JP2015126641A - Controller of motor - Google Patents

Controller of motor Download PDF

Info

Publication number
JP2015126641A
JP2015126641A JP2013270796A JP2013270796A JP2015126641A JP 2015126641 A JP2015126641 A JP 2015126641A JP 2013270796 A JP2013270796 A JP 2013270796A JP 2013270796 A JP2013270796 A JP 2013270796A JP 2015126641 A JP2015126641 A JP 2015126641A
Authority
JP
Japan
Prior art keywords
current
phase
axis current
axis
dead time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013270796A
Other languages
Japanese (ja)
Inventor
佑介 小暮
Yusuke Kogure
佑介 小暮
恒平 明円
Kohei Myoen
恒平 明円
戸張 和明
Kazuaki Tobari
和明 戸張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013270796A priority Critical patent/JP2015126641A/en
Publication of JP2015126641A publication Critical patent/JP2015126641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that when the fundamental of the phase current of a motor is small, polarity of a motor current is changed by the high-frequency wave contained in the phase current of a motor, regardless of the phase of the fundamental of the phase current of a motor, and since the estimate of the polarity of the phase current of a motor used for dead time compensation is temporarily different from the actual polarity of the phase current of a motor, the dead time compensation amount cannot be determined correctly.SOLUTION: A controller of a motor is configured to reduce switching of the polarity of a phase current due to high frequency, by increasing the d-axis current so that the amplitude value of the fundamental of a phase current based on a dq axis current command is sufficiently larger than the amplitude value of high frequency.

Description

本発明は電動機の制御装置に関し、特にインバータ回路におけるデッドタイムを補償する技術に関するものである。   The present invention relates to a motor control device, and more particularly to a technique for compensating for dead time in an inverter circuit.

従来のデッドタイムを補償する技術としては、下記の特許文献1(特開平1-60264号公報)に記載されているものがある。この従来例には、dq軸電流指令およびモータの回転角よりモータの相電流の基本波の位相を算出し、その位相に基づきデッドタイム中のモータの相電流の極性を推定し、メモリに記憶されたデッドタイム補償量をフィードフォワード制御方式で出力する構成が記載されている。   Conventional techniques for compensating for dead time include those described in the following Patent Document 1 (Japanese Patent Laid-Open No. 1-60264). In this conventional example, the phase of the fundamental wave of the motor phase current is calculated from the dq axis current command and the rotation angle of the motor, and the polarity of the phase current of the motor during the dead time is estimated based on the phase and stored in the memory. A configuration is described in which the dead time compensation amount is output by a feedforward control method.

特開平1-60264号公報Japanese Patent Laid-Open No. 1-60264

特許文献1においては、モータの相電流の基本波の振幅が小さい場合、モータの相電流に含まれる高周波によって、モータの相電流の基本波の位相に関わらずモータ電流の極性が変化し、デッドタイム補償に用いているモータの相電流の極性の推定値と実際のモータの相電流の極性が一時的に異なることで、デッドタイム補償量が正しく求められないという問題があった。   In Patent Document 1, when the amplitude of the fundamental wave of the phase current of the motor is small, the polarity of the motor current changes due to the high frequency included in the phase current of the motor regardless of the phase of the fundamental wave of the motor phase current. The estimated value of the phase current polarity of the motor used for time compensation is temporarily different from the polarity of the actual motor phase current, so that there is a problem that the amount of dead time compensation cannot be obtained correctly.

上記の問題を解決するため、本発明に係る電動機の制御装置は、dq軸電流指令に基づく相電流の基本波の振幅値が、高周波の振幅値よりも十分に大きくなるようにd軸電流を増大させることによって、高周波による相電流の極性の切り替わりを減少させるように構成している。   In order to solve the above problem, the motor control device according to the present invention reduces the d-axis current so that the fundamental amplitude value of the phase current based on the dq-axis current command is sufficiently larger than the high-frequency amplitude value. By increasing the frequency, the switching of the polarity of the phase current due to the high frequency is reduced.

本発明によれば、dq軸電流指令に基づく相電流の基本波の振幅値が、高周波の振幅値よりも十分に大きくなるので、デッドタイム補償量を常に正しく求められるという効果が得られる。また、d軸電流の増大の際にq軸電流の操作を追加することで出力トルクの調整も可能とし、d軸電流を増大させたことによる出力トルクへの影響を低減することができる。   According to the present invention, since the amplitude value of the fundamental wave of the phase current based on the dq-axis current command is sufficiently larger than the amplitude value of the high frequency, an effect that the dead time compensation amount can always be obtained correctly is obtained. Further, when the d-axis current is increased, the operation of the q-axis current can be added to adjust the output torque, and the influence on the output torque due to the increased d-axis current can be reduced.

本発明の実施例1の構成を示すブロック図The block diagram which shows the structure of Example 1 of this invention. パルス幅変調した信号を用いる電圧形インバータを用いた場合の電動機に流れる電流波形を示す図The figure which shows the current waveform which flows into the motor at the time of using the voltage source inverter which uses the signal which carried out pulse width modulation 本発明適用前における、電流および電圧波形を示す図The figure which shows the electric current and voltage waveform before this invention application d軸電流を増大させることによる3相電流への効果を示した図Diagram showing the effect on the three-phase current by increasing the d-axis current 本発明適用後における、電流および電圧波形を示す図The figure which shows the electric current and voltage waveform after this invention application 本発明の実施例2の構成を示すブロック図The block diagram which shows the structure of Example 2 of this invention. 本発明の実施例3の構成を示すブロック図The block diagram which shows the structure of Example 3 of this invention.

図1は本発明に係る実施例1の構成を示すブロック図である。この実施例は、dq軸電流目標値に基づく3相電流の基本波の振幅値が、高周波の振幅値よりも十分に大きくなるようにd軸電流を増大させることを特徴とする電動機の制御装置の構成を示す。   FIG. 1 is a block diagram showing the configuration of the first embodiment according to the present invention. This embodiment increases the d-axis current so that the amplitude value of the fundamental wave of the three-phase current based on the dq-axis current target value is sufficiently larger than the amplitude value of the high frequency. The structure of is shown.

本実施形態に係る回路図は、電動機に流れる高周波を含む3相電流を制御する制御部100、3相電流の基本波の位相を用いて補償量を求めるデッドタイム補償部20、PWM信号に応じて動作し、図示していない直流電源の電圧を3相交流の電圧に変換するPWMインバータ30および電動機40によって構成されている。   The circuit diagram according to the present embodiment includes a control unit 100 that controls a three-phase current including a high frequency that flows in an electric motor, a dead time compensation unit 20 that calculates a compensation amount using the phase of a fundamental wave of the three-phase current, and a PWM signal. And is constituted by a PWM inverter 30 and an electric motor 40 that convert a voltage of a DC power source (not shown) into a three-phase AC voltage.

電動機に流れる高周波を含む3相電流を制御する制御部100の詳細について説明する。   Details of the control unit 100 that controls a three-phase current including a high frequency flowing in the electric motor will be described.

図1において、電流指令算出部1は、外部から与えられたトルク指令値T*と後述する微分部5で算出された電動機40の回転速度ωから、d軸電流目標値Id*およびq軸電流目標値Iq*を算出する。なお、トルク指令値T*は、電動機40の出力トルクを指示する信号である。   In FIG. 1, a current command calculation unit 1 calculates a d-axis current target value Id * and a q-axis current from a torque command value T * given from the outside and a rotational speed ω of an electric motor 40 calculated by a differentiation unit 5 described later. A target value Iq * is calculated. The torque command value T * is a signal for instructing the output torque of the electric motor 40.

電流制御部2は、前記のd軸電流目標値Id*およびq軸電流目標値Iq*と後述するd軸電流値Idおよびq軸電流値Iqとの偏差に応じて、d軸電圧指令値Vd*およびq軸電圧指令値Vq*を演算する。必要に応じて非干渉制御を適用してもよい。   The current control unit 2 determines a d-axis voltage command value Vd according to a deviation between the d-axis current target value Id * and the q-axis current target value Iq * and a d-axis current value Id and a q-axis current value Iq described later. * And q-axis voltage command value Vq * are calculated. Non-interference control may be applied as necessary.

三相変換部3は、電動機40の回転子位相θに応じて、前記のd軸電圧指令値Vd*およびq軸電圧指令値Vq*を3相電圧指令値、すなわちu相電圧指令値Vu*、v相電圧指令値Vv*およびw相の電圧指令値Vw*へ変換する。電動機40の回転子位相θは、図示していないレゾルバやエンコーダなどの位置検出器を用いて検出される。   The three-phase conversion unit 3 converts the d-axis voltage command value Vd * and the q-axis voltage command value Vq * into the three-phase voltage command value, that is, the u-phase voltage command value Vu * according to the rotor phase θ of the electric motor 40. , V-phase voltage command value Vv * and w-phase voltage command value Vw *. The rotor phase θ of the electric motor 40 is detected by using a position detector such as a resolver or an encoder (not shown).

PWM変換部4は前記の3相電圧指令値、PWM変換に用いるキャリア信号および直流電源の電圧からu相のパルス幅Du、v相パルス幅Dv、w相のパルス幅Dwを算出する。   The PWM converter 4 calculates the u-phase pulse width Du, the v-phase pulse width Dv, and the w-phase pulse width Dw from the three-phase voltage command value, the carrier signal used for PWM conversion, and the voltage of the DC power supply.

微分部5は、回転子位相θを微分することによって、電動機40の回転子角速度ωを算出する。   The differentiating unit 5 calculates the rotor angular velocity ω of the electric motor 40 by differentiating the rotor phase θ.

dq軸変換部8は、図示していない電流センサによって検出した3相電流iu、iv、iw と電動機40回転子位相θから、3相電流値をd軸電流値Id、q軸電流値Iqへ変換する。3相電流iu、iv、iwは図2に示すように、基本波とスイッチングによるリップル等を含む高周波によって構成されている。   The dq-axis conversion unit 8 converts the three-phase current value to the d-axis current value Id and the q-axis current value Iq from the three-phase currents iu, iv, iw detected by a current sensor (not shown) and the motor 40 rotor phase θ. Convert. As shown in FIG. 2, the three-phase currents iu, iv, and iw are composed of a high frequency including a fundamental wave and a ripple caused by switching.

電流位相算出器部9はdq軸電流目標値と電動機40の回転子位相θから3相電流の基本波の位相を算出する。   The current phase calculator unit 9 calculates the phase of the fundamental wave of the three-phase current from the dq axis current target value and the rotor phase θ of the electric motor 40.

電流振幅算出部6は、下記式に基づいてdq軸電流目標値から相電流の振幅を算出する。
The current amplitude calculator 6 calculates the phase current amplitude from the dq-axis current target value based on the following equation.

d軸補正電流算出部7は、電流振幅算出部6で算出された電流振幅に基づき、3相電流の高周波の振幅値よりも十分に大きくなるようなd軸補正電流を算出する。   The d-axis correction current calculation unit 7 calculates a d-axis correction current that is sufficiently larger than the high-frequency amplitude value of the three-phase current based on the current amplitude calculated by the current amplitude calculation unit 6.

なお、高周波の振幅はPWMインバータ30に起因して発生するもので、その大きさは電動機40のインダクタンスや誘起電圧の特性等に依存し、計算により求めることもできるが、試験的に測定して求めても良い。   The amplitude of the high frequency is caused by the PWM inverter 30, and its magnitude depends on the inductance of the motor 40, the characteristics of the induced voltage, etc., and can be obtained by calculation. You may ask.

また、d軸電流を補正電流として用いる理由は、d軸電流はトルクへの寄与率がq軸電流に比べて低いためである。   The reason why the d-axis current is used as the correction current is that the d-axis current has a lower contribution rate to the torque than the q-axis current.

次にデッドタイム補償部20について説明する。デッドタイム補償部20は、dq軸電流目標値および電動機40の回転子位相より算出した3相電流の基本波の位相に基づき、デッドタイム補償量をフィードフォワード制御方式で出力する。   Next, the dead time compensation unit 20 will be described. The dead time compensation unit 20 outputs a dead time compensation amount by a feedforward control method based on the phase of the fundamental wave of the three-phase current calculated from the dq axis current target value and the rotor phase of the electric motor 40.

デッドタイム補償部20で補償をするデッドタイムによる変動電圧の平均値は下記式に基づいて求められる。
ただし、Vdt :平均変動電圧 [V] Vdc :直流電圧 [V]
Td :デッドタイム [s] fs :PWMキャリア周波数 [Hz]
The average value of the fluctuation voltage due to the dead time that is compensated by the dead time compensation unit 20 is obtained based on the following equation.
V dt : Average fluctuation voltage [V] V dc : DC voltage [V]
T d : Dead time [s] f s : PWM carrier frequency [Hz]

また、デッドタイムによる平均変動電圧の極性は図5の(1)に示すように、3相電流の極性と反対となる。このデッドタイムによる平均変動電圧の特性を利用して、3相電流の基本波の位相を用いてデッドタイム補償部20は補償量の極性および大きさを算出している。   Further, the polarity of the average fluctuation voltage due to the dead time is opposite to the polarity of the three-phase current as shown in (1) of FIG. Using the characteristic of the average fluctuation voltage due to the dead time, the dead time compensation unit 20 calculates the polarity and magnitude of the compensation amount using the phase of the fundamental wave of the three-phase current.

なお、上記の電流指令算出部1、電流制御部2、3相変換部3、PWM変換部4、微分部5、電流振幅算出部6、d軸補正電流算出部7、dq軸変換部8、位相算出部9およびデッドタイム補償部20は、CPUとメモリおよびそれらに付随する電子回路で構成することが出来る。   The current command calculation unit 1, current control unit 2, three-phase conversion unit 3, PWM conversion unit 4, differentiation unit 5, current amplitude calculation unit 6, d-axis correction current calculation unit 7, dq-axis conversion unit 8, The phase calculation unit 9 and the dead time compensation unit 20 can be configured by a CPU, a memory, and an electronic circuit associated therewith.

以下、本実施形態の要旨について説明する。本実施形態の特徴は、デッドタイム補償部20による電圧変動の補償期間を含む期間中に、dq軸電流目標値に基づく相電流の基本波の振幅値が、高周波の振幅値よりも十分に大きくなるようにd軸電流を増大させることによって、デッドタイムによる変動電圧を補償することにある。これについて詳しく説明をする。   Hereinafter, the gist of the present embodiment will be described. The feature of this embodiment is that the amplitude value of the fundamental wave of the phase current based on the dq axis current target value is sufficiently larger than the amplitude value of the high frequency during the period including the voltage fluctuation compensation period by the dead time compensation unit 20. By increasing the d-axis current in such a manner, the fluctuation voltage due to the dead time is compensated. This will be described in detail.

図3はインバータ相電流iuの基本波の振幅が高周波の振幅より小さい場合における、インバータ相電流iuの波形、(1)デッドタイムによる平均変動電圧、(2)デッドタイム補償部で算出された補償電圧および(3)補償の誤差=(1)+(2)を図示したものである。   3 shows the waveform of the inverter phase current iu, (1) the average fluctuation voltage due to the dead time, and (2) the compensation calculated by the dead time compensator when the amplitude of the fundamental wave of the inverter phase current iu is smaller than the amplitude of the high frequency. The voltage and (3) compensation error = (1) + (2) are illustrated.

インバータ相電流iuの基本波の振幅が高周波の振幅より小さい場合では、インバータ相電流iuに含まれる高周波よってインバータ相電流iuの極性が切り替わり、デッドタイムによる平均変動電圧の極性は、インバータ相電流iuの基本波の極性切り替わりタイミングと一致しない。したがって、(1)と(2)を加算すると図3の(3)のとおり、補償誤差が発生する。   When the amplitude of the fundamental wave of the inverter phase current iu is smaller than the amplitude of the high frequency, the polarity of the inverter phase current iu is switched by the high frequency included in the inverter phase current iu, and the polarity of the average fluctuation voltage due to dead time is the inverter phase current iu Does not coincide with the polarity switching timing of the fundamental wave. Therefore, when (1) and (2) are added, a compensation error occurs as shown in (3) of FIG.

そこで、図1の電流振幅算出部6およびd軸補正電流算出器7でdq軸電流目標値に基づく3相電流の基本波の振幅が高周波の振幅より大きくなるようにd軸電流を増大させる。   Therefore, the d-axis current is increased so that the amplitude of the fundamental wave of the three-phase current based on the dq-axis current target value is larger than the amplitude of the high frequency by the current amplitude calculator 6 and the d-axis correction current calculator 7 of FIG.

d軸電流を増大させると、(数1)式から分かるように相電流の振幅が増大するため、図4に示すように高周波による3相電流の極性変化が減少する。   When the d-axis current is increased, the amplitude of the phase current increases as can be seen from the equation (1), so that the polarity change of the three-phase current due to the high frequency decreases as shown in FIG.

図5は、インバータ相電流iuの基本波の振幅を高周波の振幅より十分大きくした場合における、インバータ相電流iuの波形、(1)デッドタイムによる平均変動電圧、(2)デッドタイム補償部20で算出された補償電圧および(3)補償の誤差=(1)+(2)を図示したものである。   FIG. 5 shows the waveform of the inverter phase current iu, (1) average fluctuation voltage due to dead time, and (2) dead time compensation unit 20 when the amplitude of the fundamental wave of inverter phase current iu is sufficiently larger than the amplitude of the high frequency. The calculated compensation voltage and (3) compensation error = (1) + (2) are illustrated.

インバータ相電流iuの基本波の振幅を高周波の振幅より十分大きくした場合、インバータ相電流iuに含まれる高周波が原因によるインバータ相電流iuの極性変化が減少するため、インバータ相電流iuの極性切り替りタイミングは、インバータ相電流iuの基本波の極性切り替りタイミングと一致する。   If the amplitude of the fundamental wave of the inverter phase current iu is sufficiently larger than the amplitude of the high frequency, the polarity change of the inverter phase current iu due to the high frequency contained in the inverter phase current iu decreases, so the polarity switching of the inverter phase current iu The timing coincides with the polarity switching timing of the fundamental wave of the inverter phase current iu.

したがって、(1)の極性切り替りタイミングは、3相電流の基本波の極性切り替りタイミングと一致し、その結果、3相電流の基本波の位相から算出される(2)の極性切り替りタイミングとも一致する。したがって、(1)+(2)で表される(3)は図3の場合に比べて減少する。   Therefore, the polarity switching timing of (1) coincides with the polarity switching timing of the fundamental wave of the three-phase current, and as a result, the polarity switching timing of (2) calculated from the phase of the fundamental wave of the three-phase current. Also agree. Therefore, (3) represented by (1) + (2) is reduced compared to the case of FIG.

以上のことより、d軸電流を増大させることによって、デッドタイム補償誤差を減少させる効果がある。   From the above, increasing the d-axis current has the effect of reducing the dead time compensation error.

図6は本発明の実施例2の構成を示すブロック図であり、トルク指令値に基づいたdq軸電流目標値とd軸電流の増大量に応じて、q軸電流も増大させることを特徴とする制御装置の構成を示す。   FIG. 6 is a block diagram showing the configuration of Embodiment 2 of the present invention, characterized in that the q-axis current is also increased according to the dq-axis current target value based on the torque command value and the increase amount of the d-axis current. The structure of the control apparatus which performs is shown.

図6において、トルク補正部10はトルク指令値に基づいたdq軸電流目標値とd軸電流の増大量に応じて、q軸電流も増大させる。   In FIG. 6, the torque correction unit 10 also increases the q-axis current according to the dq-axis current target value based on the torque command value and the increase amount of the d-axis current.

q軸電流の増大量について説明する。永久磁石同期モータのトルクは、磁石によるトルクとリラクタンストルクからなり、永久磁石同期モータのトルク式は下記式(数3)のように表せる。
ただし、
T : トルク [Nm] P : 極対数
id : d軸電流 [A] iq : q軸電流 [A]
Ld : d軸インダクタンス [H] Lq : q軸インダクタンス [H]
ψa :磁石の鎖交磁束数の振幅
The amount of increase in q-axis current will be described. The torque of the permanent magnet synchronous motor is composed of the torque by the magnet and the reluctance torque, and the torque equation of the permanent magnet synchronous motor can be expressed as the following equation (Equation 3).
However,
T: Torque [Nm] P: Number of pole pairs
i d : d-axis current [A] i q : q-axis current [A]
L d : d-axis inductance [H] L q : q-axis inductance [H]
ψ a : amplitude of the number of flux linkages of the magnet

トルク式の右辺の第1項が磁石によるトルクを表し、第2項がリラクタンストルクを表している。   The first term on the right side of the torque equation represents the torque generated by the magnet, and the second term represents the reluctance torque.

トルク補正部10は、d軸電流の増大により発生するトルク分をq軸電流の増大によって調整し、モータトルクがトルク指令値と一致するように電流目標値に補正を行う。   The torque correction unit 10 adjusts the torque generated by the increase of the d-axis current by increasing the q-axis current, and corrects the current target value so that the motor torque matches the torque command value.

これにより、3相電流の振幅値が高周波の振幅値より大きくなるようにd軸電流を増大させてもトルクの変動が発生せず、精度の高いトルク制御を行うことができる効果がある。   Thereby, even if the d-axis current is increased so that the amplitude value of the three-phase current is larger than the amplitude value of the high frequency, there is an effect that torque fluctuation does not occur and highly accurate torque control can be performed.

図7は本発明の実施例3の構成を示すブロック図であり、d軸電流およびq軸電流の増大量は、記憶装置に予め記憶されていることを特徴とする制御装置の構成を示す。   FIG. 7 is a block diagram showing the configuration of the third embodiment of the present invention, and shows the configuration of the control device characterized in that the increase amounts of the d-axis current and the q-axis current are stored in advance in the storage device.

図7において、電流指令算出部1は、d軸およびq軸電流目標値が記憶してあり、dq軸電流目標値は実施例1および2で記載の内容を満たすように設定されている。そして、トルク指令値に基づき、d軸およびq軸電流目標値を出力する。   In FIG. 7, the current command calculation unit 1 stores d-axis and q-axis current target values, and the dq-axis current target values are set so as to satisfy the contents described in the first and second embodiments. Based on the torque command value, the d-axis and q-axis current target values are output.

これにより、電流振幅の算出やdq軸電流目標値を補正する処理を省くことができ、演算負荷が減少するという効果がある。   As a result, the calculation of the current amplitude and the process of correcting the dq-axis current target value can be omitted, and the calculation load is reduced.

1…電流指令算出部
2…電流制御部
3…三相変換部
4…PWM変換部
5…微分部
6…d軸補正電流算出部
7…電流振幅算出部
8…dq軸変換部
9…位相算出部
10…トルク補正部
20…デッドタイム補償部
30…PWMインバータ
40…電動機
100…3相電流を制御する制御部
DESCRIPTION OF SYMBOLS 1 ... Current command calculation part 2 ... Current control part 3 ... Three phase conversion part 4 ... PWM conversion part 5 ... Differentiation part 6 ... d axis correction current calculation part 7 ... Current amplitude calculation part 8 ... dq axis conversion part 9 ... Phase calculation Unit 10 ... Torque correction unit 20 ... Dead time compensation unit 30 ... PWM inverter 40 ... Motor 100 ... Control unit for controlling three-phase current

Claims (3)

トルク指令値に基づいたdq軸電流目標値とdq軸電流値との偏差から求めたdq軸電圧指令を3相変換して3相電圧指令値とし、該3相電圧指令値をパルス幅変調した信号を用いる電圧形のインバータを制御することにより、電動機に流れる高周波を含む3相電流を制御する制御部と、
前記インバータを構成する複数のスイッチング素子間のデッドタイムによる変動電圧を補償するデッドタイム補償量を前記3相電流の基本波の位相から算出するデッドタイム補償部と、を備える電動機の制御装置であって、
前記デッドタイム補償部による変動電圧の補償期間を含む期間中に、前記dq軸電流目標値に基づく3相電流の基本波の振幅値が高周波の振幅値よりも大きくなるようにd軸電流を増大させる電動機の制御装置。
The dq-axis voltage command obtained from the deviation between the dq-axis current target value and the dq-axis current value based on the torque command value is converted into a three-phase voltage command value, and the three-phase voltage command value is subjected to pulse width modulation. A control unit for controlling a three-phase current including a high frequency flowing in the electric motor by controlling a voltage-type inverter using a signal;
And a dead time compensation unit that calculates a dead time compensation amount for compensating a fluctuation voltage due to a dead time between a plurality of switching elements constituting the inverter from a phase of a fundamental wave of the three-phase current. And
During the period including the variable voltage compensation period by the dead time compensation unit, the d-axis current is increased so that the amplitude value of the fundamental wave of the three-phase current based on the target value of the dq-axis current is larger than the amplitude value of the high frequency. Electric motor control device.
請求項1に記載の電動機の制御装置であって、
前記制御部は、前記トルク指令値に基づいたdq軸電流目標値と前記d軸電流の増大量に応じて、前記q軸電流も増大させる電動機の制御装置。
The motor control device according to claim 1,
The control unit is a motor control device that increases the q-axis current in accordance with a dq-axis current target value based on the torque command value and an increase amount of the d-axis current.
請求項2に記載の電動機の制御装置であって、
前記d軸電流及び前記q軸電流の増大量は、記憶装置に予め記憶されている電動機の制御装置
The motor control device according to claim 2,
The amount of increase in the d-axis current and the q-axis current is stored in advance in a storage device.
JP2013270796A 2013-12-27 2013-12-27 Controller of motor Pending JP2015126641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013270796A JP2015126641A (en) 2013-12-27 2013-12-27 Controller of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270796A JP2015126641A (en) 2013-12-27 2013-12-27 Controller of motor

Publications (1)

Publication Number Publication Date
JP2015126641A true JP2015126641A (en) 2015-07-06

Family

ID=53536981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270796A Pending JP2015126641A (en) 2013-12-27 2013-12-27 Controller of motor

Country Status (1)

Country Link
JP (1) JP2015126641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110829930A (en) * 2019-09-30 2020-02-21 潍柴动力股份有限公司 Inverter dead zone compensation method and device, inverter and automobile
CN110890856A (en) * 2018-09-07 2020-03-17 株式会社电装 Control device for three-phase rotating machinery
WO2021117453A1 (en) * 2019-12-13 2021-06-17 株式会社豊田自動織機 Control device for electric motor
JP2021097436A (en) * 2019-12-13 2021-06-24 株式会社豊田自動織機 Control device of electric motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890856A (en) * 2018-09-07 2020-03-17 株式会社电装 Control device for three-phase rotating machinery
CN110890856B (en) * 2018-09-07 2023-09-22 株式会社电装 Control device for three-phase rotary machine
CN110890856B9 (en) * 2018-09-07 2023-12-22 株式会社电装 Control device for three-phase rotary machine
CN110829930A (en) * 2019-09-30 2020-02-21 潍柴动力股份有限公司 Inverter dead zone compensation method and device, inverter and automobile
WO2021117453A1 (en) * 2019-12-13 2021-06-17 株式会社豊田自動織機 Control device for electric motor
JP2021097437A (en) * 2019-12-13 2021-06-24 株式会社豊田自動織機 Control device of electric motor
JP2021097436A (en) * 2019-12-13 2021-06-24 株式会社豊田自動織機 Control device of electric motor
DE112020006113T5 (en) 2019-12-13 2022-11-03 Kabushiki Kaisha Toyota Jidoshokki CONTROL DEVICE FOR AN ELECTRIC MOTOR
JP7287259B2 (en) 2019-12-13 2023-06-06 株式会社豊田自動織機 electric motor controller
JP7294105B2 (en) 2019-12-13 2023-06-20 株式会社豊田自動織機 electric motor controller
US11990852B2 (en) 2019-12-13 2024-05-21 Kabushiki Kaisha Toyota Jidoshokki Control device for electric motor

Similar Documents

Publication Publication Date Title
JP4082444B1 (en) Vector controller for permanent magnet synchronous motor
JP4582168B2 (en) Rotating machine control device and rotating machine control system
JP5321614B2 (en) Rotating machine control device
JP4065903B2 (en) Vector control device for induction motor, vector control method for induction motor, and drive control device for induction motor
US7728541B2 (en) Electric motor drive control method and apparatus
JP4458174B2 (en) Rotating machine control device and rotating machine control system
JP5550672B2 (en) Motor control device
EP3509210B1 (en) Inverter control device and electric motor driving system
JP2013090551A (en) Rotary electric machine control device
JP6984399B2 (en) Power converter controller
JP4650110B2 (en) Electric motor control device
JP2015126641A (en) Controller of motor
JP5204463B2 (en) Motor control device
JP6287715B2 (en) Rotating machine control device
WO2020217764A1 (en) Power conversion device, and electric vehicle system provided therewith
WO2017030055A1 (en) Device and method for controlling rotary machine
JP2014050123A (en) Rotor position estimation apparatus, motor control system and rotor position estimation method
JP5549537B2 (en) Rotating machine control device
JP2010166633A (en) Controller and control system of rotating machine
JP2010252492A (en) Motor system
JP5525747B2 (en) Converter control device
JP6447373B2 (en) Rotating machine control device
JP2012039716A (en) Motor controller and motor control method
JP6458683B2 (en) Power control method and power control apparatus
JP2023081073A (en) Rotary electric machine control device, rotary electric machine control method, and rotary electric machine control program