JP2015130367A - Solar cell and manufacturing method therefor - Google Patents

Solar cell and manufacturing method therefor Download PDF

Info

Publication number
JP2015130367A
JP2015130367A JP2012098819A JP2012098819A JP2015130367A JP 2015130367 A JP2015130367 A JP 2015130367A JP 2012098819 A JP2012098819 A JP 2012098819A JP 2012098819 A JP2012098819 A JP 2012098819A JP 2015130367 A JP2015130367 A JP 2015130367A
Authority
JP
Japan
Prior art keywords
solar cell
receiving surface
manufacturing
conductivity type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012098819A
Other languages
Japanese (ja)
Inventor
達志 森貞
Tatsushi Morisada
達志 森貞
剛彦 佐藤
Takehiko Sato
剛彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012098819A priority Critical patent/JP2015130367A/en
Priority to PCT/JP2013/054743 priority patent/WO2013161373A1/en
Publication of JP2015130367A publication Critical patent/JP2015130367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method of manufacturing a solar cell in which the bleeding paste is prevented from spreading.SOLUTION: A method of manufacturing a solar cell includes the steps of:forming grooves 4 on both sides of a light-receiving surface electrode forming area of a first conductivity type semiconductor substrate 1 on the light-receiving surface side in the extension direction; forming a second conductivity type layer 3 different from the first conductivity type by diffusing impurities in the surface of the semiconductor substrate on the light-receiving surface side following to formation of the grooves; forming an antireflection film 5 on the second conductivity type layer; and forming a light-receiving surface electrode 6 on the light-receiving surface electrode forming area by screen printing.

Description

本発明は、太陽電池およびその製造方法に関する。   The present invention relates to a solar cell and a manufacturing method thereof.

太陽電池の高効率化技術の一つにグリッド電極細線化がある。太陽電池の受光面に形成されているグリッド電極は光を遮らないように占有面積を少なくし、光電変換に寄与する光を増大させることが重要である。また、発生した光電流を損失なく外部に出力するために、より低抵抗なグリッド電極にする必要もある。太陽電池用グリッド電極の最も適切な形状としては細線、かつ厚膜の高アスペクト比のものが求められる。太陽電池のグリッド電極は一般的にスクリーン印刷を用いて形成される。   One of the technologies for improving the efficiency of solar cells is to make the grid electrode thin. It is important to reduce the occupied area of the grid electrode formed on the light receiving surface of the solar cell so as not to block light and increase the light contributing to photoelectric conversion. Further, in order to output the generated photocurrent to the outside without loss, it is necessary to form a grid electrode having a lower resistance. As the most suitable shape of the grid electrode for solar cells, a thin wire and a thick film having a high aspect ratio are required. The grid electrode of a solar cell is generally formed using screen printing.

スクリーン印刷は装置構成も非常に簡単で安価であるため、量産プロセスに導入しやすい。しかし、電極材料であるペーストの性状が電極性能や印刷性へ大きく影響するため、印刷技術以外にも課題を多く抱えている。太陽電池電極用銀ペーストは主に銀フィラー、有機溶剤、樹脂、ガラス粉末を混合したもので作られている。ペースト材料の改良により高アスペクト化も試みられている(例えば、特許文献1や特許文献2参照)。細線・高アスペクトの太陽電池用グリッド電極を得るためには、印刷技術とペースト性能を両立させなければならない。   Since screen printing is very simple and inexpensive, it is easy to introduce into mass production processes. However, since the properties of the paste, which is an electrode material, greatly affect electrode performance and printability, there are many problems other than printing technology. The silver paste for solar cell electrodes is mainly made of a mixture of silver filler, organic solvent, resin, and glass powder. An attempt has been made to increase the aspect ratio by improving the paste material (see, for example, Patent Document 1 and Patent Document 2). In order to obtain a thin-wire / high-aspect solar cell grid electrode, printing technology and paste performance must be compatible.

特開2007−95663号公報JP 2007-95663 A 特開2010−199034号公報JP 2010-199034 A 特開2006−32698号公報JP 2006-32698 A

しかしながら、上記従来の技術によれば、スクリーン印刷での太陽電池用グリッド電極形成時、ペーストが基板に転写された後、ペーストがその形状を保てず、ダレや滲みが発生する。そのため、線幅が増加し、受光面での入射光が減少した結果、太陽電池出力を低下させる。   However, according to the conventional technique, when the grid electrode for solar cell is formed by screen printing, after the paste is transferred to the substrate, the paste cannot maintain its shape, and sagging and bleeding occur. Therefore, the line width increases and the incident light on the light receiving surface decreases, resulting in a decrease in solar cell output.

この滲みを防ぐために、特許文献3では太陽電池の受光面に溝を形成し、その溝に電極を埋め込み、高アスペクト比の電極を形成する方法を提示している。しかし、コスト削減のため、基板厚100〜200μmほどのウエハを使用し、幅40〜80μm、深さ30〜60μmの溝を形成すると、基板が割れやすくなり、量産時の歩留まりが低下するという問題がある。さらに、溝へのスクリーン印刷では溝の底部とペーストが接触し難いため、ペーストの充填不足が起きやすくなる。充填力を上げるために、ペーストの組成や粘度を調整する方法もあるが、ペーストの状態管理が必要で、コストがかかる。また、充填力を高め、断線を防ぐために処理速度を低速化する必要があり、タクトタイムが増加するなどの問題があった。   In order to prevent this bleeding, Patent Document 3 proposes a method of forming a high aspect ratio electrode by forming a groove on the light receiving surface of a solar cell and embedding an electrode in the groove. However, in order to reduce the cost, if a wafer having a substrate thickness of about 100 to 200 μm is used and a groove having a width of 40 to 80 μm and a depth of 30 to 60 μm is formed, the substrate is easily broken and the yield during mass production is reduced. There is. Further, in the screen printing on the groove, the bottom of the groove and the paste are difficult to come into contact with each other. In order to increase the filling force, there is a method of adjusting the composition and viscosity of the paste. However, the state of the paste needs to be managed, which is expensive. In addition, in order to increase the filling force and prevent disconnection, it is necessary to reduce the processing speed, and there is a problem that the tact time increases.

本発明は、上記に鑑みてなされたものであって、ペースト滲みの広がりを防いで特性の向上を図った太陽電池およびその製造方法を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell and a method for manufacturing the same, in which the spread of paste spread is prevented and the characteristics are improved.

上述した課題を解決し、目的を達成するために、本発明は、第一導電型の半導体基板の受光面側の受光面電極形成予定領域の延伸方向に沿った両脇に溝を形成する工程と、前記溝の形成後に、前記半導体基板の受光面側の表面に不純物を拡散させることにより第一導電型とは異なる第二導電型の層を形成する工程と、第二導電型の層の上に反射防止膜を形成する工程と、前記受光面電極形成予定領域の上にスクリーン印刷を用いて受光面電極を形成する工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention includes a step of forming grooves on both sides along the extending direction of the light-receiving surface electrode formation scheduled region on the light-receiving surface side of the first conductivity type semiconductor substrate. And forming a second conductivity type layer different from the first conductivity type by diffusing impurities on the light receiving surface side surface of the semiconductor substrate after forming the groove; and The method includes a step of forming an antireflection film thereon, and a step of forming a light receiving surface electrode on the light receiving surface electrode formation scheduled region using screen printing.

本発明によれば、電極周りに溝が形成されていることにより、ペースト滲みの広がりを防ぎ、電極幅を狭くすることができる。これにより発電量を増加させ、太陽電池特性を向上させるという効果を奏する。また、印刷時、基板とペーストが接触しやすく、ペーストの組成、粘度調整を行わなくても安定して印刷ができる。このため、ペースト管理が容易になり、歩留まりの改善やタクトタイムの短縮が可能になるという効果を奏する。   According to the present invention, since the grooves are formed around the electrodes, the spread of paste bleeding can be prevented and the electrode width can be reduced. This produces the effect of increasing the amount of power generation and improving the solar cell characteristics. Further, during printing, the substrate and the paste are easily in contact with each other, and printing can be stably performed without adjusting the composition and viscosity of the paste. For this reason, paste management becomes easy, and there is an effect that yield can be improved and tact time can be shortened.

図1は、本発明の実施の形態による太陽電池の製造方法を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining a method of manufacturing a solar cell according to an embodiment of the present invention. 図2は、本発明の実施の形態による太陽電池の製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method for manufacturing a solar cell according to an embodiment of the present invention. 図3は、本発明の実施の形態による太陽電池の製造方法を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining a method for manufacturing a solar cell according to an embodiment of the present invention. 図4は、本発明の実施の形態による太陽電池の製造方法を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a method for manufacturing a solar cell according to an embodiment of the present invention. 図5は、本発明の実施の形態による太陽電池の製造方法を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining a method for manufacturing a solar cell according to an embodiment of the present invention.

以下に、本発明にかかる太陽電池およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではない。   Embodiments of a solar cell and a method for manufacturing the solar cell according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the following description.

実施の形態.
図1乃至5は、本発明の実施の形態にかかる太陽電池の製造方法を説明するための各工程での断面図を示している。これにより製造された図5に示す太陽電池は、表面(受光面)に微小凹凸(テクスチャ)2が形成された第一導電型の半導体基板1に第二導電型層3を形成し、その上に反射防止膜5、表銀電極6(受光面グリッド電極)が形成され、半導体基板1の裏側には裏面アルミ電極7(裏面電極)が取り付けられた構造となっている。表銀電極6は紙面垂直方向に延伸している。
Embodiment.
1 to 5 show cross-sectional views at each step for explaining a method for manufacturing a solar cell according to an embodiment of the present invention. The solar cell shown in FIG. 5 manufactured in this way has a second conductivity type layer 3 formed on a first conductivity type semiconductor substrate 1 having minute irregularities (textures) 2 formed on the surface (light receiving surface). The antireflection film 5 and the front silver electrode 6 (light-receiving surface grid electrode) are formed on the semiconductor substrate 1, and the back surface aluminum electrode 7 (back surface electrode) is attached to the back side of the semiconductor substrate 1. The front silver electrode 6 extends in the direction perpendicular to the paper surface.

図1に示す半導体基板1としては、p型の単結晶もしくは多結晶シリコンの基板を用いる。シリコンインゴットからスライスされたウエハ表面、及び表面付近は、スライス時にクラックなどの物理的ダメージが存在する。そこで、このダメージ層を除去するために、加熱されたアルカリ溶液に浸漬し、エッチングする。半導体基板1にはp型に限らず、n型の基板を用いてもよい。   As the semiconductor substrate 1 shown in FIG. 1, a p-type single crystal or polycrystalline silicon substrate is used. The wafer surface sliced from the silicon ingot and the vicinity of the surface have physical damage such as cracks during slicing. Therefore, in order to remove this damaged layer, it is immersed in a heated alkaline solution and etched. The semiconductor substrate 1 is not limited to the p-type but may be an n-type substrate.

次に、図2に示すように、例えばアルカリエッチングなどの手法により半導体基板1に微小凹凸2を形成する。太陽電池表面はできるだけ多くの光を取り込むためにピラミッド型の微小凹凸2が形成されている。これにより受光面の面積を拡大することができ、反射光を減らし、できるだけ多くの光を取り込める構造となっている。ピラミッド型の他に微小凹凸2の形状として、V字溝を形成した逆ピラミッド構造もある。微小凹凸2は、例えば水酸化ナトリウムなどのアルカリ溶液にIPA(イソプロピルアルコール)などの添加剤を混ぜ、ウエハを浸漬させると形成することができる。溶液濃度、添加剤の量、温度、時間により微小凹凸2の形状は調整可能である。その他の形成方法として、ドライエッチングであるRIE(Reactive Ion Etching)でも受光面に微小凹凸2を形成することができる。RIEは多結晶基板の場合において有効である。   Next, as shown in FIG. 2, fine irregularities 2 are formed on the semiconductor substrate 1 by a technique such as alkali etching. On the surface of the solar cell, minute pyramids 2 are formed in order to capture as much light as possible. As a result, the area of the light receiving surface can be increased, the reflected light is reduced, and as much light as possible can be captured. In addition to the pyramid shape, there is an inverted pyramid structure in which a V-shaped groove is formed as the shape of the minute irregularities 2. The fine irregularities 2 can be formed by mixing an additive such as IPA (isopropyl alcohol) in an alkaline solution such as sodium hydroxide and immersing the wafer. The shape of the micro unevenness 2 can be adjusted by the solution concentration, the amount of additive, temperature, and time. As another forming method, the fine irregularities 2 can be formed on the light receiving surface by RIE (Reactive Ion Etching) which is dry etching. RIE is effective in the case of a polycrystalline substrate.

次に、図3に示すように受光面電極形成予定領域10の両脇に溝4を形成する。受光面電極形成予定領域10は紙面垂直方向に延伸しているので、両脇の溝4も共に紙面垂直方向に延伸している。溝4の形成方法としては例えば、レーザを用いたスクライビングにより形成する方法がある。受光面電極形成予定領域10の両脇の溝4と溝4の間隔は例えば50〜90μmで、溝幅5〜10μm、溝深さ15〜30μmで形成する。このような条件であることが、後述するスクリーン印刷でペースト滲みが発生しても、溝を超えないようにして受光面グリッド電極の狭幅化を図るためには望ましい。溝4の幅、深さや形状はレーザ出力や波長を変えて調整することができ、形状としては、例えばV字、U字、矩形などがある。なお、溝4の深さは、微小凹凸2の凹凸の深さよりも一般には深い。   Next, as shown in FIG. 3, grooves 4 are formed on both sides of the light receiving surface electrode formation scheduled region 10. Since the light receiving surface electrode formation scheduled region 10 extends in the direction perpendicular to the paper surface, the grooves 4 on both sides also extend in the direction perpendicular to the paper surface. As a method of forming the groove 4, for example, there is a method of forming by scribing using a laser. The spacing between the grooves 4 on both sides of the light receiving surface electrode formation scheduled region 10 is, for example, 50 to 90 μm, the groove width is 5 to 10 μm, and the groove depth is 15 to 30 μm. Such a condition is desirable in order to narrow the width of the light receiving surface grid electrode so as not to exceed the groove even if paste bleeding occurs in screen printing described later. The width, depth, and shape of the groove 4 can be adjusted by changing the laser output and wavelength. Examples of the shape include a V shape, a U shape, and a rectangle. The depth of the groove 4 is generally deeper than the depth of the unevenness of the minute unevenness 2.

上述した手順とは逆に、微小凹凸2を形成する前に、電極形成箇所の両脇にレーザを用いたスクライビングを行い、溝4を形成する方法もある。図1のダメージ層除去後、電極形成予定領域10の両脇にレーザスクライブを行う。その後、図2のようにアルカリエッチングを施すことにより、レーザダメージが除去されると同時にV字溝を形成することも可能である。   Contrary to the above-described procedure, there is also a method of forming the groove 4 by performing scribing using a laser on both sides of the electrode forming portion before forming the minute unevenness 2. After removing the damaged layer in FIG. 1, laser scribing is performed on both sides of the electrode formation scheduled region 10. Thereafter, by performing alkali etching as shown in FIG. 2, it is possible to remove the laser damage and simultaneously form a V-shaped groove.

また、ダメージ層除去後に酸化膜を形成し、受光面電極形成予定領域10の両脇にレーザ照射し、酸化膜を開口後、フッ硝酸、アルカリ処理を施すことにより、溝部をV字形状にすることができる。その後、図2の微小凹凸2の形成に移行することができるが、この酸化膜マスクにレーザにより、直径5−20μmの微小開口を規則的に形成することにより、逆ピラミッド構造にすることもできる。酸化膜に、電極脇には直線状の開口を、そのほかは微小開口を形成し、フッ硝酸、アルカリ処理を施すことにより、電極脇のV字溝(溝4)と逆ピラミッド(微小凹凸2)を同時に形成することができる。   Further, after removing the damaged layer, an oxide film is formed, laser irradiation is performed on both sides of the light-receiving surface electrode formation planned region 10, and after opening the oxide film, the groove portion is formed into a V shape by performing hydrofluoric acid and alkali treatment. be able to. After that, it is possible to shift to the formation of the minute unevenness 2 in FIG. 2, but it is also possible to make an inverted pyramid structure by regularly forming minute openings with a diameter of 5 to 20 μm by laser on this oxide film mask. . In the oxide film, a straight opening is formed on the side of the electrode, and a small opening is formed on the other side, and a hydrofluoric acid and alkali treatment are performed, so that a V-shaped groove (groove 4) and an inverted pyramid (micro unevenness 2) beside the electrode. Can be formed simultaneously.

この他に、エッチングペーストを溝形成部にスクリーン印刷でパターニングする方法やダイシングソーを用いて機械的に溝4を形成する方法もある。このように、溝4は、レーザ加工、ドライ・ウェットエッチング、ダイシング等での形成のいかなる方法でも作成可能である。なお、微小凹凸2の形成は必須ではなく、受光面電極形成予定領域10の両脇に溝4を形成すればよいので、受光面電極形成予定部がフラットになっていても構わない。   In addition, there are a method of patterning an etching paste on the groove forming portion by screen printing and a method of mechanically forming the groove 4 using a dicing saw. As described above, the groove 4 can be formed by any method such as laser processing, dry / wet etching, or dicing. Note that the formation of the micro unevenness 2 is not indispensable, and the groove 4 may be formed on both sides of the light receiving surface electrode formation scheduled region 10, so that the light receiving surface electrode formation planned portion may be flat.

なお、電極脇の溝の形成方向は、例えば(110)方向に平行であることが望ましい。   In addition, it is desirable that the formation direction of the groove on the side of the electrode is parallel to the (110) direction, for example.

続いて、図4に示すように半導体基板1に半導体基板1とは異なる導電型の第二導電型層3(n型不純物層)を形成し、pn接合を形成する。pn接合があるため、光照射により発生した電荷は分離され、外部回路に取り出される。半導体基板1とは異なる不純物が拡散された第二導電型層3は炉内温度700〜1000℃で、リン拡散の場合はPOCl3、ボロン拡散の場合はBBr3雰囲気中で気相拡散にて、半導体基板1の表面へ形成される。第二導電型層3の厚さは100〜300nm程となっている。この層は炉内温度や処理時間、ガス流量などで調整可能である。 Subsequently, as shown in FIG. 4, a second conductivity type layer 3 (n-type impurity layer) having a conductivity type different from that of the semiconductor substrate 1 is formed on the semiconductor substrate 1 to form a pn junction. Since there is a pn junction, charges generated by light irradiation are separated and taken out to an external circuit. The second conductivity type layer 3 in which impurities different from those of the semiconductor substrate 1 are diffused is vapor-phase diffusion in a furnace temperature of 700 to 1000 ° C. in the atmosphere of POCl 3 for phosphorus diffusion and BBr 3 for boron diffusion. And formed on the surface of the semiconductor substrate 1. The thickness of the second conductivity type layer 3 is about 100 to 300 nm. This layer can be adjusted by furnace temperature, processing time, gas flow rate, and the like.

次に、図5に示すように、反射防止膜5を第二導電型層3(n型不純物層)の上に形成する。反射防止膜5としては、例えば、窒化シリコン膜や酸化シリコン膜などの絶縁膜が利用される。その形成方法はプラズマCVD法、常圧CVD法などがある。   Next, as shown in FIG. 5, the antireflection film 5 is formed on the second conductivity type layer 3 (n-type impurity layer). As the antireflection film 5, for example, an insulating film such as a silicon nitride film or a silicon oxide film is used. The formation method includes a plasma CVD method and an atmospheric pressure CVD method.

さらに、図5に示すように、半導体基板1の裏面に裏面アルミ電極7、受光面に表銀電極6をそれぞれ形成する。裏面アルミ電極7と受光面の表銀電極6はスクリーン印刷を用いて形成する。スクリーン印刷は電極形状がパターニング開口された印刷マスクと銀やアルミなどの導電性ペーストを用いて形成される。印刷速度は例えば100〜300mm/sである。まず、裏面アルミ電極7をベタ印刷し、仮乾燥する。その後、受光面側に形成された溝4と溝4の間に表銀電極6を形成する。この時、印刷ペーストの滲みやダレが生じた場合でも、溝4が形成されていることから、溝4を超えての滲みやダレは低減できる。また、表銀電極6が印刷される領域である2本の溝4の間は溝4の外の大部分を占める受光領域と同等の高さであり、印刷時、スクリーンと受光面電極形成予定領域10との間の隙間が小さく、押し出されたペーストと基板が接触するため、ペーストの組成および粘度の調整を行わなくても電極グリッドのカスレや断線もなく安定した印刷が可能である。従って、ペースト管理が容易になり、歩留まりの改善やタクトタイムの短縮も可能となる。なお、受光面電極形成予定領域10に微小凹凸2が形成されていることにより、ペーストと基板の密着性が高まるので、より安定した印刷をすることができる。これにより、印刷速度を低速化せずに印刷することが可能となる。   Further, as shown in FIG. 5, the back surface aluminum electrode 7 is formed on the back surface of the semiconductor substrate 1, and the front silver electrode 6 is formed on the light receiving surface. The back surface aluminum electrode 7 and the front silver electrode 6 on the light receiving surface are formed by screen printing. Screen printing is formed by using a printing mask in which electrode shapes are patterned and a conductive paste such as silver or aluminum. The printing speed is, for example, 100 to 300 mm / s. First, the back surface aluminum electrode 7 is solid-printed and temporarily dried. Thereafter, the surface silver electrode 6 is formed between the grooves 4 formed on the light receiving surface side. At this time, even when the printing paste bleeds or sags, the groove 4 is formed, so that the bleed or sag beyond the groove 4 can be reduced. In addition, the space between the two grooves 4 where the surface silver electrode 6 is printed is the same height as the light receiving area occupying most of the outside of the groove 4, and the screen and the light receiving surface electrode are scheduled to be formed during printing. Since the gap between the region 10 is small and the extruded paste and the substrate are in contact with each other, stable printing can be performed without the electrode grid being scraped or broken without adjusting the composition and viscosity of the paste. Accordingly, paste management is facilitated, yield can be improved, and tact time can be shortened. In addition, since the micro unevenness | corrugation 2 is formed in the light-receiving surface electrode formation plan area 10, since the adhesiveness of a paste and a board | substrate increases, more stable printing can be performed. This makes it possible to print without reducing the printing speed.

印刷乾燥後、温度700〜800℃で高速焼成すると受光面の表銀電極6はファイアースルーにて反射防止膜5(窒化膜)を突き破り、第二導電型層3(拡散層)まで到達する。また、裏面アルミ電極7はBSF(Back Surface Field)を形成する。   After printing and drying, if the surface silver electrode 6 on the light receiving surface is fired at a high temperature of 700 to 800 ° C., the antireflection film 5 (nitride film) breaks through the fire-through and reaches the second conductivity type layer 3 (diffusion layer). The back surface aluminum electrode 7 forms a BSF (Back Surface Field).

以上説明したように、実施の形態にかかる太陽電池の製造方法によれば、受光面電極形成予定領域10の両脇に溝4を形成することにより、スクリーン印刷における印刷ペースト滲みの広がりを抑制すことが可能となる。即ち、受光面グリッド電極の電極幅を狭幅化することができる。これにより、受光面のシャドーロスを減らして発電量を増加させ、太陽電池特性を向上することが可能となる。   As described above, according to the method for manufacturing a solar cell according to the embodiment, the groove 4 is formed on both sides of the light receiving surface electrode formation scheduled region 10 to suppress the spread of printing paste bleeding in screen printing. It becomes possible. That is, the electrode width of the light receiving surface grid electrode can be reduced. Thereby, it becomes possible to reduce the shadow loss of the light-receiving surface, increase the amount of power generation, and improve the solar cell characteristics.

さらに、本願発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、上記実施の形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。更に、異なる実施の形態にわたる構成要素を適宜組み合わせてもよい。   Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the above embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. In the case where a certain effect can be obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention. Furthermore, the constituent elements over different embodiments may be appropriately combined.

以上のように、本発明にかかる太陽電池およびその製造方法は、スクリーン印刷を用いて受光面グリッド電極を形成する太陽電池およびその製造方法に有用であり、特に、細線、かつ厚膜の高アスペクト比の受光面グリッド電極を有する太陽電池およびその製造方法に適している。   As described above, the solar cell and the method for manufacturing the solar cell according to the present invention are useful for the solar cell for forming the light-receiving surface grid electrode using screen printing and the method for manufacturing the solar cell. It is suitable for a solar cell having a ratio light receiving surface grid electrode and a method for manufacturing the solar cell.

1 半導体基板
2 微小凹凸
3 第二導電型層
4 溝
5 反射防止膜
6 表銀電極(受光面電極)
7 裏面アルミ電極
10 受光面電極形成予定領域
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Micro unevenness 3 2nd conductivity type layer 4 Groove 5 Antireflection film 6 Surface silver electrode (light-receiving surface electrode)
7 Back surface aluminum electrode 10 Light receiving surface electrode formation planned area

Claims (9)

第一導電型の半導体基板の受光面側の受光面電極形成予定領域の延伸方向に沿った両脇に溝を形成する工程と、
前記溝の形成後に、前記半導体基板の受光面側の表面に不純物を拡散させることにより第一導電型とは異なる第二導電型の層を形成する工程と、
第二導電型の層の上に反射防止膜を形成する工程と、
前記受光面電極形成予定領域の上にスクリーン印刷を用いて受光面電極を形成する工程と、
を含む
ことを特徴とする太陽電池の製造方法。
Forming grooves on both sides along the extending direction of the light receiving surface electrode formation scheduled region on the light receiving surface side of the semiconductor substrate of the first conductivity type;
Forming a second conductivity type layer different from the first conductivity type by diffusing impurities on the light receiving surface side surface of the semiconductor substrate after the formation of the groove;
Forming an antireflection film on the second conductivity type layer;
Forming a light-receiving surface electrode on the light-receiving surface electrode formation planned area using screen printing;
The manufacturing method of the solar cell characterized by including.
前記第二導電型の層を形成する工程の前に、前記溝の深さよりも凹凸が小さい微小凹凸を前記半導体基板の受光面側に形成する工程
をさらに含む
ことを特徴とする請求項1に記載の太陽電池の製造方法。
2. The method according to claim 1, further comprising a step of forming, on the light receiving surface side of the semiconductor substrate, minute irregularities having irregularities smaller than the depth of the groove before the step of forming the second conductivity type layer. The manufacturing method of the solar cell of description.
幅は5〜10μm、深さは15〜30μmとなるように前記溝を形成する
ことを特徴とする請求項1または2に記載の太陽電池の製造方法。
The method for manufacturing a solar cell according to claim 1, wherein the groove is formed so that the width is 5 to 10 μm and the depth is 15 to 30 μm.
前記両脇の溝同士の間隔が50〜90μmとなるように前記溝を形成する
ことを特徴とする請求項1、2または3に記載の太陽電池の製造方法。
The said groove | channel is formed so that the space | interval of the groove | channels of the both sides may be 50-90 micrometers. The manufacturing method of the solar cell of Claim 1, 2, or 3 characterized by the above-mentioned.
前記溝の延伸方向に垂直な断面での形状をV字、U字、或いは矩形となるように前記溝を形成する
ことを特徴とする請求項1〜4のいずれか1項に記載の太陽電池の製造方法。
The solar cell according to any one of claims 1 to 4, wherein the groove is formed so that a shape in a cross section perpendicular to the extending direction of the groove is V-shaped, U-shaped, or rectangular. Manufacturing method.
前記延伸方向は(110)方向に平行である
ことを特徴とする請求項1〜5のいずれか1項に記載の太陽電池の製造方法。
The said extending | stretching direction is parallel to a (110) direction. The manufacturing method of the solar cell of any one of Claims 1-5 characterized by the above-mentioned.
前記受光面電極を形成した後に、温度700〜800℃に加熱することにより前記受光面電極を前記第二導電型の層に接触させる工程
をさらに含む
ことを特徴とする請求項1〜6のいずれか1項に記載の太陽電池の製造方法。
7. The method according to claim 1, further comprising: contacting the light receiving surface electrode with the second conductivity type layer by heating to a temperature of 700 to 800 ° C. after forming the light receiving surface electrode. The manufacturing method of the solar cell of Claim 1.
第一導電型はp型で、第二導電型はn型である
ことを特徴とする請求項1〜7のいずれか1項に記載の太陽電池の製造方法。
The method for manufacturing a solar cell according to any one of claims 1 to 7, wherein the first conductivity type is p-type, and the second conductivity type is n-type.
請求項1〜8のいずれか1項に記載の太陽電池の製造方法により製造した
ことを特徴とする太陽電池。
It manufactured with the manufacturing method of the solar cell of any one of Claims 1-8. The solar cell characterized by the above-mentioned.
JP2012098819A 2012-04-24 2012-04-24 Solar cell and manufacturing method therefor Pending JP2015130367A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012098819A JP2015130367A (en) 2012-04-24 2012-04-24 Solar cell and manufacturing method therefor
PCT/JP2013/054743 WO2013161373A1 (en) 2012-04-24 2013-02-25 Solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098819A JP2015130367A (en) 2012-04-24 2012-04-24 Solar cell and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2015130367A true JP2015130367A (en) 2015-07-16

Family

ID=49482714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098819A Pending JP2015130367A (en) 2012-04-24 2012-04-24 Solar cell and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2015130367A (en)
WO (1) WO2013161373A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114205B2 (en) * 2014-01-24 2017-04-12 信越化学工業株式会社 Manufacturing method of solar cell
JP6414425B2 (en) * 2014-09-24 2018-10-31 大日本印刷株式会社 Embossing plate manufacturing method, laser engraving data creation device, laser engraving data creation method, program
CN117238987A (en) 2022-09-08 2023-12-15 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN117712199A (en) * 2022-09-08 2024-03-15 浙江晶科能源有限公司 Solar cell and photovoltaic module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223372A (en) * 2000-02-07 2001-08-17 Mitsubishi Electric Corp Manufacturing method for solar battery
JP2007134387A (en) * 2005-11-08 2007-05-31 Sharp Corp Photoelectric conversion element and its method for forming electrode
JP2012009578A (en) * 2010-06-24 2012-01-12 Sharp Corp Solar cell
CN102959717B (en) * 2010-06-25 2016-01-06 三菱电机株式会社 Solar battery cell and manufacture method thereof
CN103026497B (en) * 2010-07-26 2016-08-03 浜松光子学株式会社 The manufacture method of absorbing substrate and for manufacturing the manufacture method of its finishing die
US8735213B2 (en) * 2010-12-23 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Electrode, photoelectric conversion device using the electrode, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2013161373A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5220197B2 (en) Solar cell and manufacturing method thereof
JP2016197742A (en) Method for manufacturing emitter for back contact type solar cell
WO2010126038A1 (en) Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
JP2004510323A (en) Photovoltaic components and modules
KR20090129507A (en) Oxynitride passivation of solar cell
WO2011161813A1 (en) Solar cell and method for manufacturing same
JP6410951B2 (en) Solar cell and method for manufacturing solar cell
JP2007096040A (en) Solar cell and method of manufacturing solar cell
JP2010161310A (en) Backside electrode type solar cell and method of manufacturing the same
JP2012204660A (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
JP2015130367A (en) Solar cell and manufacturing method therefor
JP4869654B2 (en) Manufacturing method of solar cell
JP5538103B2 (en) Method for manufacturing solar battery cell
JP2014239085A (en) Solar battery element and method of manufacturing the same
US20130122641A1 (en) Method of Fabricating Buried Contacts of Solar Cell with Curved Trenches
JP2006120944A (en) Solar cell, process for manufacturing solar cell unit, and solar cell module
WO2012105068A1 (en) Pattern-forming method and solar cell manufacturing method
JP2005260157A (en) Solar cell and solar cell module
JP2013219080A (en) Method for manufacturing photoelectric conversion element, and photoelectric conversion element
JP2012134398A (en) Solar cell and manufacturing method of the same
JP5029921B2 (en) Method for manufacturing solar battery cell
JP5452535B2 (en) Manufacturing method of solar cell
CN107155378B (en) The manufacturing method of Photvoltaic device
JP2011018748A (en) Method of manufacturing solar battery cell
WO2015083259A1 (en) Solar cell manufacturing method