material) is dispersed in the gel. . Further, in order to suppress the generation of zinc dendrite, a small amount of silicon compound such as silicic acid or a salt thereof may be appropriately added to the negative electrode 3.

セパレータ4としては、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。セパレータ4は、例えば、特開平6−163024号公報または特開2006−32320号公報に記載の公知の方法により得られる。   As the separator 4, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used. The separator 4 is obtained by a known method described in, for example, Japanese Patent Laid-Open No. 6-163024 or Japanese Patent Laid-Open No. 2006-32320.

封口体5の中央には負極集電体6を圧入する貫通孔(不図示)が設けられており、貫通孔の周囲には安全弁として機能する中空円筒状の薄肉部(不図示)が設けられており、中空円筒状の薄肉部の外周には外周縁部(不図示)が連続して形成されている。封口体5は、例えば、ナイロンまたはポリプロピレンなどを所定の寸法および形状に射出成形して得られる。   A through hole (not shown) for press-fitting the negative electrode current collector 6 is provided at the center of the sealing body 5, and a hollow cylindrical thin wall portion (not shown) that functions as a safety valve is provided around the through hole. An outer peripheral edge (not shown) is continuously formed on the outer periphery of the hollow cylindrical thin-walled portion. The sealing body 5 is obtained by, for example, injection molding nylon or polypropylene into a predetermined size and shape.

負極集電体6は、真鍮等の金属線材を所定の寸法の釘型にプレス加工して製造される。   The negative electrode current collector 6 is manufactured by pressing a metal wire such as brass into a nail mold having a predetermined size.

負極端子板7には、正極缶体1の開口を封じる端子部(不図示)と、端子部(不図示)から延びており封口体5に接触する周縁鍔部とが設けられている。その周縁鍔部には封口体5の安全弁が作動した際の圧力を逃がすガス孔(不図示)が複数個設けてある。負極端子板7は、例えば、ニッケルがめっきされた鋼板またはスズがめっきされた鋼板などを所定の寸法および形状にプレス成形して得られる。   The negative electrode terminal plate 7 is provided with a terminal portion (not shown) that seals the opening of the positive electrode can 1 and a peripheral flange that extends from the terminal portion (not shown) and contacts the sealing member 5. A plurality of gas holes (not shown) for releasing pressure when the safety valve of the sealing body 5 is operated are provided in the peripheral flange portion. The negative electrode terminal plate 7 is obtained, for example, by pressing a steel plate plated with nickel or a steel plate plated with tin into a predetermined size and shape.

本実施の形態における正極は、少なくとも一部に高抵抗部を有する。ここで、アルカリ乾電池が逆接続状態となった場合には、負極電位が水素発生電位に到達し負極側から水素ガスが発生するだけでなく、正極電位は上昇して酸素発生電位に到達し正極側から酸素ガスが発生する。通常では正極側の酸素ガスは反応抵抗が低い正極缶体1の内壁側から多く発生する。上記構成では、正極に含まれる導電剤が部分的に少ない部位、つまり高抵抗部を設けることにより、正極での酸素ガス発生箇所を分散することが可能となる。具体的には、正極内部からの酸素ガス発生が可能となる。ここで酸素ガス発生箇所である正極缶の内壁と正極との界面に比べて正極内部の比表面積は大きいので、発生酸素ガスは電解液中
に溶存し、負極側に到達することが出来る。その結果、負極側からの水素ガス発生反応を抑制することが出来、逆接続時における内圧の上昇を抑制することが可能となり、逆接続時におけるアルカリ電解液の漏れを抑制することができる。
The positive electrode in this embodiment has a high resistance portion at least in part. Here, when the alkaline battery is reversely connected, not only the negative electrode potential reaches the hydrogen generation potential and hydrogen gas is generated from the negative electrode side, but also the positive electrode potential rises and reaches the oxygen generation potential. Oxygen gas is generated from the side. Usually, a large amount of oxygen gas on the positive electrode side is generated from the inner wall side of the positive electrode can body 1 having low reaction resistance. In the above configuration, by providing a portion with a small amount of the conductive agent contained in the positive electrode, that is, a high resistance portion, it is possible to disperse the oxygen gas generation portion at the positive electrode. Specifically, oxygen gas can be generated from the inside of the positive electrode. Here, since the specific surface area inside the positive electrode is larger than the interface between the inner wall of the positive electrode can, which is an oxygen gas generation site, and the positive electrode, the generated oxygen gas can be dissolved in the electrolytic solution and reach the negative electrode side. As a result, it is possible to suppress the hydrogen gas generation reaction from the negative electrode side, to suppress an increase in internal pressure at the time of reverse connection, and to suppress leakage of the alkaline electrolyte at the time of reverse connection.

本実施形態における正極には、従来の単3形アルカリ乾電池における正極と同じく、正極缶体1内に積層状に装填された複数の中空円筒状の正極ペレットからなり、正極ペレットには電解二酸化マンガンの粉末などの正極活物質以外に、導電剤として黒鉛粉末など炭素材料(カーボン)が含まれている。   The positive electrode in the present embodiment is composed of a plurality of hollow cylindrical positive electrode pellets loaded in a stack in the positive electrode can body 1 as in the conventional positive electrode in an AA alkaline battery, and the positive electrode pellet includes electrolytic manganese dioxide. In addition to the positive electrode active material such as powder, carbon material (carbon) such as graphite powder is included as a conductive agent.

なお、上記高抵抗部は正極全体の50%以下であると、正極缶体1ならびに正極ペレットを含む正極全体における抵抗成分の分布が均質化されるため、従来酸素発生が集中していた箇所に該当する高抵抗部での酸素発生は確実に低減することができ、逆接続時に発生する酸素ガスの発生箇所を正極全体に分散する効果が得られるという点で好ましい。   When the high resistance portion is 50% or less of the entire positive electrode, the distribution of the resistance component in the entire positive electrode including the positive electrode can 1 and the positive electrode pellet is homogenized. Oxygen generation at the corresponding high resistance portion can be reliably reduced, and this is preferable in that an effect of dispersing the generation site of oxygen gas generated during reverse connection over the entire positive electrode can be obtained.

また、正極缶体1側に相当する正極ペレット外周面の導電剤の含有量が他の位置の正極ペレットより少なく、高抵抗部が正極缶体に接触する側の部位に配置されていると、酸素発生箇所が正極缶体と正極ペレットの外周面との接触する部位に集中することなく正極全体に分散されることから酸素の気泡化を防ぎ、電解液中に溶存しやすくなるため、発生した酸素は効率的に負極側で吸収されるという点で好ましい。   In addition, when the content of the conductive agent on the outer peripheral surface of the positive electrode pellet corresponding to the positive electrode can body 1 side is less than that of the positive electrode pellets at other positions, and the high resistance portion is disposed at a site on the side in contact with the positive electrode can body, Oxygen generation location was generated because it was dispersed throughout the positive electrode without concentrating on the contact area between the positive electrode can body and the outer peripheral surface of the positive electrode pellet, thereby preventing oxygen from being bubbled and easily dissolved in the electrolyte. Oxygen is preferable in that it is efficiently absorbed on the negative electrode side.

さらに、正極缶体1内に積層上に装填された複数(3つ以上)の正極ペレットにおいて、積層の両端に位置する正極ペレットの導電剤含有量が他の位置の正極ペレットよりも少なく、高抵抗部が正極缶体の開口部側および底部側の少なくとも一方に設けられていると、電解液が多く存在するために集中していた酸素発生箇所を正極全体に分散されることから気泡化を防ぎ、溶存酸素化しやすくなるため、発生した酸素は効率的に負極側で吸収されるという点で好ましい。   Furthermore, in a plurality (three or more) of positive electrode pellets loaded on the stack in the positive electrode can 1, the conductive agent content of the positive electrode pellets located at both ends of the stack is less than the positive electrode pellets at other positions, When the resistance part is provided on at least one of the opening side and the bottom side of the positive electrode can body, the oxygen generation sites that have been concentrated due to the presence of a large amount of electrolyte solution are dispersed throughout the positive electrode, thereby causing bubbles. This is preferable in that the generated oxygen is efficiently absorbed on the negative electrode side because it is prevented and easily converted into dissolved oxygen.

また、正極合剤を構成するペレット数は、黒鉛含有量の分布条件を満たすものであれば、ペレット数に制限はなく効果が得られる。   The number of pellets constituting the positive electrode mixture is not limited as long as the graphite content distribution condition is satisfied, and an effect is obtained.

正極を構成する合剤の抵抗の高低においては、正極ペレットの正極缶体に接触する側(中空形状ペレットの外側)と負極対向側(中空形状ペレットの内側)から採取した粉体を用いて平板ペレットを作製し、JISK7194などに記載の四探針法による直流抵抗測定により抵抗の高低を測定できる。   In the case of the resistance of the mixture constituting the positive electrode, a flat plate using powder collected from the side of the positive electrode pellet in contact with the positive electrode can body (outside of the hollow pellet) and the opposite side of the negative electrode (inside of the hollow pellet) A pellet is prepared, and the level of resistance can be measured by DC resistance measurement by a four-probe method described in JISK7194.

本発明の実施例を以下に示す。本実施例では、以下に示す方法に従って単3形アルカリ乾電池を製造した後、製造した単3形アルカリ乾電池を逆接続させて漏液の有無を確認した。   Examples of the present invention are shown below. In this example, an AA alkaline battery was manufactured according to the method described below, and then the manufactured AA alkaline battery was reversely connected to check for leakage.

(実施例1)
まず、亜鉛の重量に対して0.003重量%のAl、0.015重量%のBiおよび0.020重量%のInを含有する亜鉛合金の粒子を、ガスアトマイズ法によって作製した。その後、篩を用いて、作製した亜鉛合金の粒子を分級させた。この分級により、35〜300メッシュの粒度範囲を有し、且つ、200メッシュ(75μm)以下の粒径を有する亜鉛合金の粒子の比率が30%である負極活物質を得た。
Example 1
First, particles of a zinc alloy containing 0.003% by weight of Al, 0.015% by weight of Bi and 0.020% by weight of In based on the weight of zinc were prepared by a gas atomization method. Thereafter, the produced zinc alloy particles were classified using a sieve. By this classification, a negative electrode active material having a particle size range of 35 to 300 mesh and a ratio of zinc alloy particles having a particle size of 200 mesh (75 μm) or less was 30%.

その後、34.5重量%の水酸化カリウム水溶液(ZnOを2重量%含む)の100重量部に対して、合計重量が2.2重量部となるようにポリアクリル酸とポリアクリル酸ナトリウムとを加えて混合し、ゲル化させた。これにより、ゲル状の電解液を得た。その後
、得られたゲル状の電解液を24時間静置して十分に熟成させた。
Thereafter, polyacrylic acid and sodium polyacrylate are added so that the total weight becomes 2.2 parts by weight with respect to 100 parts by weight of 34.5% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO). In addition, they were mixed and gelled. As a result, a gel electrolyte was obtained. Thereafter, the obtained gel electrolyte was allowed to stand for 24 hours and sufficiently aged.

そして、上記で得たゲル状の電解液に、そのゲル状の電解液の所定量に対して重量比で2.00倍の上記亜鉛合金の粒子と、その亜鉛合金の粒子100重量部に対してリン酸系界面活性剤(平均分子量が約210のアルコールリン酸エステルナトリウム)0.05重量部とを十分に混合した。これにより、ゲル状の負極を得た。   Then, to the gel electrolyte solution obtained above, the zinc alloy particles having a weight ratio of 2.00 times the predetermined amount of the gel electrolyte solution and 100 parts by weight of the zinc alloy particles Then, 0.05 part by weight of a phosphoric acid surfactant (sodium alcohol phosphate ester having an average molecular weight of about 210) was thoroughly mixed. As a result, a gelled negative electrode was obtained.

次に、電解二酸化マンガン(東ソー(株)製 HHTF(品番))および黒鉛(日本黒鉛工業(株)製 SP−20(品番))を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛を配合した粒状物を中空円筒型の内側に、黒鉛を配合していない粒状物を外側に同じ重量ずつ配置し、加圧成形した。このようにして、内周面に比べて外周面の抵抗が高い正極ペレットを得た。   Next, electrolytic manganese dioxide (HTHTF (product number) manufactured by Tosoh Corporation) and graphite (SP-20 (product number) manufactured by Nippon Graphite Industry Co., Ltd.) are blended at a weight ratio of 94: 6 to obtain a mixed powder. It was. Then, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (including 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with respect to 100 parts by weight of the mixed powder, a mixer To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. Of the obtained two types of granular materials, the granular material blended with graphite was placed inside the hollow cylindrical shape, and the granular material not blended with graphite was placed on the outside by the same weight, and pressure-molded. In this way, a positive electrode pellet having a higher resistance on the outer peripheral surface than that on the inner peripheral surface was obtained.

続いて、評価用の単3形アルカリ乾電池の作製を行った。具体的には、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)を4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。なお、封口板側からそれぞれペレットA、ペレットB、ペレットCおよびペレットDとした。そして、この正極ペレットの内側にセパレータ4と正極缶体1の底部を絶縁するための底紙とを挿入した後、電解液(34.5重量%の水酸化カリウム水溶液(ZnOを2重量%含む))を1.5g注液した。注液後、セパレータ4の内側にゲル状の負極3を6.2g(亜鉛合金の粒子の重量は4.1g)充填した。その後、封口体5、負極端子板7および負極集電体6が一体化された組立封口体9を用いて正極缶体1の開口を封じた。具体的には、負極集電体6を負極3に差し込み、封口体5の端部を介して正極缶体1の開口の縁に負極端子板7の周縁部をかしめつけて負極端子板7を正極缶体1の開口に密着させた。それから、正極缶体1の外表面に外装ラベル8を被覆し、実施例にかかる単3形アルカリ乾電池を作製し、電池No.1とした。   Subsequently, an AA alkaline battery for evaluation was produced. Specifically, as shown in FIG. 1, four positive electrode pellets (the weight of one is 2.95 g) obtained above are inserted into the positive electrode can body 1, and the positive electrode can body 1 is reused. The positive electrode can 1 was brought into close contact with the inner surface by pressurization. In addition, it was set as the pellet A, the pellet B, the pellet C, and the pellet D from the sealing board side, respectively. And after inserting the separator 4 and the base paper for insulating the bottom part of the positive electrode can 1 inside this positive electrode pellet, electrolyte solution (34.5 weight% potassium hydroxide aqueous solution (it contains 2 weight% of ZnO) )) Was injected. After the injection, 6.2 g of gelled negative electrode 3 (the weight of zinc alloy particles was 4.1 g) was filled inside the separator 4. Then, the opening of the positive electrode can 1 was sealed using the assembly sealing body 9 in which the sealing body 5, the negative electrode terminal plate 7, and the negative electrode current collector 6 were integrated. Specifically, the negative electrode current collector 6 is inserted into the negative electrode 3, and the peripheral edge portion of the negative electrode terminal plate 7 is caulked to the edge of the opening of the positive electrode can body 1 through the end of the sealing body 5. The positive electrode can 1 was brought into close contact with the opening. Then, the outer surface of the positive electrode can 1 was covered with an outer label 8 to produce an AA alkaline battery according to the example. It was set to 1.

ここで、封口体5としては、6,6−ナイロンを材料として作製した。負極集電体6としては、太さ(φ)が1.425mmであり長さが33mmの釘状で、負極集電体6の重量に対して、Cuの含有重量が65%である真鍮線を用いた。真鍮線の不純物を被覆するため、負極集電体の表面に、厚さが1.0μmとなるようにスズが電解めっきされたものを用いた。セパレータ4としては、クラレ(株)製のアルカリ乾電池用セパレータ(ビニロンとテンセル(登録商標)とからなる複合繊維)を用いた。   Here, as the sealing body 5, 6, 6 nylon was produced as a material. The negative electrode current collector 6 is a nail shape having a thickness (φ) of 1.425 mm and a length of 33 mm. The brass wire has a Cu content of 65% with respect to the weight of the negative electrode current collector 6. Was used. In order to coat the brass wire impurities, the surface of the negative electrode current collector was tin electroplated to a thickness of 1.0 μm. As the separator 4, a separator for alkaline dry batteries (a composite fiber made of vinylon and Tencel (registered trademark)) manufactured by Kuraray Co., Ltd. was used.

(実施例2)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比97:3の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛との配合比94:6である粒状物を中空円筒型の内側に、97
:3である粒状物を外側に同じ重量ずつ配置し、加圧成形した。このようにして、内周面に比べて外周面の抵抗が高い正極ペレットを得た。それ以外は全て電池No.1と同様にして、電池No.2を作製した。
(Example 2)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. Then, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (including 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with respect to 100 parts by weight of the mixed powder, a mixer To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 97: 3 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. Of the obtained two types of granular materials, a granular material with a compounding ratio of 94: 6 with graphite was placed inside the hollow cylindrical shape.
: The granular material which is 3 is arrange | positioned for the same weight on the outer side, and was pressure-molded. In this way, a positive electrode pellet having a higher resistance on the outer peripheral surface than that on the inner peripheral surface was obtained. In all other cases, the battery No. In the same manner as in Battery No. 1, 2 was produced.

(実施例3)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
(Example 3)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、正極缶体の両端に相当する2個は黒鉛を配合しないペレットを、中心部分に相当する2個は黒鉛との配合比が94:6である正極合剤ペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.3を作製した。   Subsequently, as shown in FIG. 1, among the positive electrode pellets (the weight of one piece is 2.95 g) obtained as described above, two pieces corresponding to both ends of the positive electrode can body are graphite. The positive electrode can can be obtained by inserting a total of four positive electrode mixture pellets having a mixing ratio of 94: 6 with graphite and re-pressurizing within the positive electrode can body 1. It was made to adhere to the inner surface of the body 1. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 3 was produced.

(実施例4)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比97:3の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
Example 4
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 97: 3 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極合剤ペレット(1個の重量が2.95g)のうち、正極缶体の両端に相当する2個は黒鉛との配合比が97:3である正極合剤ペレットを、中心部分に相当する2個は黒鉛との配合比が94:6であるペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.4を作製した。   Subsequently, as shown in FIG. 1, in the positive electrode can body 1, two positive electrode mixture pellets (weight of 2.95 g each) corresponding to both ends of the positive electrode can body are obtained. Inserts a total of 4 positive electrode mixture pellets with a compounding ratio of 97: 3 with graphite, and two pellets with a compounding ratio of 94: 6 with graphite, corresponding to the central portion, to form a positive electrode can 1 The inner surface of the positive electrode can 1 was brought into close contact with the inside by re-pressurization. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 4 was produced.

(実施例5)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比97:3の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛との配合比94:6である粒状物を中空円筒型の内側に、97:3である粒状物を外側に同じ重量ずつ配置し加圧成形することで、内周面に比べて外周面の抵抗が高い正極ペレットを得た。また、得られた2種類の粒状物のうち、黒鉛との配
合比97:3である粒状物のみを中空円筒型に加圧成形し、正極合剤ペレットを得た。
(Example 5)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 97: 3 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. Of the obtained two types of granular materials, the granular material having a blending ratio of 94: 6 with graphite is placed inside the hollow cylindrical shape, and the granular material being 97: 3 is placed on the outside by the same weight and subjected to pressure molding. Thus, a positive electrode pellet having a higher resistance on the outer peripheral surface than that on the inner peripheral surface was obtained. Moreover, only the granular material which is the compounding ratio 97: 3 with graphite among the two types of obtained granular materials was pressure-molded into a hollow cylindrical shape, and the positive electrode mixture pellet was obtained.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、中心部分に相当する2個は黒鉛との配合比94:6である粒状物を中空円筒型の内周側に、97:3である粒状物を外周側に配置した正極ペレットを、正極缶体の両端に相当する2個は黒鉛との配合比が97:3であるペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.5を作製した。   Subsequently, as shown in FIG. 1, among the positive electrode pellets obtained above (with one piece having a weight of 2.95 g), two pieces corresponding to the central portion are blended with graphite. The cathode pellets in which the granular material having a ratio of 94: 6 is arranged on the inner peripheral side of the hollow cylindrical type and the granular material having a ratio of 97: 3 are arranged on the outer peripheral side, and two corresponding to both ends of the positive electrode can body are blended with graphite. A total of four pellets having a ratio of 97: 3 were inserted and re-pressurized in the positive electrode can body 1 to be brought into close contact with the inner surface of the positive electrode can body 1. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 5 was produced.

(実施例6)
電解二酸化マンガンおよび黒鉛を重量比90:10の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
(Example 6)
Electrolytic manganese dioxide and graphite were blended at a weight ratio of 90:10 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、正極缶体の両端に相当する2個は黒鉛を配合しないペレットを、中心部分に相当する2個は黒鉛との配合比が90:10である正極合剤ペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.6を作製した。   Subsequently, as shown in FIG. 1, among the positive electrode pellets (the weight of one piece is 2.95 g) obtained as described above, two pieces corresponding to both ends of the positive electrode can body are graphite. The positive electrode can is obtained by inserting a total of four positive electrode mixture pellets having a mixing ratio of 90:10 with graphite and repressurizing within the positive electrode can body 1. It was made to adhere to the inner surface of the body 1. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 6 was produced.

(実施例7)
電解二酸化マンガンおよび黒鉛を重量比90:10の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比95:5の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
(Example 7)
Electrolytic manganese dioxide and graphite were blended at a weight ratio of 90:10 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 95: 5 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極合剤ペレット(1個の重量が2.95g)のうち、正極缶体の両端に相当する2個は黒鉛との配合比が95:5である正極合剤ペレットを、中心部分に相当する2個は黒鉛との配合比が90:10であるペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.7を作製した。   Subsequently, as shown in FIG. 1, in the positive electrode can body 1, two positive electrode mixture pellets (weight of 2.95 g each) corresponding to both ends of the positive electrode can body are obtained. Inserts a total of 4 positive electrode mixture pellets with a compounding ratio of 95: 5 with graphite, and two pellets with a compounding ratio with graphite of 90:10 corresponding to the central portion, and the positive electrode can 1 The inner surface of the positive electrode can 1 was brought into close contact with the inside by re-pressurization. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 7 was produced.

(実施例8)
電解二酸化マンガンおよび黒鉛を重量比90:10の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比95:5の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnO
を2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛との配合比90:10である粒状物を中空円筒型の内側に、黒鉛を配合していない粒状物を外側に同じ重量ずつ配置し加圧成形することで、内周面に比べて外周面の抵抗が高い正極ペレットを得た。また、得られた2種類の粒状物のうち、黒鉛との配合比95:5である粒状物のみを中空円筒型に加圧成形し、正極合剤ペレットを得た。
(Example 8)
Electrolytic manganese dioxide and graphite were blended at a weight ratio of 90:10 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 95: 5 to obtain a mixed powder. Then, 100 parts by weight of the mixed powder was used as an electrolytic solution (39% by weight potassium hydroxide aqueous solution (ZnO
2) by weight) and 1.5 parts by weight of polyethylene binder and 0.2 part by weight of polyethylene binder were mixed, and the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. Of the two types of granule obtained, the granule having a blending ratio of 90:10 with graphite is placed inside the hollow cylindrical shape, and the granule not blended with graphite is placed on the outside by the same weight, and pressure-molded. Thus, a positive electrode pellet having a higher resistance on the outer peripheral surface than that on the inner peripheral surface was obtained. Of the two types of granules obtained, only the granules having a blending ratio of 95: 5 with graphite were pressure-molded into a hollow cylindrical mold to obtain positive electrode mixture pellets.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、中心部分に相当する2個は黒鉛との配合比90:10である粒状物を中空円筒型の内周側に、黒鉛を配合していない粒状物を外周側に配置した正極ペレットを、正極缶体の両端に相当する2個は黒鉛との配合比が95:5であるペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.8を作製した。   Subsequently, as shown in FIG. 1, among the positive electrode pellets obtained above (with one piece having a weight of 2.95 g), two pieces corresponding to the central portion are blended with graphite. The positive pellets in which the granular material having a ratio of 90:10 is arranged on the inner peripheral side of the hollow cylindrical type and the granular material not containing graphite is arranged on the outer peripheral side, two pieces corresponding to both ends of the positive electrode can body are made of graphite. A total of four pellets having a blending ratio of 95: 5 were inserted and re-pressurized in the positive electrode can body 1 to be brought into close contact with the inner surface of the positive electrode can body 1. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 8 was produced.

(実施例9)
電解二酸化マンガンおよび黒鉛を重量比90:10の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。黒鉛との配合比90:10である粒状物を中空円筒型の内側に、黒鉛を配合していない粒状物を外側に同じ重量ずつ配置し加圧成形することで、内周面に比べて外周面の抵抗が高い正極ペレットを得た。それ以外は全て電池No.1と同様にして、電池No.9を作製した。
Example 9
Electrolytic manganese dioxide and graphite were blended at a weight ratio of 90:10 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. The outer periphery of the inner peripheral surface compared to the inner peripheral surface is formed by placing the granular material with a compounding ratio of 90:10 with graphite on the inner side of the hollow cylindrical shape and molding the non-graphite granular material on the outer side by the same weight. A positive electrode pellet having high surface resistance was obtained. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 9 was produced.

(実施例10)
電解二酸化マンガンおよび黒鉛を重量比90:10の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比95:5の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛との配合比90:10である粒状物を中空円筒型の内側に、95:5である粒状物を外側に同じ重量ずつ配置し、加圧成形した。このようにして、内周面に比べて外周面の抵抗が高い正極ペレットを得た。それ以外は全て電池No.1と同様にして、電池No.10を作製した。
(Example 10)
Electrolytic manganese dioxide and graphite were blended at a weight ratio of 90:10 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 95: 5 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. Of the two types of granule obtained, the granule with a blending ratio of 90:10 with graphite is placed inside the hollow cylindrical mold and the granule with 95: 5 is placed on the outside by the same weight, and pressure molding did. In this way, a positive electrode pellet having a higher resistance on the outer peripheral surface than that on the inner peripheral surface was obtained. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 10 was produced.

(比較例1)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒し、得られた粒状物を加圧して中空円筒型に成形した。このようにして、正極ペレットを得た。それ以外は全て電池No.1と同様にして、電池No.11を作製した。
(Comparative Example 1)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. The mixture was stirred and mixed uniformly to adjust the particle size to a constant particle size, and the resulting granule was pressurized to form a hollow cylinder. In this way, a positive electrode pellet was obtained. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 11 was produced.

(比較例2)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛を配合した粒状物を中空円筒型の外側に、黒鉛を配合していない粒状物を内側に同じ重量ずつ配置し、加圧成形した。このようにして、外周面に比べて内周面の抵抗が高い正極ペレットを得た。それ以外は全て電池No.1と同様にして、電池No.12を作製した。
(Comparative Example 2)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. Of the obtained two types of granular materials, the granular material blended with graphite was placed on the outer side of the hollow cylindrical shape, and the granular material not blended with graphite was placed on the inner side by the same weight, followed by pressure molding. In this way, a positive electrode pellet having a higher resistance on the inner peripheral surface than that on the outer peripheral surface was obtained. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 12 was produced.

(比較例3)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比97:3の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物のうち、黒鉛との配合比94:6である粒状物を中空円筒型の外側に、97:3である粒状物を内側に同じ重量ずつ配置し、加圧成形した。このようにして、外周面に比べて内周面の抵抗が高い正極ペレットを得た。それ以外は全て電池No.1と同様にして、電池No.13を作製した。
(Comparative Example 3)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 97: 3 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. Of the obtained two types of granular materials, the granular material with a blending ratio of 94: 6 with graphite is placed on the outside of the hollow cylindrical shape, and the granular material of 97: 3 is placed on the inside with the same weight, and pressure molding did. In this way, a positive electrode pellet having a higher resistance on the inner peripheral surface than that on the outer peripheral surface was obtained. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 13 was produced.

(比較例4)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
(Comparative Example 4)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、正極缶体の両端部分に相当する2個は黒鉛との配合比が94:6である正極合剤ペレットを、中心部分に相当する2個は黒鉛を配合しないペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.14を作製した。   Subsequently, as shown in FIG. 1, in the positive electrode can body 1, two of the positive electrode pellets obtained above (weight of 2.95 g) correspond to both end portions of the positive electrode can body. The positive electrode mixture pellets with a mixing ratio of 94: 6 with graphite were inserted into a total of four pellets not containing graphite, corresponding to the central portion, and repressurized in the positive electrode can 1 to recharge the positive electrode. It was made to adhere to the inner surface of the can 1. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 14 was produced.

(比較例5)
電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉および黒鉛を重量比97:3の割合で配合し、混合粉を得た。そしてこの混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを
2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
(Comparative Example 5)
Electrolytic manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, electrolytic manganese dioxide powder and graphite were blended at a weight ratio of 97: 3 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2 weight% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, it is a mixer. A granular material that was uniformly stirred and mixed to obtain a fixed particle size was prepared. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、正極缶体の両端に相当する2個は黒鉛との配合比が94:6であるペレットを、中心部分に相当する2個は黒鉛との配合比が97:3である正極ペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.15を作製した。   Subsequently, as shown in FIG. 1, among the positive electrode pellets (the weight of one piece is 2.95 g) obtained as described above, two pieces corresponding to both ends of the positive electrode can body are graphite. Insert a total of 4 pellets with a mixing ratio of 94: 6 and 2 positive pellets with a mixing ratio of 97: 3 with graphite in the center portion, and re-add in the positive electrode can 1 The positive electrode can 1 was brought into close contact with the inner surface by pressing. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 15 was produced.

(比較例5)
電解二酸化マンガンおよび黒鉛を重量比90:10の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。一方で、電解二酸化マンガン粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒した粒状物を用意した。得られた2種類の粒状物をそれぞれ中空円筒型に加圧成形し、正極ペレットを得た。
(Comparative Example 5)
Electrolytic manganese dioxide and graphite were blended at a weight ratio of 90:10 to obtain a mixed powder. And after mixing 1.5 weight part of electrolyte solution (39 weight% potassium hydroxide aqueous solution (2% of ZnO is included)) and 0.2 weight part of polyethylene binder with respect to 100 weight part of this mixed powder, a mixer is mixed. To prepare a granulated product that was uniformly stirred and mixed to adjust the particle size. On the other hand, after mixing 1.5 parts by weight of electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 part by weight of polyethylene binder with 100 parts by weight of electrolytic manganese dioxide powder Then, the mixture was uniformly stirred and mixed with a mixer to prepare a granulated product having a fixed particle size. The obtained two kinds of granular materials were each pressed into a hollow cylindrical shape to obtain a positive electrode pellet.

続いて、図1に示すように、正極缶体1の内部に、上記で得られた正極ペレット(1個の重量が2.95g)のうち、正極缶体の両端部分に相当する2個は黒鉛との配合ひが90:10である正極合剤ペレットを、中心部分に相当する2個は黒鉛を配合しないペレットを、合計4個挿入し、正極缶体1内で再加圧することによって正極缶体1の内面に密着させた。それ以外は全て電池No.1と同様にして、電池No.16を作製した。   Subsequently, as shown in FIG. 1, in the positive electrode can body 1, two of the positive electrode pellets obtained above (weight of 2.95 g) correspond to both end portions of the positive electrode can body. The positive electrode mixture pellets having a blending ratio of 90:10 with graphite were inserted in a total of four pellets not containing graphite, corresponding to the central portion, and repressurized in the positive electrode can 1 to recharge the positive electrode. It was made to adhere to the inner surface of the can 1. In all other cases, the battery No. In the same manner as in No. 1, the battery no. 16 was produced.

(電池評価)
実施例の電池(新品の電池)を16Ωの外部抵抗を介して、4個の電池を直列に接続した回路を構成し、放電を行なった。そして、電池No.6での容量を「100%」として、放電率を求めた。
(Battery evaluation)
The battery of the example (new battery) was constituted by a circuit in which four batteries were connected in series via an external resistance of 16Ω and discharged. Battery No. The discharge rate was determined by setting the capacity at 6 to “100%”.

次に、実施例の電池No.1〜電池No.10(新品の電池)を強制的に充電し、逆接続を想定したガス発生漏液試験を行った。評価方法は、16Ωの外部抵抗に3個の電池を直列に接続した回路を構成し、その回路内に1個の試験電池を逆方向にさらに接続し、試験電池が充電される状態で最大1時間の放電を行い、アルカリ乾電池の漏液の有無を調べた。比較例の電池No.11〜16に対しても、同様の試験を行って漏液の有無を調べた。ここでは、抵抗器を介して電池3個を直列に接続し、1個を逆方向に接続したものを1セットとし、各10セット(単3形アルカリ乾電池の総数はそれぞれ40個)ずつ試験して漏液の発生率(%)を求めた。表1にこれら電池の試験結果を示す。   Next, the battery No. 1 to battery no. 10 (new battery) was forcibly charged, and a gas generation leakage test assuming reverse connection was performed. The evaluation method consists of a circuit in which three batteries are connected in series to an external resistor of 16Ω, and one test battery is further connected in the reverse direction in the circuit, and the test battery is charged up to 1 After discharging for a period of time, the presence or absence of leakage of the alkaline battery was examined. Battery No. of Comparative Example A similar test was performed on 11 to 16 to check for the presence of leakage. Here, three batteries are connected in series via a resistor and one is connected in the opposite direction to make one set, and 10 sets each (total number of AA alkaline batteries is 40) are tested. The rate of occurrence of leakage (%) was determined. Table 1 shows the test results of these batteries.

電池No.11によると、正極合剤の黒鉛配合比が均質の場合、逆接続による漏液発生率は80%と高い。   Battery No. According to No. 11, when the graphite mixture ratio of the positive electrode mixture is uniform, the leakage rate due to reverse connection is as high as 80%.

電池No.1〜電池No.2および電池No.9〜電池No.10によると、円筒型正極合剤の外周部の黒鉛配合比を減らすことで、放電率は若干低下するが、逆接続による漏液を抑制する効果がある。   Battery No. 1 to battery no. 2 and battery no. 9 to Battery No. According to No. 10, by reducing the graphite blending ratio in the outer peripheral portion of the cylindrical positive electrode mixture, the discharge rate is slightly reduced, but there is an effect of suppressing leakage due to reverse connection.

電池No.3〜電池No.4および電池No.6〜電池No.7によると、円筒型正極の黒鉛配合比を変化させたペレットのうち、黒鉛配合比を減らしたペレットを正極缶体1の両端に配置することで(ペレットA、ペレットD)、放電率は若干低下するが、逆接続による漏液を抑制する効果がある。   Battery No. 3-Battery No. 4 and battery no. 6 to Battery No. 7 shows that among the pellets in which the graphite compounding ratio of the cylindrical positive electrode is changed, the pellets with a reduced graphite compounding ratio are arranged at both ends of the positive electrode can body 1 (pellet A, pellet D), and the discharge rate is slightly Although it decreases, there is an effect of suppressing leakage due to reverse connection.

電池No.5および電池No.8によると、円筒型正極の外周部の黒鉛配合比を減らし、且つ、黒鉛配合比を減らしたペレットを正極缶体1の両端に配置する、実施例2ならびに実施例4の両方の特徴を持たせることによって、放電率は若干低下するが、逆接続による漏液を抑制する効果がある。   Battery No. 5 and battery no. 8 has both the characteristics of Example 2 and Example 4 in which the graphite compounding ratio of the outer peripheral portion of the cylindrical positive electrode is reduced and the pellets with the reduced graphite compounding ratio are arranged at both ends of the positive electrode can body 1. By doing so, the discharge rate is slightly reduced, but there is an effect of suppressing leakage due to reverse connection.

電池No.12〜電池No.16によると、黒鉛配合比を減らした円筒型正極を正極缶体1の中央部に配置した場合には(ペレットB、ペレットC)、放電率は92%以下に下がった。特にペレット内側部分の黒鉛配合比を下げた比較例4及び5においては、放電率の低下が大きく、90%を下回った。それと同時に、比較例2〜5における逆接続時の漏液を抑制する効果は殆ど無かった。   Battery No. 12 to Battery No. According to No. 16, when a cylindrical positive electrode with a reduced graphite compounding ratio was placed in the center of the positive electrode can body 1 (pellet B, pellet C), the discharge rate decreased to 92% or less. Particularly in Comparative Examples 4 and 5 in which the graphite blending ratio in the inner part of the pellet was lowered, the discharge rate was greatly reduced and was lower than 90%. At the same time, there was almost no effect of suppressing leakage during reverse connection in Comparative Examples 2 to 5.

このように実施例の電池No.1〜電池No.10と比較例の電池No.11〜電池No.16とにおいて漏液の発生率に差が生じた理由としては、上記実施形態で記載したメカニズムに因るものであると推察した。   As described above, the battery No. 1 to battery no. 10 and comparative battery No. 10. 11 to battery no. It was speculated that the reason for the difference in the occurrence rate of the liquid leakage from 16 was due to the mechanism described in the above embodiment.

具体的には、単3形アルカリ乾電池を逆に接続して過充電させると、電池内部の負極から水素ガスが発生し、正極から酸素ガスが発生する。酸素ガスは正極缶の内側から、特に
正極缶体1の両端内側から多く発生する。これは正極において最も抵抗の低い箇所であり、酸素発生箇所が集中しているために気泡化していると予測できる。
Specifically, when an AA alkaline battery is reversely connected and overcharged, hydrogen gas is generated from the negative electrode inside the battery, and oxygen gas is generated from the positive electrode. A large amount of oxygen gas is generated from the inside of the positive electrode can, particularly from the inside of both ends of the positive electrode can body 1. This is the location with the lowest resistance in the positive electrode, and it can be predicted that bubbles are generated because the oxygen generation locations are concentrated.

このとき、電池No.1および電池No.2、電池No.9、電池No.10では、正極ペレットの電池缶体内側と接触する側の黒鉛を減少させて抵抗を上げたので、過放電時の酸素ガス発生箇所は電池缶体内側に集中せず、正極合剤内部でも酸素ガス発生が生じたため、電解液中の溶存酸素として負極の水素ガス発生抑制に至ったと予測できる。   At this time, the battery No. 1 and battery no. 2, Battery No. 9, Battery No. 10, the graphite on the side of the positive electrode pellet in contact with the inside of the battery can body was reduced to increase the resistance. Therefore, the oxygen gas generation site at the time of overdischarge was not concentrated inside the battery can body, and oxygen was also generated inside the positive electrode mixture. Since gas generation occurred, it can be predicted that hydrogen gas generation suppression of the negative electrode as dissolved oxygen in the electrolyte solution was reached.

また、電池No.3および電池No.4、電池No.6、電池No.7では、電池缶体の中で特に低抵抗な箇所である缶体両端部分の正極ペレットの黒鉛を減少させて抵抗を上げたので、過充電時の酸素ガスの発生箇所は正極全体に分散され、正極合剤内部でも生じたため、電解液中の溶存酸素として存在することで負極側へ到達し、負極の水素ガス発生抑制に至ったと予測できる。   Battery No. 3 and battery no. 4. Battery No. 6. Battery No. In No. 7, since the resistance was increased by reducing the graphite of the positive electrode pellets at both ends of the can body, which is a particularly low resistance portion in the battery can body, the location where oxygen gas was generated during overcharging was dispersed throughout the positive electrode. Since it also occurred inside the positive electrode mixture, it can be predicted that it has reached the negative electrode side due to the presence of dissolved oxygen in the electrolyte solution, resulting in suppression of hydrogen gas generation in the negative electrode.

さらに、電池No.5および電池No.8では、正極合剤ペレットの電池缶体内側と接触する側の黒鉛を減少させ、且つ、電池缶体の中で特に低抵抗な箇所である缶体両端部分の正極ペレットの黒鉛を減少させて抵抗をあげたので、過充電時の酸素ガス発生箇所が正極全体に分散し、正極合剤内部でも生じたため、電解液中の溶存酸素として負極の水素ガス発生抑制に至ったと予測できる。   Furthermore, the battery No. 5 and battery no. 8, the graphite on the side contacting the inside of the battery can body of the positive electrode mixture pellet is reduced, and the graphite of the positive electrode pellet on both ends of the can body, which is a particularly low resistance portion in the battery can body, is reduced. Since the resistance was increased, oxygen gas generation sites during overcharge were dispersed throughout the positive electrode, and also occurred inside the positive electrode mixture. Therefore, it can be predicted that the generation of hydrogen gas in the negative electrode was suppressed as dissolved oxygen in the electrolyte.

一方、電池No.11〜電池No.13では、正極ペレットの電池缶体内側と接触する側の黒鉛含有量は同様に含んでおり、抵抗は変わらず過充電時の酸素ガス発生箇所が電池缶体内側に集中したため、気泡化し、電解液中に溶存酸素としては存在しにくく、負極の水素ガス発生抑制が出来なかったと考えられる。   On the other hand, battery no. 11 to battery no. In No. 13, the graphite content on the side of the positive electrode pellet in contact with the inside of the battery can body similarly included, the resistance was not changed, and oxygen gas generation sites during overcharging were concentrated on the inside of the battery can body. It is considered that dissolved oxygen hardly exists in the liquid, and the hydrogen gas generation of the negative electrode could not be suppressed.

また、電池No.11、電池No.14および電池No.15では、電池缶体内部でも特に低抵抗な箇所である缶体両端部分の正極ペレットに含まれる黒鉛含有量は従来どおりであり、低抵抗箇所の抵抗に変化が無かったため、酸素ガス発生反応が集中、気泡化したため、電解液中に存在しにくく、負極の水素ガス発生抑制が出来なかったと考えられる。   Battery No. 11, Battery No. 14 and battery no. 15, the graphite content contained in the positive electrode pellets at both ends of the can body, which is a particularly low resistance portion even inside the battery can body, is the same as before, and there was no change in the resistance of the low resistance portion. Since it was concentrated and bubbled, it was difficult to exist in the electrolyte solution, and it was considered that the generation of hydrogen gas in the negative electrode could not be suppressed.

また、電池No.16では、電池缶体内部でも特に低抵抗な箇所である缶体両端部分の正極ペレットに含まれる黒鉛含有量は従来よりも増加しており、低抵抗箇所の抵抗がさらに低下したため、酸素ガス発生反応が集中、気泡化したため、電解液中に存在しにくく、負極の水素ガス発生抑制が出来なかったと考えられる。   Battery No. In No. 16, the graphite content contained in the positive electrode pellets at both ends of the can body, which is a particularly low-resistance portion even inside the battery can body, increased from the conventional level, and the resistance at the low-resistance portion was further reduced. Since the reaction was concentrated and bubbled, it was unlikely to be present in the electrolyte solution, and it was thought that the generation of hydrogen gas in the negative electrode could not be suppressed.

電池No.11に比べて電池No.12〜電池No.16の漏液率が低いのは、放電率の低下にみられるように、電池としての抵抗が上昇しているため、負極側の水素ガス発生反応自体が若干緩やかになったためと考えられる。   Battery No. Battery No. 11 12 to Battery No. The reason for the low liquid leakage rate of No. 16 is considered to be that the hydrogen gas generation reaction itself on the negative electrode side has become somewhat mild because the resistance as a battery has increased as seen in the decrease in the discharge rate.

以上説明したように、本発明は、逆接続時の安全性の向上を図るアルカリ乾電池について有用である。   As described above, the present invention is useful for alkaline batteries that improve safety during reverse connection.

1 正極缶体
2 正極
2−A 正極ペレットA
2−B 正極ペレットB
2−C 正極ペレットC
2−D 正極ペレットD
3 負極
4 セパレータ
5 封口体
6 負極集電体
7 負極端子板
8 外装ラベル
9 組立封口体
1 Positive electrode can body 2 Positive electrode 2-A Positive electrode pellet A
2-B Positive electrode pellet B
2-C Positive electrode pellet C
2-D Positive electrode pellet D
3 Negative electrode 4 Separator 5 Sealing body 6 Negative electrode current collector 7 Negative electrode terminal board 8 Exterior label 9 Assembly sealing body

Claims (6)

有底筒状の正極缶体に、中空円筒状の正極と、前記正極の中空部分に配置された負極と、前記正極と前記負極との間に配置されたセパレータと、アルカリ電解液と、を収容したアルカリ乾電池であって、
前記正極の外周面の少なくとも一部に高抵抗部を有するアルカリ乾電池。
In a bottomed cylindrical positive electrode can body, a hollow cylindrical positive electrode, a negative electrode disposed in a hollow portion of the positive electrode, a separator disposed between the positive electrode and the negative electrode, and an alkaline electrolyte, A contained alkaline battery,
An alkaline battery having a high resistance portion on at least a part of the outer peripheral surface of the positive electrode.
前記正極は正極活物質と導電剤とを含み、前記高抵抗部はその導電剤量が正極の他の部位に比べて少ない請求項1に記載のアルカリ乾電池。   The alkaline dry battery according to claim 1, wherein the positive electrode includes a positive electrode active material and a conductive agent, and the high resistance portion has a smaller amount of the conductive agent than other portions of the positive electrode. 前記外周面の高抵抗部が正極全体の50%以下である請求項1または2に記載のアルカリ乾電池。   The alkaline dry battery according to claim 1 or 2, wherein the high resistance portion of the outer peripheral surface is 50% or less of the entire positive electrode. 前記高抵抗部が、正極缶体に接触する側の部位に配置された請求項1〜3のいずれかに記載のアルカリ乾電池。   The alkaline dry battery according to any one of claims 1 to 3, wherein the high resistance portion is disposed at a site on a side in contact with the positive electrode can body. 前記高抵抗部が、正極缶体の開口部側の部位および底部側の部位の少なくとも一方である請求項1〜3のいずれかに記載のアルカリ乾電池。   The alkaline dry battery according to any one of claims 1 to 3, wherein the high resistance portion is at least one of a portion on the opening side and a portion on the bottom side of the positive electrode can body. 前記正極が、正極缶体内に積層状に充填された複数の中空円筒状正極ペレットからなり、正極缶体の開口部側および底部側に位置するペレットの導電剤量が他の位置のペレットの導電剤量より少ない請求項5に記載のアルカリ乾電池。   The positive electrode is composed of a plurality of hollow cylindrical positive electrode pellets filled in a stack in the positive electrode can body, and the conductive agent amount of the pellets located on the opening side and the bottom side of the positive electrode can body is the conductivity of the pellets at other positions. The alkaline dry battery according to claim 5, wherein the amount is less than the amount of the agent.
JP2011154535A 2011-07-13 2011-07-13 Alkaline dry battery Withdrawn JP2013020866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154535A JP2013020866A (en) 2011-07-13 2011-07-13 Alkaline dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154535A JP2013020866A (en) 2011-07-13 2011-07-13 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JP2013020866A true JP2013020866A (en) 2013-01-31

Family

ID=47692107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154535A Withdrawn JP2013020866A (en) 2011-07-13 2011-07-13 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JP2013020866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181052A1 (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181052A1 (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Alkaline battery

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
US20060046135A1 (en) Alkaline battery with MnO2/NiOOH active material
WO2012042743A1 (en) Alkaline secondary battery
CN1171336C (en) Alkaline cell with improved anode
CN1732578A (en) Alkaline cell with flat package
JP2009151958A (en) Alkaline battery
US7897282B2 (en) AA alkaline battery
US8338023B2 (en) AA alkaline battery
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
US9040196B2 (en) Alkaline primary battery
US11387496B2 (en) Method of making alkaline battery with gap between pellets
JP2009170159A (en) Aa alkaline battery
CN100347877C (en) Alkaline cell with flat housing and improved current collector
US11637278B2 (en) Alkaline dry batteries
JP2013020866A (en) Alkaline dry battery
JP6691738B2 (en) Alkaline battery
US20090181293A1 (en) Aa alkaline battery
JP2011216217A (en) Alkaline dry battery
JP2002117859A (en) Alkaline battery
JP2008071541A (en) Alkaline battery
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2021114377A (en) Alkaline battery
JP2022143474A (en) alkaline battery
JP2013004250A (en) Alkaline dry cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007