JP2007134387A - Photoelectric conversion element and its method for forming electrode - Google Patents

Photoelectric conversion element and its method for forming electrode Download PDF

Info

Publication number
JP2007134387A
JP2007134387A JP2005323486A JP2005323486A JP2007134387A JP 2007134387 A JP2007134387 A JP 2007134387A JP 2005323486 A JP2005323486 A JP 2005323486A JP 2005323486 A JP2005323486 A JP 2005323486A JP 2007134387 A JP2007134387 A JP 2007134387A
Authority
JP
Japan
Prior art keywords
electrode
receiving surface
semiconductor substrate
light receiving
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005323486A
Other languages
Japanese (ja)
Inventor
Akira Ozaki
亮 尾崎
Satoshi Okamoto
諭 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005323486A priority Critical patent/JP2007134387A/en
Publication of JP2007134387A publication Critical patent/JP2007134387A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To enhance Voc by reducing the area of a contact region thereby reducing carrier recombination rate at the interface between a semiconductor substrate and a light receiving surface electrode, and to make a power generation layer absorb as much light as possible by reducing the area of the light receiving surface electrode on the semiconductor substrate thereby reducing reflection loss on the surface of the light receiving surface electrode. <P>SOLUTION: In the optical conversion element having a light receiving surface electrode connected electrically with a semiconductor substrate, a region where the semiconductor substrate and the light receiving surface electrode come into electrical contact is located at the outer circumferential part in the region for forming the light receiving surface electrode on the semiconductor substrate, and a region which does no come into electrical contact with the semiconductor substrate is provided in the region for forming the light receiving surface electrode on the inside of the outer circumferential part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電変換素子およびその電極形成方法に関するものであり、さらに詳しくは、太陽電池などに用いられる光電変換素子およびその電極の形成方法に関するものである。   The present invention relates to a photoelectric conversion element and an electrode forming method thereof, and more particularly to a photoelectric conversion element used for a solar cell and the like and a method of forming an electrode thereof.

太陽電池製作工程の1つである電極形成の方法としては、蒸着法、メッキ法、印刷法、ノズル法等が挙げられる。現在では、太陽電池の低コスト化と大量生産性の観点から、スクリーン印刷法が多く用いられている。   Examples of a method for forming an electrode, which is one of solar cell manufacturing processes, include a vapor deposition method, a plating method, a printing method, and a nozzle method. At present, the screen printing method is often used from the viewpoint of cost reduction and mass productivity of solar cells.

このスクリーン印刷法によれば、np型の太陽電池に対しては、受光面(n面)電極の形成時に、Ag粉末、ガラス粉末および有機樹脂を溶媒と共に混合して作製したAg導電性ペーストを用いて、その受光面に、幅1〜2mm程度のメイン電極とこれに垂直に接する幅50〜200μm程度のサブ電極(グリッド状電極)とからなるパターンでスクリーン印刷を行ない、その後、乾燥、焼成して受光面電極を形成する。従来、サブ電極横断面のアスペクト比(高さ/線幅)は0.1〜0.2程度であり、サブ電極の単位長さ当たりの抵抗値はおおよそ0.15〜0.70Ω/cmである。 According to this screen printing method, for n + p type solar cells, Ag conductive material prepared by mixing Ag powder, glass powder and organic resin together with a solvent when forming a light receiving surface (n + surface) electrode. The photosensitive paste is used to perform screen printing on the light receiving surface with a pattern composed of a main electrode having a width of about 1 to 2 mm and a sub electrode (grid electrode) having a width of about 50 to 200 μm in contact with the main electrode. A light-receiving surface electrode is formed by drying and baking. Conventionally, the aspect ratio (height / line width) of the sub-electrode cross section is about 0.1 to 0.2, and the resistance value per unit length of the sub-electrode is about 0.15 to 0.70 Ω / cm. is there.

また、その裏面電極の形成時には、Al粉末、ガラス粉末および有機樹脂を溶媒と共に混合して作製したAl導電性ペーストを用いて、ほぼ裏面全面にスクリーン印刷を行ない、その後、乾燥、焼成して裏面電極を形成している。この裏面電極形成時には、開放電圧(Voc)を向上させかつ短絡電流(Isc)を向上させるための裏面電界層(BSF:Back Surface Field)も同時に形成している。   When forming the back electrode, screen printing is performed on almost the entire back surface using an Al conductive paste prepared by mixing Al powder, glass powder and organic resin together with a solvent, and then the back surface is dried and fired. An electrode is formed. At the time of forming the back surface electrode, a back surface field layer (BSF) for improving the open circuit voltage (Voc) and the short circuit current (Isc) is also formed.

特許文献1に示されるように、半導体基板とこの半導体基板上に形成された電極との接触抵抗を低減し、かつ接着強度を増大させる方法として、半導体基板上に点在状態に形成された第1電極と、第1電極と選択的に導通し、半導体基板とは電気的に絶縁された第2電極を形成する方法が知られている。   As disclosed in Patent Document 1, as a method for reducing the contact resistance between a semiconductor substrate and an electrode formed on the semiconductor substrate and increasing the adhesive strength, a first method formed in a dotted state on the semiconductor substrate is used. There is known a method of forming a second electrode that is selectively conductive with one electrode and electrically insulated from a semiconductor substrate.

微細電極形成方法としては例えば特許文献2のように、インジウム等の低融点金属を溶融状態でタンクに保持して、描画ヘッドより半導体基板の表面へ流し込む方法等がある。
特開昭63−119273号公報 特開平5−235388号公報
As a fine electrode forming method, for example, as in Patent Document 2, there is a method in which a low melting point metal such as indium is held in a molten state and poured into a surface of a semiconductor substrate from a drawing head.
JP-A-63-1119273 JP-A-5-235388

太陽電池を高効率化するためには、電極形成にあたって以下の2点に留意する必要がある。1点目は、半導体基板の表面に形成された表面パッシベーションを担う絶縁膜の効果を高めることである。半導体基板と受光面電極とが電気的に接触している領域ではこの絶縁膜が無いために表面パッシベーション効果が低下する。接触領域の面積を低減することにより、これらの間の界面におけるキャリア再結合速度を小さくし、Vocを向上させる必要があることである。   In order to increase the efficiency of the solar cell, it is necessary to pay attention to the following two points when forming the electrode. The first point is to enhance the effect of the insulating film that is responsible for the surface passivation formed on the surface of the semiconductor substrate. Since there is no insulating film in the region where the semiconductor substrate and the light receiving surface electrode are in electrical contact, the surface passivation effect is reduced. By reducing the area of the contact region, it is necessary to reduce the carrier recombination rate at the interface between them and improve Voc.

2点目は、半導体基板上の受光面電極面積を低減することにより、受光面電極表面での反射損失を少なくして発電層にできるだけ多くの光を吸収させること、さらには、接触抵抗値や電極の長さ方向における線抵抗値などの電流導出方向の直列抵抗値を小さくして発生したキャリアを抵抗損失なく、取り出すことが必要とされていることである。   Second, by reducing the area of the light receiving surface electrode on the semiconductor substrate, the reflection loss on the surface of the light receiving surface electrode is reduced and the power generation layer absorbs as much light as possible. It is necessary to take out the carriers generated by reducing the series resistance value in the current derivation direction such as the line resistance value in the length direction of the electrode without causing a resistance loss.

このような観点からみた従来の受光面電極の問題点は、受光面電極全面が半導体基板と接触しているために、それらの間の界面におけるキャリア再結合速度が大きくなり、Vocを低下させていることである。また、多くの光を吸収させるために受光面電極線幅を微細化することが有効となるが、同時に電極自体の抵抗値の増大を防ぐために電極のアスペクト比を高くする必要が生じる。しかしながら、現状のスクリーン印刷技術では、受光面電極線幅パターンを微細化すると、印刷時のペースト吐出量が減少してしまうので、形成される電極高さが低くなってしまい、電極自体の抵抗値が増大することで曲線因子(FF:Fill Factor)値の大幅な低下を招くことも問題である。受光面電極を微細化すると、ペーストのダレによる電極線幅の増大の影響が従来の受光面電極よりも大きくなる。さらには、従来の受光面電極はガラス成分が多く含まれた材料を用いていることから電極自体の抵抗値が増し、FF低下の原因になっている。   From this point of view, the problem with the conventional light receiving surface electrode is that since the entire surface of the light receiving surface electrode is in contact with the semiconductor substrate, the carrier recombination speed at the interface between them increases and Voc decreases. It is that you are. In addition, it is effective to reduce the width of the light receiving surface electrode line in order to absorb much light, but at the same time, it is necessary to increase the aspect ratio of the electrode in order to prevent an increase in the resistance value of the electrode itself. However, in the current screen printing technology, if the light receiving surface electrode line width pattern is made finer, the amount of paste discharged during printing decreases, so the height of the formed electrode becomes lower, and the resistance value of the electrode itself It is also a problem that a large decrease in the fill factor (FF) value is caused by the increase in. When the light receiving surface electrode is miniaturized, the influence of the increase in the electrode line width due to the sagging of the paste becomes larger than that of the conventional light receiving surface electrode. Furthermore, since the conventional light receiving surface electrode uses a material containing a lot of glass components, the resistance value of the electrode itself increases, which causes a decrease in FF.

現在の電極形成法を用いての実用可能な電極線幅はおおよそ100μm程度である。
特許文献1によると、半導体基板上に点在状態に形成された第1電極と、第1電極と選択的に導通し、半導体基板とは電気的に絶縁された第2電極を形成する方法により、接触面積を低減しつつ電極の断面積を確保することで抵抗値の低下を抑制して開放電圧の改善を図っている。しかしながら、電極の接着強度が不十分であり、電極剥離の原因となるという問題がある。さらに、この方法によると受光面電極を形成させるためには2回の焼成が必要となってしまい、プロセスコストが増大してしまう。
A practical electrode line width using the current electrode forming method is about 100 μm.
According to Patent Document 1, a first electrode formed in a scattered state on a semiconductor substrate and a method of forming a second electrode that is selectively conductive with the first electrode and electrically insulated from the semiconductor substrate are formed. By reducing the contact area and securing the cross-sectional area of the electrode, the reduction of the resistance value is suppressed and the open circuit voltage is improved. However, there is a problem in that the adhesive strength of the electrode is insufficient, causing electrode peeling. Furthermore, according to this method, in order to form the light-receiving surface electrode, two firings are necessary, and the process cost increases.

特許文献2によると、溶融状態の金属を描画ヘッドより半導体基板表面に流し込むことにより、100μm以下の電極線幅が形成可能であるが、電極高さが低いという問題がある。また、使用する金属が限られることや、溶融温度を保持するコストがかかってしまうという問題点がある。   According to Patent Document 2, an electrode line width of 100 μm or less can be formed by pouring molten metal from the drawing head onto the surface of the semiconductor substrate, but there is a problem that the electrode height is low. Moreover, there are problems that the metal to be used is limited and the cost for maintaining the melting temperature is required.

本発明は、半導体基板と電気的に接続された受光面電極を有する光電変換素子であって、半導体基板と受光面電極とが電気的に接触している領域が半導体基板上の受光面電極形成領域内の外周部にあり、前記受光面電極形成領域内の前記外周部より内部の領域において前記半導体基板と電気的に非接触な領域を有する。   The present invention relates to a photoelectric conversion element having a light-receiving surface electrode electrically connected to a semiconductor substrate, wherein a region where the semiconductor substrate and the light-receiving surface electrode are in electrical contact is formed on the semiconductor substrate. It is in an outer peripheral portion in the region, and has a region that is not in electrical contact with the semiconductor substrate in a region inside the outer peripheral portion in the light receiving surface electrode forming region.

また、本発明は、半導体基板と電気的に接続された受光面電極形成領域内の外周部に形成される電極である第1電極と、前記受光面電極形成領域内の前記外周部より内部の領域に形成される電極である第2電極とを有し、第1電極と第2電極とは電気的に接触しており、第2電極は、少なくともガラス成分が第1電極と異なるか、あるいはガラス成分の含有比率が第1電極より少ないことが好ましい。   According to another aspect of the present invention, there is provided a first electrode which is an electrode formed on an outer peripheral portion in a light receiving surface electrode forming region electrically connected to a semiconductor substrate, and an inner portion of the outer periphery in the light receiving surface electrode forming region A second electrode which is an electrode formed in the region, and the first electrode and the second electrode are in electrical contact, and the second electrode has at least a glass component different from that of the first electrode, or It is preferable that the content ratio of the glass component is smaller than that of the first electrode.

また、本発明は、サブ電極横断面のアスペクト比(高さ/線幅)が0.2以上であることが好ましい。   In the present invention, the aspect ratio (height / line width) of the sub-electrode cross section is preferably 0.2 or more.

また、本発明は、半導体基板上の受光面電極形成領域内の外周部に第1電極導電性ペーストを描画する工程と、前記受光面電極形成領域内の前記外周部より内部の領域に第2電極導電性ペーストを描画する工程を有する電極形成方法である。   The present invention also includes a step of drawing a first electrode conductive paste on the outer peripheral portion in the light receiving surface electrode forming region on the semiconductor substrate, and a second region in the inner region from the outer peripheral portion in the light receiving surface electrode forming region. An electrode forming method including a step of drawing an electrode conductive paste.

また、本発明は、前記第2電極導電性ペーストに占めるガラス粉末の割合が2wt%以下であることが好ましい。   In the present invention, the ratio of the glass powder in the second electrode conductive paste is preferably 2 wt% or less.

また、本発明は、前記第2電極導電性ペーストの25±1℃における粘度範囲が5〜600Pa・sであることが好ましい。   In the present invention, the second electrode conductive paste preferably has a viscosity range of 5 to 600 Pa · s at 25 ± 1 ° C.

本発明に基づいた太陽電池では、受光面電極形成領域内の外周部に半導体基板との接着場所を設けることで、高い接着強度を維持したまま表面再結合速度や接触抵抗を低減でき、Vocを向上させることができる。また、受光面電極全体のガラス成分の量を必要最小限にすることで、受光面電極自体の抵抗値を低減させることができる。さらに、サブ電極の線幅を微細にする時には、第1電極導電性ペーストが第2電極導電性ペーストの広がりを抑制し、受光面電極の高さを高くすることができるので、実用可能な微細電極が形成可能になる。   In the solar cell according to the present invention, the surface recombination speed and the contact resistance can be reduced while maintaining a high adhesive strength by providing a place for bonding with the semiconductor substrate in the outer peripheral portion in the light receiving surface electrode forming region, and Voc can be reduced. Can be improved. Moreover, the resistance value of the light receiving surface electrode itself can be reduced by minimizing the amount of the glass component of the entire light receiving surface electrode. Furthermore, when the line width of the sub-electrode is made fine, the first electrode conductive paste can suppress the spread of the second electrode conductive paste and increase the height of the light-receiving surface electrode. An electrode can be formed.

<光電変換素子の特性>
請求項の順に従い、以下に本発明の工業的見地からの有効性について述べる。
<Characteristics of photoelectric conversion element>
The effectiveness of the present invention from the industrial point of view will be described below in the order of the claims.

半導体基板と受光面電極とが電気的に接触している領域が半導体基板上の受光面電極形成領域内の外周部にあり、前記受光面電極形成領域内の前記外周部より内部の領域において、半導体基板と電気的に非接触な領域を設置させることにより、受光面電極形成領域全面で接触する場合に比べて、受光面電極形成領域の基板表面のパッシベーション膜が被覆する面積が大きくなり、パッシベーション効果を高めてVocを向上させることができる。   The region where the semiconductor substrate and the light receiving surface electrode are in electrical contact is in the outer peripheral portion in the light receiving surface electrode forming region on the semiconductor substrate, and in the region inside the outer peripheral portion in the light receiving surface electrode forming region, By providing a region that is not in electrical contact with the semiconductor substrate, the area covered by the passivation film on the substrate surface in the light receiving surface electrode formation region is larger than in the case where it is in contact with the entire surface of the light receiving surface electrode formation region. The effect can be enhanced and Voc can be improved.

第1電極と第2電極のガラス成分あるいは含有比率が異なることにより、高い接着強度を確保しつつ、受光面電極自体の抵抗値を低減させることができ、FF値の向上につながる。   When the glass components or the content ratios of the first electrode and the second electrode are different, the resistance value of the light-receiving surface electrode itself can be reduced while ensuring high adhesive strength, leading to an improvement in the FF value.

従来電極に使用される導電性ペーストは、導電性ペーストに占めるガラス粉末の割合が2wt%以下になると、ファイヤースルーが不十分となり、FFが低下する。また、十分な接着強度が得られずに電極剥離が発生してしまう。本発明の受光面電極は、第1電極導電性ペースト中のガラス粉末で焼成工程を経て半導体基板と接着され、また、第2電極導電性ペーストは第1電極導電性ペーストと焼成工程で焼結される。よって、第2電極導電性ペースト中のガラス粉末はファイヤースルーする必要が無く、ガラス粉末の割合を2wt%以下にすることができる。その結果、受光面電極の抵抗値を低減させることができる。また、今までファイヤースルーが不十分、または接着強度不足等の理由で使用できなかったガラス粉末成分、例えばZnO−SiO2−B23やSnO−P25、V25−MgO−TeO−P25等も第2電極導電性ペーストに使用可能になる。 When the ratio of the glass powder in the conductive paste used in the conventional electrode is 2 wt% or less, the fire-through is insufficient and the FF is lowered. Moreover, electrode peeling will generate | occur | produce without sufficient adhesive strength being obtained. The light-receiving surface electrode of the present invention is bonded to the semiconductor substrate through a baking process with the glass powder in the first electrode conductive paste, and the second electrode conductive paste is sintered in the baking process with the first electrode conductive paste. Is done. Therefore, the glass powder in the second electrode conductive paste does not need to be fired through, and the ratio of the glass powder can be 2 wt% or less. As a result, the resistance value of the light receiving surface electrode can be reduced. Further, glass powder components that have not been used until now due to insufficient fire-through or insufficient adhesive strength, such as ZnO—SiO 2 —B 2 O 3 , SnO—P 2 O 5 , V 2 O 5 —MgO. -TeO-P 2 O 5 or the like can also be used for the second electrode conductive paste.

受光面電極は、メイン電極と、サブ電極を有するが、該サブ電極のアスペクト比が0.2以上であれば、電極の長さ方向における線抵抗値などの電流導出方向の直列抵抗を小さくでき、FF値が低下してしまうことがない。   The light-receiving surface electrode has a main electrode and a sub electrode. If the aspect ratio of the sub electrode is 0.2 or more, the series resistance in the current derivation direction such as the line resistance value in the length direction of the electrode can be reduced. The FF value does not decrease.

従来電極に使用される導電性ペーストの粘度は、半導体基板上に描画した後に導電性ペーストがダレない粘度を有している。本発明において、第2電極導電性ペーストを描画する際に、すでに半導体基板表面に描画した第1電極導電性ペーストが障壁となり第2電極導電性ペーストの広がりを防止する。よって、第2電極導電性ペーストは従来電極ペーストよりも低粘度にできる。第2電極導電性ペーストの25±1℃における粘度の範囲を5〜600Pa・sにすることにより描画時の断線の危険性がなく、印刷性も向上させることができる。より望ましくは25±1℃において70〜400Pa・sの範囲であり、このとき、印刷性を向上させたまま第2電極導電性ペーストの高さを高く描画できる。また、25±1℃におけるペーストの粘度を500Pa・sより高くすることで1.0を超えるアスペクト比を得ることができる。導電性ペーストには金属を含み、例えば600℃の高温で焼成する焼成型ペーストや、金属とエポキシ樹脂等を含み、例えば100℃の低温で焼成する熱硬化型ペースト等が使用できる。
<光電変換素子の構造>
本発明の光電変換素子である、太陽電池の構造について図1の断面図を用いて述べる。基板21は、キャスト法シリコンインゴットをマルチワイヤー法でスライスした第1導電層であるp型シリコン基板や、CZ法あるいはFZ法インゴットからスライスしたp型単結晶シリコン基板を用いることができる。受光面側には、n型の第2導電層22が形成される。その表面には反射防止効果のある絶縁膜23が形成される。受光面電極24は、スクリーン印刷法により形成される。受光面電極24は第1電極241と第2電極242から成る。
The viscosity of the conductive paste used for the conventional electrode has such a viscosity that the conductive paste does not sag after being drawn on the semiconductor substrate. In the present invention, when drawing the second electrode conductive paste, the first electrode conductive paste already drawn on the surface of the semiconductor substrate serves as a barrier to prevent the second electrode conductive paste from spreading. Therefore, the second electrode conductive paste can have a lower viscosity than the conventional electrode paste. By setting the viscosity range of the second electrode conductive paste at 25 ± 1 ° C. to 5 to 600 Pa · s, there is no risk of disconnection during drawing, and the printability can be improved. More desirably, it is in the range of 70 to 400 Pa · s at 25 ± 1 ° C. At this time, the height of the second electrode conductive paste can be drawn high while improving the printability. Moreover, the aspect ratio exceeding 1.0 can be obtained by making the viscosity of the paste at 25 ± 1 ° C. higher than 500 Pa · s. The conductive paste includes a metal, for example, a firing paste that is fired at a high temperature of 600 ° C., a thermosetting paste that includes a metal and an epoxy resin, and is fired at a low temperature of 100 ° C., for example.
<Structure of photoelectric conversion element>
The structure of a solar cell, which is a photoelectric conversion element of the present invention, will be described with reference to the cross-sectional view of FIG. As the substrate 21, a p-type silicon substrate which is a first conductive layer obtained by slicing a cast silicon ingot by a multi-wire method, or a p-type single crystal silicon substrate sliced from a CZ method or an FZ method ingot can be used. An n-type second conductive layer 22 is formed on the light receiving surface side. An insulating film 23 having an antireflection effect is formed on the surface. The light receiving surface electrode 24 is formed by a screen printing method. The light receiving surface electrode 24 includes a first electrode 241 and a second electrode 242.

焼成型ペーストを用いて形成する際の、焼成後の電極の単位長さ当たりの抵抗値は例えばサブ電極線幅が150μmの場合、0.10〜0.15Ω/cmである。一方、裏面側には、裏面p層25、裏面電極26が基板裏面の略全面にそれぞれ形成される。なお、裏面p層25は裏面電界効果(BSF)を得るように構成することもできる。さらには、裏面での内部反射を高める、いわゆる裏面反射層として裏面電極26を構成することも可能である。
<光電変換素子の作製工程>
次に、本発明を適用できる典型的な太陽電池作製プロセス全体のフローを図2に示す。最初に、シリコン塊(F−1)としては、FZ法、CZ法、キャスト法などで得られる半導体特性を有する塊を、マルチワイヤー法でスライス切断して第1導電層であるp型シリコン板を準備する(F−2)。次に、凹凸形成を少なくとも光入射側の片面に対して行なう(F−3)。引き続き、第2導電層(n型)の形成(F−4)、絶縁膜形成(F−5)、裏面電極・p層形成(F−6)、受光面電極形成(F−7)を行ない、太陽電池を完成する。以上で述べた太陽電池作製プロセスは、現在、多結晶シリコン太陽電池などで一般的に用いられるプロセスであるが、その順序を変えることや、真空を用いるプロセスを部分的に用いることも可能である。F−7に本発明の電極構造、電極並びに電極形成方法を適用できる。
The resistance value per unit length of the electrode after firing when it is formed using the firing paste is, for example, 0.10 to 0.15 Ω / cm when the sub-electrode line width is 150 μm. On the other hand, on the back surface side, a back surface p + layer 25 and a back surface electrode 26 are formed on substantially the entire back surface of the substrate. The back surface p + layer 25 can also be configured to obtain a back surface field effect (BSF). Furthermore, it is possible to configure the back electrode 26 as a so-called back reflection layer that enhances internal reflection on the back surface.
<Process for producing photoelectric conversion element>
Next, FIG. 2 shows a flow of an entire typical solar cell manufacturing process to which the present invention can be applied. First, as the silicon mass (F-1), a mass having semiconductor characteristics obtained by the FZ method, the CZ method, the cast method, etc. is sliced and cut by a multi-wire method to form a p-type silicon plate as the first conductive layer Is prepared (F-2). Next, unevenness formation is performed on at least one side of the light incident side (F-3). Subsequently, the second conductive layer (n-type) formation (F-4), the insulating film formation (F-5), the back electrode / p + layer formation (F-6), and the light receiving surface electrode formation (F-7) are performed. To complete the solar cell. The solar cell fabrication process described above is a process that is generally used in polycrystalline silicon solar cells and the like at present, but the order can be changed and a process using vacuum can be partially used. . The electrode structure, electrode and electrode forming method of the present invention can be applied to F-7.

本発明は、上記説明のシリコン基板以外にも、シリコンゲルマニウム基板、ガリウム砒素基板等の化合物半導体基板などの公知材料を使用することもできる。例えば、基本的な構造としては、光入射側からn、p、あるいは光入射側からp、nでも可能である。さらには、光入射側をnでなく高濃度化したnに、あるいは光入射側をpでなく高濃度化したpとすることもできる。これらの第2導電層は従来から用いられる熱拡散法、イオンインプランテーション法などによっても形成できる。また、第2導電層の表面の絶縁膜上には別の反射防止膜を追加形成してもよい。 In the present invention, known materials such as a compound semiconductor substrate such as a silicon germanium substrate and a gallium arsenide substrate can be used in addition to the silicon substrate described above. For example, as a basic structure, n and p from the light incident side, or p and n from the light incident side are possible. Furthermore, the light incident side can be changed to n + with a high concentration instead of n, or the light incident side can be set to p + with a high concentration instead of p. These second conductive layers can also be formed by a conventionally used thermal diffusion method, ion implantation method, or the like. Further, another antireflection film may be additionally formed on the insulating film on the surface of the second conductive layer.

一方、光入射と反対側の裏面には、上述BSF層の他に、裏面反射層(back surface reflector)を形成することや、表面再結合を防止するための酸化膜形成、窒化膜形成を行ってもよい。なお、絶縁膜や反射防止膜や裏面反射膜としては、各種酸化膜などを用いることができる。
<電極形成方法>
本発明による受光面電極の形成方法は、主にスクリーン印刷法であり、その印刷過程を図3に示す。
On the other hand, on the back surface opposite to the light incident, in addition to the above-described BSF layer, a back surface reflector is formed, and an oxide film and a nitride film are formed to prevent surface recombination. May be. Note that various oxide films can be used as the insulating film, the antireflection film, and the back surface reflection film.
<Electrode formation method>
The light-receiving surface electrode forming method according to the present invention is mainly a screen printing method, and the printing process is shown in FIG.

図3(a)は、サブ電極形成領域311とメイン電極形成領域312から成る受光面電極形成領域31内の外周部を示す。   FIG. 3A shows an outer peripheral portion in the light receiving surface electrode forming region 31 composed of the sub electrode forming region 311 and the main electrode forming region 312.

図3(b)は、受光面電極形成領域31に沿って、ガラス粉末が質量比2〜5%含まれている第1電極導電性ペースト32を印刷した状態を示す。   FIG. 3B shows a state in which the first electrode conductive paste 32 containing glass powder in a mass ratio of 2 to 5% is printed along the light-receiving surface electrode formation region 31.

このとき、サブ電極形成領域の線幅(L2)が例えば150μmであったならば、第1電極導電性ペーストを描画する線幅(L1)は50μm程度である。また、サブ電極形成領域の線幅(L2)が例えば50μmであったならば、第1電極導電性ペーストを描画する線幅(L1)は10μm程度にすることも可能である。これによって形成される第1電極は微細電極となるために、電極の高さは5μm程度であり、第1電極のみでは実用的でない。第1電極導電性ペースト32は、微細電極描画時でも断線しない程度の25±1℃において200〜1000Pa・sの高粘度のペーストを使用するとよい。このとき、形成される電極の高さにはメッシュの跡と思われる数μm程度の凹凸が観察される場合がある。第1電極導電性ペースト32を印刷後、乾燥工程を経てもよい。   At this time, if the line width (L2) of the sub-electrode formation region is, for example, 150 μm, the line width (L1) for drawing the first electrode conductive paste is about 50 μm. Further, if the line width (L2) of the sub-electrode formation region is, for example, 50 μm, the line width (L1) for drawing the first electrode conductive paste can be about 10 μm. Since the first electrode formed thereby is a fine electrode, the height of the electrode is about 5 μm, and the first electrode alone is not practical. As the first electrode conductive paste 32, it is preferable to use a paste having a high viscosity of 200 to 1000 Pa · s at 25 ± 1 ° C. that does not break even when drawing a fine electrode. At this time, unevenness of about several μm, which seems to be a mesh mark, may be observed at the height of the formed electrode. After printing the first electrode conductive paste 32, a drying process may be performed.

次に、スクリーン印刷機に備え付けのCCDカメラ等で半導体基板を含む画像を用いて第1電極導電性ペーストの印刷位置を確認して、半導体基板の位置合わせを行なう。   Next, the printing position of the first electrode conductive paste is confirmed using an image including the semiconductor substrate with a CCD camera or the like provided in the screen printing machine, and the semiconductor substrate is aligned.

図3(c)は、受光面電極形成領域31の全面に第2電極導電性ペースト33を印刷した状態を示す。このとき、従来のスクリーン印刷法、例えば第1電極導電性ペースト32を使用して受光面電極形成領域31全面に印刷する方法で形成された受光面電極では、サブ電極形成領域の線幅(L2)が150μmに対して、導電性ペーストがダレてしまい、実際に形成される受光面サブ電極の線幅は例えば170μmと広がってしまう。しかし、本発明では、第2電極導電性ペースト33を描画時に、既に第1電極導電性ペースト32が半導体基板上に描画されており、この第1電極導電性ペースト32が障壁となり第2電極導電性ペースト33の広がり抑制効果を発揮するので、これらによって形成された受光面電極の線幅増加は見られなかった。   FIG. 3C shows a state in which the second electrode conductive paste 33 is printed on the entire surface of the light receiving surface electrode forming region 31. At this time, in the light receiving surface electrode formed by the conventional screen printing method, for example, the method of printing the entire surface of the light receiving surface electrode forming region 31 using the first electrode conductive paste 32, the line width (L2 of the sub electrode forming region) ) Is 150 μm, the conductive paste sags, and the line width of the actually formed light-receiving surface sub-electrode widens to 170 μm, for example. However, in the present invention, when the second electrode conductive paste 33 is drawn, the first electrode conductive paste 32 has already been drawn on the semiconductor substrate, and the first electrode conductive paste 32 serves as a barrier to conduct the second electrode conductive. Since the effect of suppressing the spread of the conductive paste 33 is exhibited, no increase in the line width of the light-receiving surface electrode formed by these was observed.

さらにこのとき、サブ電極形成領域の線幅(L2)が50μmであったなら、通常のスクリーン印刷法で形成された受光面電極では電極高さが5μm程度であったのに対し、本発明では受光面電極の高さを10μm以上にすることが可能であった。これは第1電極導電性ペースト32の広がり抑制効果により、第2電極導電性ペースト33がダレないで高さを高くできたことや、第2電極導電性ペースト33に対する半導体基板と第1電極導電性ペースト32の濡れ性の違いにより印刷時の版離れ工程での導電性ペースト32の挙動が異なるからと考えられる。第2電極導電性ペースト33には、第1電極導電性ペースト32よりも粘度が低く、レベリング性のよい導電性ペーストを選択すると良い。レベリング性をよくすれば、第1電極導電性ペースト32の平坦性を向上することができ、かつ、第2電極導電性ペースト33の凹凸を抑制できる。   Further, at this time, if the line width (L2) of the sub-electrode forming region is 50 μm, the light receiving surface electrode formed by the usual screen printing method has an electrode height of about 5 μm, whereas in the present invention, It was possible to increase the height of the light-receiving surface electrode to 10 μm or more. This is because the height of the second electrode conductive paste 33 can be increased without sagging due to the effect of suppressing the spread of the first electrode conductive paste 32, and the semiconductor substrate and the first electrode conductivity with respect to the second electrode conductive paste 33. This is probably because the behavior of the conductive paste 32 in the plate separation process during printing differs depending on the wettability of the conductive paste 32. As the second electrode conductive paste 33, a conductive paste having a lower level of viscosity than the first electrode conductive paste 32 and good leveling properties may be selected. If the leveling property is improved, the flatness of the first electrode conductive paste 32 can be improved, and the unevenness of the second electrode conductive paste 33 can be suppressed.

第2電極導電性ペースト33を印刷後、低温、例えば100℃程度で導電性ペーストを乾燥させて、ついで高温、例えば700℃前後で焼成することにより受光面電極を形成する。この焼成工程において、受光面電極形成領域内の外周部に形成された第1電極中のガラス粉末が反射防止膜として使用されている絶縁膜をファイヤースルーすることにより半導体基板と第1電極が接触し、発生したキャリアを取り出す役割をする。さらにこのとき、第1電極の金属と第2電極の金属が焼結して第1電極と第2電極が導通する。   After printing the second electrode conductive paste 33, the conductive paste is dried at a low temperature, for example, about 100 ° C., and then baked at a high temperature, for example, around 700 ° C. to form a light-receiving surface electrode. In this baking process, the glass powder in the first electrode formed on the outer peripheral portion in the light receiving surface electrode forming region fires through the insulating film used as an antireflection film, so that the semiconductor substrate and the first electrode come into contact with each other. And take out the generated carrier. Further, at this time, the metal of the first electrode and the metal of the second electrode are sintered, and the first electrode and the second electrode are conducted.

本発明は、太陽電池の電極において、メイン電極とサブ電極の両方において適用可能である。   The present invention can be applied to both a main electrode and a sub electrode in an electrode of a solar cell.

なお、本発明では主にスクリーン印刷法を用いたが、ノズル法やインクジェット法等でも可能である。さらには、受光面電極のためのペーストは、導電性材料を含む限り、その材料は特に限定されない。例えば、金、白金、銀、銅、アルミニウム、ニッケル、クロム、タングステン、鉄、タンタル、チタン、モリブデン等の金属または合金、SnO2、In23、ZnO、ITO等の透明導電材等の単層または積層、さらには、上記金属、合金との併用により形成することができる。これらは、例えば、粉末状態として、ペーストを調製し、これを印刷、焼成することにより形成することができる。ペーストは、例えば、金属、ガラス粉末、有機樹脂、溶媒を混合して調製することができる。 In the present invention, the screen printing method is mainly used, but a nozzle method, an ink jet method, or the like is also possible. Furthermore, the material for the light-receiving surface electrode is not particularly limited as long as it includes a conductive material. For example, a metal or an alloy such as gold, platinum, silver, copper, aluminum, nickel, chromium, tungsten, iron, tantalum, titanium, or molybdenum, or a transparent conductive material such as SnO 2 , In 2 O 3 , ZnO, or ITO. It can be formed by using a layer or a laminate, and a combination of the above metals and alloys. These can be formed, for example, by preparing a paste in a powder state, printing and baking the paste. The paste can be prepared, for example, by mixing metal, glass powder, organic resin, and solvent.

裏面電極は一般的に裏面の略全面に形成されるが、グリッド状の裏面電極とすることも可能である。この場合には、裏面のグリッド電極以外の部分にいわゆる裏面反射層を形成することも可能になる。   The back electrode is generally formed on substantially the entire back surface, but it may be a grid-like back electrode. In this case, it is possible to form a so-called back surface reflection layer in a portion other than the grid electrode on the back surface.

(実施例1)
実施例では、光電変換素子として太陽電池セルを示す。該太陽電池セルは、大略、図1のような断面構造を呈し、セル作製は図4に示す工程図に基づいて行なった。
Example 1
In the examples, solar cells are shown as photoelectric conversion elements. The solar cell generally has a cross-sectional structure as shown in FIG. 1, and the cell was manufactured based on the process diagram shown in FIG.

(a)先ず、スライスされた外形10cm×10cm、厚さ0.35mm、比抵抗約2Ωcmのp型多結晶シリコンの基板21を、5%NaOHアルカリ水溶液に対し7%アルコールを加えた溶液中で80℃で10分間、シリコン表面を深さ20μmまでエッチングを行ない、破砕層の除去と同時に表面凹凸の形成を行なった。   (A) First, a p-type polycrystalline silicon substrate 21 having a sliced outer shape of 10 cm × 10 cm, a thickness of 0.35 mm, and a specific resistance of about 2 Ωcm is added in a solution obtained by adding 7% alcohol to a 5% NaOH aqueous alkali solution. The silicon surface was etched to a depth of 20 μm at 80 ° C. for 10 minutes, and surface irregularities were formed simultaneously with the removal of the crushed layer.

(b)次に、POClを含む雰囲気の840℃電気炉中の治具に、上記エッチング後基板を載置して20分間のリン拡散を行なうことでn拡散層である第2導電層22がシリコン表面に形成された。HF水溶液中でPSG(リンガラス)層などを除去後、洗浄、乾燥して、拡散層のシート抵抗は60Ω/sq、接合深さ約0.3μm、表面付近のドーパント濃度1020cm-3程度の受光面側の第2導電層22を得た。 (B) Next, the substrate after the etching is placed on a jig in an electric furnace at 840 ° C. in an atmosphere containing POCl 3, and phosphorus diffusion is performed for 20 minutes, whereby a second conductive layer which is an n + diffusion layer 22 was formed on the silicon surface. After removing the PSG (phosphor glass) layer, etc. in an HF aqueous solution, washing and drying, the sheet resistance of the diffusion layer is 60Ω / sq, the junction depth is about 0.3 μm, and the dopant concentration near the surface is about 10 20 cm −3. A second conductive layer 22 on the light-receiving surface side of was obtained.

(c)次に、この第2導電層22表面にプラズマCVD装置を用いて反射防止膜としても機能するSiN層を絶縁膜23として形成した。厚みは720Åであった。ガス種としてシランおよびアンモニアを用いた。   (C) Next, a SiN layer that also functions as an antireflection film was formed as an insulating film 23 on the surface of the second conductive layer 22 using a plasma CVD apparatus. The thickness was 720 mm. Silane and ammonia were used as gas species.

(d)次に裏面のBSF層形成では、Al粉末を含む導電性ペーストを印刷、乾燥した。近赤外線炉中で焼成することによって裏面p層25および裏面電極26を得た。 (D) Next, in forming the BSF layer on the back surface, a conductive paste containing Al powder was printed and dried. Backside p + layer 25 and backside electrode 26 were obtained by firing in a near infrared furnace.

(e)受光面電極は、スクリーン印刷法を用いて、形成した。第1電極241となる第1電極導電性ペーストを描画する線幅(L1)は50μmとした。その後、約100℃で約5分間第1電極伝導性ペーストを乾燥させた。   (E) The light-receiving surface electrode was formed using a screen printing method. The line width (L1) for drawing the first electrode conductive paste to be the first electrode 241 was 50 μm. Thereafter, the first electrode conductive paste was dried at about 100 ° C. for about 5 minutes.

(f)第2電極242は、第2電極導電性ペーストをサブ電極では線幅150μm、メイン電極では線幅2.0mm印刷することで形成した。サブ電極の電極ピッチは2.0cmとした。その後、約100℃で約5分間乾燥させ、約600℃で約1分間焼成した。   (F) The second electrode 242 was formed by printing the second electrode conductive paste with a line width of 150 μm for the sub-electrode and a line width of 2.0 mm for the main electrode. The electrode pitch of the sub electrodes was 2.0 cm. Then, it was dried at about 100 ° C. for about 5 minutes and baked at about 600 ° C. for about 1 minute.

このとき使用した第1電極導電性ペーストの粘度は25±1℃においておおよそ500Pa・sであり、第2電極導電性ペーストの粘度は25±1℃においておおよそ100Pa・sであった。また、第1、2電極導電性ペーストは共に銀、ガラス粉末、有機樹脂、溶媒を適宜混合して調整した導電性ペーストであり、この導電性ペーストに含まれるガラス粉末は従来導電性ペーストに使用しているものと同一とした。特に第2電極導電性ペーストについては、ガラス粉末の含有比率を第1電極導電性ペーストの1/2とした。このときの受光面電極の抵抗値はおおよそ0.11Ω/cmであり、受光面サブ電極線幅はおおよそ154μmであった。   The viscosity of the first electrode conductive paste used at this time was approximately 500 Pa · s at 25 ± 1 ° C., and the viscosity of the second electrode conductive paste was approximately 100 Pa · s at 25 ± 1 ° C. The first and second electrode conductive pastes are conductive pastes prepared by appropriately mixing silver, glass powder, organic resin, and solvent, and the glass powder contained in this conductive paste is used for conventional conductive pastes. It was the same as that. In particular, for the second electrode conductive paste, the content ratio of the glass powder was set to 1/2 that of the first electrode conductive paste. At this time, the resistance value of the light receiving surface electrode was about 0.11 Ω / cm, and the light receiving surface sub-electrode line width was about 154 μm.

その後、照射強度100mW/cm2の疑似太陽光下(JIS標準光AM1.5G)で、製作した太陽電池セルの電流電圧特性を測定し、その結果を表1、2に示す。
(比較例1)
第1電極導電性ペーストのみを使用して受光面電極形成領域全面に、サブ電極150μm、メイン電極2.0mmの線幅で受光面電極(従来電極)を形成した。このときの受光面電極の抵抗値はおおよそ0.14Ω/cmであった。これは、受光面電極全体に必要以上にガラス成分が含有されているために、電極自体の抵抗値が増加したものと考えられる。受光面電極線幅は第1電極導電性ペーストのダレの影響で、約165μmであった。その他の条件は上記実施例1と同じとし、太陽電池セルの電流電圧特性を測定し、その結果を表1に示す。
(比較例2)
第1電極導電性ペーストを受光面電極形成領域内の外周部にではなく、マトリクス状に描画し、焼成することにより第1電極を形成した。その後、第2電極導電性ペーストを描画してから再び焼成して、受光面電極を形成した(特許文献1参照)。第1電極導電性ペースト、第2電極導電性ペースト共にそれぞれ実施例1と同じ導電性ペーストを使用しており、使用した受光面電極パターンも上記実施例1および比較例1と同じである。半導体基板と電気的に接触する第1電極の面積は実施例1と同じとし、太陽電池セルの電流電圧特性を測定し、その結果を表1に示す。
Thereafter, the current-voltage characteristics of the manufactured solar cells were measured under simulated sunlight (JIS standard light AM1.5G) with an irradiation intensity of 100 mW / cm 2 , and the results are shown in Tables 1 and 2.
(Comparative Example 1)
Using only the first electrode conductive paste, a light receiving surface electrode (conventional electrode) having a line width of 150 μm for the sub electrode and 2.0 mm for the main electrode was formed on the entire surface of the light receiving surface electrode forming region. At this time, the resistance value of the light-receiving surface electrode was approximately 0.14 Ω / cm. This is presumably because the resistance value of the electrode itself was increased because the entire light-receiving surface electrode contained a glass component more than necessary. The light receiving surface electrode line width was about 165 μm due to sagging of the first electrode conductive paste. The other conditions were the same as in Example 1, and the current-voltage characteristics of the solar cells were measured. The results are shown in Table 1.
(Comparative Example 2)
The first electrode was formed by drawing the first electrode conductive paste in a matrix rather than on the outer periphery in the light receiving surface electrode forming region and baking it. Then, after drawing the 2nd electrode conductive paste, it baked again and formed the light-receiving surface electrode (refer patent document 1). Both the first electrode conductive paste and the second electrode conductive paste use the same conductive paste as in Example 1, and the light receiving surface electrode patterns used are also the same as in Example 1 and Comparative Example 1. The area of the first electrode in electrical contact with the semiconductor substrate was the same as in Example 1, and the current-voltage characteristics of the solar cells were measured. The results are shown in Table 1.

Figure 2007134387
Figure 2007134387

表1より、受光面電極中のガラス成分が少ない実施例1と比較例2の方が、比較例1の従来電極を用いた太陽電池セルよりも電流密度(Jsc)とFFが良いのがわかる。これは、電極自体の抵抗値を低減させたほか、接触抵抗を低減できたからである。比較例1よりもVocが向上しているのは、半導体基板と受光面電極との接触面積を減らすことにより表面再結合速度が低減したためと思われる。比較例2は半導体基板との接触面積は実施例1と同面積であるが、電極形成領域内の外周部が半導体基板としっかりと接着されていないので、半田ディップ工程で電極が剥離した。実施例1は、メイン電極、サブ電極共に電極形成領域内の外周部が半導体基板と接着されているので、従来電極と同等の接着強度を持っている。
(実施例2)
実施例1と同様の方法で、受光面電極のサブ電極における第1電極線幅は約15μm、第2電極線幅は50μm、メイン電極では第1電極線幅は50μm、第2電極線幅は2.0mmで受光面電極形成した。このときのサブ電極線幅は約52μmであり、高さはおおよそ17μmであった。また、サブ電極線幅が細くなった分、サブ電極ピッチを狭くすることにより受光面電極面積を実施例1と同じにした。
From Table 1, it can be seen that Example 1 and Comparative Example 2 with less glass component in the light-receiving surface electrode have better current density (Jsc) and FF than the solar cell using the conventional electrode of Comparative Example 1. . This is because the resistance value of the electrode itself can be reduced and the contact resistance can be reduced. The Voc is improved over Comparative Example 1 because the surface recombination rate is reduced by reducing the contact area between the semiconductor substrate and the light-receiving surface electrode. In Comparative Example 2, the contact area with the semiconductor substrate was the same as that of Example 1, but the outer peripheral portion in the electrode formation region was not firmly bonded to the semiconductor substrate, so that the electrode was peeled off in the solder dipping process. In Example 1, both the main electrode and the sub-electrode have the same adhesive strength as that of the conventional electrode because the outer peripheral portion in the electrode formation region is bonded to the semiconductor substrate.
(Example 2)
In the same manner as in Example 1, the first electrode line width of the sub-electrode of the light receiving surface electrode is about 15 μm, the second electrode line width is 50 μm, the main electrode has the first electrode line width of 50 μm, and the second electrode line width is A light-receiving surface electrode was formed at 2.0 mm. The sub-electrode line width at this time was about 52 μm, and the height was about 17 μm. Further, the area of the light-receiving surface electrode was made the same as that of Example 1 by narrowing the sub-electrode pitch by the amount corresponding to the narrower sub-electrode line width.

そして、照射強度100mW/cm2の疑似太陽光下(JIS標準光AM1.5G)で、製作した太陽電池セルの電流電圧特性を測定し、その結果を表2に示す。
(比較例3)
上記実施例2と同じ受光面電極パターンで、第1電極導電性ペーストのみを使用して受光面電極を形成した。このときの、サブ電極線幅は約56μm、高さはおおよそ6μmであった。また、実施例2と同様に太陽電池セルの電流電圧特性を測定し、その結果を表2に示す。
The pseudo solar light of a radiation intensity 100 mW / cm 2 (JIS standard light AM1.5G), to measure the current-voltage characteristics of the fabricated solar cell. The results are shown in Table 2.
(Comparative Example 3)
With the same light receiving surface electrode pattern as in Example 2, a light receiving surface electrode was formed using only the first electrode conductive paste. At this time, the sub-electrode line width was about 56 μm and the height was about 6 μm. Further, the current-voltage characteristics of the solar cells were measured in the same manner as in Example 2, and the results are shown in Table 2.

Figure 2007134387
Figure 2007134387

表2より、本発明は実用可能な微細電極を形成でき、電極ピッチを狭めることにより実施例1よりも高いFF値を得ることができた。比較例3では、サブ電極線幅は微細であったが、サブ電極の高さが低かったために、受光面電極自体の抵抗値が高くなってしまいFF値が大幅に低下してしまった。   From Table 2, the present invention was able to form a practical fine electrode, and a higher FF value than Example 1 could be obtained by narrowing the electrode pitch. In Comparative Example 3, the sub electrode line width was fine, but since the height of the sub electrode was low, the resistance value of the light receiving surface electrode itself increased and the FF value significantly decreased.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明に基づいた太陽電池セルでは、Vocを向上させることができる。また、受光面電極全体のガラス成分の量を必要最小限にすることで、受光面電極自体の抵抗値を低減させることができ、さらに、実用可能な微細電極が形成可能になる。   In the solar battery cell based on this invention, Voc can be improved. Further, by minimizing the amount of glass component in the entire light receiving surface electrode, the resistance value of the light receiving surface electrode itself can be reduced, and a practical fine electrode can be formed.

本発明の太陽電池構造の断面図である。It is sectional drawing of the solar cell structure of this invention. 太陽電池作製プロセス全体のフロー図である。It is a flowchart of the whole solar cell preparation process. 本発明の電極形成する印刷過程を示す電極の一部分の平面図である。It is a top view of a part of electrode which shows the printing process which forms the electrode of this invention. 本発明の太陽電池セル作製工程過程を示す太陽電池の断面図である。It is sectional drawing of the solar cell which shows the photovoltaic cell preparation process process of this invention.

符号の説明Explanation of symbols

21 基板、22 第2導電層、23 絶縁膜、24 受光面電極、241 第1電極、242 第2電極、25 裏面p層、26 裏面電極、31 受光面電極形成領域、311 サブ電極形成領域、312 メイン電極形成領域、32 第1電極導電性ペースト、33 第2電極導電性ペースト、L1 第1電極導電性ペーストを描画する線幅、L2 サブ電極形成領域の線幅。 21 Substrate, 22 Second conductive layer, 23 Insulating film, 24 Light receiving surface electrode, 241 First electrode, 242 Second electrode, 25 Back surface p + layer, 26 Back surface electrode, 31 Light receiving surface electrode formation region, 311 Sub electrode formation region , 312 Main electrode forming region, 32 First electrode conductive paste, 33 Second electrode conductive paste, L1 Line width for drawing first electrode conductive paste, L2 Line width of sub electrode forming region.

Claims (6)

半導体基板と電気的に接続された受光面電極を有する光電変換素子であって、
半導体基板と受光面電極とが電気的に接触している領域が半導体基板上の受光面電極形成領域内の外周部にあり、前記受光面電極形成領域内の前記外周部より内部の領域において前記半導体基板と電気的に非接触な領域を有することを特徴とする光電変換素子。
A photoelectric conversion element having a light-receiving surface electrode electrically connected to a semiconductor substrate,
The region where the semiconductor substrate and the light-receiving surface electrode are in electrical contact is in the outer peripheral portion in the light-receiving surface electrode forming region on the semiconductor substrate, and in the region inside the outer peripheral portion in the light-receiving surface electrode forming region A photoelectric conversion element having a region that is not in electrical contact with a semiconductor substrate.
半導体基板と電気的に接続された受光面電極形成領域内の外周部に形成される電極である第1電極と、前記受光面電極形成領域内の前記外周部より内部の領域に形成される電極である第2電極とを有し、前記第1電極と前記第2電極は電気的に接触しており、前記第2電極とは、少なくともガラス成分が前記第1電極と異なるか、あるいはガラス成分の含有比率が前記第1電極より少ないことを特徴とする請求項1に記載の光電変換素子。   A first electrode which is an electrode formed on an outer peripheral portion in a light receiving surface electrode forming region electrically connected to a semiconductor substrate; and an electrode formed in a region inside the outer peripheral portion in the light receiving surface electrode forming region And the first electrode and the second electrode are in electrical contact with each other, and at least the glass component of the second electrode is different from the first electrode or the glass component The photoelectric conversion element according to claim 1, wherein the content ratio of is less than that of the first electrode. 受光面電極は、メイン電極とサブ電極を含み、前記サブ電極横断面のアスペクト比(高さ/線幅)が0.2以上であることを特徴とする請求項1または2に記載の光電変換素子。   3. The photoelectric conversion according to claim 1, wherein the light-receiving surface electrode includes a main electrode and a sub electrode, and an aspect ratio (height / line width) of the sub-electrode cross section is 0.2 or more. element. 請求項2に記載の光電変換素子の電極形成方法であって、
半導体基板上の受光面電極形成領域内の外周部に第1電極導電性ペーストを描画する工程と、前記受光面電極形成領域内の前記外周部より内部の領域に第2電極導電性ペーストを描画する工程を有することを特徴とする電極形成方法。
It is the electrode formation method of the photoelectric conversion element of Claim 2, Comprising:
Drawing the first electrode conductive paste on the outer peripheral portion in the light receiving surface electrode forming region on the semiconductor substrate, and drawing the second electrode conductive paste in the region inside the outer peripheral portion in the light receiving surface electrode forming region An electrode forming method comprising the step of:
前記第2電極導電性ペーストに占めるガラス粉末の割合が2wt%以下であることを特徴とする請求項4に記載の電極形成方法。   The electrode forming method according to claim 4, wherein a ratio of the glass powder in the second electrode conductive paste is 2 wt% or less. 前記第2電極導電性ペーストの25±1℃における粘度範囲が5〜600Pa・sであることを特徴とする請求項4または5に記載の電極形成方法。   6. The electrode forming method according to claim 4, wherein a viscosity range of the second electrode conductive paste at 25 ± 1 ° C. is 5 to 600 Pa · s.
JP2005323486A 2005-11-08 2005-11-08 Photoelectric conversion element and its method for forming electrode Withdrawn JP2007134387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323486A JP2007134387A (en) 2005-11-08 2005-11-08 Photoelectric conversion element and its method for forming electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323486A JP2007134387A (en) 2005-11-08 2005-11-08 Photoelectric conversion element and its method for forming electrode

Publications (1)

Publication Number Publication Date
JP2007134387A true JP2007134387A (en) 2007-05-31

Family

ID=38155826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323486A Withdrawn JP2007134387A (en) 2005-11-08 2005-11-08 Photoelectric conversion element and its method for forming electrode

Country Status (1)

Country Link
JP (1) JP2007134387A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010245A (en) * 2008-06-25 2010-01-14 Shin-Etsu Chemical Co Ltd Method for forming electrode of solar battery, method for manufacturing solar battery using the same and solar battery
JP2011066037A (en) * 2009-09-15 2011-03-31 Dainippon Screen Mfg Co Ltd Method and device for forming pattern
JP2011066044A (en) * 2009-09-15 2011-03-31 Mitsubishi Electric Corp Method for manufacturing solar cell device
JP4754655B2 (en) * 2008-08-07 2011-08-24 京都エレックス株式会社 Conductive paste for forming electrode of solar cell element, solar cell element, and method for manufacturing the solar cell element
WO2011111192A1 (en) * 2010-03-10 2011-09-15 三菱電機株式会社 Method for forming electrode of solar cell, and solar cell
JP2012023232A (en) * 2010-07-15 2012-02-02 Sharp Corp Solar battery element and method for manufacturing the same
JP2012182457A (en) * 2011-03-02 2012-09-20 Korea Electronics Telecommun Conductive composition, silicon solar cell containing conductive composition, and method for manufacturing the same
WO2013161373A1 (en) * 2012-04-24 2013-10-31 三菱電機株式会社 Solar cell and method for manufacturing same
JP2014107403A (en) * 2012-11-27 2014-06-09 Kaneka Corp Solar dell, method of manufacturing the same, and solar cell module
JP2014229633A (en) * 2013-05-17 2014-12-08 株式会社カネカ Solar cell and manufacturing method therefor, and solar cell module
JP2015192058A (en) * 2014-03-28 2015-11-02 富士通株式会社 Forming method of multilayer wiring structure, and wiring board
JP2017037974A (en) * 2015-08-11 2017-02-16 信越化学工業株式会社 Solar battery manufacturing method and solar battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010245A (en) * 2008-06-25 2010-01-14 Shin-Etsu Chemical Co Ltd Method for forming electrode of solar battery, method for manufacturing solar battery using the same and solar battery
JP4754655B2 (en) * 2008-08-07 2011-08-24 京都エレックス株式会社 Conductive paste for forming electrode of solar cell element, solar cell element, and method for manufacturing the solar cell element
JP2011066037A (en) * 2009-09-15 2011-03-31 Dainippon Screen Mfg Co Ltd Method and device for forming pattern
JP2011066044A (en) * 2009-09-15 2011-03-31 Mitsubishi Electric Corp Method for manufacturing solar cell device
WO2011111192A1 (en) * 2010-03-10 2011-09-15 三菱電機株式会社 Method for forming electrode of solar cell, and solar cell
JP2012023232A (en) * 2010-07-15 2012-02-02 Sharp Corp Solar battery element and method for manufacturing the same
JP2012182457A (en) * 2011-03-02 2012-09-20 Korea Electronics Telecommun Conductive composition, silicon solar cell containing conductive composition, and method for manufacturing the same
WO2013161373A1 (en) * 2012-04-24 2013-10-31 三菱電機株式会社 Solar cell and method for manufacturing same
JP2014107403A (en) * 2012-11-27 2014-06-09 Kaneka Corp Solar dell, method of manufacturing the same, and solar cell module
JP2014229633A (en) * 2013-05-17 2014-12-08 株式会社カネカ Solar cell and manufacturing method therefor, and solar cell module
JP2015192058A (en) * 2014-03-28 2015-11-02 富士通株式会社 Forming method of multilayer wiring structure, and wiring board
JP2017037974A (en) * 2015-08-11 2017-02-16 信越化学工業株式会社 Solar battery manufacturing method and solar battery

Similar Documents

Publication Publication Date Title
JP2007134387A (en) Photoelectric conversion element and its method for forming electrode
CN105247686B (en) Solar battery cell and its manufacture method, solar module
JP5172480B2 (en) Photoelectric conversion device and manufacturing method thereof
JP6189971B2 (en) Solar cell and solar cell module
JP6175392B2 (en) Conductive paste for solar cell element surface electrode and method for producing solar cell element
JPWO2013161127A1 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP2012084585A (en) Solar cell device and method of manufacturing the same
JP2007266262A (en) Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
US9171975B2 (en) Solar cell element and process for production thereof
JP5991945B2 (en) Solar cell and solar cell module
JP2010135562A (en) Photoelectric conversion element, photoelectric conversion element module, and production process of photoelectric conversion element
JP2003258277A (en) Solar cell
JP6371099B2 (en) Conductive paste and crystalline silicon solar cell
JP2017033970A (en) Solar cell element and method of manufacturing the same
JP2015138959A (en) Photovoltaic device and photovoltaic device manufacturing method
JP3732947B2 (en) Method for manufacturing solar cell element
JP2017139351A (en) Manufacturing method of solar cell element, and solar cell element
JP2005203622A (en) Photoelectric conversion device, metal paste, and manufacturing method of photoelectric conversion device using it
JP5806395B2 (en) Solar cell element and manufacturing method thereof
JP2003273379A (en) Solar cell element
JP6495713B2 (en) Solar cell element and manufacturing method thereof
JP2015130406A (en) Photovoltaic device, method of manufacturing the same, and photovoltaic module
JP2014146553A (en) Conductive paste for electrode of solar battery and method of producing the same
JP2004273829A (en) Photoelectric converter and its fabricating process
JP5377226B2 (en) Solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203