JP2015135325A - X線蛍光透視イメージングシステム - Google Patents

X線蛍光透視イメージングシステム Download PDF

Info

Publication number
JP2015135325A
JP2015135325A JP2014259042A JP2014259042A JP2015135325A JP 2015135325 A JP2015135325 A JP 2015135325A JP 2014259042 A JP2014259042 A JP 2014259042A JP 2014259042 A JP2014259042 A JP 2014259042A JP 2015135325 A JP2015135325 A JP 2015135325A
Authority
JP
Japan
Prior art keywords
ray
imaging system
detector array
energy detector
fluoroscopic imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014259042A
Other languages
English (en)
Other versions
JP6054938B2 (ja
Inventor
▲華▼平 唐
Huaping Tang
▲華▼平 唐
志▲強▼ ▲陳▼
志▲強▼ ▲陳▼
Zhiqiang Chen
▲伝▼祥 唐
Chuanxiang Tang
▲伝▼祥 唐
▲懐▼璧 ▲陳▼
▲懐▼璧 ▲陳▼
Huaibi Chen
元景 李
Yuanjing Li
元景 李
自然 ▲趙▼
自然 ▲趙▼
Zi Ran Zhao
耀紅 ▲劉▼
耀紅 ▲劉▼
Yaohong Liu
尚民 ▲孫▼
尚民 ▲孫▼
Shangmin Sun
忻水 閻
Xinshui Yan
忻水 閻
占峰 秦
Zhanfeng Qin
占峰 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Nuctech Co Ltd
Original Assignee
Tsinghua University
Nuctech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Nuctech Co Ltd filed Critical Tsinghua University
Publication of JP2015135325A publication Critical patent/JP2015135325A/ja
Application granted granted Critical
Publication of JP6054938B2 publication Critical patent/JP6054938B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/08Means for conveying samples received
    • G01V5/223
    • G01V5/224
    • G01V5/226
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Abstract

【課題】2重エネルギー/2重視野角を持つ蛍光透視画像を達成するX線蛍光透視イメージングシステムを提供する。
【解決手段】X線蛍光透視イメージングシステムは、検査通路と、電子加速器と、遮蔽構造体、ならびに、遮蔽構造体の中に配列された低エネルギー平面扇状X線ビームを抽出する第1のコリメータおよび高エネルギー平面扇状X線ビームを抽出する第2のコリメータを備える遮蔽コリメータ装置と、第1のコリメータからX線ビームを受ける低エネルギー検出器アレイと、第2のコリメータからX線ビームを受ける高エネルギー検出器アレイとを備える。第1のコリメータ、低エネルギー検出器アレイ、および、電子ビームによって衝突される標的点は、第1の平面内に位置し、第2のコリメータ、高エネルギー検出器アレイ、および、電子ビームによって衝突される標的点は、第2の平面内に位置している。
【選択図】図1

Description

本発明は、2つ以上の異なるエネルギーをそれぞれに持つX線を使用することにより2つ以上の異なった角度から被検査対象物上に蛍光透視イメージングを実行するシステム、詳しくは、大規模コンテナ検査、車両検査、航空貨物検査、列車検査などのため使用される非破壊探傷、蛍光透視イメージング、ならびに、セキュリティ検査装置において高エネルギー電子加速器によって発生された高エネルギーX線を使用することにより蛍光透視イメージングを実行するシステムに関する。
X線は、工業用非破壊検査、セキュリティ検査などの分野において広く用いられている。大規模被検査対象物、たとえば、ボイラー、航空機エンジン、空港/鉄道/税関における大量貨物、自動車/トラック/コンテナ/列車の貨物全体などに対して、概ね2MeVより高いエネルギーを持つ電子加速器を使用することにより発生される高エネルギーX線がこれらの蛍光透視検査のため使用されることが必要である。電子加速器がX線を発生する基本的な方法は、以下のとおりである:電子銃を用いて電子ビームを発生し、電子ビームが高エネルギーを獲得するように電場を用いて電子ビームを加速し、そして、標的に高エネルギー電子ビームを衝突させることによりX線を発生する。高エネルギーX線蛍光透視イメージングシステムは、X線の高透過能力を利用する。X線が被検査対象物に侵入するとき、X線の強度は、低下するものであり、低下の程度は、被検査対象物の密度、形状、厚さ、材料などに関連している。被検査対象物への侵入後のX線の強度情報は、検出器を用いて獲得され、被検査対象物の形状、構造、さらに材料のような情報を反映する蛍光透視画像を獲得するために信号処理、アルゴリズム解析、画像再構成などのようなプロセスの影響を受け、それによって、構造解析、探傷、物品の名前およびタイプ検査、危険物認識、禁制品検査などのような目的が達成される。
中国特許“Method and System for Scanning Radiation Imaging with Double Viewing Angles(特許第CN101210895号)”は、被検査対象物上で蛍光透視イメージングを実行するために2つのX線ビームが1つの放射線源を使用することにより発生され、マルチレベル画像が構成される具体的な方法を開示する。これは、低コスト、便利、かつ高速な奥行き認識方法である。
さらに、中国特許“Multiple Energy Double Frequency Particle Accelerator and Method thereof(特許第CN101163372号)”は、異なった時点にある程度の数の異なったエネルギーを持つ電子ビームおよびX線を発生するために電子加速器を利用する技術を開示し、中国特許“Apparatus and Method for Generating an X−ray with Different Energies and Material Recognition System(特許第CN101076218号)”、“Method for Radiation Scanning Substance with Multiple Energies and Apparatus thereof(特許第CN1995993号)”、“Method and Apparatus for Substance Recognition(特許第101435783号)”などは、被検査対象物の蛍光透視画像および材料情報を獲得するために、被検査対象物が高エネルギーX線および低エネルギーX線を用いる蛍光透視イメージングの影響を受ける方法を開示する。
さらに、中国特許“Method and System for Material Recognition with Double−Viewing−Angle Multiple−Energy Fluoroscopic Image(特許第CN101358936号)”は、(対称性位置、同一エネルギー、同一強度などを持つ)対称性X線ビームが放射線源として多重エネルギー電子加速器を使用して2個のコリメータによって獲得され、それによって、2つの視野角および多重エネルギーを持つ蛍光透視画像が達成される方法を開示する。ここで、多重エネルギー電子加速器は、中国特許第CN101163372号および第CN101076218号に開示された技術のような異なった時点に異なったエネルギーを持つX線を出力する可能性がある加速器のことを指す。2個のコリメータが存在するが、2個のコリメータによって獲得されるX線は、同じ特性を持つ。
中国特許第101210895号明細書 中国特許第101163372号明細書 中国特許第101076218号明細書 中国特許第1995993号明細書 中国特許第101435783号明細書 中国特許第101358936号明細書
既存技術の欠点に対処するために、本発明は、放射線源として低コスト単一エネルギー電子加速器を使用して異なる位置で2個のコリメータによってそれぞれ(異なったエネルギー、異なった強度、および異なった視野角を含む)異なった特性を持つ2本のX線ビームを獲得し(2本のX線ビームは、同時に発生され、異なったエネルギーを有するので、2つのエネルギーを持つX線ビームは、単一エネルギー加速器だけによって獲得される可能性があり、そして、2本のX線ビームは、両方共に非常に良好な面内一様性を有する)、それによって、2重エネルギー/2重視野角を持つ蛍光透視画像を達成する。
本発明は、
被検査対象物が通過させられる検査通路と、
電子加速ユニット、電子放出ユニットおよび標的を備え、電子放出ユニットから出て、電子加速ユニットによって加速された電子ビームが標的に衝突してX線を発生する電子ビーム電子加速器と、
遮蔽構造体と、遮蔽構造体の中に配列された低エネルギー平面扇状X線ビームを抽出する第1のコリメータおよび高エネルギー平面扇状X線ビームを抽出する第2のコリメータとを備える遮蔽コリメータ装置と、
第1のコリメータからX線ビームを受ける低エネルギー検出器アレイと、
第2のコリメータからX線ビームを受ける高エネルギー検出器アレイと、
を備え、
遮蔽構造体は、標的を取り囲み、
第1のコリメータ、低エネルギー検出器アレイ、および、電子ビームによって衝突された標的点が第1の平面に位置し、
第2のコリメータ、高エネルギー検出器アレイ、および、電子ビームによって衝突された標的点が第2の平面に位置する、
X線蛍光透視イメージングシステムを提供する。
さらに、本発明のX線蛍光透視イメージングシステムでは、第1および/または第2のコリメータが配列される方向と電子ビームが標的に衝突する方向との間の角度は、30°から150°である。
さらに、本発明のX線蛍光透視イメージングシステムでは、電子加速器の軸と検査通路との間の角度は、60°未満である。
さらに、本発明のX線蛍光透視イメージングシステムでは、第1および第2のコリメータは、電子ビームの軸(L)に対して同じ側に位置している。
さらに、本発明のX線蛍光透視イメージングシステムでは、電子加速器の軸は、検査通路に平行である。
さらに、本発明のX線蛍光透視イメージングシステムでは、第1および第2のコリメータの中心対称線と検査通路との間の角度は、45°より大きくなる。
さらに、本発明のX線蛍光透視イメージングシステムでは、第1および第2のコリメータの中心対称線は、検査通路に垂直である。
さらに、本発明のX線蛍光透視イメージングシステムでは、低および高エネルギー検出器アレイは、直線型配置、折れ線配置、標準的なL型配置またはC型配置にあり、複数の低および高エネルギー検出器によってそれぞれ構成されている。
さらに、本発明のX線蛍光透視イメージングシステムでは、低および高エネルギー検出器アレイは、それぞれ1列または複数の列に配置された複数の検出器である。
さらに、本発明のX線蛍光透視イメージングシステムは、低および高エネルギー検出器アレイから信号を受信し、最終的に計算および解析により蛍光透視画像を発生する信号解析および画像処理サブシステム(7)と、X線蛍光透視イメージングシステムの運転に電力を供給し、運転を制御する電源および制御サブシステム(6)とをさらに備える。
さらに、本発明のX線蛍光透視イメージングシステムは、以下の:直線型、折れ線型、標準的なL型またはC型の配置構造体に形成された、検出器の取り付けおよび固定のための検出器アーム支持体、ならびに、検出器アーム支持体を独立に床に固定する調整可能な固定用装置と、所定の速度で検査通路を通過させるために被検査対象物を引っ張る搬送装置と、検査通路の一方側または両側に配列された散乱遮蔽構造体と、電子加速器などのような装置の取り付けおよび固定のための設備室と、設備運転および作業場所をシステムの作業スタッフに提供する制御室と、被検査対象物の高さを増大させる傾斜台と、のいずれの組み合わせでもさらに備える。
さらに、本発明のX線蛍光透視イメージングシステムは、複数のコリメータおよび複数の対応する検出器アレイをさらに備える。
さらに、本発明のX線蛍光透視イメージングシステムでは、電子加速器は、単一エネルギー加速器、2重エネルギー加速器または多重エネルギー加速器であり、検出器アレイは、相応した単一エネルギー検出器アレイ、2重エネルギー検出器アレイまたは多重エネルギー検出器アレイである。
さらに、本発明は、
本発明によるX線蛍光透視イメージングシステムと、
検査通路の一方側で床に固定され、電子加速器および遮蔽コリメータ装置が中に取り付けられ、第1および第2のコリメータが異なった角度で検査経路に対向している設備室と
検査通路の中に取り付けられた搬送装置と、
検査通路のもう一方側に配列され、調整可能な固定用装置によって床に固定され、低および高エネルギー検出器アレイがそれぞれ中に取り付けられている第1および第2の検出器アーム支持体と、
設備室と検査通路との間に配列されている散乱遮蔽構造体と、
床に固定され、信号解析および画像処理サブシステムが電源および制御サブシステムと共に中に取り付けられ、結合固定型X線蛍光透視イメージングシステムを制御する制御室と、
を備える、結合固定型X線蛍光透視イメージングシステムを提供する。
さらに、本発明は、
本発明によるX線蛍光透視イメージングシステムと、
検査通路が2つの隣接した軌道の間に配列されている平行に配列された複数の軌道と、
軌道に配列された移動装置と、
移動装置を介して検査通路の一方側で軌道に配列され、電子加速器および遮蔽コリメータ装置が中に取り付けられ、第1および第2のコリメータが異なった角度で検査通路に対向する設備室と、
「|」線分下部が移動装置を介して検査通路のもう一方側で軌道上に配列され、もう一方の端部が設備室の上部に接続され、かつ、固定され、低エネルギー検出器アレイおよび高エネルギー検出器アレイがそれぞれ中に取り付けられている2つのL型検出器アーム支持体と、
床に固定され、信号解析および画像処理サブシステムが電源および制御サブシステムと共に中に取り付けられ、軌道移動型X線蛍光透視イメージングシステムを制御する制御室と、
を備える、軌道移動型X線蛍光透視イメージングシステムを提供する。
さらに、本発明は、
本発明によるX線蛍光透視イメージングシステムと、
シャシー車両、ならびに、シャシー車両に取り付けられたX線源キャビン、設備キャビン、作業キャビン、低エネルギー検出器アーム支持体システム、および高エネルギー検出器アーム支持体システムと、
を備え、
電子加速器および遮蔽コリメータ装置がX線源キャビンに取り付けられ、低および高エネルギーX線ビームがそれぞれ第1および第2のコリメータを介して異なった角度でシャシー車両の一方側に抽出され、
低エネルギー検出器アーム支持体システムは、低エネルギー検出器アレイが中に取り付けられ、作業状態において、低エネルギー検出器アーム支持体システムは、シャシー車両の一方側で開かれ、シャシー車両と共に「ゲート」型構造体を形成し、低エネルギー検出器アレイを第1のコリメータがある第1の平面に位置付け、そして、非作業状態において、低エネルギー検出器アレイ支持体システムが折り畳まれ、シャシー車両の上部に格納され、
高エネルギー検出器アーム支持体システムは、高エネルギー検出器アレイが中に取り付けられ、作業状態において、高エネルギー検出器アーム支持体システムは、シャシー車両の一方側で開かれ、シャシー車両と共に「ゲート」型構造体を形成し、高エネルギー検出器アレイを第2のコリメータがある第2の平面に位置付け、そして、非作業状態において、高エネルギー検出器アーム支持体システムが折り畳まれ、シャシー車両の上部に格納され、
低および高エネルギー検出器アーム支持体システムは、シャシー車両に対して同じ側に位置付けられ、シャシー車両と共に次々に2つの「ゲート」型構造体を形成し、2つの「ゲート」型構造体によって形成された内部通路が検査通路になり、
設備キャビンは、電源および制御サブシステムが信号解析および画像処理サブシステムと共に中に取り付けられ、
作業キャビンは、システム運転および事務所設備が中に取り付けられ、車載移動型X線蛍光透視イメージングシステムを制御する、
車載移動型X線蛍光透視イメージングシステムを提供する。
本発明は、X線蛍光透視イメージングシステムを主として提供する。X線蛍光透視イメージングシステムは、2MeVより高いエネルギーを持つ高エネルギー電子加速器、遮蔽コリメータ装置、検査通路、低エネルギー検出器アレイ、高エネルギー検出器アレイ、電源および制御サブシステム、信号解析および画像処理サブシステムなどで構成され、電子加速器および遮蔽コリメータ装置は、異なったエネルギーおよび異なった角度を持つX線ビームの2つのグループを発生し、X線ビームは、検査通路に位置している非検査物に侵入し、低エネルギー検出器アレイおよび高エネルギー検出器アレイによってそれぞれ受信され、受信された信号は、解析処理および画像再構成の対象になり、最終的に、被検査対象物の形状、構造および物質材料特性を反映する蛍光透視画像が表示される。
本発明は、電子加速器と、遮蔽コリメータ装置と、低エネルギー検出器アレイと、高エネルギー検出器アレイと、様々な機械的結合構造体との設計を通じて、それぞれの平面内で様々な方向に異なったエネルギーおよび異なった角度を持つが、一様な分布を持つX線ビームの2つのグループを使用することにより蛍光透視イメージングを実行するX線蛍光透視イメージングシステムを主として提供する。システムは、以下の利点:2重エネルギー電子加速器を使用する他のスキームと比べて、単一エネルギー電子加速器が使用されるので、構造がより簡単であり、かつ、コストがより低くなること、異なった時点に高エネルギーおよび低エネルギーをそれぞれ発生するその他のスキームと比べて、異なったエネルギーを持つビームの2つのグループが同時に発生されるので、検査速度がより速くなること、高および低エネルギー包括的検出器を使用するその他のシステムと比べて、異なったエネルギーを持つX線ビームの2つのグループが対応する検出器がそれぞれ低エネルギー検出器および高エネルギー検出器である異なった位置に配列されるので、構造がより簡単であり、かつ、コストがより低くなることと、平面内の様々な角度方向におけるX線ビームの強度が一様であるので、放射線源と被検査対象物との間の距離は、短縮される可能性があり、かつ、X線は、被検査対象物を覆うために広い角度に亘って抽出される可能性があることと、X線ビームの各グループは、これの面内扇状領域の範囲内の小さいエネルギー幅、一様強度分布、および、小さい標的サイズのような複数の利点を有するので、X線蛍光透視イメージングシステムの画質が改善される可能性があること、を有する。本発明の2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムは、簡単な構造、低コスト、強力な機能、優れた画質などのような利点を有する固定型、結合型、軌道移動型、車載移動型などのような特定の型として設計される可能性がある。
本発明の2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムの構造の概略図である。 (A)は電子加速器および遮蔽コリメータ装置の構造体の概略図であり、(B)は遮蔽コリメータ装置の断面図である本発明の電子加速器および遮蔽コリメータ装置の1つの型の構造の概略図である。 (A)は電子加速器および検査通路3の軸Lが角度βを形成する事例を例示し、(B)はコリメータ202aおよび202bの中心対称線Hと検査通路3とが角度γを形成する事例を例示する、2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムの別の2つの型の構造の概略図である。 (A)は折れ線型を例示し、(B)は標準的なL型を例示し、(C)はC型を例示し、(D)は単一の列内および複数の列内の検出器を例示し、(E)は検出器の端面が標的点Oを指し示す事例を例示する、異なる形状を持つ数個の検出器アレイの構造および配置方法の概略図である。 2重エネルギー/2重視野角を持つ結合固定型高エネルギーX線蛍光透視イメージングシステムの構造の概略図である。 2重エネルギー/2重視野角を持つ軌道移動型高エネルギーX線蛍光透視イメージングシステムの構造の概略図である。 2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムの構造の概略図である。
本発明は、以下では、図面を参照して詳細に説明する。
図1は、本発明の2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムの構造の概略図である。図2は、本発明の電子加速器および遮蔽コリメータ装置の1つの型の構造の概略図であり、(A)は、電子加速器および遮蔽コリメータ装置の構造体の概略図であり、(B)は、遮蔽コリメータ装置の断面図である。
図1および図2に示されるように、本発明の2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムは、高エネルギー電子加速器1と、遮蔽コリメータ装置2と、検査通路3と、低エネルギー検出器アレイ4と、高エネルギー検出器アレイ5と、電源および制御サブシステム6と、単一解析および画像処理システム7とにより構成され、電子加速器1は、電子放出ユニット101、電子加速ユニット102および標的103を備え、発生された電子ビームEは、2MeVを上回る高エネルギーを有し、さらに、遮蔽コリメータ装置2は、遮蔽構造体201と、少なくとも2つのコリメータ202a、202bとを備え、2つのコリメータ202a、202bは、電子ビームEの軸に対して同じ側に配列されている。さらに、コリメータ202aと、低エネルギー検出器アレイ4と、電子ビームEによって衝突される標的点とは、第1の平面内に位置し、コリメータ202bと、高エネルギー検出器アレイ5と、電子ビームEによって衝突される標的点とは、第2の平面内に位置している。
さらに、コリメータ202aが位置している第1の平面と電子ビームEの軸との間の角度と、コリメータ202bが位置している第2の平面と電子ビームEの軸との間の角度とは異なり、これらの角度は、30°から150°まで変化し、これらの角度から、それぞれの平面内で強度の一様分布を持つ高エネルギーX線ビームおよび低エネルギーX線ビームがそれぞれ抽出される。
図1は、2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムの構造の概略図を示す。電子加速器1は、高エネルギー電子ビームEを発生し、この電子ビームの軸は、Lである。電子ビームEは、標的に衝突し、立体角4Πで放出するX線が標的点位置Oで発生される。標的点Oを取り囲む遮蔽コリメータ装置2は、殆どのX線を吸収し、遮蔽し、低エネルギー平面扇状X線ビームX1および高エネルギー平面扇状X線ビームX2が電子ビームの軸に対して同じ側に位置している2つのコリメータ202aおよび202bによってそれぞれ抽出される。X1およびX2は、異なった角度で検査通路3に位置している被検査対象物8の異なった位置に同時に侵入する。X線は、異なったレベルで強度が減少させられ、それぞれ低エネルギー検出器アレイ4および高エネルギー検出器アレイ5によって受けられる。低エネルギー検出器アレイ4および高エネルギー検出器アレイ5は、X線強度を反映する信号に予備プロセスを実行し、その後、これらの信号を信号解析および画像処理サブシステム7に送信する。X線が侵入する被検査対象物8の2つの区分を反映する蛍光透視画像は、信号解析、アルゴリズム計算、画像構成などのようなプロセスの後に獲得される。運転中に、非検査物8およびX線蛍光透視イメージングシステムが相対運動を維持する場合、すなわち、非検査物8のそれぞれの部分が低エネルギーX線蛍光透視領域および高エネルギーX線蛍光透視領域を順次に通り抜ける場合、一方が左視野角で低エネルギーX線によって侵入され、低エネルギー検出器アレイ4によって受けられた低エネルギー左視野蛍光透視画像であり、もう一方が右視野角で高エネルギーX線によって侵入され、高エネルギー検出器アレイ5によって受けられた高エネルギー右視野蛍光透視画像である非検査物8の2つの完全な蛍光透視画像が獲得される可能性がある。レベルの意味で包括的な画像は、2重視野角画像再構成アルゴリズムを使って2つの画像を処理することにより獲得され、材料特性を含む画像は、2重エネルギー材料認識アルゴリズムを使って2つの画像を処理することにより獲得され、最終的に、これらの画像は、材料情報およびレベル情報を含む被検査対象物8の蛍光透視画像に結合される。
Nuctech Company Limitedの中国特許第CN101210895号は、蛍光透視イメージングが2つの異なった視野角を持つX線ビームを使って被検査対象物体上で行われ、マルチレベル画像が最終的に構成される方法を詳細に記載する。本出願において使用された2つのX線ビームは、特許第CN101210895号において使用された対称性X線と違って、より一様な分布およびより小さい標的点と同質ではないが(すなわち、一方は、低エネルギーを有し、もう一方は、高エネルギーを有するが)、2重視野角画像再構成アルゴリズムは、実質的に同じである可能性があるので、詳細な説明は、本出願において省かれている。
中国特許第CN101435783号などのようなNuctech Company Limitedの複数の特許は、蛍光透視イメージングが順次に2つの異なったエネルギーのX線ビームを用いて被検査対象物上でそれぞれ実行され、物質材料情報を反映する蛍光透視画像が最終的に構成される方法を詳細に記載する。2重エネルギー加速器が時間的に順次に同じ位置で低エネルギーおよび高エネルギーX線を発生させるために使用される中国特許第CN101435783号などに開示された方法とは違って、本出願では単一エネルギー加速器が同時に2つの異なった位置で低エネルギーX線および高エネルギーX線を発生させるために使用されるが、2重エネルギーを用いる物質認識のための方法は、実質的に同じであるので、詳細な説明は、本出願において省かれている。
電子ビームが標的に衝突するとき、標的と相対的に異なる方位角で発生されたX線ビームの強度およびエネルギー分布が異なる。その結果、複数のコリメータが標的と相対的に異なる方位角で配列されたとき、電子加速器および複数のコリメータを含む遮蔽コリメータ装置を備えるサブシステムは、異なった角度、異なった強度および異なったエネルギー分布をX線ビームの複数のグループを抽出する可能性がある。さらに、これらの異なった強度、異なったエネルギー、および異なった角度に加えて、ここに記載されたようにX線ビームの複数のグループは、これらのそれぞれの平面扇状領域内部に一様なX線強度分布、小さいエネルギー幅、小さい焦点サイズなどのような特徴を有する。
本発明において使用された電子加速器および遮蔽コリメータ装置の1つの型の具体的な構成の概略図が図2に示される。
電子加速器および遮蔽コリメータ装置のコンポーネントが図2(A)に示される。電子加速器1は、電子放出ユニット101と、電子加速ユニット102と、標的103とで構成されている。電子放出ユニット101は、電子ビームEを発生する。電子加速ユニット102は、電子加速器1の軸としてもさらに定義された電子ビームの軸がLである高エネルギー電子ビームになるまで電子ビームEを加速する。高エネルギー電子ビームは、標的に衝突し、空間内のそれぞれの角度に放出するX線は、標的点位置Oで発生される。遮蔽コリメータ装置2は、標的を取り囲み、遮蔽構造体201とコリメータ202とにより構成される。コリメータ202は、遮蔽構造体201に配列された平面扇状スリットであり、使用されるX線を抽出し、所要の平面形状にX線を制限するため使用される。扇状のコーナー点は、電子ビームによって衝突される標的点Oであり、スリットの厚さは、ミリメートルの位であり、おおよそ、たとえば、0.5mmから5mmであり、典型的に2mmである。さらに、スリットは、ある一定のコニシティを持つギャップであることもあり、たとえば、ギャップの厚さは、標的点位置Oにより接近した位置でより薄くなり、ギャップの厚さは、標的点位置Oからより遠い位置でより厚くなる。たとえば、標的点でのギャップ厚さは、1.5mmであり、中間区分の厚さは、2mmであり、ギャップ出口での厚さは、2.5mmである。図2に示された構造体には、2個のコリメータ202、すなわち、202aおよび202bが存在する。説明の便宜のため、本出願において、コリメータ202aは、第1のコリメータと呼ばれることもあり、コリメータ202bは、第2のコリメータと呼ばれることもある。コリメータ202aと電子ビームとの間の偏向角度θ1の方が大きくなり、抽出された平面扇状低エネルギーX線ビームは、X1と呼ばれ、コリメータ202bと電子ビームとの間の偏向角度θ2の方が小さくなり、抽出された平面扇状高エネルギーX線ビームは、X2と呼ばれる。X線ビームX1とX2との間の中心線、すなわち、コリメータ202aおよび202bの中心対称線は、Hとして定義される。HとLとの間の角度は、図2において、より良い効果を伴う推奨設計構造体である90°である。
遮蔽コリメータ装置2の1つの型の断面図は、図2(B)に示される。遮蔽コリメータ装置2は、標的点Oを取り囲み、標的点で発生されたX線の大半は、遮蔽構造体201によって遮蔽され、吸収され、平面扇状X線ビームは、コリメータ202のギャップだけから抽出される可能性がある。ギャップの厚さ、視野角のサイズ、および、開口部の位置は、平面扇状X線ビームの形状分布を決定する。典型的に、図2(B)に示されるように、X線ビームに関して、これの厚さは、2mmであり、全視野角は、90°であり、下向き視野角は、水平面(0°)を基準にして、15°(-15°)であり、上向き視野角は、75°(+75°)である。
本発明において、電子加速器1の軸Lと検査通路3との間の角度は、60°より小さく、これらは平行であることが推奨される。電子加速器1の軸Lと検査通路3とが角度βを形成する事例は、図3(A)に示される。
本発明において、2つのコリメータ202a、202bの中心対称線と検査通路3との間の角度は、45°より大きく、これらは、垂直であることが推奨される。コリメータ202a、202bの中心対称線Hと検査通路3とが角度γを形成する事例は、図3(B)に示される。
2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムの2つの型の構造の概略図が図3に示される。
図3(A)は、電子加速器1の軸Lと検査通路3とが角度βを形成するX線蛍光透視イメージングシステムの構造を示す。Βが60°未満である事例では、X線蛍光透視イメージングシステムは、コリメータ202aと電子ビームとの間の偏向角度θ1とコリメータ202bと電子ビームとの間の偏向角度θ2とが適切な角度に調整される限り、2重エネルギー/2重視野角の機能を達成する可能性がある。しかし、角度βが大きくなると、低エネルギーX線X1と高エネルギーX線X2との間のエネルギー差が影響を受けることになる。このようにして、β=0であること、すなわち、電子加速器1の軸Lは、検査通路3に平行であることが推奨される。
図3(B)は、2つのコリメータ202a、202bの中心対称線Hと検査通路3とが角度γを形成するX線蛍光透視イメージングシステムの構造を示す。γが45°より大きい事例では、X線蛍光透視イメージングシステムは、コリメータ202aと電子ビームとの間の偏向角度θ1とコリメータ202bと電子ビームとの間の偏向角度θ2とが適切な角度に調整される限り、2重エネルギー/2重視野角の機能を達成する可能性がある。しかし、角度γが大きくなると、高エネルギーX線X2の経路が長くなる。一方で、これは、検出器の個数を増加させ、その結果、コストを増加させることになり、他方で、これは、視野角を非常に歪め、再構成された画像のレベル効果に影響を与えることになる。従って、γは、約90°であること、たとえば、2つのコリメータ202a、202bの中心対称線Hが検査通路3に垂直であることが推奨される。
本発明において、低エネルギー検出器アレイ4および高エネルギー検出器アレイ5は、直線型配置、折れ線配置、標準的なL型配置またはC型配置にあり、複数の低エネルギーまたは高エネルギー検出器によって構成されている。
本発明において、低エネルギー検出器4および高エネルギー検出器5は、1列または複数の列に配置された複数の検出器である。
数種の検出器アレイの異なった形状および異なった配置方法が図4に示される。
図4(A)は、検出器アレイが折れ線方式で配置されている事例を示す。低エネルギー検出器アレイ4は、2つの線分、すなわち、上部低エネルギー検出器アレイ41および側部低エネルギー検出器アレイ42に分割され、同様に、高エネルギー検出器アレイ5は、上部高エネルギー検出器アレイ51および側部高エネルギー検出器アレイ52に分割される。標的点Oから発生されたX線は、(図中、紙面に垂直であり、かつ、互いに重なり合う)2つのコリメータによって平面扇状低X線ビームおよび平面扇状高X線ビームの中に抽出され、非検査物8に侵入し、それぞれ低エネルギー検出器アレイ4および高エネルギー検出器アレイ5によって受けられる。検出器アレイおよび標的点Oによって形成された扇状領域は、被検査対象物8の断面を完全に覆う可能性がある。このような構成の検出器アレイは、簡単な構造を有し、容易に搭載され、固定される。
図4(B)は、検出器アレイが標準的なL型方式で配置された事例を示す。低エネルギー検出器アレイ4は、互いに垂直である2つの線分、すなわち、上部「−」線分に位置している低エネルギー検出器アレイ41と側部「|」線分に位置している低エネルギー検出器アレイ42とに分割され、同様に、高エネルギー検出器アレイ5は、上部「−」線分に位置している高エネルギー検出器アレイ51と、側部「|」線分に位置している高エネルギー検出器アレイ52とに分割される。標的点Oから発生されたX線は、(図中、紙面に垂直であり、かつ、互いに重なり合う)2つのコリメータによって平面扇状低X線ビームおよび平面扇状高X線ビームの中に抽出され、非検査物8に侵入し、それぞれ低エネルギー検出器アレイ4および高エネルギー検出器アレイ5によって受けられる。検出器アレイおよび標的点Oによって形成された扇状領域は、被検査対象物8の断面を完全に覆う可能性がある。このような構成の検出器アレイは、簡単かつ規則的な構造を有し、折り畳み式構造体に容易に形成される。
図4(C)は、検出器アレイがC型方式で配置された事例を示す。低エネルギー検出器アレイ4および高エネルギー検出器アレイ5は、2つの円弧状線分にそれぞれ位置し、円弧状線分の中心は、標的点位置Oである。標的点Oから発生されたX線は、図中、紙面に垂直であり、かつ、互いに重なり合う)2つのコリメータによって平面扇状低エネルギーX線ビームおよび平面扇状高エネルギーX線ビームの中に抽出され、非検査物8に侵入し、それぞれ低エネルギー検出器アレイ4および高エネルギー検出器アレイ5によって受けられる。検出器アレイおよび標的点Oによって形成された扇状領域は、被検査対象物8の断面を完全に覆う可能性がある。このような構成の検出器アレイでは、それぞれの検出器と標的点との間の距離は同じであり、本発明のコリメータによって抽出されたX線ビームの強度は、それぞれの角度で一様分布しているので、それぞれの検出器によって受けられた原X線信号の強度が一様であり、このようにして、完全に一様な増幅をもつ検出器がシステムを簡略化し、かつ、コストを削減するために役立つ検出器アレイを形成するために選ばれる可能性がある。
図4(D)は、検出器の配置方式がX線方向から観察される事例を示す。検出器アレイは、1列に配置された複数の検出器でもよく、または、複数の列に配置された複数の検出器でもよく、検出器の相対位置は、並列状または千鳥状のいずれかにされることがある。検出器の複数の列の使用は、検出器のコストを増加させることがあるが、毎回獲得される被検査対象物のスライス厚さは、倍数的に増加し、システムの検査速度は、倍数的に改善される可能性がある。
図4(E)は、それぞれの位置における検出器の端面がすべてX線に垂直であることを示す。X線蛍光透視イメージングシステムでは、あらゆる検出器は、概ね前面でX線の入射を受け、すなわち、あらゆる検出器は、これらの端面が標的点Oを指し示すように配列されている。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、検出器の取り付けおよび固定のため、ならびに、直線型、折れ線型、標準的なL型またはC型の配置構造体の形成のため検出器アーム支持体9をさらに備える。検出器アーム支持体9は、概して管状であり、中に取り付けられた検出器を保護する可能性がある。開口部は、X線が影響を受けることなくそのまま検出器の端面に到達するように、検出器の端面に対応する位置に配列されている。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、所定の速度で検査通路の中を通過させるために被検査対象物8を引っ張る搬送装置10をさらに備える。搬送装置は、ベルト、ローラー、チェーン、ホイール、牽引棒などのような様々な搬送手段を使用することがある。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、独立に床に検出器アーム支持体9を固定するため、ならびに、柔軟に検出器アーム支持体9の開口部の位置および方向を調整する検出器アーム支持体9を支持する調整可能な固定用装置11をさらに備える。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、作業スタッフおよび公衆の安全を確保するために、X線が被検査対象物8に侵入する反射光線および散乱光線を遮蔽するため検査通路3の一方側または両側に配列された散乱遮蔽構造体(群)をさらに備える。コリメータの側にある散乱遮蔽構造体は、X線ビームが中を通過することを可能にするためにコリメータに対応する位置に帯状開口部を有し、検出器の側にある散乱遮蔽構造体は、検出器アーム支持体の背後に位置している。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、電子加速器1のような装置の取り付けおよび固定のための設備室をさらに備える。設備室は、X線装置の運転および管理について関連した国内規制を満たすように、作業環境に適当な温度および湿度を提供する。設備室は、コンテナから変形された設備キャビン、または、仮の部屋もしくは定着した建物のような様々なキャビンであることがある。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、システムのスタッフに設備運転および作業のための適当な場所を提供する制御室をさらに備える。制御室は、コンテナから変形された設備キャビン、または、仮の部屋もしくは定着建物のような様々なキャビンであることがある。
本発明の2重エネルギー/2重視野角を含む高エネルギーX線蛍光透視イメージングシステムの1つの型は、被検査対象物のあらゆる部分が低エネルギーX線および高エネルギーX線の覆う範囲に含まれる可能性があるように、非検査物の高さを上昇させる傾斜台をさらに備える。
本発明のX線蛍光透視イメージングシステムの1つの型では、コリメータは、電子ビームの軸に対して同じ側または異なる側のいずれかに位置することがあることに特に注意すべきである。
本発明のX線蛍光透視イメージングシステムの1つの型では、低エネルギー検出器および高エネルギー検出器は、これらが受けるX線ビームがそれぞれ低エネルギーおよび高エネルギーを持つが、検出器自体は、必ずしも明白な違いがないことを意味することに特に注意すべきである。低エネルギー検出器および高エネルギー検出器は、相対的に低エネルギーを持つX線ビームおよび相対的に高エネルギーを持つX線ビームそれぞれに関してより優れた検出結果を有する検出器であることが推奨される。
本発明のX線蛍光透視イメージングシステムの1つの型では、遮蔽コリメータ装置2は、より多くのエネルギーおよびより多くの視野角を持つ高エネルギーX線蛍光透視イメージングシステムを形成するために、電子ビームの同じ側により多くのコリメータを有することがあることに特に注意すべきである。
本発明のX線蛍光透視イメージングシステムの1つの型では、電子加速器1は、単一エネルギー加速器または交番パルス多重エネルギー加速器でもよいことに特に注意すべきである。電子加速器1が2重(多重)エネルギーを有するとき、対応する検出器は、2重(多重)エネルギー検出器である。
本発明のX線蛍光透視イメージングシステムの1つの型では、それぞれのコンポーネントは、固定型システムを形成するために床に完全に配置されることがあり、代替的に、コンポーネントの一部分は、床に固定され、コンポーネントの別の部分は、部分移動型システムを形成するために短距離移動装置上に配置されることがあり、さらに代替的に、それぞれのコンポーネントは、移動型システムを形成するために長距離移動装置上に完全に配置されることがあることに特に注意すべきである。
さらに、2重エネルギー/2重視野角を持つ結合固定型高エネルギーX線蛍光透視イメージングシステムの実施例は、図5に示される。
図5に示された2重エネルギー/2重視野角を持つ結合固定型高エネルギーX線蛍光透視イメージングシステムは、電子加速器1と、遮蔽コリメータ装置2と、検査通路3と、低エネルギー検出器アレイ4と、高エネルギー検出器アレイ5と、電源および制御サブシステム6と、信号解析および画像処理サブシステム7と、検出器アーム支持体9と、搬送装置10と、調整可能な固定用装置11と、散乱遮蔽構造体12と、設備室13と、制御室14とにより構成されている。
電子加速器1、遮蔽コリメータ装置2などは、設備室13の中に取り付けられ、検査通路3の一方側に位置付けられている。電子加速器1の軸は、検査通路3に平行であり、コリメータ202aおよび202bは、検査通路3に対向し、コリメータの中心対称線は、検査通路3に垂直である。コリメータ202aおよび202bの扇状スリットの全視野角は、90°であり、下向き視野角は、−15°であるのに対して、上向き視野角は、+75°である。電子加速器1と検査通路3との間の距離が短くなり、かつ、大規模被検査対象物8が同様に覆われる可能性があるので、システムによって占有される領域が縮小される。C型検出器アーム支持体9は、検査通路3のもう一方側に位置付けられる。C型検出器アーム支持体9は、調整可能な固定用装置11によって床に固定され、コリメータ202aおよび202bに対応する位置にそれぞれ位置付けられている低エネルギー検出器アレイ4および高エネルギー検出器アレイ5がそれぞれ中に取り付けられた2つのグループを有する。すなわち、標的点位置O、コリメータ202aおよび低エネルギー検出器アレイ4は、第1の平面内に位置付けられるのに対して、標的点位置O、コリメータ202bおよび高エネルギー検出器アレイ5は、第2の平面と位置付けられている。平面ローラー型搬送装置10は、検査通路中に取り付けられ、航空コンテナ、航空トレイなどのような大規模ケースがX線検査領域を通過する間に、これらを運ぶ可能性がある。散乱遮蔽構造体12は、設備室13と検査通路3との間に配列され、鉛板と鋼板との複合構造体であり、鉛板は、X線を遮蔽するため使用され、鋼板は、構造支持および固定のため使用される。散乱遮蔽構造体12は、コリメータ202aおよび202bに対応する位置に帯状開口部が設けられ、低エネルギーX線X1および高エネルギーX線X2を阻止しないものである。電源および制御サブシステム6と、信号解析および画像処理サブシステム7と、事務所設備などが制御室14に配置されている。設備室13および制御室14は、断熱層付きの鋼構造キャビンであり、窓、扉、空調設備、照明装置、換気装置などのような基本設備を備え、その上、これらの設備室および制御室は、上部にリフト用構造体を有し、底部に固定用構造体を有し、このようにして、柔軟に配列され、取り付けられる可能性がある。設備室、制御室、搬送装置、および検出器アーム支持体は、電気ケーブルを介して接続され、それぞれのコンポーネントは、比較的独立し、現場で柔軟に固定され、取り付けられる可能性があるので、これは、結合固定型と呼ばれる。2重エネルギー/2重視野角を持つ結合固定型高エネルギーX線蛍光透視イメージングシステムは、空港、貨物駅などのような場所で大規模および中規模コンテナと、集中荷物発送などのためのケースのような被検査対象物に蛍光透視イメージング検査を実行するため適している。
2重エネルギー/2重視野角を持つ軌道移動型高エネルギーX線蛍光透視イメージングシステムの実施例は、図6に示される。
図6に示された2重エネルギー/2重視野角を持つ軌道移動型高エネルギーX線蛍光透視イメージングシステムは、電子加速器1と、遮蔽コリメータ装置2と、検査通路3と、低エネルギー検出器アレイ4と、高エネルギー検出器アレイ5と、電源および制御サブシステム6と、信号解析および画像処理サブシステム7と、L型検出器アーム支持体9と、設備室13と、制御室14と、軌道20と、移動装置21と、接続および支持構造体22と、電気接続構造体23などで構成されている。
電子加速器1、遮蔽コリメータ装置2などは、設備室13の下部で移動装置21を介して床に固定された軌道20に配列された設備室13の中に取り付けられ、検査通路3の一方側に位置付けられている。電子加速器1の軸は、検査通路3に平行である。コリメータ202aおよび202bは、検査通路3に対向し、これらの中心対称線は、検査通路3に垂直である。L型検出器アーム支持体9の2つのグループのうちの各々の一方の端部(「−」線分)は、接続および支持構造体22を介して設備室13の上部に接続され、固定され、L型検出器アーム支持体9の2つのグループのうちの各々のもう一方の端部(「|」線分の下部)は、移動装置21を介して検査通路3のもう一方側で軌道20に配列されている。それぞれの軌道は、互いに平行であり、検出器アーム支持体9および設備室13は、複数の平行軌道に配列されたゲート構造体を形成する。それぞれの移動装置は、ステップモータなどで駆動されたホイールのような複数の方式で実施され、そして、検出器アーム支持体9および設備室13によって形成された「ゲート」構造体が全体として軌道上を移動するように同期運動を維持する可能性がある。低エネルギー検出器アレイ41および高エネルギー検出器アレイ51は、L型検出器アーム支持体9の2つのグループの上部「−」線分の内部にそれぞれ取り付けられ、低エネルギー検出器アレイ42および高エネルギー検出器アレイ52は、これらの側部「|」線分の内部にそれぞれ取り付けられている。標的点位置Oと、コリメータ202aと、低エネルギー検出器アレイ41と、低エネルギー検出器アレイ42とは、第1の平面内に位置付けられているのに対して、標的点位置Oと、コリメータ202bと、低エネルギー検出器アレイ51と、低エネルギー検出器アレイ52とは、第2の平面内に位置付けられている。電源および制御サブシステム6と、信号解析および画像処理サブシステム7と、事務所設備などは、制御室14の中に配置されている。制御室14は、床に固定され、電気接続構造体を介して設備室13に接続されている。電気接続構造体は、ケーブルと、ケーブルを自動的に回収および解放し、軌道上での設備室13の移動中に柔軟にケーブルの長さを調整する可能性があるケーブル用の自動巻き取りロールなどのようなケーブルを自動的に回収および解放する装置とを備える。2重エネルギー/2重視野角を持つこの型の高エネルギーX線蛍光透視イメージングシステムは、床に部分的に固定され、軌道に部分的に配置され、ある特定の距離の範囲内で前後に移動する可能性があるので、軌道移動型と呼ばれる。
2重エネルギー/2重視野角を持つ軌道移動型高エネルギーX線蛍光透視イメージングシステムによって被検査対象物上で実行される蛍光透視イメージングプロセスは、以下のとおりである。被検査対象物8は、検査通路3に置いてある。電子加速器1は、遮蔽コリメータ装置2と一緒になって機能し、X線ビームX1およびX2を発生し始める。同時に、設備室13および検出器アーム支持体9によって形成された「ゲート」構造体は、コリメータ202aによって抽出された平面扇状低エネルギーX線X1およびコリメータ202bによって抽出された平面扇状高エネルギーX線X2が検査通路3に置かれた非検査物を順次スイープし、低エネルギー検出器アレイ4および高エネルギー検出器アレイ5によってそれぞれ受けられるように所定の速度で軌道の一方の端部からもう一方の端部へ移動する。最終的に、被検査対象物のマルチレベル構造および材料情報を反映する蛍光透視画像が信号解析および画像処理サブシステム7によって発生される。
2重エネルギー/2重視野角を持つ軌道移動型高エネルギーX線蛍光透視イメージングシステムは、非検査物8の完全なイメージングを達成するために被検査対象物8の高さを上昇させる傾斜台24をさらに備える可能性がある。たとえば、自動車の検査中に、タイヤは、タイヤ中にドラッグなどのような禁制品があるか否かをチェックするために一緒に画像化されることがある。傾斜台24は、鋼フレーム構造体などのような既知の設計構造体を有する。システムのイメージング中に、傾斜台の一部分に関する構造情報は、被検査対象物8の画像への傾斜台の影響を軽減するために削除される。
2重エネルギー/2重視野角を持つ軌道移動型高エネルギーX線蛍光透視イメージングシステムは、明瞭な蛍光透視画像を獲得するために中型および小型トラック、様々な牽引式台車、様々な自動車、小型乗用車などで蛍光透視イメージングを実行するように税関、陸上通関、重要な位置などのような場所に配置されることがある。同様に、このシステムは、マルチレベル表示および材料認識の機能を有する。その結果、密輸品、危険物、および禁制品の検査は、十分に達成される可能性がある。
さらに、2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、図7に示される。
図7に示された2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、電子加速器1と、遮蔽コリメータ装置2と、検査通路3と、低エネルギー検出器アレイ4と、高エネルギー検出器アレイ5と、電源および制御サブシステム6と、信号解析および画像処理サブシステム7と、折り畳み式L型検出アーム支持体9(それぞれ9aおよび9bの2つ)と、シャシー車両30と、電源キャビン31と、X線源キャビン32と、設備キャビン33と、作業キャビン34と、上昇回転装置36(それぞれ36aおよび36bの2つ)と、接続および支持装置37(それぞれ37aおよび37bの2つ)と、折り畳み式接続装置38(それぞれ38aおよび38bの2つ)とで構成されている。
シャシー車両30は、Volvo3軸ヘビー・デューティ・シャシー車両のような大規模トラックである。電源キャビン31、X線源キャビン32、設備キャビン33、作業キャビン34などの複数のキャビンがシャシー車両の上に設けられる。各キャビンは、必要に応じて、断熱層、窓、扉、空調機器、照明装置、換気装置などのような設備が備えられている。
ディーゼル発電機のような発電設備、および/または、ケーブルと自動巻き取りロールとを含む商用電源に接続される能力がある商用電源接続装置でもよい電源設備は、電源キャビン31の中に取り付けられている。電源キャビンは、システム全体のための電力を供給し、概して、15kVAを上回る電力容量を有する。
電子加速器1および遮蔽コリメータ装置2は、X線源キャビン32に取り付けられている。電子加速器1の軸Lは、シャシー車両30の左右の対称線に平行である。遮蔽コリメータ装置2の2つのコリメータ202aおよび202bの中心対称線Hは、シャシー車両の左右の対称線に垂直である。抽出された低エネルギーX線X1および高エネルギーX線X2は、X線源キャビン32の側にある帯状開口部を介してシャシー車両30の同じ側から放射する。2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、関連する国内規制に準じた補助遮蔽設備と、放射線サインと、音および光アラームと、環境照射量モニタと、ビデオモニタと、安全鎖などのような装置で構成された放射線安全保護サブシステムをさらに備える。放射線安全保護サブシステムのあらゆる装置または装置の一部分は、X線源キャビンの中に取り付けられる。
電源および制御サブシステム6と、信号解析および画像処理サブシステム7と、その他の関連した装置とは、設備キャビン33の中に取り付けられている。電源および制御システム6は、検出器アーム支持体サブシステムの運動を制御する下位レベルサブシステムをさらに備える。
作業キャビン34は、シャシー車両30の端部に取り付けられている。事務所机および椅子と、ディスプレイ装置と、運転および制御装置などは、作業キャビンの中に取り付けられている。この作業キャビンは、作業スタッフが2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムを運転する場所である。
上昇回転装置36は、X線源キャビン32の上部に取り付けられている。折り畳み式L型検出器アーム支持体9は、接続および支持装置37を介して上昇回転装置36に接続され、さらに、折り畳み式L型検出器アーム支持体9の各々は、これらの接合点で折り畳み式接続装置38を介して接続されている「−」および「|」の2つの直線状線分に分割される。これらの装置は、集合的に検出器アーム支持体システムと呼ばれる。上昇回転装置36は、シャシー車両に関する検出器アーム支持体システムの上昇と、ある一定の角度の回転とのため使用され、たとえば、油圧装置、空気圧装置、モータなどを利用することによって、複数の方式で実施される可能性がある。折り畳み式接続装置38は、L型検出器アーム支持体9の2つの直線状線分「−」および「|」の接続のため、ならびに、具体的な状態においてこれらの2つの線分を「=」形状に折り畳むため、または、これらを「L」形状に伸ばすため使用され、たとえば、油圧リンクレバー装置、空気圧リンクレバー装置、モータ、および組み合わせ歯車装置などを利用することによって、複数の方式で、さらに実施される可能性がある。
2つのコリメータ202a、202bとX線ビームの2つのグループ(すなわち、低エネルギーX1および高エネルギーX2)とに対応して、上昇回転装置36と、接続および支持装置37と、折り畳み式L型検出器アーム支持体9と、折り畳み式接続装置38とは、同様に、実質的に同じ構造および機能をそれぞれ持つ2つのグループ、すなわち、36aおよび36bと、37aおよび37bと、9aおよび9bと、38aおよび38bとに分割される。これらの間の詳細な接続関係は、以下のとおりである:(a)コリメータ202aに対応する位置で、上昇回転装置36aは、X線源キャビン32の上部に取り付けられ、折り畳み式L型検出器アーム支持体9aは、接続および支持装置37aを介して上昇回転装置36aに接続され、折り畳み式L型検出器アーム支持体9aは、2つの直線状線分「−」および「|」に分割され、低エネルギー検出器アレイ41は、「−」線分に取り付けられ、低エネルギー検出器アレイ42は、「|」線分に取り付けられ、2つの線分は、これらの接合点で折り畳み式接続装置38aを介して接続され、この部分は、低エネルギー検出器アーム支持体システムと呼ばれ、(b)コリメータ202bに対応する位置で、上昇回転装置36bは、X線源キャビン32の上部に取り付けられ、折り畳み式L型検出器アーム支持体9bは、接続および支持装置37bを介して上昇回転装置36bに接続され、折り畳み式L型検出器アーム支持体9bは、2つの直線状線分「−」および「|」に分割され、高エネルギー検出器アレイ51は、「−」線分に取り付けられ、高エネルギー検出器アレイ52は、「|」線分に取り付けられ、2つの線分は、これらの接合点で折り畳み式接続装置38bを介して接続され、この部分は、高エネルギー検出器アーム支持体システムと呼ばれる。
2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムのあらゆる装置は、1つのシャシー車両に統合され、特別な設備車両を形成する。概して、検出器アーム支持体システムは、折り畳まれ、(図7では、波線付きボックスによって示されるように)位置35で領域の中に置かれる。2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、シャシー車両を介して田舎のハイウェイおよび上位レベルのハイウェイのような様々な道路上で運転される可能性があり、それによって、あらゆる機会に柔軟にアプリケーション要件を満たす可能性がある。
作用原理および過程
2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、アプリケーション要件を用いてある特定の場所へ運転され、これの詳細な作用過程は、以下のとおりである:
(1)2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、平坦かつ開かれた場所に置かれ、作業スタッフは、作業キャビンに入り、システムが始動される。
(2)電源キャビン31内の電源装置は、動作し始め、たとえば、発電機が始動し、または、電気ケーブルが商用電力供給設備に接続され、2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、電力供給を獲得する。
(3)電源および制御サブシステム6の検出器アーム支持体システムの運動を制御する下位レベルサブシステムは、(a)低エネルギー検出器アレイ41および低エネルギー検出器アレイ42が標的点位置Oおよびコリメータ202aが位置している第1の平面内に位置するように、上昇回転装置36aは、最初に、ある一定の高さまで上昇させられ、次に、時計回りにある一定の角度を回転させられ、折り畳み式接続装置38aは、折り畳まれた「=」状態から「L」型状態に伸びるように折り畳み式L型検出器アーム支持体9aを駆動し、(b)高エネルギー検出器アレイ51および高エネルギー検出器アレイ52が標的点位置Oおよびコリメータ202bが位置している第2の平面内に位置するように、上昇回転装置36bは、最初に、ある一定の高さまで上昇させられ、次に、反時計回りにある一定の角度を回転させられ、折り畳み式接続装置38bは、折り畳まれた「=」状態から「L」型状態に伸びるように折り畳み式L型検出器アーム支持体9bを駆動するように動作し、(a)および(b)は、順次にまたは同時に実行されることがある。シャシー車両の一方側で検出器アーム支持体システムは、シャシー車両と一体となって「ゲート」型構造体を形成し、「ゲート」型構造体内部の通路は、図7において波線によって示されるように、検査通路3である。
(4)被検査対象物、たとえば、コンテナトラック、バン、乗用車、小型車などは、列をなして検査通路に停められ、運転手などの人は、被検査対象物から離れる。
(5)電源および制御サブシステム6は、電子加速器1を始動し、コリメータ202aを介して第1の平面内に低エネルギー扇状X線ビームX1を出力し、同時に、コリメータ202bを介して第2の平面内に高エネルギー扇状X線ビームX2を出力する。X1は、直接的または被検査対象物に侵入した後に、検出器アーム支持体9aの「−」線分に位置している低エネルギー検出器アレイ41と、これの「|」線分に位置している低エネルギー検出器アレイ42とに到達し、X2は、直接的または被検査対象物に侵入した後に、検出器アーム支持体9bの「−」線分に位置している高エネルギー検出器アレイ51と、これの「|」線分に位置している高エネルギー検出器アレイ52とに到達する。あらゆる検出器アレイは、受信された信号を変換し、次に、これらを信号解析および画像処理サブユニット7に送信する。
(6)電源および制御サブシステム6は、電子加速器を始動する間に、X線ビームX1およびX2が検査通路上のすべての被検査対象物をスイープするために、所定の速度で直線に沿って走行するようにシャシー車両の自動運転を始動する。
(7)信号解析および画像処理サブシステム7は、同期的に(上述の(5)、(6)と同期して)被検査対象物の幾何学的構造および材料情報を反映する低エネルギーX線蛍光透視データおよび高エネルギーX線蛍光透視データを獲得し、信号解析、アルゴリズム計算、画像構成などのようなプロセス後に、多重レベル情報および材料情報を含む被検査対象物の蛍光透視画像を発生し、そして、これらの蛍光透視画像をリアルタイムでディスプレイ装置に表示する。作業スタッフは、画像情報に基づいて、密輸品検査、危険物検査、禁制品検査などのような検査タスクを遂行する。
(8)被検査対象物、たとえば、コンテナトラック、バン、乗用車、小型車などは、検査が終了した後に、かつ、対処される必要がある問題がないときに検査通路から走り去る。
(9)複数群の被検査対象物が存在する場合、上記(4)〜(8)が繰り返される。そして、検査作業が終了した場合、電子加速器1は、X線の発生を停止するために止められ、(a)折り畳み式接続装置38aは、最初に、開いた「L」状態から折り畳まれた「=」状態に格納するために折り畳み式L型検出器アーム支持体9aを駆動し、上昇回転装置36aは、折り畳まれたL型検出器アーム支持体9aを波線付きボックス領域35より上に位置決めさせるために反時計回りにある一定の角度を回転させられ、次に、格納場所に到達するようにある一定の高さを降下させられ、(b)折り畳み式接続装置38bは、最初に、開いた「L」状態から折り畳まれた「=」状態に格納するために折り畳み式L型検出器アーム支持体9bを駆動し、上昇回転装置36bは、折り畳まれたL型検出器アーム支持体9bを波線付きのボックス領域35より上に位置決めさせるために時計周りにある一定の角度を回転させられ、次に、格納場所に到達するようにある一定の高さを降下させられ、(a)および(b)は、順次にまたは同時に実行されることがある。
(10)作業スタッフは、システムを停止し、電源を切り、作業キャビンを離れ、2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムを次の作業場所に運転することがある。
2重エネルギー/2重視野角を持つ車載移動型高エネルギーX線蛍光透視イメージングシステムは、明瞭な蛍光透視画像を獲得するために、コンテナ車両と、大型、中型および小型トラックと、様々な自動車と、小型乗用車などで蛍光透視イメージングを実行するように税関、陸上通関、空港、重要な位置などのような場所に配置されることがある。同様に、このシステムは、マルチレベル識別および材料認識の機能を有する。その結果、密輸品、危険物、および禁制品の検査は、十分に達成される可能性がある。
有利な効果
本発明は、主として、電子加速器、遮蔽コリメータ装置、低エネルギー検出器アレイ、高エネルギー検出器アレイ、および様々な機械的結合構造体の設計を通じて、それぞれの平面内の様々な方向に異なったエネルギーおよび異なった角度を持つが、一様分布を持つX線ビームの2つのグループを使用することにより蛍光透視イメージングを実行するX線蛍光透視イメージングシステムを提供する。システムは、以下の利点を有する:2重エネルギー電子加速器を使用する他のスキームと比べて、単一エネルギー電子加速器が使用されるので、構造がより簡単であり、かつ、コストがより低くなり、異なった時点でそれぞれ高エネルギーおよび低エネルギーを発生する他のスキームと比べて、異なったエネルギーを持つビームの2つのグループが同時に発生されるので、検査速度がより速くなり、高エネルギーおよび低エネルギーの包括的な検出器を使用する他のスキームと比べて、異なったエネルギーを持つX線ビームの2つのグループは、対応する検出器がそれぞれ低エネルギー検出器および高エネルギー検出器である異なった位置に配列されるので、構造がより簡単であり、かつ、コストがより低くなり、平面内の様々な角度方向におけるX線ビームの強度が一様であるので、放射線源と被検査対象物との間の距離が短縮される可能性があり、X線は、被検査対象物を覆うために広い角度に亘って抽出される可能性があり、X線ビームの各グループは、これの平面扇状領域内で小さいエネルギー拡散、一様な強度分布、および小さい標的サイズのような複数の利点を有するので、X線蛍光透視イメージングシステムの画質が改善される可能性がある。本発明の2重エネルギー/2重視野角を持つ高エネルギーX線蛍光透視イメージングシステムは、簡単な構造、低コスト、強力な機能、良好な画質などのような利点を有する固定型、結合型、軌道移動型、車載移動型などのような特定の型として設計される可能性がある。

Claims (16)

  1. 被検査対象物が通過させられる検査通路と、
    電子加速ユニット、電子放出ユニット、及び標的を備え、前記電子放出ユニットから出て、前記電子加速ユニットによって加速された電子ビームが前記標的に衝突してX線を発生する電子ビーム電子加速器と、
    遮蔽構造体と、前記遮蔽構造体の中に配列された低エネルギー平面扇状X線ビームを抽出する第1のコリメータおよび高エネルギー平面扇状X線ビームを抽出する第2のコリメータとを備える遮蔽コリメータ装置と、
    前記第1のコリメータからX線ビームを受ける低エネルギー検出器アレイと、
    前縦第2のコリメータからX線ビームを受ける高エネルギー検出器アレイと、
    を備え、
    前記遮蔽構造体は、前記標的を取り囲み、
    前記第1のコリメータ、前記低エネルギー検出器アレイおよび電子ビームによって衝突された標的点が第1の平面に位置し、
    前記第2のコリメータ、前記高エネルギー検出器アレイおよび電子ビームによって衝突された前記標的点が第2の平面に位置することを特徴とする、
    X線蛍光透視イメージングシステム。
  2. 前記第1および/または第2のコリメータが配列される方向と電子ビームが前記標的に衝突する方向との間の角度が30°から150°であることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  3. 前記電子加速器の軸と前記検査通路との間の角度が60°未満であることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  4. 前記第1および第2のコリメータは、前記電子ビームの軸に対して同じ側に位置していることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  5. 前記電子加速器の前記軸は、前記検査通路に平行であることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  6. 前記第1および第2のコリメータの中心対称線と前記検査通路との間の角度が45°より大きくなることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  7. 前記第1および第2のコリメータの前記中心対称線は、前記検査通路に垂直であることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  8. 前記低エネルギー検出器アレイおよび前記高エネルギー検出器アレイは、直線型配置、折れ線配置、標準的なL型配置またはC型配置にあり、複数の低エネルギー検出器および高エネルギー検出器によってそれぞれ構成されていることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  9. 前記低エネルギー検出器アレイおよび前記高エネルギー検出器アレイは、それぞれ複数の列のうちの1列に配置された複数の検出器であることを特徴とする、請求項1に記載のX線蛍光透視イメージングシステム。
  10. 前記低エネルギー検出器アレイおよび前記高エネルギー検出器アレイから信号を受信し、最終的に計算および解析により蛍光透視画像を発生する信号解析および画像処理サブシステムと、
    前記X線蛍光透視イメージングシステムの運転に電力を供給し、運転を制御する電源および制御サブシステムと、
    をさらに備えることを特徴とする、請求項1から9のいずれかに記載のX線蛍光透視イメージングシステム。
  11. 直線型、折れ線型、標準的なL型またはC型の配置構造体に形成された、検出器の取り付けおよび固定のための検出器アーム支持体、ならびに、前記検出器アーム支持体を独立に床に固定する調整可能な固定用装置と、
    所定の速度で前記検査通路を通過させるために前記被検査対象物を引っ張る搬送装置と、
    前記検査通路の一方側または両側に配列された散乱遮蔽構造体と、
    前記電子加速器などのような装置の取り付けおよび固定のための設備室と、
    設備運転および作業場所を前記システムの作業スタッフに提供する制御室と、
    前記被検査対象物の高さを増大させる傾斜台と、
    のいずれかの組み合わせをさらに備えることを特徴とする、請求項1から9のいずれかに記載のX線蛍光透視イメージングシステム。
  12. 複数のコリメータおよび複数の対応する検出器アレイを備えることを特徴とする、請求項1から9のいずれかに記載のX線蛍光透視イメージングシステム。
  13. 前記電子加速器は、単一エネルギー加速器、2重エネルギー加速器または多重エネルギー加速器であり、前記検出器アレイは、相応した単一エネルギー検出器アレイ、2重エネルギー検出器アレイまたは多重エネルギー検出器アレイであることを特徴とする、請求項1から9のいずれかに記載のX線蛍光透視イメージングシステム。
  14. 請求項1から9のいずれかに記載のX線蛍光透視イメージングシステムと、
    前記検査通路の一方側で床に固定され、前記電子加速器および前記遮蔽コリメータ装置が中に取り付けられ、前記第1および第2のコリメータが異なった角度で前記検査経路に対向している設備室と、
    前記検査通路の中に取り付けられた搬送装置と、
    前記検査通路のもう一方側に配列され、調整可能な固定用装置によって床に固定され、低エネルギー検出器アレイおよび高エネルギー検出器アレイがそれぞれ中に取り付けられている第1および第2の検出器アーム支持体と、
    前記設備室と前記検査通路との間に配列されている散乱遮蔽構造体と、
    床に固定され、前記信号解析および画像処理サブシステムが前記電源および制御サブシステムと共に中に取り付けられ、結合固定型X線蛍光透視イメージングシステムを制御する制御室と、
    を備えることを特徴とする、結合固定型X線蛍光透視イメージングシステム。
  15. 請求項1から9のいずれかに記載のX線蛍光透視イメージングシステムと、
    前記検査通路が2つの隣接した軌道の間に配列されている平行に配列された複数の軌道と、
    前記軌道に配列された移動装置と、
    前記移動装置を介して前記検査通路の一方側で前記軌道に配列され、前記電子加速器および前記遮蔽コリメータ装置が中に取り付けられ、前記第1および第2のコリメータが異なった角度で前記検査通路に対向する設備室と、
    「|」線分下部が前記移動装置を介して前記検査通路のもう一方側で前記軌道上に配列され、もう一方の端部が前記設備室の上部に接続され、かつ、固定され、前記低エネルギー検出器アレイおよび前記高エネルギー検出器アレイがそれぞれ中に取り付けられている2つのL型検出器アーム支持体と、
    床に固定され、前記信号解析および画像処理サブシステムが前記電源および制御サブシステムと共に中に取り付けられ、軌道移動型X線蛍光透視イメージングシステムを制御する制御室と、
    を備えることを特徴とする、軌道移動型X線蛍光透視イメージングシステム。
  16. 請求項1から9のいずれかに記載のX線蛍光透視イメージングシステムと、
    シャシー車両、ならびに、前記シャシー車両に取り付けられたX線源キャビン、設備キャビン、作業キャビン、低エネルギー検出器アーム支持体システムおよび高エネルギー検出器アーム支持体システムと、
    を備え、
    前記電子加速器および前記遮蔽コリメータ装置が前記X線源キャビンの中に取り付けられ、低エネルギーX線ビームおよび高エネルギーX線ビームがそれぞれ前記第1および第2のコリメータを介して異なった角度で前記シャシー車両の一方側に抽出され、
    前記低エネルギー検出器アーム支持体システムは、前記低エネルギー検出器アレイが中に取り付けられ、作業状態において、前記低エネルギー検出器アーム支持体システムは、前記シャシー車両の一方側で開かれ、前記シャシー車両と共に「ゲート」型構造体を形成し、前記低エネルギー検出器アレイを前記第1のコリメータがある前記第1の平面に位置付け、そして、非作業状態において、前記低エネルギー検出器アレイ支持体システムが折り畳まれ、前記シャシー車両の上部に格納され、
    前記高エネルギー検出器アーム支持体システムは、前記高エネルギー検出器アレイが中に取り付けられ、作業状態において、前記高エネルギー検出器アーム支持体システムは、前記シャシー車両の一方側で開かれ、前記シャシー車両と共に「ゲート」型構造体を形成し、前記高エネルギー検出器アレイを前記第2のコリメータがある前記第2の平面に位置付け、そして、非作業状態において、前記高エネルギー検出器アーム支持体システムが折り畳まれ、前記シャシー車両の上部に格納され、
    前記低エネルギー検出器アーム支持体システムおよび前記高エネルギー検出器アーム支持体システムは、前記シャシー車両に対して同じ側に位置付けられ、前記シャシー車両と共に次々に2つの「ゲート」型構造体を形成し、前記2つの「ゲート」型構造体によって形成された内部通路が検査通路になり、
    前記設備キャビンは、前記電源および制御サブシステムが前記信号解析および画像処理サブシステムと共に中に取り付けられ、
    前記作業キャビンは、システム運転および事務所設備が中に取り付けられ、前記車載移動型X線蛍光透視イメージングシステムを制御することを特徴とする、
    車載移動型X線蛍光透視イメージングシステム。
JP2014259042A 2013-12-30 2014-12-22 X線蛍光透視イメージングシステム Expired - Fee Related JP6054938B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310742070.X 2013-12-30
CN201310742070.XA CN104749199B (zh) 2013-12-30 2013-12-30 双能/双视角的高能x射线透视成像系统

Publications (2)

Publication Number Publication Date
JP2015135325A true JP2015135325A (ja) 2015-07-27
JP6054938B2 JP6054938B2 (ja) 2016-12-27

Family

ID=52278434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259042A Expired - Fee Related JP6054938B2 (ja) 2013-12-30 2014-12-22 X線蛍光透視イメージングシステム

Country Status (6)

Country Link
US (1) US9857317B2 (ja)
EP (1) EP2889651B1 (ja)
JP (1) JP6054938B2 (ja)
CN (1) CN104749199B (ja)
HK (1) HK1212023A1 (ja)
RU (1) RU2657354C2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10143076B2 (en) * 2016-04-12 2018-11-27 Varian Medical Systems, Inc. Shielding structures for linear accelerators
US10754057B2 (en) * 2016-07-14 2020-08-25 Rapiscan Systems, Inc. Systems and methods for improving penetration of radiographic scanners
CN110199209B (zh) * 2016-07-28 2021-07-30 德国史密斯海曼简化股份公司 散射成像
CN106443806B (zh) * 2016-09-18 2020-01-14 北京君和信达科技有限公司 辐射成像系统和图像处理方法
CN106455285A (zh) * 2016-11-14 2017-02-22 上海联影医疗科技有限公司 一种靶组件以及具有该靶组件的加速器
CN106483153A (zh) * 2016-12-23 2017-03-08 同方威视技术股份有限公司 双能探测器及辐射检查系统
CN106707354A (zh) * 2017-01-04 2017-05-24 重庆日联科技有限公司 人车分离x 射线检测系统
CN109242920B (zh) * 2017-07-11 2020-06-02 清华大学 物质分解方法、装置和系统
CN109686469A (zh) * 2017-10-19 2019-04-26 北京君和信达科技有限公司 准直器及双视角成像系统
CN108387593A (zh) * 2017-12-12 2018-08-10 北京航星机器制造有限公司 一种ct探测装置
CN107870346B (zh) * 2017-12-26 2023-09-19 中国工程物理研究院激光聚变研究中心 一种x射线强度准无损二维成像装置
CN108508049B (zh) * 2018-02-08 2021-03-26 同济大学 一种基于x射线背散射的移动式轿车底盘安检装置
CN108508043A (zh) * 2018-06-06 2018-09-07 南京正驰科技发展有限公司 单源双视角安检机
CN112105919B (zh) * 2018-06-08 2023-08-22 株式会社岛津制作所 荧光x射线分析装置以及荧光x射线分析方法
RU2706219C1 (ru) * 2019-03-19 2019-11-15 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Коллиматор для жесткого рентгеновского излучения
CN110850494A (zh) * 2019-10-24 2020-02-28 武汉艾崴科技有限公司 一种大型汽车集装箱双x光源侧照式安检机
CN113640894A (zh) * 2021-06-29 2021-11-12 博微太赫兹信息科技有限公司 一种双视角毫米波收发阵列
GB202402967D0 (en) * 2021-10-01 2024-04-17 Rapiscan Holdings Inc Methods and systems for the concurrent generation of multiple substantially similar x-ray beams
CN114152994A (zh) * 2021-12-31 2022-03-08 同方威视科技(北京)有限公司 安检设备、安检系统及安检方法
CN117233827B (zh) * 2023-11-10 2024-04-09 原子高科股份有限公司 一种低能光子源的源强测量装置及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142243A (ja) * 1986-12-05 1988-06-14 Hitachi Ltd 分光型放射線画像撮影装置
JPH01196550A (ja) * 1988-01-31 1989-08-08 Shimadzu Corp 骨塩定量分析装置
JPH0455743A (ja) * 1990-06-26 1992-02-24 Fujitsu Ltd エックス線検査装置
US6628745B1 (en) * 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
JP2004170393A (ja) * 2002-10-16 2004-06-17 Tsinghua Univ 車両に搭載した移動可能なコンテナー検査装置。
JP2005534151A (ja) * 2002-07-19 2005-11-10 ヴァリアン メディカル システムズ テクノロジーズ インコーポレイテッド 放射源および小型放射走査システム
US20060008052A1 (en) * 2004-02-06 2006-01-12 Elyan Vladimir V Non-intrusive inspection systems for large container screening and inspection
JP2009036769A (ja) * 2007-08-02 2009-02-19 Tongfang Nuctech Co Ltd 両眼立体視・マルチエネルギー透過画像を用いて材料を識別する方法
JP2010537163A (ja) * 2007-08-17 2010-12-02 ダーハム サイエンティフィック クリスタルズ リミテッド 物質の検査のための方法及び装置
JP2011503584A (ja) * 2007-12-28 2011-01-27 同方威視技術股▲分▼有限公司 アームフレーム構造及びアームフレーム構造を備える輻射イメージングシステム
US20120148020A1 (en) * 2010-02-26 2012-06-14 Arroyo Jr Luis E Integrated portable checkpoint system
US20130136230A1 (en) * 2011-11-29 2013-05-30 American Science And Engineering, Inc. System and Methods for Multi-Beam Inspection of Cargo in Relative Motion

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599740A (en) 1983-01-06 1986-07-08 Cable Arthur P Radiographic examination system
FR2588180A1 (fr) * 1985-10-08 1987-04-10 Thomson Cgr Appareil d'examen radiologique
US6069936A (en) 1997-08-18 2000-05-30 Eg&G Astrophysics Material discrimination using single-energy x-ray imaging system
CN2410260Y (zh) * 2000-03-01 2000-12-13 清华大学 可拆装组合的移动式集装箱检测装置
CN1160557C (zh) * 2001-09-03 2004-08-04 北京埃索特核电子机械有限公司 钴60γ射线源-碘化铯或钨酸镉阵列探测器集装箱检测设备
US7783004B2 (en) 2002-07-23 2010-08-24 Rapiscan Systems, Inc. Cargo scanning system
CN2572400Y (zh) * 2002-10-16 2003-09-10 清华大学 一种车载移动式集装箱检查系统
WO2004101162A1 (en) 2003-05-19 2004-11-25 Ntu Ventures Private Limited Method and apparatus for disinfecting fluids using electromagnetic radiation while undergoing separation
JP4055743B2 (ja) 2003-06-04 2008-03-05 松下電工株式会社 足浴器
FR2856513A1 (fr) * 2003-06-20 2004-12-24 Thales Sa Tube generateur de rayons x a ensemble porte-cible orientable
CN1627061A (zh) * 2003-12-10 2005-06-15 清华同方威视技术股份有限公司 一种组合移动式低靶点集装箱检查系统
CN1995993B (zh) 2005-12-31 2010-07-14 清华大学 一种利用多种能量辐射扫描物质的方法及其装置
CN101076218B (zh) 2006-05-19 2011-05-11 清华大学 产生具有不同能量的x射线的设备、方法及材料识别系统
CN101163372B (zh) 2006-10-11 2010-05-12 清华大学 多能倍频粒子加速器及其方法
CN101162205B (zh) * 2006-10-13 2010-09-01 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
CN101163369B (zh) * 2006-10-13 2011-07-20 同方威视技术股份有限公司 用于辐射源的控制单元和控制方法及辐射检查系统和方法
CN101162507B (zh) * 2006-10-13 2010-05-12 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
US7492861B2 (en) * 2006-10-13 2009-02-17 Tsinghua University Apparatus and method for quick imaging and inspecting moving target
TR200904838T1 (tr) 2006-12-28 2009-10-21 Nuctech Company Limited Binoküler steryoskobik taramalı radyografik görüntülemeye ilişkin metot ve sistem
US7957505B1 (en) * 2007-03-12 2011-06-07 The United States Of America As Represented By The United States Department Of Energy X-ray radiography for container inspection
CN101435783B (zh) 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
JP5559471B2 (ja) * 2008-11-11 2014-07-23 浜松ホトニクス株式会社 放射線検出装置、放射線画像取得システム、放射線検査システム、及び放射線検出方法
CN101592622A (zh) * 2009-07-03 2009-12-02 公安部第一研究所 具有真实双能量的多视角x射线行李爆炸物自动探测装置
GB2488740B (en) * 2010-01-19 2015-02-11 Rapiscan Systems Inc Multi-view cargo scanner
IT1405995B1 (it) 2010-07-09 2014-02-06 Alta Lab S R L Sistema e metodo per la ispezione a raggi x e la identificazione della composizione chimica dei materiali
RU2430424C1 (ru) * 2010-08-02 2011-09-27 Исб Портал Лимитед (Исб Портал Лтд) Система досмотра грузов и транспортных средств, перемещающихся своим ходом, способ автоматического радиоскопического контроля движущихся объектов и зоны радиационного сканирования и способ формирования теневого изображения инспектируемого объекта
CN203941116U (zh) * 2013-12-30 2014-11-12 同方威视技术股份有限公司 双能/双视角的高能x射线透视成像系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142243A (ja) * 1986-12-05 1988-06-14 Hitachi Ltd 分光型放射線画像撮影装置
JPH01196550A (ja) * 1988-01-31 1989-08-08 Shimadzu Corp 骨塩定量分析装置
JPH0455743A (ja) * 1990-06-26 1992-02-24 Fujitsu Ltd エックス線検査装置
US6628745B1 (en) * 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
JP2005534151A (ja) * 2002-07-19 2005-11-10 ヴァリアン メディカル システムズ テクノロジーズ インコーポレイテッド 放射源および小型放射走査システム
JP2004170393A (ja) * 2002-10-16 2004-06-17 Tsinghua Univ 車両に搭載した移動可能なコンテナー検査装置。
US20060008052A1 (en) * 2004-02-06 2006-01-12 Elyan Vladimir V Non-intrusive inspection systems for large container screening and inspection
JP2009036769A (ja) * 2007-08-02 2009-02-19 Tongfang Nuctech Co Ltd 両眼立体視・マルチエネルギー透過画像を用いて材料を識別する方法
JP2010537163A (ja) * 2007-08-17 2010-12-02 ダーハム サイエンティフィック クリスタルズ リミテッド 物質の検査のための方法及び装置
JP2011503584A (ja) * 2007-12-28 2011-01-27 同方威視技術股▲分▼有限公司 アームフレーム構造及びアームフレーム構造を備える輻射イメージングシステム
US20120148020A1 (en) * 2010-02-26 2012-06-14 Arroyo Jr Luis E Integrated portable checkpoint system
US20130136230A1 (en) * 2011-11-29 2013-05-30 American Science And Engineering, Inc. System and Methods for Multi-Beam Inspection of Cargo in Relative Motion

Also Published As

Publication number Publication date
HK1212023A1 (en) 2016-06-03
EP2889651B1 (en) 2019-11-20
RU2014152346A (ru) 2016-07-20
JP6054938B2 (ja) 2016-12-27
EP2889651A1 (en) 2015-07-01
CN104749199B (zh) 2019-02-19
RU2657354C2 (ru) 2018-06-13
US20150185166A1 (en) 2015-07-02
CN104749199A (zh) 2015-07-01
US9857317B2 (en) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6054938B2 (ja) X線蛍光透視イメージングシステム
RU2638911C2 (ru) Система формирования рентгеновского флуороскопического изображения
CN1798970B (zh) 车辆安装式检测系统及方法
CN1318841C (zh) 移动式x射线反向散射检查车
CN102834738B (zh) 货物和车辆检查系统
JP6385369B2 (ja) 運搬可能な安全性検査システム
JP2019164157A (ja) 連結式多視点物品検査システム及びその使用方法
US8971487B2 (en) Stowable arcuate detector array
US6459764B1 (en) Drive-through vehicle inspection system
US5692028A (en) X-ray examining apparatus for large-volume goods
US9958569B2 (en) Mobile imaging system and method for detection of contraband
CN106290422B (zh) 一种用于车辆安全检查的成像装置及其方法
CN104502377B (zh) 车辆辐射成像检测系统
CN203772764U (zh) 双通道高能x射线透视成像系统
JP2011017709A (ja) X線後方散乱モバイル検査バン
US10809415B2 (en) Imaging device for use in vehicle security check and method therefor
Swift Mobile X-ray backscatter imaging system for inspection of vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6054938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees