JP2013004250A - Alkaline dry cell - Google Patents

Alkaline dry cell Download PDF

Info

Publication number
JP2013004250A
JP2013004250A JP2011132965A JP2011132965A JP2013004250A JP 2013004250 A JP2013004250 A JP 2013004250A JP 2011132965 A JP2011132965 A JP 2011132965A JP 2011132965 A JP2011132965 A JP 2011132965A JP 2013004250 A JP2013004250 A JP 2013004250A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
facing portion
positive electrode
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011132965A
Other languages
Japanese (ja)
Inventor
Kazuko Asano
和子 浅野
Emiko Igaki
恵美子 井垣
Fumio Aranushi
史雄 新主
Miyuki Nakai
美有紀 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011132965A priority Critical patent/JP2013004250A/en
Publication of JP2013004250A publication Critical patent/JP2013004250A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline dry cell that has an excellent resistance characteristic to liquid leakage not only under a non-discharge state and a partial discharge state, but also under an over-discharge state.SOLUTION: The distance between a separator and a negative electrode collector is bisected in a negative electrode 3 so that the volume thereof is equally divided into two parts. When one part at the separator side is set as a positive electrode facing portion 3-2 and the other part at the negative electrode collector side is set as a negative electrode collector facing portion 3-1, the average concentration of aluminum contained in the positive electrode facing portion 3-2 is set to be higher than the average concentration of aluminum contained in the negative electrode collector facing portion 3-1, whereby occurrence of hydrogen gas after over-discharge can be suppressed with the minimum aluminum addition amount.

Description

本発明はアルカリ乾電池に関するものである。   The present invention relates to an alkaline battery.

正極に二酸化マンガン、負極に亜鉛、電解液にアルカリ水溶液を用いたアルカリ乾電池は、安価であるため、各種機器の電源として広く普及している。   Alkaline batteries using manganese dioxide for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte are inexpensive and are widely used as power sources for various devices.

従来、アルカリ乾電池の負極材としては亜鉛が用いられている。亜鉛を負極活物質に用いた電池では、亜鉛から水素発生を伴った腐食反応が激しく起こり、電池内圧の上昇及び漏液の発生を引き起こす原因となる。従って、アルカリ乾電池の耐漏液信頼性は、アルカリ電解液中での亜鉛の腐食を抑制することによって大きく向上する。   Conventionally, zinc is used as a negative electrode material for alkaline batteries. In a battery using zinc as a negative electrode active material, a corrosion reaction accompanied by hydrogen generation from zinc occurs vigorously, which causes an increase in battery internal pressure and occurrence of leakage. Therefore, the leakage resistance reliability of the alkaline battery is greatly improved by suppressing the corrosion of zinc in the alkaline electrolyte.

亜鉛の中枢防食技術として挙げられるのが、例えば、アルミニウム、インジウム、並びにビスマス及びカルシウム等の防食元素の少なくとも1種を亜鉛と合金化させて耐食性を高める技術である(例えば特許文献1参照)。インジウム、およびビスマスはそれらの元素自身の水素過電圧が高く、亜鉛に添加されると、亜鉛表面の水素過電圧を高める作用がある。また、アルミニウムは亜鉛粒子の表面を平滑化する作用があり、亜鉛の比表面積が少なくなるため、亜鉛合金の単位重量当たりの腐食量が低下することも公知となっている(例えば特許文献2参照)。一般的なアルカリ乾電池の亜鉛合金における防食元素の含有量としては、例えば、アルミニウムは亜鉛合金全量に対して0.003〜0.006重量%であり(例えば特許文献3参照)、インジウムは亜鉛合金全量に対して0.0001〜0.02重量%であり(例えば特許文献4参照)、ビスマスは亜鉛合金全量に対して0.001〜0.015重量%(例えば特許文献5参照)である。これらの技術によって、未放電保存時のアルカリ乾電池は漏液性を確保している。   Examples of the central anticorrosion technique for zinc include a technique for enhancing corrosion resistance by alloying at least one of anticorrosive elements such as aluminum, indium, bismuth and calcium with zinc (see, for example, Patent Document 1). Indium and bismuth have high hydrogen overpotential of their elements, and when added to zinc, they have the effect of increasing the hydrogen overvoltage on the zinc surface. In addition, aluminum has a function of smoothing the surface of zinc particles, and since the specific surface area of zinc is reduced, it is also known that the corrosion amount per unit weight of a zinc alloy is reduced (see, for example, Patent Document 2). ). As content of the anticorrosive element in the zinc alloy of a general alkaline dry battery, for example, aluminum is 0.003-0.006 weight% with respect to the zinc alloy whole quantity (for example, refer patent document 3), indium is a zinc alloy. The amount is 0.0001 to 0.02% by weight based on the total amount (for example, see Patent Document 4), and bismuth is 0.001 to 0.015% by weight (for example, see Patent Document 5) with respect to the total amount of the zinc alloy. With these technologies, the alkaline battery during non-discharge storage ensures liquid leakage.

防食元素として負極亜鉛合金に添加されている防食元素は、製造上の理由から、亜鉛合金内に均一に分散させることは困難で、主に、亜鉛合金の表面付近に存在しているため、部分放電すると、防食元素が含まれていない亜鉛表面が電解液に接することになる。そのため、部分的に放電した電池では亜鉛負極の水素ガス発生速度が加速され、耐漏液特性は低下する。   The anticorrosive element added to the negative electrode zinc alloy as an anticorrosive element is difficult to disperse uniformly in the zinc alloy for manufacturing reasons, and is mainly present near the surface of the zinc alloy. When discharged, the zinc surface containing no anticorrosive element comes into contact with the electrolyte. For this reason, in a partially discharged battery, the hydrogen gas generation rate of the zinc negative electrode is accelerated, and the liquid leakage resistance is deteriorated.

また、複数のアルカリ乾電池を直列接続して使用するとき、放電深度の深い状態(過放電状態)に陥った電池では、さらに負極亜鉛の溶解が進行して、電解液中への防食元素の溶出による水素発生過電圧の低下に伴い、水素ガスが発生し、より一層耐漏液特性は低下する。これに対し、防食元素の添加量を増量することで、水素ガス発生に関しては一定の抑制効果が得られている。ただし、防食元素の量が多くなる(亜鉛以外の物質(防食元素)の重量が増加する)と、亜鉛の反応効率が低くなるので、含有量自体は少ない方が好ましい(例えば特許文献6)。   In addition, when using a plurality of alkaline batteries connected in series, in a battery that has fallen into a deep discharge state (overdischarge state), the dissolution of the negative electrode zinc further proceeds, and the anticorrosive elements are eluted into the electrolyte. As the hydrogen generation overvoltage decreases due to hydrogen, hydrogen gas is generated, and the leak-proof characteristics further deteriorate. On the other hand, by suppressing the addition amount of the anticorrosive element, a certain suppression effect is obtained with respect to hydrogen gas generation. However, when the amount of the anticorrosive element increases (the weight of the substance (anticorrosive element) other than zinc increases), the reaction efficiency of zinc decreases, so that the content itself is preferably small (for example, Patent Document 6).

このように、負極に用いられる亜鉛合金中の防食元素の含有量は、水素ガス発生抑制の観点からは高い方が好ましいが、放電容量確保の観点からはより低い方が好ましい。   As described above, the content of the anticorrosive element in the zinc alloy used for the negative electrode is preferably higher from the viewpoint of suppressing the generation of hydrogen gas, but is preferably lower from the viewpoint of securing the discharge capacity.

特公平3−71737号公報Japanese Patent Publication No. 3-71737 特開2010−10012号公報JP 2010-10012 A 特開2008−171767号公報JP 2008-171767 A 特開2009−64756号公報JP 2009-64756 A 国際公開第2008/018455号International Publication No. 2008/018455 特開2009−170157号公報JP 2009-170157 A

本発明は前記従来の課題を解決するもので、未放電状態や部分放電状態においてだけでなく、過放電状態での耐漏液特性に優れたアルカリ乾電池を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide an alkaline dry battery having excellent leakage resistance not only in an undischarged state or a partial discharge state but also in an overdischarged state.

本発明のアルカリ乾電池は、負極と、前記負極と接した負極集電体と、前記負極集電体と反対側で前記負極と接したセパレータと、前記セパレータを介して前記負極と対向した正極と、前記セパレータと反対側で前記正極と接した正極集電体と、前記負極と前記正極と前記セパレータに含浸したアルカリ電解液を備えている。前記負極は、負極活物質として亜鉛合金粉末を分散させたもので構成されている。前記負極において、体積を二等分するようにセパレータから負極集電体の間の距離を二分割し、セパレータ側を正極対向部、負極集電体側を負極集電体対向部とした場合において、前記負極集電体対向部に含まれるアルミニウムの平均濃度よりも前記正極対向部に含まれるアルミニウムの平均濃度を高くすることで前記目的を達成する。なお、ここで、負極集電体対向部に含有する亜鉛合金と、正極対向部に含有する亜鉛合金の重量は等しいとする。   The alkaline dry battery of the present invention includes a negative electrode, a negative electrode current collector in contact with the negative electrode, a separator in contact with the negative electrode on the side opposite to the negative electrode current collector, and a positive electrode facing the negative electrode through the separator. And a positive electrode current collector in contact with the positive electrode on the opposite side of the separator, and an alkaline electrolyte impregnated in the negative electrode, the positive electrode and the separator. The negative electrode is composed of a zinc alloy powder dispersed as a negative electrode active material. In the negative electrode, the distance between the separator and the negative electrode current collector is divided into two so as to divide the volume into two equal parts, and when the separator side is the positive electrode facing portion and the negative electrode current collector side is the negative electrode current collector facing portion, The object is achieved by making the average concentration of aluminum contained in the positive electrode facing portion higher than the average concentration of aluminum contained in the negative electrode current collector facing portion. Here, it is assumed that the zinc alloy contained in the negative electrode current collector facing portion and the zinc alloy contained in the positive electrode facing portion have the same weight.

本発明によれば、未放電状態や部分放電状態だけでなく、過放電状態での耐漏液特性に優れたアルカリ乾電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the alkaline dry battery excellent in the leak-proof characteristic not only in a non-discharge state and a partial discharge state but in an overdischarge state can be provided.

本発明のアルカリ乾電池の一例を示す断面図である。It is sectional drawing which shows an example of the alkaline dry battery of this invention.

本発明では、アルカリ乾電池に対して、漏液性向上の観点から、一般的に使用されている防食元素の中で、安価で入手しやすいアルミニウムに着目した。亜鉛合金中のアルミニウムの含有量は水素ガス発生抑制の観点からは高い方が好ましいが、放電容量確保の観点からはより低い方が好ましい。そこで、本発明では従来のアルカリ乾電池のように、負極に用いる亜鉛合金中のアルミニウム濃度を負極全体で均一にするのではなく、局所的に変化させることで、効果的に水素ガス発生を抑制することを考えた。本願発明者らが鋭意検討した結果、負極集電体対向部3−1の亜鉛合金に含まれるアルミニウムの平均濃度よりも正極対向部3−2の亜鉛合金に含まれるアルミニウムの平均濃度を高くすることで、亜鉛合金のアルミニウムの濃度分布が負極内で均一である場合と比較し、より少量のアルミニウム量で、電池性能を低下させることなく、水素ガス発生抑制効果を高めることが出来ることを明らかにした。   In the present invention, attention has been paid to aluminum that is inexpensive and easily available from among the commonly used anticorrosive elements from the viewpoint of improving the liquid leakage of alkaline batteries. The aluminum content in the zinc alloy is preferably higher from the viewpoint of suppressing the generation of hydrogen gas, but is preferably lower from the viewpoint of securing the discharge capacity. Therefore, in the present invention, unlike the conventional alkaline battery, the aluminum concentration in the zinc alloy used for the negative electrode is not made uniform throughout the negative electrode, but is locally changed, thereby effectively suppressing the generation of hydrogen gas. I thought. As a result of intensive studies by the present inventors, the average concentration of aluminum contained in the zinc alloy of the positive electrode facing portion 3-2 is made higher than the average concentration of aluminum contained in the zinc alloy of the negative electrode current collector facing portion 3-1. Thus, compared with the case where the aluminum concentration distribution of the zinc alloy is uniform in the negative electrode, it is clear that the effect of suppressing the generation of hydrogen gas can be enhanced with a smaller amount of aluminum without reducing the battery performance. I made it.

図1に本発明のアルカリ乾電池の一例の断面図を示す。   FIG. 1 shows a cross-sectional view of an example of the alkaline dry battery of the present invention.

アルカリ乾電池は、図1に示すように、一端(図1における下端)が封じられた筒状の電池ケース1を備えており、電池ケース1の外周面には外装ラベル8が被覆されている。電池ケース1は正極端子と正極集電体とを兼ねており、電池ケース1には中空円筒状の正極2が内接している。正極2の中空部にはセパレータ4が設けられており、セパレータ4は一端が封じられた筒状に形成されており、セパレータ4の中空部には本発明で特徴付けられるゲル状負極3が設けられている。前記負極において、体積を二等分するようにセパレータから負極集電体の間の距離を二分割し、セパレータ側を正極対向部3−2、負極集
電体側を負極集電体対向部3−1とする。以上より、電池ケース1では、周縁から中心に向かうに従って、正極2、セパレータ4、正極対向部3−2、負極集電体対向部3−1の順に配置されている。
As shown in FIG. 1, the alkaline battery includes a cylindrical battery case 1 that is sealed at one end (the lower end in FIG. 1), and the outer peripheral surface of the battery case 1 is covered with an exterior label 8. The battery case 1 serves as both a positive electrode terminal and a positive electrode current collector. A hollow cylindrical positive electrode 2 is inscribed in the battery case 1. A separator 4 is provided in the hollow part of the positive electrode 2, and the separator 4 is formed in a cylindrical shape sealed at one end, and the gelled negative electrode 3 characterized by the present invention is provided in the hollow part of the separator 4. It has been. In the negative electrode, the distance between the separator and the negative electrode current collector is divided into two so as to divide the volume into two equal parts, the separator side is the positive electrode facing portion 3-2, and the negative electrode current collector side is the negative electrode current collector facing portion 3- Set to 1. As described above, in the battery case 1, the positive electrode 2, the separator 4, the positive electrode facing portion 3-2, and the negative electrode current collector facing portion 3-1 are arranged in this order from the periphery toward the center.

負極3としては、アルカリ電解液にポリアクリル酸等のゲル化剤を添加してゲル状に加工し、そのゲル状の物質に亜鉛合金粒子を分散させたものが用いられる。   As the negative electrode 3, a material obtained by adding a gelling agent such as polyacrylic acid to an alkaline electrolyte and processing the gel, and dispersing zinc alloy particles in the gel material is used.

負極集電体対向部3−1の亜鉛合金のアルミニウム含有量は、水素ガス発生量に大きく影響を与えない。対して、正極対向部3−2における高濃度のアルミニウム添加は、水素ガス発生抑制効果を生み出す。   The aluminum content of the zinc alloy in the negative electrode current collector facing portion 3-1 does not significantly affect the amount of hydrogen gas generated. On the other hand, the addition of high concentration of aluminum in the positive electrode facing portion 3-2 produces an effect of suppressing generation of hydrogen gas.

負極集電体対向部3−1における亜鉛合金のアルミニウム含有量は、最小限の水素ガス発生抑制の観点から0.001重量%以上である。また、放電容量確保の観点から0.006重量%以下が好ましい。   The aluminum content of the zinc alloy in the negative electrode current collector facing portion 3-1 is 0.001% by weight or more from the viewpoint of the minimum hydrogen gas generation suppression. Moreover, 0.006 weight% or less is preferable from a viewpoint of ensuring discharge capacity.

正極対向部3−2における亜鉛合金のアルミニウム含有量は、水素ガス発生抑制の観点から0.003重量%以上、好ましくは0.005重量%以上、より好ましくは0.03重量%以上である。ただし、アルミニウムの量が多くなると放電容量が確保できない傾向にあることから、亜鉛合金中のアルミニウムの含有量は少ないことが好ましい。0.1重量%以下とするのが好ましい。   The aluminum content of the zinc alloy in the positive electrode facing portion 3-2 is 0.003% by weight or more, preferably 0.005% by weight or more, and more preferably 0.03% by weight or more from the viewpoint of suppressing hydrogen gas generation. However, since the discharge capacity tends not to be secured when the amount of aluminum increases, the content of aluminum in the zinc alloy is preferably small. The content is preferably 0.1% by weight or less.

負極集電体対向部3−1における亜鉛合金のアルミニウム含有量は、正極対向部3−2のそれよりも少ないことが本願の特徴である。   It is a feature of the present application that the aluminum content of the zinc alloy in the negative electrode current collector facing portion 3-1 is less than that of the positive electrode facing portion 3-2.

負極集電体対向部3−1、及び正極対向部3−2における亜鉛合金のアルミニウム濃度分布は均一であるとは限らず、その平均値が既述の値であればよい。例えば、負極集電体対向部3−1と正極対向部3−2の境目付近では、正極対向部3−2から負極集電体対向部3−1にかけて、アルミニウム量の減少がある場合や、負極集電体又はセパレータ付近でのアルミニウム量の増加または減少がある場合も考えられる。   The aluminum concentration distribution of the zinc alloy in the negative electrode current collector facing portion 3-1 and the positive electrode facing portion 3-2 is not necessarily uniform, and the average value may be the value described above. For example, in the vicinity of the boundary between the negative electrode current collector facing portion 3-1 and the positive electrode facing portion 3-2, there is a decrease in the amount of aluminum from the positive electrode facing portion 3-2 to the negative electrode current collector facing portion 3-1, There may be a case where there is an increase or decrease in the amount of aluminum in the vicinity of the negative electrode current collector or separator.

また、同じ理由で、負極3の体積を二等分するようにセパレータから負極集電体の間の距離を二分割したが、必ずしもこの地点で濃度が不連続に変化していなくても良い。要するに、負極集電体対向部3−1における亜鉛合金のアルミニウム含有量は、正極対向部3−2のそれよりも少なければよい。   For the same reason, the distance between the separator and the negative electrode current collector is divided into two so as to divide the volume of the negative electrode 3 into two equal parts, but the concentration does not necessarily change discontinuously at this point. In short, the aluminum content of the zinc alloy in the negative electrode current collector facing portion 3-1 should be less than that of the positive electrode facing portion 3-2.

また、負極のアルミニウムを含有する形態としては、亜鉛と合金化していても良いし、合金化していなくても良いが、合金化している形態が望ましい。合金化していない形態としては、例えば水酸化アルミニウムと亜鉛合金を分散させる形態がある。   Moreover, as a form containing aluminum of a negative electrode, although it may be alloyed with zinc and does not need to be alloyed, the form alloyed is desirable. As a form which is not alloyed, for example, there is a form in which aluminum hydroxide and a zinc alloy are dispersed.

電池ケース1の開口(図1における下端)は、組立封口体9により封じられている。組立封口体9は、釘型の負極集電体6と負極端子板7と樹脂封口体5とが一体化されたものであり、負極端子板7は負極集電体6に電気的に接続されており、樹脂封口体5は負極集電体6および負極端子板7に物理的に固定されている。   The opening (lower end in FIG. 1) of the battery case 1 is sealed by an assembly sealing body 9. The assembly sealing body 9 is obtained by integrating a nail-type negative electrode current collector 6, a negative electrode terminal plate 7, and a resin sealing body 5. The negative electrode terminal plate 7 is electrically connected to the negative electrode current collector 6. The resin sealing body 5 is physically fixed to the negative electrode current collector 6 and the negative electrode terminal plate 7.

正極2、負極3およびセパレータ4には、アルカリ電解液が含まれている。アルカリ電解液としては、水酸化カリウムを30〜40重量%含有し、酸化亜鉛を1〜3重量%含有する水溶液が用いられる。   The positive electrode 2, the negative electrode 3, and the separator 4 contain an alkaline electrolyte. As the alkaline electrolyte, an aqueous solution containing 30 to 40% by weight of potassium hydroxide and 1 to 3% by weight of zinc oxide is used.

一般的には図1のように負極集電体6が挿入された負極3の外周にセパレータを介して正極2が位置しているが、正極の外周にセパレータを介して負極が位置していても、負極
のアルミニウム含有量の条件を満たすものであれば、同様の効果が得られる。その場合、電池ケースが負極集電体となる。
In general, the positive electrode 2 is located on the outer periphery of the negative electrode 3 with the negative electrode current collector 6 inserted as shown in FIG. 1 via a separator, but the negative electrode is located on the outer periphery of the positive electrode via a separator. If the conditions of the aluminum content of a negative electrode are satisfy | filled, the same effect will be acquired. In that case, the battery case serves as the negative electrode current collector.

本発明の実施例を以下に示す。本実施例では、以下に示す方法に従って単3形アルカリ乾電池を製造した後、過放電させ、電池分解後取り出した負極をKOH液中に浸漬し、亜鉛の自己腐食による水素発生量を測定することで、本発明の水素ガス発生抑制効果を確認した。   Examples of the present invention are shown below. In this example, an AA alkaline battery was manufactured according to the method described below, then overdischarged, the negative electrode taken out after battery decomposition was immersed in KOH solution, and the amount of hydrogen generated by zinc self-corrosion was measured. The hydrogen gas generation suppression effect of the present invention was confirmed.

(実施例1の単3形アルカリ乾電池の製造方法)
まず、34.5重量%の水酸化カリウム水溶液(ZnOを2重量%含む)にゲル化剤を加えて混合し、ゲル化させた。これにより、ゲル状の電解液を得た。ゲル化剤は例えばポリアクリル酸やポリアクリル酸ナトリウムなどの各種高分子ゲル化剤が使用できる。各重量比率は水酸化カリウム水溶液の重量:ゲル化剤重量=100:2.2である。
その後、上記で得られたゲル状の電解液を24時間静置して十分に熟成させた。
(Method for producing AA alkaline battery of Example 1)
First, a gelling agent was added to a 34.5% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO) and mixed to cause gelation. As a result, a gel electrolyte was obtained. As the gelling agent, various polymer gelling agents such as polyacrylic acid and sodium polyacrylate can be used. Each weight ratio is weight of potassium hydroxide aqueous solution: weight of gelling agent = 100: 2.2.
Thereafter, the gel electrolyte solution obtained above was allowed to stand for 24 hours and sufficiently aged.

さらに、上記で得たゲル状の電解液に、ガスアトマイズ法によって作製したアルミニウム0.005重量%含有亜鉛合金粒子と、リン酸系界面活性剤とを十分に混合した。各重量比率はゲル状の電解液:アルミニウム0.005重量%含有亜鉛合金粒子:リン酸系界面活性剤=50:100:0.005である。これにより、アルミニウム濃度の低いゲル状の負極を得た。一方でアルミニウム0.06重量%含有亜鉛合金粒子を用い、同様の方法でアルミニウム濃度が高いゲル状の負極を得た。   Furthermore, 0.005 wt% aluminum-containing zinc alloy particles produced by a gas atomizing method and a phosphoric acid surfactant were sufficiently mixed with the gel electrolyte solution obtained above. Each weight ratio is gel electrolyte solution: aluminum containing 0.005% by weight of zinc alloy particles: phosphate surfactant = 50: 100: 0.005. Thereby, a gelled negative electrode having a low aluminum concentration was obtained. On the other hand, using a zinc alloy particle containing 0.06% by weight of aluminum, a gelled negative electrode having a high aluminum concentration was obtained in the same manner.

正極合剤ペレットは、まず、二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉を得た。そして、この混合粉100重量部に対し電解液(39重量%の水酸化カリウム水溶液(ZnOを2重量%含む))1.5重量部とポリエチレンバインダー0.2重量部とを混合した。その後、ミキサーで均一に撹拌且つ混合して一定の粒度に整粒し、得られた粒状物を加圧して中空円筒型に成形した。このようにして、正極合剤ペレットを得た。   First, manganese dioxide and graphite were blended in a weight ratio of 94: 6 to obtain a mixed powder. Then, 1.5 parts by weight of an electrolytic solution (39% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO)) and 0.2 parts by weight of a polyethylene binder were mixed with 100 parts by weight of the mixed powder. Thereafter, the mixture was uniformly stirred and mixed with a mixer to adjust the particle size to a constant particle size, and the resulting granular material was pressed into a hollow cylindrical shape. In this way, a positive electrode mixture pellet was obtained.

続いて、評価用の単3形アルカリ乾電池の作製を行った。具体的には、図1に示すように、電池ケース1の内部に、上記で得られた正極合剤ペレット(1個の重量が2.95g)を4個挿入し、電池ケース1内で再加圧することによって電池ケース1の内面に密着させた。そして、この正極合剤ペレットの内側にセパレータ4と電池ケース1の底部を絶縁するための底紙とを挿入した後、電解液(34.5重量%の水酸化カリウム水溶液(ZnOを2重量%含む))を1.5g注液した。注液後、アルミニウム濃度が低いゲル状負極を負極集電体対向部3−1部分に3.1g(亜鉛合金の粒子の重量は2.05g)、アルミニウム濃度が高いゲル状負極を正極対向部3−2部分に3.1g充填し、負極集電体対向部3−1よりも正極対向部3−2の方がアルミニウム濃度の高い負極を得た。   Subsequently, an AA alkaline battery for evaluation was produced. Specifically, as shown in FIG. 1, four positive electrode mixture pellets (the weight of one is 2.95 g) obtained above are inserted into the battery case 1, and the battery case 1 is reused in the battery case 1. The pressure was applied to the inner surface of the battery case 1. And after inserting the separator 4 and the base paper for insulating the bottom part of the battery case 1 inside this positive mix pellet, electrolyte solution (34.5 weight% potassium hydroxide aqueous solution (ZnO 2 weight%) 1.5 g) was injected. After injection, 3.1 g of the gelled negative electrode having a low aluminum concentration was applied to the negative electrode current collector facing portion 3-1 (the weight of the zinc alloy particles was 2.05 g), and the gelled negative electrode having a high aluminum concentration was connected to the positive electrode facing portion The 3-2 portion was filled with 3.1 g, and a negative electrode having a higher aluminum concentration in the positive electrode facing portion 3-2 than in the negative electrode current collector facing portion 3-1 was obtained.

その後、樹脂封口体5、負極端子板7および負極集電体6が一体化された組立封口体9を用いて電池ケース1の開口を封じた。具体的には、負極集電体6を負極3に差し込み、樹脂封口体5の端部を介して、電池ケース1の開口の縁に負極端子板7の周縁部をかしめつけて、負極端子板7を電池ケース1の開口に密着させた。それから、電池ケース1の外表面に外装ラベル8を被覆し、実施例にかかる単3形アルカリ乾電池を作製した。   Thereafter, the opening of the battery case 1 was sealed using an assembly sealing body 9 in which the resin sealing body 5, the negative electrode terminal plate 7, and the negative electrode current collector 6 were integrated. Specifically, the negative electrode current collector 6 is inserted into the negative electrode 3, and the peripheral edge portion of the negative electrode terminal plate 7 is crimped to the edge of the opening of the battery case 1 through the end portion of the resin sealing body 5, thereby 7 was brought into close contact with the opening of the battery case 1. Then, the outer surface of the battery case 1 was covered with an exterior label 8 to produce an AA alkaline battery according to the example.

(比較例1の単3形アルカリ乾電池の製造方法)
構成成分の作製方法は上記実施例と同様である。評価用の単3形アルカリ乾電池の作製時に、正極合剤ペレットの内側にセパレータ4と電池ケース1の底部を絶縁するための底紙とを挿入した後、電解液1.5gを注液後、アルミニウム濃度が高いゲル状負極を負極
集電体対向部3−1に3.1g(亜鉛合金の粒子の重量は2.05g)、アルミニウム濃度が低いゲル状負極を正極対向部3−2に3.1g充填し、正極対向部3−2より負極集電体対向部3−1の方がよりアルミニウム濃度が高い負極を得た。それ以外は全て上記実施例にかかる単3形アルカリ乾電池の製造方法と同様にして、比較例1用の単3形アルカリ乾電池を作製した。
(Manufacturing method of the AA alkaline battery of Comparative Example 1)
The method for producing the constituent components is the same as in the above examples. At the time of producing an AA alkaline battery for evaluation, the separator 4 and a bottom paper for insulating the bottom of the battery case 1 were inserted inside the positive electrode mixture pellet, and then 1.5 g of electrolyte was injected, The gelled negative electrode with a high aluminum concentration is 3.1 g (the weight of zinc alloy particles is 2.05 g) in the negative electrode current collector facing portion 3-1, and the gelled negative electrode with a low aluminum concentration is 3 in the positive electrode facing portion 3-2. 0.1 g was filled, and a negative electrode having a higher aluminum concentration in the negative electrode current collector facing portion 3-1 than in the positive electrode facing portion 3-2 was obtained. Except for this, an AA alkaline battery for Comparative Example 1 was produced in the same manner as in the method for producing an AA alkaline battery according to the above example.

(比較例2の単3形アルカリ乾電池の製造方法)
ガスアトマイズ法によって作製したアルミニウム0.005重量%含有亜鉛合金粒子を用い、実施例と同様に各重量比率がゲル状の電解液:アルミニウム0.005重量%含有亜鉛粒子:リン酸系界面活性剤=50:100:0.005のアルミニウム濃度の低いゲル状の負極を得た。比較例1では負極全体でアルミニウム濃度を0.005重量%にしたため、負極集電体対向部3−1、3−2の区別はないことから、負極3と記載する。
(Method for producing AA alkaline battery of Comparative Example 2)
Using zinc alloy particles containing 0.005% by weight of aluminum produced by gas atomization method, and each weight ratio is a gel-like electrolyte solution as in the example: zinc particles containing 0.005% by weight of aluminum: phosphate surfactant = A gelled negative electrode with a low aluminum concentration of 50: 100: 0.005 was obtained. In Comparative Example 1, since the aluminum concentration in the entire negative electrode was 0.005% by weight, there is no distinction between the negative electrode current collector facing portions 3-1 and 3-2.

評価用の単3形アルカリ乾電池の作製時には正極合剤ペレットの内側にセパレータ4と電池ケース1の底部を絶縁するための底紙とを挿入した後、電解液1.5gを注液、セパレータ4の内側にゲル状の負極3を6.2g(亜鉛合金の粒子の重量は4.1g)充填した。その後、樹脂封口体5、負極端子板7および負極集電体6が一体化された組立封口体9を用いて電池ケース1の開口を封じた。それ以外は全て上記実施例にかかる単3形アルカリ乾電池の製造方法と同様にして、比較例2用の単3形アルカリ乾電池を作製した。   When producing an AA alkaline battery for evaluation, the separator 4 and a bottom paper for insulating the bottom of the battery case 1 were inserted inside the positive electrode mixture pellet, and then 1.5 g of an electrolytic solution was injected, and the separator 4 The gel-like negative electrode 3 was filled in 6.2 g (zinc alloy particle weight is 4.1 g). Thereafter, the opening of the battery case 1 was sealed using an assembly sealing body 9 in which the resin sealing body 5, the negative electrode terminal plate 7, and the negative electrode current collector 6 were integrated. Except for this, an AA alkaline battery for Comparative Example 2 was produced in the same manner as in the method for producing an AA alkaline battery according to the above example.

(比較例3の単3形アルカリ乾電池の製造方法)
各々ガスアトマイズ法によって作製した、アルミニウム0.06重量%含有亜鉛合金粒子を用いた。それ以外は全て上記比較例2にかかる単3形アルカリ乾電池の製造方法と同様にして、比較例3の単3形アルカリ乾電池を作製した。
(Manufacturing method of the AA alkaline battery of Comparative Example 3)
Zinc alloy particles containing 0.06% by weight of aluminum, each produced by a gas atomization method, were used. Except for this, an AA alkaline battery of Comparative Example 3 was produced in the same manner as in the method for producing an AA alkaline battery of Comparative Example 2 above.

(水素ガス量評価)
実施例1または比較例の電池1本と一般に市販されている単三アルカリ乾電池3本を直列接続し、室温環境下で抵抗素子(16Ω)による定抵抗放電を行い、実施例1または比較例の電池1本を過放電させ、その後の放電容量がほぼ同量になる時点で回路を遮断した。電池を分解した後、負極を取り出し、ガラス容器(サンプル管)に密閉した。
(Evaluation of hydrogen gas amount)
One battery of Example 1 or a comparative example and three AA alkaline batteries that are generally commercially available are connected in series, and a constant resistance discharge is performed with a resistance element (16Ω) in a room temperature environment. One battery was overdischarged, and the circuit was cut off when the discharge capacity thereafter became substantially the same. After the battery was disassembled, the negative electrode was taken out and sealed in a glass container (sample tube).

上記ガラス容器にKOH水溶液(43wt%)を添加し、負極を浸漬した。KOH水溶液中で亜鉛が腐食することにより発生する水素ガス量を水上置換で捕集し、測定した。   A KOH aqueous solution (43 wt%) was added to the glass container, and the negative electrode was immersed therein. The amount of hydrogen gas generated by corrosion of zinc in KOH aqueous solution was collected by water displacement and measured.

発生水素ガス量は、本来のガス発生抑制効果を評価するため、残留亜鉛単位重量当りに換算した。表1に130時間後の残留亜鉛単位重量当りの発生水素ガス量と1V到達時の放電容量を示す。尚、130時間後の発生ガス量についても傾向は同様であった。   The amount of generated hydrogen gas was converted per unit weight of residual zinc in order to evaluate the original gas generation suppression effect. Table 1 shows the amount of hydrogen gas generated per unit weight of residual zinc after 130 hours and the discharge capacity when 1V is reached. The trend was similar for the amount of gas generated after 130 hours.

Figure 2013004250
Figure 2013004250

亜鉛合金のアルミニウム濃度が、負極全体で同一な場合(負極集電体対向部3−1のアルミニウム濃度=正極対向部3−2のアルミニウム濃度)、比較例2より比較例3の方が、水素ガス発生量は少ない。これは亜鉛合金に含有するアルミニウム濃度が高いほど、水素ガス抑制効果が高いことを示している。   When the aluminum concentration of the zinc alloy is the same throughout the negative electrode (the aluminum concentration of the negative electrode current collector facing portion 3-1 = the aluminum concentration of the positive electrode facing portion 3-2), the comparative example 3 is more hydrogen than the comparative example 2. The amount of gas generated is small. This indicates that the higher the aluminum concentration contained in the zinc alloy, the higher the hydrogen gas suppression effect.

実施例1と比較例1を比較すると、正極対向部3−2のアルミニウム濃度が負極集電体対向部3−1のアルミニウム濃度よりも高い実施例1のほうが、水素ガス発生量は少ない。負極集電体対向部3−1と正極対向部3−2の重量は同値であり、実施例1と比較例1の負極全体(負極集電体対向部3−1と正極対向部3−2の合計)に含まれるアルミニウム量は等しい。よって、負極全体に含まれるアルミニウム量を維持しつつも、正極対向部3−2のアルミニウム濃度を負極集電体対向部3−1のアルミニウム濃度より高くすることで、効果的に水素ガス発生の抑制が出来ることを確認した。   When Example 1 and Comparative Example 1 are compared, the amount of hydrogen gas generated is smaller in Example 1 in which the aluminum concentration in the positive electrode facing portion 3-2 is higher than the aluminum concentration in the negative electrode current collector facing portion 3-1. The negative electrode current collector facing portion 3-1 and the positive electrode facing portion 3-2 have the same weight, and the entire negative electrode of Example 1 and Comparative Example 1 (the negative electrode current collector facing portion 3-1 and the positive electrode facing portion 3-2). The amount of aluminum contained in the total) is equal. Therefore, while maintaining the amount of aluminum contained in the entire negative electrode, by making the aluminum concentration in the positive electrode facing portion 3-2 higher than the aluminum concentration in the negative electrode current collector facing portion 3-1, it is possible to effectively generate hydrogen gas. It was confirmed that suppression was possible.

比較例1と比較例2を比較すると、負極全体に含まれるアルミニウム量は比較例1のほうが大きいにもかかわらず、水素ガス発生量はほぼ同等である。このことから、負極集電体対向部3−1のアルミニウム濃度を高くしても、水素ガス発生抑制効果は変化しないと考えられる。従って、負極集電体対向部3−1のアルミニウム濃度が水素ガス発生量に与える影響は小さいことが明らかとなった。   Comparing Comparative Example 1 and Comparative Example 2, although the amount of aluminum contained in the whole negative electrode is larger in Comparative Example 1, the amount of hydrogen gas generated is almost the same. From this, even if the aluminum concentration of the negative electrode current collector facing portion 3-1 is increased, it is considered that the hydrogen gas generation suppressing effect does not change. Therefore, it has been clarified that the influence of the aluminum concentration in the negative electrode current collector facing portion 3-1 on the hydrogen gas generation amount is small.

実施例1は比較例2よりも水素ガス発生量は少ない。これには、負極全体に含まれるアルミニウム量が、実施例1>比較例2であることが関係している可能性もあるが、既述の結果を踏まえると、正極対向部3−2に高アルミニウム濃度含有亜鉛合金を用いることで、より水素ガス発生を抑制できたと考えられる。   Example 1 generates less hydrogen gas than Comparative Example 2. This may be related to the fact that the amount of aluminum contained in the entire negative electrode is Example 1> Comparative Example 2. However, based on the results described above, the amount of aluminum in the positive electrode facing portion 3-2 is high. It is considered that hydrogen gas generation could be further suppressed by using an aluminum concentration-containing zinc alloy.

実施例1と比較例3の水素ガス発生量はほぼ同等である。水素ガス発生量は、正極対向部3−2から発生する水素ガス量からの寄与が大きいことが、この比較からも明らかとなった。   The hydrogen gas generation amounts of Example 1 and Comparative Example 3 are substantially equal. It was also clarified from this comparison that the hydrogen gas generation amount greatly contributed from the hydrogen gas amount generated from the positive electrode facing portion 3-2.

今回の検討では、放電容量(1V止めの場合)は比較例2>比較例1≒実施例1>比較例3の順であった。アルミニウム濃度の高い部分を設けることで、実施例1及び比較例1はアルミニウム濃度の低い比較例2よりも放電容量が低下してしまったが、水素ガス発生抑制効果が同程度な実施例1と比較例3の比較において、比較例3よりも放電容量が大きかった。従って、本発明の考え方で、放電容量の低下を抑えながら、効率的なガス発生抑制効果を引き出せると考えられる。   In this study, the discharge capacity (in the case of stopping 1 V) was in the order of Comparative Example 2> Comparative Example 1≈Example 1> Comparative Example 3. By providing a portion with a high aluminum concentration, the discharge capacity in Example 1 and Comparative Example 1 was lower than that in Comparative Example 2 with a low aluminum concentration. In comparison with Comparative Example 3, the discharge capacity was larger than that of Comparative Example 3. Therefore, it is considered that the effect of suppressing the generation of gas efficiently can be brought out by suppressing the reduction of the discharge capacity by the concept of the present invention.

以上の結果より、本検討で用いた過放電経験セルの水素ガス発生に影響を与えているのは、負極集電体対向部3−1よりも正極対向部3−2の亜鉛合金から発生する水素ガスであり、正極対向部3−2の亜鉛合金のアルミニウム濃度を、負極集電体対向部3−1の亜鉛合金のアルミニウム濃度よりも高くすることによって、最小限のアルミニウム添加量で、電池性能を低下させることなく、過放電状態での耐漏液性の向上したアルカリ乾電池を提供することが出来ることが明らかとなった。また、未放電および部分放電状態についても、同様のガス発生抑制効果があることは言うまでもない。   From the above results, it is generated from the zinc alloy of the positive electrode facing portion 3-2 rather than the negative electrode current collector facing portion 3-1, that affects the hydrogen gas generation of the overdischarge experience cell used in this study. By making the aluminum concentration of the zinc alloy of the positive electrode facing portion 3-2 higher than the aluminum concentration of the zinc alloy of the negative electrode current collector facing portion 3-1 by hydrogen gas, It became clear that an alkaline dry battery having improved leakage resistance in an overdischarged state can be provided without degrading performance. Further, it goes without saying that the same gas generation suppression effect is obtained in the undischarged and partially discharged states.

本実施例は、図1に示す構造のアルカリ乾電池の実施結果であるが、この構成に左右されず、本発明の負極亜鉛合金のアルミニウム含有量の条件を満たすものであれば、他の構成でも効果があることは言うまでもない。   This example is an implementation result of the alkaline dry battery having the structure shown in FIG. 1, but is not influenced by this configuration, and other configurations can be used as long as they satisfy the condition of the aluminum content of the negative electrode zinc alloy of the present invention. Needless to say, it is effective.

本発明のアルカリ電池は高い信頼性を有し、乾電池を電源とするあらゆる機器に好適に用いられる。単セル使用時だけでなく、多セル直列接続使用時に特に効果がある。   The alkaline battery of the present invention has high reliability and can be suitably used for any device that uses a dry battery as a power source. This is particularly effective not only when a single cell is used but also when a multi-cell series connection is used.

1 電池ケース
2 正極
3 負極
3−1 負極集電体対向部
3−2 正極対向部
4 セパレータ
5 封口体
6 負極集電体
7 負極端子板
8 外装ラベル
9 組立封口体
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode 3 Negative electrode 3-1 Negative electrode collector opposing part 3-2 Positive electrode opposing part 4 Separator 5 Sealing body 6 Negative electrode collector 7 Negative electrode terminal board 8 Exterior label 9 Assembly sealing body

Claims (2)

亜鉛粉末を主体とする負極と、前記負極と接した負極集電体と、前記負極集電体と反対側で前記負極と接したセパレータと、前記セパレータを介して前記負極と対向した正極と、前記セパレータと反対側で前記正極と接した正極集電体と、前記負極と前記正極と前記セパレータに含浸したアルカリ電解液を備え、前記負極の体積を二等分するようにセパレータから負極集電体の間の距離を二分割し、セパレータ側を正極対向部、負極集電体側を負極集電体対向部とした場合において、前記負極集電体対向部に含まれるアルミニウムの平均濃度よりも前記正極対向部に含まれるアルミニウムの平均濃度が高いアルカリ乾電池。   A negative electrode mainly composed of zinc powder, a negative electrode current collector in contact with the negative electrode, a separator in contact with the negative electrode on the side opposite to the negative electrode current collector, a positive electrode facing the negative electrode through the separator, A positive electrode current collector in contact with the positive electrode on the side opposite to the separator; an alkaline electrolyte impregnated in the negative electrode, the positive electrode, and the separator; and the negative electrode current collector from the separator so as to bisect the volume of the negative electrode When the distance between the bodies is divided into two, the separator side is the positive electrode facing part, and the negative electrode current collector side is the negative electrode current collector facing part, the average concentration of aluminum contained in the negative electrode current collector facing part An alkaline battery having a high average concentration of aluminum contained in the positive electrode facing portion. 前記負極が主として亜鉛とアルミニウムとの合金粉末からなる、請求項1記載のアルカリ乾電池。   The alkaline dry battery according to claim 1, wherein the negative electrode is mainly composed of an alloy powder of zinc and aluminum.
JP2011132965A 2011-06-15 2011-06-15 Alkaline dry cell Withdrawn JP2013004250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132965A JP2013004250A (en) 2011-06-15 2011-06-15 Alkaline dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132965A JP2013004250A (en) 2011-06-15 2011-06-15 Alkaline dry cell

Publications (1)

Publication Number Publication Date
JP2013004250A true JP2013004250A (en) 2013-01-07

Family

ID=47672641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132965A Withdrawn JP2013004250A (en) 2011-06-15 2011-06-15 Alkaline dry cell

Country Status (1)

Country Link
JP (1) JP2013004250A (en)

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
US20090317711A1 (en) Aa alkaline battery
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP5172181B2 (en) Zinc alkaline battery
JP4222488B2 (en) Alkaline battery
JPWO2018163485A1 (en) Alkaline battery
JP4736345B2 (en) Alkaline battery
JP5409975B1 (en) Alkaline battery
JP2006040887A (en) Alkaline battery
JP2008041490A (en) Alkaline battery
JP2008047497A (en) Alkaline battery
US20200388838A1 (en) Alkaline battery
JP2013004250A (en) Alkaline dry cell
JP2005276698A (en) Alkaline battery
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP2009043547A (en) Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
CN113439355A (en) Alkaline dry cell
JP2007188714A (en) Positive electrode mixture and alkaline cell
JP2002117859A (en) Alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
CN102867961A (en) Electrode material for disposable alkaline battery
JP2009170158A (en) Aa alkaline battery
JP2008071541A (en) Alkaline battery
JP2008135400A (en) Alkaline dry cell
JP2012124056A (en) Negative electrode plate for lead acid battery and lead acid battery using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902