JP2015136580A - 光走査型内視鏡装置 - Google Patents

光走査型内視鏡装置 Download PDF

Info

Publication number
JP2015136580A
JP2015136580A JP2014011516A JP2014011516A JP2015136580A JP 2015136580 A JP2015136580 A JP 2015136580A JP 2014011516 A JP2014011516 A JP 2014011516A JP 2014011516 A JP2014011516 A JP 2014011516A JP 2015136580 A JP2015136580 A JP 2015136580A
Authority
JP
Japan
Prior art keywords
light
light emission
mode
image
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014011516A
Other languages
English (en)
Other versions
JP6180335B2 (ja
Inventor
啓一朗 中島
Keiichiro Nakajima
啓一朗 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014011516A priority Critical patent/JP6180335B2/ja
Publication of JP2015136580A publication Critical patent/JP2015136580A/ja
Application granted granted Critical
Publication of JP6180335B2 publication Critical patent/JP6180335B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Microscoopes, Condenser (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

【課題】偽色と色ずれの発生を抑制できる、光走査型内視鏡装置を提供する。【解決手段】光走査型内視鏡装置10は、複数の異なる波長の光を選択的に射出する光源の発光タイミングを制御する発光タイミング制御部32と、光源からの光を対象物上で繰り返し走査させる走査手段と、光の照射により対象物から得られる光を検出して電気信号に変換する光検出部35と、光検出部からの電気信号に基づいて画像信号を生成する信号処理部37とを備え、発光タイミング制御部は、走査中に、光源からの光の波長を、前回の走査の発光順序とは異なる発光順序で切り替えることを特徴とする。【選択図】図1

Description

本発明は、対象物を光走査する光走査型内視鏡装置に関する。
従来の光走査型内視鏡装置として、赤色(以下、「R」とする。)、緑色(以下、「G」とする。)、及び青色(以下、「B」とする。)の光を、1回の走査ごとに(すなわち1画像の撮影ごとに)切り替えて対象物に照射して、各走査のそれぞれで得られるデジタル信号に基づいて生成された画像どうしを合成して、カラーの表示用画像を得るものが、知られている(例えば、特許文献1)。
特開2011−125598号公報
しかしながら、特許文献1の技術では、R、G、Bの光の走査中に、対象物と内視鏡装置との間に相対的な動きがある場合(すなわち画像内での対象物の位置が変位する場合)、各走査で得られるデジタル信号に基づいて生成された表示用画像内で、対象物が色ごとにずれて現れる現象(以下、「色ずれ」という。)が生ずるという問題があった。
一方、色ずれの発生を抑制するための技術としては、1回の走査中に、R、G、Bの光を画像の画素ごとに切り替えて対象物に照射して、画素毎に足りない色については周辺画素から補間処理することにより、カラーの表示用画像を作成するものが、考えられる。しかし、このような補間処理をする結果、画像内で対象物の色が実際とは異なる色で現れる現象(以下、「偽色」という。)が生ずるおそれがある。また、画像処理により偽色の発生を抑制しようとすると、画像の解像度が低下するおそれがある。
したがって、この点に着目してなされた本発明の目的は、偽色と色ずれの発生を抑制できる、光走査型内視鏡装置を提供することにある。
上記目的を達成する光走査型内視鏡装置の発明は、
複数の異なる波長の光を選択的に射出する光源の発光タイミングを制御する発光タイミング制御部と、
前記光源からの光を対象物上で繰り返し走査させる走査手段と、
前記光の照射により前記対象物から得られる光を検出して電気信号に変換する光検出部と、
前記光検出部からの電気信号に基づいて画像信号を生成する信号処理部と
を備え、
前記発光タイミング制御部は、走査中に、前記光源からの光の波長を、前回の走査の発光順序とは異なる発光順序で切り替えることを特徴とする。
前記発光タイミング制御部は、複数回の走査にわたって、走査軌跡上の同一位置に複数の異なる波長の光が照射されるようにすることが好ましい。
1回の走査で得られる前記画像信号に基づき1つの表示用画像を生成する第1画像モードと、複数回の走査で得られる前記画像信号に基づき1つの表示用画像を生成する第2画像モードとを、切り替えることができると好適である。
ユーザによるボタン操作に応じて、前記第1画像モード及び前記第2画像モードの切り替えを行うのが好適である。
光走査型内視鏡装置は、前記対象物との間の相対的な動きを検出する動き検出部をさらに備え、
前記動き検出部による検出結果に応じて、前記第1画像モード及び前記第2画像モードの切り替えを行うようにしてもよい。
前記発光タイミング制御部が、走査中に、前記光源からの光の波長を、前回の走査の発光順序とは異なる発光順序で切り替えるモードを第1発光モードとするとき、前記発光タイミング制御部は、走査ごとに、前回の走査で発光された光の波長とは異なる1つの波長の光を発光させる第2発光モードをさらに有し、前記第2画像モード下において、前記第1発光モードと前記第2発光モードとを切り替えることができると好ましい。
本発明によれば、偽色と色ずれの発生を抑制できる、光走査型内視鏡装置を提供することができる。
第1実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。 図1のスコープを概略的に示す概観図である。 図2のスコープの先端部の断面図である。 図3の駆動部および照明用光ファイバの揺動部を示す図であり、図4(a)は側面図、図4(b)は図4(a)のA−A線断面図である。 第1実施の形態において第1発光モード及び第1画像モードを組み合わせた例を説明するための図である。 図5の例における走査軌跡と画素番号との関係を説明するための図である。 図5の例において、走査ごとに各画素にて照射される光の波長(色)を説明するための図である。 第2実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。 第2実施の形態において第1発光モード及び第2画像モードを組み合わせた例を説明するための図である。 第3実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。 第4実施の形態において第2発光モード及び第2画像モードを組み合わせた例を説明するための図である。 第1発光モードの他の例を説明するための図である。 図4の駆動部の変形例を説明するための図であり、図13(a)はスコープの先端部の断面図、図13(b)は図13(a)の駆動部を拡大して示す斜視図であり、図13(c)は、図13(b)の偏向磁場発生用コイルおよび永久磁石を含む部分の光ファイバの軸に垂直な面による断面図である。
以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
図1〜図7を参照して、本発明の第1実施の形態を説明する。図1は、第1実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。図1において、光走査型内視鏡装置10は、スコープ20と、制御装置本体30と、ディスプレイ40とを、備えている。
まず、制御装置本体30の構成を説明する。制御装置本体30は、光走査型内視鏡装置10全体を制御する制御部31と、発光タイミング制御部32と、レーザ33R、33G、33B(光源)と、結合器34と、駆動制御部38と、光検出器35(光検出部)と、ADC(アナログ−デジタル変換器)36と、信号処理部37とを、備えている。
レーザ33R、33G、33Bは、発光タイミング制御部32による制御に従って、複数の異なる波長(本実施の形態では、R、G及びBの3色の波長)の光を選択的に射出する光源を構成している。ここで、「複数の異なる波長の光を選択的に射出する」とは、すなわち、発光タイミング制御部32により選択されたいずれか1つの波長の光を、発光タイミング制御部32により選択されたタイミングで射出することを意味する。レーザ33R、33G、33Bとしては、例えばDPSSレーザ(半導体励起固体レーザ)やレーザダイオードを使用することができる。
発光タイミング制御部32は、制御部31からの制御信号に応じて、光源の発光タイミングを制御する。後述するように、本実施の形態において、発光タイミング制御部32は、1回の走査中に、光源からのR、G、Bの光の波長を、前回の走査の発光順序とは異なる発光順序で、一定の時間間隔(発光周期T)毎に切り替える。なお、以下、このような発光タイミング制御方式を、「第1発光モード」という。
ここで、「1回の走査」とは、1画像を撮影するために、走査軌跡の始点から終点まで1回走査することを意味している。また、「発光周期T」とは、光源を構成するレーザ33R、33G、33Bのそれぞれの発光周期を意味するのではなく、光源から順次射出される光の発光周期を意味している。
レーザ33R、33G、33Bから射出されるレーザ光は、結合器34により同軸に合成された光路を経て、照明光としてシングルモードファイバである照明用光ファイバ11に入射される。結合器34は、例えばダイクロイックプリズム等を用いて構成される。
レーザ33R、33G、33Bおよび結合器34は、制御装置本体30と信号線で結ばれた、制御装置本体30とは別の筐体に収納されていても良い。
結合器34から照明用光ファイバ11に入射した光は、スコープ20の先端部まで導光され、対象物100に照射される。その際、制御装置本体30の駆動制御部38は、スコープ20の駆動部21を振動駆動することによって、照明用光ファイバ11の先端部を振動駆動する。これにより、照明用光ファイバ11から射出された照明光は、対象物100の観察表面上を、本例ではらせん状に、2次元走査する。照明光の照射により対象物100から得られる反射光や散乱光などの光は、マルチモードファイバにより構成される検出用光ファイババンドル12の先端で受光して、スコープ20内を通り制御装置本体30まで導光される。
なお、本例では、照明用光ファイバ11及び駆動部21が、光源からの光を対象物100上で繰り返し走査させる走査手段を構成している。
光検出器35は、光源の発光周期T毎に、R、G又はBのいずれかの波長(以下、「色」ともいう。)の光の照射により得られた光を対象物100から検出用光ファイババンドル12を介して検出して、当該波長に帯域制限されたアナログ信号(電気信号)を出力する。
ADC36は、光検出器35からのアナログ信号をデジタル信号(電気信号)に変換し、信号処理部37に出力する。
信号処理部37は、発光周期T毎にADC36から入力された、各波長に対応するデジタル信号を、それぞれ発光タイミングと走査位置とに対応付けて、順次メモリ(図示せず)に記憶する。この発光タイミングと走査位置との情報は、制御部31から得る。制御部31では、駆動制御部38により印加した振動電圧の振幅および位相などの情報から、走査経路(走査軌跡)上の走査位置の情報が算出される。そして、信号処理部37は、走査終了後または走査中に、ADC36から入力された各デジタル信号に基づいて、強調処理、γ処理、補間処理等の画像処理を必要に応じて行って画像信号を生成し、対象物100の画像をディスプレイ40に表示する。
なお、後述するように、本実施の形態において、信号処理部37は、1回の走査で得られる画像信号に基づき1つの表示用画像を生成する。以下、このような画像生成方式を、「第1画像モード」という。
次に、スコープ20の構成を説明する。図2は、スコープ20を概略的に示す概観図である。スコープ20は、操作部22および挿入部23を備える。操作部22には、制御装置本体30からの照明用光ファイバ11、検出用光ファイババンドル12、及び配線ケーブル13が、それぞれ接続されている。これら照明用光ファイバ11、検出用光ファイババンドル12および配線ケーブル13は挿入部23内部を通り、挿入部23の先端部24(図2における破線部内の部分)まで延在している。
図3は、図2のスコープ20の挿入部23の先端部24を拡大して示す断面図である。スコープ20の挿入部23の先端部24は、駆動部21、投影用レンズ25a、25b(光学系)、中心部を通る照明用光ファイバ11および外周部を通る検出用光ファイババンドル12を含んで構成される。
駆動部21は、照明用光ファイバ11の先端部11cを振動駆動する。駆動部21は、取付環26によりスコープ20の挿入部23の内部に固定されたアクチュエータ管27、並びに、アクチュエータ管27内に配置されるファイバ保持部材29および圧電素子28a〜28d(図4(a)および(b)参照)を含んで構成される。照明用光ファイバ11は、ファイバ保持部材29で支持されるとともにファイバ保持部材29で支持された固定端11aから先端部11cまでが、揺動可能に支持された揺動部11bとなっている。一方、検出用光ファイババンドル12は挿入部23の外周部を通るように配置され、先端部24の先端まで延在している。さらに、検出用光ファイババンドル12の各ファイバの先端部には図示しない検出用レンズを備える。
さらに、投影用レンズ25a、25bおよび検出用レンズは、スコープ20の挿入部23の先端部24の最先端に配置される。投影用レンズ25a、25bは、照明用光ファイバ11の先端部11cから射出されたレーザ光が、対象物100上に照射されて略集光するように構成されている。また、検出用レンズは、対象物100上に集光されたレーザ光が、対象物100により反射、散乱等をした光又は対象物100上に集光されたレーザ光の照射により発生する蛍光(対象物100から得られる光)等を取り込み、検出用レンズの後に配置された検出用光ファイババンドル12に集光、結合させるように配置される。なお、投影用レンズは、二枚構成に限られず、一枚や他の複数枚のレンズにより構成しても良い。
図4(a)は、光走査型内視鏡装置10の駆動部21の振動駆動機構および照明用光ファイバ11の揺動部11bを示す図であり、図4(b)は図4(a)のA−A線断面図である。照明用光ファイバ11は角柱状の形状を有するファイバ保持部材29の中央を貫通して、ファイバ保持部材29に固定保持される。ファイバ保持部材29の4つの側面は、それぞれ±Y方向および±X方向に向いている。そして、ファイバ保持部材29の±Y方向の両側面にはY方向駆動用の一対の圧電素子28a、28cが固定され、±X方向の両側面にはX方向駆動用の一対の圧電素子28b、28dが固定される。
各圧電素子28a〜28dは、制御装置本体30の駆動制御部38からの配線ケーブル13が接続されており、駆動制御部38によって電圧が印加されることによって駆動される。
X方向の圧電素子28bと28dとの間には常に正負が反対で大きさの等しい電圧が印加され、同様に、Y方向の圧電素子28aと28cとの間にも常に反対方向で大きさの等しい電圧が印加される。ファイバ保持部材29を挟んで対向配置された圧電素子28b、28dが、互いに一方が伸びるとき他方が縮むことによって、ファイバ保持部材29に撓みを生じさせ、これを繰り返すことによりX方向の振動を生ぜしめる。Y方向の振動についても同様である。
駆動制御部38は、X方向駆動用の圧電素子28b、28dとY方向駆動用の圧電素子28a、28cとに、同一の周波数の振動電圧を印加し、あるいは、異なる周波数の振動電圧を印加し、振動駆動させることができる。Y方向駆動用の圧電素子28a、28cとX方向駆動用の圧電素子28b、28dとをそれぞれ振動駆動させると、図3、図4に示した照明用光ファイバ11の揺動部11bが振動し、先端部11cが偏向するので、先端部11cから出射されるレーザ光は対象物100の表面を順次(本例では、らせん状に)走査する。
次に、光走査型内視鏡装置10の動作について、発光タイミング制御部32および信号処理部37の処理を中心に、図5〜図7を参照して説明する。図5は、第1発光モード及び第1画像モードを用いた動作例を説明するための図であり、図の左側から右側に進むにつれて時間が進む。レーザ33R、33G、33Bの発光タイミングを図5(a)〜(c)に、結合器34の出力を図5(d)に、光検出器35の出力を図5(e)に、1つの画像内の各画素を走査軌跡に沿って走査される順に振った画素番号を図5(f)に、1回の走査をするごとに順番に振った番号(走査番号)を図5(g)に、走査番号と表示用画像の番号との対応関係を図5(h)に、それぞれ示す。図6は、図5の例で用いられるらせん状の走査軌跡と画素番号との関係を示しており、図7は、図5の例において、1回の走査ごとに各画素にて照射される光の色を示している。
図5及び図6に示すように、本例では、1回の走査中において、照明用光ファイバ11の先端部11cが内側から外側に向けてらせん状の軌跡(経路)に沿って移動される。先端部11cが最外側の終点に到達すると、走査が終了し、先端部11cがいったん最内側の始点に戻ってから、次回の走査が開始される。
発光タイミング制御部32は、前述した第1発光モード下において、1回の走査中に、レーザ33R、33G、33Bからの光の色を、前回の走査の発光順序とは異なる発光順序で、発光周期T毎に切り替える。より具体的に、図5及び図7に示す例において、発光順序は、走査1ではR、G、Bの繰り返しであり、走査2ではG、B、Rの繰り返しであり、走査3ではB、R、Gの繰り返しであり、走査4以降も同様にして発光順序が走査ごとに変更される。
一方、信号処理部37は、前述した第1画像モード下において、1回の走査中に発光周期T毎に光検出器35からADC36を介して順次に入力されたR、G、又はBの電気信号に基づいて、画像信号を得て、この画像信号に基づいて1つの表示用画像を生成する。より具体的に、図5に示す例では、走査1〜3で得られる画像信号に基づいて、それぞれ表示用画像1〜3を生成する。
本例では、発光周期Tが、1画素分の電気信号が入力される周期(画素周期)Tと同一である。画素毎に足りない色については周辺画素から公知の方法で補間処理することが好ましい。例えば、図5の走査1の画素5に対しては、Gに対応する電気信号が入力されるので、不足しているR、Bについては、周辺画素から補間処理することが好ましい。このような補間処理により、1画素当たりRGBの3色分の電気信号成分を含めることができる。なお、ここでいう「周辺画素」とは、照明用光ファイバ11の先端部11cの走査軌跡に従う周辺画素、又は、ディスプレイ40に出力する画像信号を生成するときに存在する周辺画素を指す。
以上のように、第1発光モードと第1画像モードとを組み合わせて実施する第1実施の形態では、第1発光モードにおいて1回の走査中に光源からの光の色を切り替えるようにしたことに加えて、第1画像モードにおいて特許文献1のように撮影時間のずれた異なる色の画像どうしを合成させることなく表示用画像を生成するので、例えば図5の走査1〜3の実行中に対象物と内視鏡装置との間に相対的な動きがあった場合でも、色ずれが生じることはない。
また、第1実施の形態では、第1発光モードにおいて、連続する少なくとも2回(本例では3回)の走査にわたって、走査ごとに発光順序を異ならせるので、第1画像モードにおいて走査ごとに生成される各表示用画像を、ユーザが連続して観たときに、各表示用画像内の同一位置での色が時間的に平均化されることとなる。この結果、周辺画素を用いた補間処理によって生じ得る偽色の影響が低減されて、対象物がより実際に近い色で観えるようになる。同様の観点から、第1発光モードでは、本例のように、複数回(本例では3回)の走査にわたって、走査軌跡上での同一の位置(本例では画素)に、複数の異なる色(本例ではR、G、Bの3色)の光が照射されるのが好ましい。
第1実施の形態によれば、偽色の発生を抑制するとともに、色ずれの発生を完全に無くすことができる。
(第2実施の形態)
図8〜図9を参照して、本発明の第2実施の形態を説明する。図8は、第2実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。本実施の形態は、ユーザによるボタン50の操作に応じて、第1画像モードと後述する第2画像モードとの切り替えを行えるようにした点で、第1実施の形態と異なる。なお、本実施の形態では、発光タイミング制御部32が、第1発光モードの動作をするものとする。第1発光モード及び第1画像モードの内容については、第1実施の形態で説明したとおりである。
ボタン50は、ユーザの操作によって、第1画像モードと第2画像モードとを切り替えることができるように構成されている。ユーザによりボタン50が操作されると、いずれの画像モードが選択されたかが、制御部31を介して信号処理部37に通知される。
図9は、第1発光モード及び第2画像モードを用いた動作例を説明するための図である。 第2画像モード下において、信号処理部37は、連続する複数回の走査(図9の例では、今回と直前の2回の計3回の走査)のそれぞれで得られる画像信号に基づいて生成される画像どうしを合成することにより、1つの表示用画像を生成する。具体的に、図9の例では、走査1〜3で得られる画像信号に基づいて、表示用画像1を生成し、走査2〜4で得られる画像信号に基づいて、表示用画像2を生成し、走査3〜5で得られる画像信号に基づいて、表示用画像3を生成する。
第1発光モード及び第2画像モードを組み合わせて実施する図9の例では、連続する3回の走査で得られる3つの画像どうしを合成することにより、表示用画像内の各画素にRGBの3色分の電気信号成分を含めることができる。このため、周辺画素を用いた補間処理が必要無いので、偽色の発生を完全に無くすことができる。また、第1発光モードを用いていることにより、色ずれの発生を抑制することができる。
したがって、対象物と内視鏡装置との間に相対的な動きがある場合は、色ずれを完全に防止しつつ偽色を抑制できる第1画像モードの方が有利であり、対象物と内視鏡装置との間に相対的な動きがない場合は、色ずれのおそれがないので、偽色を完全に防止できる第2画像モードの方が有利である。
第2実施の形態によれば、画像モードの切り替えを可能にすることにより、対象物と内視鏡装置との間に相対的な動きの有無に関わらず、常に偽色及び色ずれの抑制が可能である。
また、第2実施の形態によれば、ユーザは、例えば、動画を撮影する場合には第1画像モードを選択し、静止画を撮影する場合には第2画像モードを選択する等、自由に画像モードの切り替えができる。
なお、図9に示す第2画像モードの例では、1回の走査を行うごとに、今回と直前の2回の計3回の走査で得られる画像信号に基づいて1つの表示用画像を生成するので、1回の走査ごとに表示用画像を生成できる。よって、表示用画像の生成頻度(フレームレート)を第1画像モードのフレームレートと同一に維持できる。ただし、第2画像モードでは、複数回の走査を行うごとに1つの表示用画像を生成してもよい。
また、ユーザのボタン50の操作によって、いずれの画像モードが選択されたかの通知は、制御部31を介さずに、直接、信号処理部37に対して行われてもよい。
また、ボタン50以外の任意の入力手段(例えば、レバー、キー、タッチパネル等)によって、ユーザによる画像モードの切り替えを可能にしてもよい。
(第3実施の形態)
図10を参照して、本発明の第3実施の形態を説明する。図10は、第3実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。本実施の形態は、動き検出部51によって自動的に第1画像モード及び第2画像モードの切り替えを行えるようにした点のみで、第2実施の形態と異なる。なお、本実施の形態では、発光タイミング制御部32が、第1発光モードの動作をするものとする。第1発光モード、第1画像モード、及び第2画像モードの内容は、第1及び第2実施の形態で説明したとおりである。
動き検出部51は、対象物との間の相対的な動きを検出するように構成されている。なお、「対象物との間の相対的な動き」とは、画像内での対象物の動きを指しており、実際に対象物と内視鏡装置との間に相対的な動きがある場合に限らず、画像が拡大又は縮小される場合も含む。図10の例では、動き検出部51は、スコープ20に取り付けられており、例えば、駆動部21等の加速度を検出する加速度センサ、又は、操作部22における画像の拡大及び縮小用の回転ダイヤルの角度位置を検出するロータリーエンコーダ等として構成される。
制御部31は、動き検出部51の検出結果に基づいて、第1画像モード及び第2画像モードの切り替えを行う。例えば、制御部31は、動き検出部51の検出結果に基づいて、対象物との間の相対的な動きがあると判断した場合には第1画像モードを選択し、対象物との間の相対的な動きが無いと判断した場合には第2画像モードを選択する。その後、制御部31は、選択した画像モードに従って動作するよう、信号処理部37に指示する。
第3実施の形態によれば、自動的に画像モードの切り替えが行われるので、第2実施の形態と比べて、ユーザが画像モードの切り替えを行う手間を省くことができる。
なお、対象物との間の相対的な動きがあるか否かの判断は、対象物の観察(走査)中に任意のタイミングで実施可能であり、例えば、観察開始時のみに実施してもよいし、観察中に定期的に実施してもよい。
また、制御部31の代わりに、信号処理部37が、動き検出部51の検出結果に基づいて第1画像モード及び第2画像モードの切り替えを行ってもよい。
また、動き検出部51は、制御装置本体30の例えば制御部31又は信号処理部37の内部等に設けられて、画像処理によって、対象物との間の相対的な動きを検出するように構成されてもよい。
(第4実施の形態)
図8、図9、及び図11を参照して、本発明の第4実施の形態を説明する。本実施の形態に係る光走査型内視鏡装置の概略構成は、図8に示すものと同様である。本実施の形態は、第2実施の形態の内容に加えて、第2画像モード下において、ユーザによるボタン50の操作に応じて、第1発光モードと後述する第2発光モードとの切り替えが可能である。なお、第1画像モード下では、発光タイミング制御部32が、第1発光モードの動作をするものとする。第1発光モード、第1画像モード、及び第2画像モードの内容は、第1及び第2実施の形態で説明したとおりである。
ボタン50は、ユーザの操作によって、第1画像モードと第2画像モードとを切り替えることができるとともに、第2画像モード下において、第1発光モードと第2発光モードとを切り替えることができるように構成されている。ユーザによるボタン50の操作によって画像モードが切り替えられると、いずれの画像モードが選択されたかが、制御部31を介して信号処理部37に通知される。また、第2画像モード下において、ユーザによるボタン50の操作によって発光モードが切り替えられると、いずれの発光モードが選択されたかが、制御部31を介して発光タイミング制御部32に通知される。
図11は、第2発光モード及び第2画像モードを用いた動作例を説明するための図である。第2発光モード下において、発光タイミング制御部32は、走査ごとに、前回の走査で発光された光の波長(色)とは異なる1つの波長(色)の光を発光させる。より具体的に、図11に示す例では、走査1、走査2、走査3では、それぞれR、G、Bの光を発光周期T毎に発光させる。
第2発光モード及び第2画像モードを組み合わせて実施する図11の例では、第2画像モードを用いているので偽色を完全に防止でき、さらに、第2発光モードを用いることにより表示用画像内で対象物の輪郭がくっきりと現れる点で、有利である。
第4実施の形態によれば、ユーザは、偽色を防止できる第2画像モード下において、例えば、色ずれの抑制を優先する場合には第1発光モードを選択し、対象物の輪郭を鮮明に観たい場合には第2発光モードを選択する等、必要に応じて発光モードを自由に選択することができる。
なお、本発明は、上述した各実施の形態に限られるものではなく、様々な変形例が可能である。例えば、第1発光モードでは、光源からの光の色ごとの発光回数比率が均一(すなわち、R、G、Bの順に1:1:1)である場合に限られず、色ごとの発光回数比率が非均一でもよい。図12は、図5の第1発光モードの例とは異なる、第1発光モードの他の例を示している。図12の例では、色ごとの発光回数比率が、R、G、Bの順に1:2:1であり、発光順序が、走査1ではR、G、B、Gの繰り返しであり、走査2ではG、R、G、Bの繰り返しであり、走査3ではB、G、R、Gの繰り返しであり、走査4ではG、B、G、Rの繰り返しであり、走査5以降も同様にして発光順序が走査毎に変更される。なお、図12の第1発光モードの例も、第1画像モード又は第2画像モードのいずれと組み合わせて実施してもよい。
また、光源は、R、G、Bの光等の可視光に加えて、特殊光(例えば対象物の組織の深部を観察するための近赤外光等)をも、選択的に射出可能に構成されてもよい。
図6の例では、1回の走査により照明用光ファイバ11の先端部11cがいったん最外側の終点に到達した後、そこから内側に向けてらせん状の軌跡に沿って最内側の始点まで戻る間の戻り期間にわたって、走査を行わないが、この戻り期間中にさらなる走査を行ってもよい。その場合、複数回の走査を途切れなく連続して行うことができるので、フレームレートの向上に繋がる。
また、走査軌跡(走査経路)は、図6の例のようならせん(スパイラル)状のものに限られず、ラスター状あるいはリサージュ状のものでも可能である。
照明用光ファイバ11の駆動部21は、圧電素子を用いたものに限られず、例えば、照明用光ファイバ11に固定した永久磁石とこれを駆動する偏向磁場発生用コイル(電磁コイル)とを用いたものでもよい。以下、この駆動部21の変形例について、図13を参照して説明する。図13(a)はスコープ20の先端部24の断面図、図13(b)は図13(a)の駆動部21を拡大して示す斜視図であり、図13(c)は、図13(b)の偏向磁場発生用コイル62a〜62dおよび永久磁石63を含む部分の照明用光ファイバ11の軸に垂直な面による断面図である。
照明用光ファイバ11の揺動部11bの一部には、照明用光ファイバ11の軸方向に着磁され貫通孔を有する永久磁石63が、照明用光ファイバ11が貫通孔を通った状態で結合されている。また、揺動部11bを囲むように、一端部を取付環26に固定された角型チューブ61が設けられ、永久磁石63の一方の極と対向する部分の角型チューブ61の各側面には、平型の偏向磁場発生用コイル62a〜62dが設けられている。
Y方向の偏向磁場発生用コイル62aと62cのペアおよびX方向の偏向磁場発生用コイル62bと62dのペアは、角型チューブ61のそれぞれ対向する面に配置され、偏向磁場発生用コイル62aの中心と偏向磁場発生用コイル62cの中心を結ぶ線と、偏向磁場発生用コイル62bの中心と偏向磁場発生用コイル62dの中心を結ぶ線とは、静止時の照明用光ファイバ11の配置される角型チューブ61の中心軸線付近で直交する。これらのコイルは、配線ケーブル13を介して制御装置本体30の駆動部38に接続され、駆動制御部38からの駆動電流によって駆動される。
さらに、走査手段は、光ファイバの先端を振動させるものに限られない。例えば、光源から対象物に至る光路上にMEMSミラーなどの光走査素子を設けることも可能である。
10 光走査型内視鏡装置
11 照明用光ファイバ(走査手段)
11a 固定端
11b 揺動部
11c 先端部
12 検出用光ファイババンドル
13 配線ケーブル
20 スコープ
21 駆動部(走査手段)
22 操作部
23 挿入部
24 先端部
25a、25b 投影用レンズ
26 取付環
27 アクチュエータ管
28a〜28d 圧電素子
29 ファイバ保持部材
30 制御装置本体
31 制御部
32 発光タイミング制御部
33R、33G、33B レーザ(光源)
34 結合器
35 光検出器(光検出部)
36 ADC
37 信号処理部
38 駆動制御部
40 ディスプレイ
50 ボタン
51 動き検出部
61 角型チューブ
62a〜62d 偏向磁場発生用コイル
63 永久磁石
100 対象物

Claims (6)

  1. 複数の異なる波長の光を選択的に射出する光源の発光タイミングを制御する発光タイミング制御部と、
    前記光源からの光を対象物上で繰り返し走査させる走査手段と、
    前記光の照射により前記対象物から得られる光を検出して電気信号に変換する光検出部と、
    前記光検出部からの電気信号に基づいて画像信号を生成する信号処理部と
    を備え、
    前記発光タイミング制御部は、走査中に、前記光源からの光の波長を、前回の走査の発光順序とは異なる発光順序で切り替えることを特徴とする光走査型内視鏡装置。
  2. 前記発光タイミング制御部は、複数回の走査にわたって、走査軌跡上の同一位置に複数の異なる波長の光が照射されるようにすることを特徴とする、請求項1に記載の光走査型内視鏡装置。
  3. 1回の走査で得られる前記画像信号に基づき1つの表示用画像を生成する第1画像モードと、複数回の走査で得られる前記画像信号に基づき1つの表示用画像を生成する第2画像モードとを、切り替えることができる、請求項1又は2に記載の光走査型内視鏡装置。
  4. ユーザによるボタン操作に応じて、前記第1画像モード及び前記第2画像モードの切り替えを行う、請求項3に記載の光走査型内視鏡装置。
  5. 前記対象物との間の相対的な動きを検出する動き検出部をさらに備え、
    前記動き検出部による検出結果に応じて、前記第1画像モード及び前記第2画像モードの切り替えを行う、請求項3に記載の光走査型内視鏡装置。
  6. 前記発光タイミング制御部が、走査中に、前記光源からの光の波長を、前回の走査の発光順序とは異なる発光順序で切り替えるモードを第1発光モードとするとき、前記発光タイミング制御部は、走査ごとに、前回の走査で発光された光の波長とは異なる1つの波長の光を発光させる第2発光モードをさらに有し、前記第2画像モード下において、前記第1発光モードと前記第2発光モードとを切り替えることができる、請求項3〜5のいずれか一項に記載の光走査型内視鏡装置。
JP2014011516A 2014-01-24 2014-01-24 光走査型内視鏡装置 Active JP6180335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011516A JP6180335B2 (ja) 2014-01-24 2014-01-24 光走査型内視鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011516A JP6180335B2 (ja) 2014-01-24 2014-01-24 光走査型内視鏡装置

Publications (2)

Publication Number Publication Date
JP2015136580A true JP2015136580A (ja) 2015-07-30
JP6180335B2 JP6180335B2 (ja) 2017-08-16

Family

ID=53767988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011516A Active JP6180335B2 (ja) 2014-01-24 2014-01-24 光走査型内視鏡装置

Country Status (1)

Country Link
JP (1) JP6180335B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104190A1 (ja) * 2015-12-14 2017-06-22 オリンパス株式会社 内視鏡システム
WO2017109814A1 (ja) * 2015-12-21 2017-06-29 オリンパス株式会社 光走査型観察装置
WO2017149586A1 (ja) * 2016-02-29 2017-09-08 オリンパス株式会社 光走査型撮影投影装置および内視鏡システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299026A (ja) * 1994-05-09 1995-11-14 Asahi Optical Co Ltd 内視鏡用撮像装置
JP2011125598A (ja) * 2009-12-21 2011-06-30 Hoya Corp 内視鏡装置
JP2011125404A (ja) * 2009-12-15 2011-06-30 Olympus Corp 光制御装置、制御装置、光学スコープ及び光走査型光学装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299026A (ja) * 1994-05-09 1995-11-14 Asahi Optical Co Ltd 内視鏡用撮像装置
JP2011125404A (ja) * 2009-12-15 2011-06-30 Olympus Corp 光制御装置、制御装置、光学スコープ及び光走査型光学装置
JP2011125598A (ja) * 2009-12-21 2011-06-30 Hoya Corp 内視鏡装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104190A1 (ja) * 2015-12-14 2017-06-22 オリンパス株式会社 内視鏡システム
WO2017109814A1 (ja) * 2015-12-21 2017-06-29 オリンパス株式会社 光走査型観察装置
WO2017149586A1 (ja) * 2016-02-29 2017-09-08 オリンパス株式会社 光走査型撮影投影装置および内視鏡システム
JPWO2017149586A1 (ja) * 2016-02-29 2018-12-20 オリンパス株式会社 光走査型撮影投影装置および内視鏡システム
US11759099B2 (en) 2016-02-29 2023-09-19 Olympus Corporation Optical scanning imaging/projection apparatus and endoscope system

Also Published As

Publication number Publication date
JP6180335B2 (ja) 2017-08-16

Similar Documents

Publication Publication Date Title
US10151914B2 (en) Optical scanning observation apparatus
JPWO2013111604A1 (ja) 光走査型観察装置
US10151916B2 (en) Optical scanning observation apparatus
US9872602B2 (en) Optical scanning type observation apparatus and method for operating optical scanning type observation apparatus
JP6180335B2 (ja) 光走査型内視鏡装置
JPWO2014188718A1 (ja) 光走査デバイスおよび光ビームの走査方法
WO2016116963A1 (ja) 光走査方法及び光走査装置
WO2015145826A1 (ja) 走査型内視鏡装置
JPWO2016067316A1 (ja) 光走査型内視鏡装置
JP6218596B2 (ja) 走査型観察装置
US20170311779A1 (en) Optical scanning endoscope apparatus
JP6382004B2 (ja) 光走査型観察装置
WO2016116968A1 (ja) 光走査装置
WO2017109814A1 (ja) 光走査型観察装置
WO2016116962A1 (ja) 光走査方法及び光走査装置
JP6234217B2 (ja) 光走査装置の作動方法
US20170273548A1 (en) Laser scanning observation apparatus
WO2018189836A1 (ja) 走査型観察装置
JP6173035B2 (ja) 光走査デバイス、光走査型観察装置および光走査型画像表示装置
JP6424035B2 (ja) 光走査型観察装置、及び、パルス状レーザ光の照射パラメータ調整方法
WO2017195256A1 (ja) 光走査型観察装置および光走査型観察方法
JP2015123086A (ja) 走査型照明装置および走査型観察装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R151 Written notification of patent or utility model registration

Ref document number: 6180335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250