JP2015125977A - Method for charging/discharging secondary battery - Google Patents

Method for charging/discharging secondary battery Download PDF

Info

Publication number
JP2015125977A
JP2015125977A JP2013271875A JP2013271875A JP2015125977A JP 2015125977 A JP2015125977 A JP 2015125977A JP 2013271875 A JP2013271875 A JP 2013271875A JP 2013271875 A JP2013271875 A JP 2013271875A JP 2015125977 A JP2015125977 A JP 2015125977A
Authority
JP
Japan
Prior art keywords
electrode
pin
contact
charging
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013271875A
Other languages
Japanese (ja)
Inventor
秀人 森
Hideto Mori
秀人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013271875A priority Critical patent/JP2015125977A/en
Publication of JP2015125977A publication Critical patent/JP2015125977A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress temperature rising during charging/discharging, in a method for charging/discharging secondary battery bringing a probe pin in contact with an electrode terminal.SOLUTION: In a method for charging/discharging a secondary battery of the present invention, a probe pin is brought into contact with an electrode of a battery, pulse conduction 47 is caused between the electrode and the probe pin, and charging/discharging 52 of the battery is performed after pulse conduction 47. Contact resistance between the probe pin and the electrode is reduced by pulse conduction 47. As a result, temperature rising during charging/discharging 52 can be suppressed. Charging/discharging 52 is preferably performed while the probe pin is pressed to the electrode with a larger load than a load during pulse conduction 47.

Description

本発明は二次電池の製造方法に関し、特に充放電方法に関する。   The present invention relates to a method for manufacturing a secondary battery, and more particularly to a charge / discharge method.

バッテリーの電極に、接触手段の接触部を接触させて充放電を行うバッテリーの充放電方法が知られている(特許文献1)。特許文献1の方法は接触部を電極に押圧させ電極に対して接触部を摺動させる構成により電極表面の皮膜やゴミを除去することを特徴とする。   A battery charging / discharging method is known in which charging / discharging is performed by bringing a contact portion of a contact means into contact with an electrode of a battery (Patent Document 1). The method of Patent Document 1 is characterized in that a film or dust on the electrode surface is removed by a configuration in which the contact portion is pressed against the electrode and the contact portion is slid with respect to the electrode.

特開2003−151644号公報JP 2003-151644 A

充放電方法の他の態様として、電流を流す接触手段としてプローブピンを二次電池の正極・負極端子各々に接触させ充放電を行う方法がある。図1に示すように正極・負極端子の一方ではピン20を電池の電極25に接触させて二次電池を充放電させる。   As another aspect of the charging / discharging method, there is a method of charging / discharging by contacting a probe pin with each of a positive electrode and a negative electrode terminal of a secondary battery as a contact means for passing an electric current. As shown in FIG. 1, the secondary battery is charged and discharged by bringing the pin 20 into contact with the battery electrode 25 on one of the positive and negative terminals.

図1において、ピン20に流れる電流40が大きくなると(電流レベル41−43、図2参照)と、充放電開始点49から、電極25とピン20との接触抵抗Rにおいて大きい発熱が生じる。   In FIG. 1, when the current 40 flowing through the pin 20 increases (current levels 41-43, see FIG. 2), a large amount of heat is generated in the contact resistance R between the electrode 25 and the pin 20 from the charge / discharge start point 49.

本発明の目的はプローブピンと電極端子を接触させる二次電池の充放電方法において充放電時の温度上昇を抑制することである。   The objective of this invention is suppressing the temperature rise at the time of charging / discharging in the charging / discharging method of the secondary battery which makes a probe pin and an electrode terminal contact.

本発明の二次電池の充放電方法では、プローブピンを電池の電極に接触させ、前記電極と前記プローブピンとの間にパルス通電を行い、前記パルス通電後に前記電池の充放電を行う。前記パルス通電によりプローブピンと電極との間の接触抵抗が低減される。このため充放電時の温度上昇を抑制することができる。   In the secondary battery charging / discharging method of the present invention, the probe pin is brought into contact with the electrode of the battery, pulse energization is performed between the electrode and the probe pin, and the battery is charged / discharged after the pulse energization. The contact resistance between the probe pin and the electrode is reduced by the pulse energization. For this reason, the temperature rise at the time of charging / discharging can be suppressed.

プローブピンと電極端子を接触させる二次電池の充放電方法において充放電時の温度上昇を抑制することができる。   In the charging / discharging method of the secondary battery in which the probe pin and the electrode terminal are brought into contact with each other, the temperature rise during charging / discharging can be suppressed.

電極とプローブピンとの接触を表す模式図である。It is a schematic diagram showing the contact of an electrode and a probe pin. 電流と発熱と時間との関係を表すグラフである。It is a graph showing the relationship between an electric current, heat_generation | fever, and time. 実施形態にかかる充放電方法を示すグラフである。It is a graph which shows the charging / discharging method concerning embodiment. 実施形態にかかるプローブピンの温度とヤング率の逆数との関係を表すグラフである。It is a graph showing the relationship between the temperature of the probe pin concerning embodiment, and the reciprocal number of Young's modulus. 実施形態にかかるパルス通電前の接触部の拡大図である。It is an enlarged view of the contact part before the pulse electricity supply concerning embodiment. 実施形態にかかるパルス通電後の接触部の拡大図である。It is an enlarged view of a contact part after pulse energization concerning an embodiment. 比較例にかかる電流と発熱と時間との関係を表すグラフである。It is a graph showing the relationship between the electric current concerning a comparative example, heat_generation | fever, and time. 比較例にかかる接触抵抗と荷重との関係を表すグラフである。It is a graph showing the relationship between the contact resistance concerning a comparative example, and a load. 実施例にかかる接触抵抗と充放電回数との関係を表すグラフである。It is a graph showing the relationship between the contact resistance concerning an Example, and the frequency | count of charging / discharging. パルス通電前のプローブピンの先端形状を表す写真である。It is a photograph showing the tip shape of the probe pin before pulse energization. 実施例における充放電後のプローブピンの先端形状を表す写真である。It is a photograph showing the tip shape of the probe pin after charge and discharge in an example. 比較例にかかる接触抵抗と充放電回数との関係を表すグラフである。It is a graph showing the relationship between the contact resistance concerning a comparative example, and the frequency | count of charging / discharging. 比較例における充放電後のプローブピンの先端形状を表す写真である。It is a photograph showing the tip shape of the probe pin after charge and discharge in a comparative example. 実施例及び比較例にかかる接触抵抗を表すグラフである。It is a graph showing the contact resistance concerning an Example and a comparative example.

以下、実施形態及び実施例について、図面を用いて説明する。すべての図面において、同等の構成要素には同一の符号を付し、適宜説明を省略する。図1は二次電池の正極端子又は負極端子である電極25とプローブピンであるピン20との接触により通電、パルス通電又は充放電にかかる電流40が流れている様子を表す。   Hereinafter, embodiments and examples will be described with reference to the drawings. In all the drawings, equivalent components are denoted by the same reference numerals, and description thereof will be omitted as appropriate. FIG. 1 shows a state in which a current 40 for energization, pulse energization, or charge / discharge flows due to contact between an electrode 25 that is a positive electrode terminal or a negative electrode terminal of a secondary battery and a pin 20 that is a probe pin.

図1に示すように通電、又はパルス通電は、ピン20から電極25に向かって電流40が流れるものでもよく、電流40とは反対方向に向かって流れるものでもよい。ピン20の先端は接触部21となっている。ピン20の接触部21側は先細り形状となっている。かかる先細り形状は電流40が流れる際に、集中抵抗Rcとして働く。   As shown in FIG. 1, the energization or the pulse energization may be such that the current 40 flows from the pin 20 toward the electrode 25, or may flow in the direction opposite to the current 40. The tip of the pin 20 is a contact portion 21. The contact portion 21 side of the pin 20 has a tapered shape. Such a tapered shape acts as a concentrated resistance Rc when the current 40 flows.

図1に示すようにピン20は接触部21を介して電極25の表面27側にある皮膜26と接触できる。皮膜26は端子金属部24の表面から生じた酸化被膜である。皮膜26には被膜抵抗Rfが存在する。端子金属部24は電極25の本体であり、二次電池の集電体と電気的に接続する(不図示)。電極25内を流れる電流37は電流40から連続する電流である。   As shown in FIG. 1, the pin 20 can come into contact with the coating 26 on the surface 27 side of the electrode 25 through the contact portion 21. The film 26 is an oxide film generated from the surface of the terminal metal portion 24. The film 26 has a film resistance Rf. The terminal metal part 24 is a main body of the electrode 25 and is electrically connected to a current collector of the secondary battery (not shown). A current 37 flowing through the electrode 25 is a current continuing from the current 40.

図1に示すように接触抵抗Rは電極25とピン20との接触領域に生ずる。下記式(1)に示すように接触抵抗Rは上述した集中抵抗Rc及び被膜抵抗Rfを含む抵抗である。

R = Rc + Rf ・・・(1)
As shown in FIG. 1, the contact resistance R is generated in the contact area between the electrode 25 and the pin 20. As shown in the following formula (1), the contact resistance R is a resistance including the concentrated resistance Rc and the film resistance Rf described above.

R = Rc + Rf (1)

集中抵抗Rcは下記式(2)で示される電気抵抗である。ρは接触部21の固有電気抵抗である。aは接触部21と表面27との接触面積Sの半径である。nは接触部21と表面27との接触面の数である。接触面の数とは図5における、接触部21と皮膜26との接点の数のことである。

Rc = ρ/(2・a・n) ・・・(2)
The concentrated resistance Rc is an electrical resistance represented by the following formula (2). ρ is a specific electrical resistance of the contact portion 21. a is the radius of the contact area S between the contact portion 21 and the surface 27. n is the number of contact surfaces between the contact portion 21 and the surface 27. The number of contact surfaces is the number of contacts between the contact portion 21 and the film 26 in FIG.

Rc = ρ / (2 · a · n) (2)

被膜抵抗Rfは下記式(3)で表される電気抵抗である。ρfは皮膜26の抵抗率である。dは皮膜26の厚さである。aは上述の通りである。

Rf = (ρf・d)/(π・a) ・・・(3)
The film resistance Rf is an electric resistance represented by the following formula (3). ρf is the resistivity of the film 26. d is the thickness of the coating 26. a is as described above.

Rf = (ρf · d) / (π · a 2 ) (3)

図1において充放電と電流の方向については以下の通りとなる。図1に示すように電流40は電極25からピン20に向かって流れている。電極25が正極であれば、図1は電池の充電を表す。電池の放電の場合は、正極において電流が電極25からピン20に向かって流れる。電極25が負極であれば、図1は電池の放電を表す。電池の充電の場合は、負極において電流が電極25からピン20に向かって流れる。   In FIG. 1, the charge / discharge and current directions are as follows. As shown in FIG. 1, the current 40 flows from the electrode 25 toward the pin 20. If the electrode 25 is a positive electrode, FIG. 1 represents the charging of the battery. In the case of battery discharge, current flows from the electrode 25 toward the pin 20 at the positive electrode. If the electrode 25 is a negative electrode, FIG. 1 represents the discharge of the battery. In the case of charging the battery, current flows from the electrode 25 toward the pin 20 at the negative electrode.

本実施形態では電極25とピン20との間にパルス通電を行い、パルス通電後に電池の充放電を行う。パルス通電によりピン20と電極25との間の接触抵抗が低減される。このため充放電時の温度上昇を抑制することができる。   In this embodiment, pulse energization is performed between the electrode 25 and the pin 20, and the battery is charged and discharged after the pulse energization. The contact resistance between the pin 20 and the electrode 25 is reduced by pulse energization. For this reason, the temperature rise at the time of charging / discharging can be suppressed.

図2のグラフは一般的な電流と発熱と時間との関係を表す。図2のグラフでは、電流レベル44に対して、電流レベル41は10倍、電流レベル42は3倍、電流レベル43は2倍の電流値である。   The graph of FIG. 2 represents a general relationship between current, heat generation, and time. In the graph of FIG. 2, the current level 41 is 10 times the current level 44, the current level 42 is 3 times, and the current level 43 is twice the current value.

図1に示したピン20に流れる電流40の電流値が大きくなると(電流レベル41−43)、接触抵抗R(図1)での発熱が大きくなる。接触抵抗R(が発熱することで、電池に悪影響を起こしたり、電池に接続する配線の被覆線が溶けたりする場合がある。   When the current value of the current 40 flowing through the pin 20 shown in FIG. 1 increases (current level 41-43), heat generation at the contact resistance R (FIG. 1) increases. When the contact resistance R (generates heat, the battery may be adversely affected, or the coated wire of the wiring connected to the battery may be melted.

図3のグラフは本実施形態の充放電方法を示す。本実施形態では、パルス通電47を行った。電流値曲線45は左側の縦軸の電流値の時間変化を示す。荷重曲線55は右側の縦軸の荷重の時間変化を示す。   The graph of FIG. 3 shows the charge / discharge method of this embodiment. In this embodiment, pulse energization 47 is performed. The current value curve 45 shows the time change of the current value on the left vertical axis. The load curve 55 shows the time change of the load on the right vertical axis.

図3に示す時間0の時点で、図1におけるピン20と電極25との接触に必要な荷重56をこれらに付加しプロービングする。次にパルス開始点46で、電流40の電流値をパルス電流値50とし、パルス通電47を行う。パルス通電47はパルス終了点48で終了する。パルス通電中、パルス電流値50を一定に保ってもよい。   At time 0 shown in FIG. 3, a load 56 necessary for the contact between the pin 20 and the electrode 25 in FIG. Next, at the pulse start point 46, the current value of the current 40 is set to the pulse current value 50, and pulse energization 47 is performed. The pulse energization 47 ends at a pulse end point 48. During the energization of the pulse, the pulse current value 50 may be kept constant.

次に図3に示すように加圧開始点57において、図1におけるピン20を荷重58で電極25に押し付ける。荷重58はその後の充放電52の時の荷重でもある。荷重58はパルス通電47の時の荷重56よりも大きいことが好ましい。換言すればパルス通電47の後に、ピン20と電極25との間にかかる荷重56を荷重58に増加させて充放電52を行うことが好ましい。   Next, as shown in FIG. 3, at the pressurization start point 57, the pin 20 in FIG. 1 is pressed against the electrode 25 with the load 58. The load 58 is also a load at the time of subsequent charge / discharge 52. The load 58 is preferably larger than the load 56 at the time of pulse energization 47. In other words, it is preferable to perform charge / discharge 52 by increasing the load 56 applied between the pin 20 and the electrode 25 to the load 58 after the pulse energization 47.

かかる態様により、パルス終了点48の後、充放電開始点49の前に、加圧開始点57において、荷重を増加させるだけの構成で、接触部21を摺動することなく、電極25の表面27側にある皮膜26を除去又は押し退けることができる(図1参照)。   In this manner, after the pulse end point 48 and before the charge / discharge start point 49, the surface of the electrode 25 is slid without sliding on the contact portion 21 at a pressurization start point 57 without increasing the load. The coating 26 on the 27 side can be removed or pushed away (see FIG. 1).

なお荷重58は荷重56の4倍以下であることが好ましく、1.4倍以下であることがさらに好ましい。かかる態様によりピン20の磨耗を抑制することが出来る。   The load 58 is preferably 4 times or less of the load 56, more preferably 1.4 times or less. According to this aspect, the wear of the pin 20 can be suppressed.

次に充放電開始点49において、充放電電流値51にて電流40を流すことで充放電52を開始する。パルス電流値50は、充放電電流値51よりも大きいことが好ましい。便宜的にグラフ中では充放電電流値51はパルス電流値50と同じ向きとして記載している。かかる電流の向きは互いに逆向きでもよい。   Next, at the charge / discharge start point 49, the charge / discharge 52 is started by causing the current 40 to flow at the charge / discharge current value 51. The pulse current value 50 is preferably larger than the charge / discharge current value 51. For convenience, the charge / discharge current value 51 is shown in the same direction as the pulse current value 50 in the graph. The directions of the currents may be opposite to each other.

例えば、パルス電流値50がピン20からに電極25向かって流れる電流40(図1)であるとする。これに対し充放電電流値51は電流40とは逆向きに電極25からピン20に向かって流れる電流でもよい(図1参照)。また、電流40とは逆向きに電極25からピン20に向かって流れる電流であるとする。これに対し充放電電流値51はピン20からに電極25向かって流れる電流40でもよい(図1参照)。   For example, it is assumed that the pulse current value 50 is the current 40 (FIG. 1) that flows from the pin 20 toward the electrode 25. On the other hand, the charge / discharge current value 51 may be a current flowing from the electrode 25 toward the pin 20 in the opposite direction to the current 40 (see FIG. 1). The current 40 is assumed to be a current that flows in the opposite direction from the electrode 25 toward the pin 20. On the other hand, the charge / discharge current value 51 may be a current 40 flowing from the pin 20 toward the electrode 25 (see FIG. 1).

図3に示すようにパルス通電47にかかる時間は、充放電開始点49の後の充放電にかかる時間よりも短いことが好ましい。パルス通電47が長時間に及ぶと、パルス通電47が接触抵抗R(図1)における温度上昇の原因となるためである。   As shown in FIG. 3, the time required for the pulse energization 47 is preferably shorter than the time required for charging / discharging after the charging / discharging start point 49. This is because the pulse energization 47 causes a temperature rise in the contact resistance R (FIG. 1) when the pulse energization 47 takes a long time.

図3に示すように、本実施形態では所望の充放電を行うごとに、一度パルス通電47を行った後、加圧開始点57にてピン20(図1)に荷重をかける。したがってピン20と電極25との接触抵抗R(図1)の抵抗値が抑制され、発熱(図2)が抑制される。   As shown in FIG. 3, in this embodiment, every time a desired charge / discharge is performed, pulse energization 47 is performed once, and then a load is applied to the pin 20 (FIG. 1) at the pressurization start point 57. Therefore, the resistance value of the contact resistance R (FIG. 1) between the pin 20 and the electrode 25 is suppressed, and heat generation (FIG. 2) is suppressed.

またパルス通電47(図3)により、電極25の表面27(図1)のヤング率が低下し、表面27が軟らかくなる。このため接触部21(図1)と表面27との接触面積Sが増加する。   In addition, the pulse energization 47 (FIG. 3) reduces the Young's modulus of the surface 27 (FIG. 1) of the electrode 25 and makes the surface 27 soft. For this reason, the contact area S of the contact part 21 (FIG. 1) and the surface 27 increases.

接触面積Sは下記式(4)で表される面積である。Fは充放電時にピン20に加えられる荷重を表す。

S=[(3・F/4)・{(1−ν )/E+((1−ν )/E)}
/{(1/R)+(1/R)}]2/3 ・・・(4)

式(4)中、荷重Fはパルス通電47(図3)における荷重56の大きさである。
The contact area S is an area represented by the following formula (4). F represents the load applied to the pin 20 at the time of charging / discharging.

S = [(3 · F / 4) · {(1−ν 1 2 ) / E 1 + ((1−ν 2 2 ) / E 2 )}
/ {(1 / R 1 ) + (1 / R 2 )}] 2/3 (4)

In the formula (4), the load F is the magnitude of the load 56 in the pulse energization 47 (FIG. 3).

またポアソン比νは図1における接触部21のポアソン比である。ポアソン比νは図1における皮膜26のポアソン比である。ヤング係数Eは図1における接触部21のヤング率である。ヤング係数Eは図1における皮膜26のヤング率である。Rは図1における21の接触面を円と仮定した際の接触面の半径の長さである。Rは図1における26の接触面を円と仮定した際の接触面の半径の長さである。 The Poisson ratio ν 1 is the Poisson ratio of the contact portion 21 in FIG. The Poisson ratio ν 2 is the Poisson ratio of the film 26 in FIG. The Young's modulus E 1 is the Young's modulus of the contact portion 21 in FIG. Young's modulus E 2 is the Young's modulus of the film 26 in FIG. 1. R 1 is the length of the radius of the contact surface when the contact surface 21 in FIG. 1 is assumed to be a circle. R 2 is the length of the radius of the contact surface when the contact surface 26 in FIG. 1 is assumed to be a circle.

上記式(1)−(4)より、接触抵抗Rを抑制するための条件として、上記式(2)の接触面の数nを増加させることが有効であると分かる。またかかる条件を満たすために、ヤング係数E及びE、すなわちヤング率の小さいこと並びに荷重Fの大きいことが必要であるとわかる。このため本実施形態のように接触部21又は表面27(図1)のヤング率を低下させる方法としてパルス通電でこれらを発熱させることが効果的である。 From the above formulas (1) to (4), it can be seen that it is effective to increase the number n of contact surfaces of the above formula (2) as a condition for suppressing the contact resistance R. It can also be seen that Young's modulus E 1 and E 2 , that is, a small Young's modulus and a large load F are necessary to satisfy such conditions. Therefore, it is effective to generate heat by pulse energization as a method of reducing the Young's modulus of the contact portion 21 or the surface 27 (FIG. 1) as in this embodiment.

さらに図3に示したようにパルス通電47をし、これによって接触面積Sが増加した状態で充放電を開始するので(充放電開始点49)、集中抵抗Rcにおける電流40の集中(図1)も抑制できる。このため接触抵抗R(図1)の抵抗値を低減する。   Further, as shown in FIG. 3, pulse energization 47 is performed, and charge / discharge is started in a state where the contact area S is increased (charge / discharge start point 49), so that the current 40 is concentrated in the concentrated resistance Rc (FIG. 1). Can also be suppressed. For this reason, the resistance value of the contact resistance R (FIG. 1) is reduced.

図4のグラフを用いて本実施形態の充電方法が二次電池の発熱を抑制する作用をさらに考察する。かかるグラフは図1に示したピン20(図1)の温度と、ピン20のヤング率の逆数との関係を表す。すなわちヤング率が大きくなると温度が上昇する。一方で上述の通りヤング率の低下によって温度の上昇が抑制できる。これは、ヤング率の低下が接触抵抗R(図1)の抵抗値を低減するためであると考察される。   The effect | action which the charge method of this embodiment suppresses the heat_generation | fever of a secondary battery is further considered using the graph of FIG. Such a graph represents the relationship between the temperature of the pin 20 (FIG. 1) shown in FIG. 1 and the reciprocal of the Young's modulus of the pin 20. That is, the temperature increases as the Young's modulus increases. On the other hand, as described above, an increase in temperature can be suppressed by a decrease in Young's modulus. It is considered that this is because the decrease in Young's modulus is to reduce the resistance value of the contact resistance R (FIG. 1).

図5はパルス開始点46(図3)より前の接触部21(図1)の拡大図である。パルス通電47(図3)は上述の通り、荷重56(図3)をピン20及び電極25(図1)との間に加えながら行う。接触部21の表面も皮膜26の表面27(図1)もパルス通電後(図6)に比べて起伏が大きい。   FIG. 5 is an enlarged view of the contact portion 21 (FIG. 1) before the pulse start point 46 (FIG. 3). As described above, the pulse energization 47 (FIG. 3) is performed while applying the load 56 (FIG. 3) between the pin 20 and the electrode 25 (FIG. 1). The surface of the contact portion 21 and the surface 27 of the coating 26 (FIG. 1) are more undulating than those after pulse energization (FIG. 6).

図6はパルス通電47(図3)の後の接触部21(図1)の拡大図である。接触部21の表面も表面27(図1)もパルス通電前に(図5)に比べて起伏が小さい。かかる状態は上述の接触面の数nが増加したことと表裏を成す。   FIG. 6 is an enlarged view of the contact portion 21 (FIG. 1) after the pulse energization 47 (FIG. 3). The surface of the contact portion 21 and the surface 27 (FIG. 1) are less undulated than those before the pulse energization (FIG. 5). Such a state is opposite to the increase in the number n of the contact surfaces described above.

これに対し特許文献1に記載の構成では、接触部21を摺動させることで電極が磨耗する。一方で、本実施形態の方法では摺動が必須ではないため電極25の磨耗を生じにくい。   On the other hand, in the configuration described in Patent Document 1, the electrode is worn by sliding the contact portion 21. On the other hand, in the method of this embodiment, since sliding is not essential, the electrode 25 is hardly worn.

図1に示したように実施例及び比較例ではピン20を電極25に押し付けて、接触させた。実施例では実施形態と同様、図3に示すように、加圧開始点57に至る前にパルス通電47を実施した。各実施例においてパルス通電時(パルス通電47、図3)の荷重56(図3)は500gであった(表1)。   As shown in FIG. 1, in the example and the comparative example, the pin 20 was pressed against the electrode 25 and brought into contact. In the example, as in the embodiment, as shown in FIG. 3, the pulse energization 47 was performed before the pressurization start point 57 was reached. In each Example, the load 56 (FIG. 3) at the time of pulse energization (pulse energization 47, FIG. 3) was 500 g (Table 1).

表1に示すように実施例1〜3においてはパルス電流の通電電流値(パルス電流値50、図3)10〜30Aとした。またパルス開始点46からパルス終了点48(図3)までのパルス時間は1秒であった。下記に示す通りパルス時間は各実施例において1〜20秒であった(表1)。   As shown in Table 1, in Examples 1 to 3, the current value of the pulse current (pulse current value 50, FIG. 3) was set to 10 to 30A. The pulse time from the pulse start point 46 to the pulse end point 48 (FIG. 3) was 1 second. As shown below, the pulse time was 1 to 20 seconds in each Example (Table 1).

表1に示すように実施例4及び5においては、パルス時間をそれぞれ10及び20秒とした以外は、実施例2と同様とした。表1に示すように実施例4及び5においては、パルス時間をそれぞれ10及び20秒とした以外は、実施例2と同様とした。   As shown in Table 1, Examples 4 and 5 were the same as Example 2 except that the pulse times were 10 and 20 seconds, respectively. As shown in Table 1, Examples 4 and 5 were the same as Example 2 except that the pulse times were 10 and 20 seconds, respectively.

図3に示したようにパルス通電47の後、加圧開始点57経過を境に、荷重58を付加した。その後、本実施例では充放電52(図3)として放電を行った。放電時の荷重58は500〜2000gであった(表1)。   As shown in FIG. 3, a load 58 was applied after the pulse energization 47 at the passage of the pressurization start point 57. Thereafter, in this example, discharging was performed as charging / discharging 52 (FIG. 3). The load 58 at the time of discharge was 500-2000g (Table 1).

実施例6及び7における放電時の荷重58は比較例の放電時の荷重よりも小さいが、パルス通電時よりは大きい、700gとした。実施例8における放電時の荷重は比較例、並びに実施例6及び7の放電時の荷重よりも小さい500gとした。実施例8における放電時の荷重はパルス通電時と同等であった。放電は20Aで10秒間行った。   The load 58 during discharge in Examples 6 and 7 was 700 g, which is smaller than the load during discharge of the comparative example, but larger than that during pulse energization. The load during discharge in Example 8 was 500 g, which was smaller than the load during discharge in Comparative Example and Examples 6 and 7. The load during discharge in Example 8 was equivalent to that during pulse energization. Discharging was performed at 20 A for 10 seconds.

表1の接触抵抗の欄は、上述の接触抵抗R(図1)の抵抗値(Ω)を示す。接触抵抗の測定は、加圧後に、ミリオームハイテスターを用いて、擬似四端子測定回路で測定する方法で行った。また、表中の数値は比較例の抵抗値を1としたときの相対値で表した。   The column of contact resistance in Table 1 shows the resistance value (Ω) of the above-described contact resistance R (FIG. 1). The contact resistance was measured by a method of measuring with a pseudo four-terminal measurement circuit using a milliohm high tester after pressurization. The numerical values in the table are expressed as relative values when the resistance value of the comparative example is 1.

表1の温度の欄は、10s通電後の時の、プローブピンの最も細い部分(最も発熱する部分)の温度(℃)を示す。また、表中の数値は比較例のプローブピンの最も細い部分(最も発熱する部分)の温度を1としたときの相対値で表した。   The temperature column in Table 1 indicates the temperature (° C.) of the thinnest portion (the portion that generates the most heat) of the probe pin after 10 s energization. The numerical values in the table are expressed as relative values when the temperature of the thinnest portion (the portion that generates the most heat) of the probe pin of the comparative example is 1.

表1の磨耗の欄は所定サイクル数、充放電を繰り返した後の接触部21(図1)の摩耗性を、磨耗の多寡で表したものである。   The column of wear in Table 1 shows the wearability of the contact portion 21 (FIG. 1) after repeating a predetermined number of cycles and charge / discharge in terms of the amount of wear.

評価の欄は耐久性と温度特性より判断した、充放電方法として採用する際の尺度を表す。−は採用する価値はあるが、その価値は比較例と同等であることを表す。+は採用する価値が高いことを表す。++は採用する価値が大いに高いことを表す。   The column of evaluation represents a scale when adopting as a charge / discharge method judged from durability and temperature characteristics. -Indicates that it is worth adopting, but its value is equivalent to that of the comparative example. + Indicates that the value to adopt is high. ++ indicates that the value to be adopted is very high.

図7のグラフは比較例の充放電方法を示す。比較例では、実施例と異なりパルス通電を行わなかった。電流値曲線65は左側の縦軸の電流値の絶対値の時間変化を示す。荷重曲線60は右側の縦軸の荷重の時間変化を示す。   The graph of FIG. 7 shows the charge / discharge method of the comparative example. In the comparative example, unlike the example, pulse energization was not performed. The current value curve 65 shows the time change of the absolute value of the current value on the left vertical axis. The load curve 60 shows the time change of the load on the right vertical axis.

比較例ではピン20(図1)を加圧開始点57にて電極25(図1)に押し付けた。このとき通電時の発熱抑制のために、かかる押し付ける荷重61(図7)を、実施例の時の荷重58(図3)よりも大きくする必要があった。また比較例では接触面積が小さい段階(図5)から充放電52を開始することにより、電流集中が生じ、温度上昇しやすいという側面もあった。   In the comparative example, the pin 20 (FIG. 1) was pressed against the electrode 25 (FIG. 1) at the pressurization start point 57. At this time, in order to suppress heat generation during energization, it is necessary to make the pressing load 61 (FIG. 7) larger than the load 58 (FIG. 3) in the embodiment. Further, in the comparative example, when charging / discharging 52 is started from the stage where the contact area is small (FIG. 5), current concentration occurs and the temperature is likely to rise.

これに対し、図3に示すように、実施例6〜8においては、充放電時の荷重58は荷重61(図7)よりも小さくすることが出来た(表1)。これは上述の通りパルス通電47(図3)により、接触抵抗R(図1)を抑制できたためである。実施例6〜8では充放電時に、比較例に比べて小さい荷重でピン20を電極25に押し付けたので、ピン20の耐久寿命を延ばすことが出来た。   On the other hand, as shown in FIG. 3, in Examples 6-8, the load 58 at the time of charging / discharging could be made smaller than the load 61 (FIG. 7) (Table 1). This is because the contact resistance R (FIG. 1) can be suppressed by the pulse energization 47 (FIG. 3) as described above. In Examples 6 to 8, since the pin 20 was pressed against the electrode 25 with a smaller load than that of the comparative example during charging and discharging, the durability life of the pin 20 could be extended.

図8は比較例にかかる接触抵抗R(図1)の抵抗値と荷重61(図7)との関係を表すグラフである。ひし形は比較例の接触抵抗と荷重の関係を表す。三角形は実施例7(パルス通電20A、10秒、加圧700g)の接触抵抗と荷重の関係を表す。   FIG. 8 is a graph showing the relationship between the resistance value of the contact resistance R (FIG. 1) and the load 61 (FIG. 7) according to the comparative example. The rhombus represents the relationship between the contact resistance and the load in the comparative example. The triangle represents the relationship between the contact resistance and the load in Example 7 (pulse energization 20A, 10 seconds, pressure 700 g).

図8に示すように荷重が大きくなるほど抵抗値は小さくなった。このため、接触抵抗R(図1)の低減を期待して、放電のときの荷重61を実施例の荷重58よりも大きくした(図7)。一方でピン20(図1)は磨耗しやすくなった(表1)。   As shown in FIG. 8, the resistance value decreased as the load increased. For this reason, the load 61 at the time of discharge was made larger than the load 58 of an Example in anticipation of reduction of contact resistance R (FIG. 1) (FIG. 7). On the other hand, the pin 20 (FIG. 1) was easily worn (Table 1).

図9は実施例にかかる接触抵抗R(図1)と充放電回数又はサイクル数との関係を表すグラフである。図中の白い丸は正極との接触抵抗値を表す。図中の黒い丸は負極との接触抵抗値を表す。   FIG. 9 is a graph showing the relationship between the contact resistance R (FIG. 1) and the number of charge / discharge cycles or the number of cycles according to the example. The white circle in the figure represents the contact resistance value with the positive electrode. The black circle in the figure represents the contact resistance value with the negative electrode.

図9に示すように、実施例6−8においてはサイクル数が大きくなっても接触抵抗R(図1)の抵抗値(Ω)が大きくなりにくかった。このため、実施例の方法ではサイクル数を重ねても発熱量が大きくなりにくかった。   As shown in FIG. 9, in Example 6-8, the resistance value (Ω) of the contact resistance R (FIG. 1) did not easily increase even when the number of cycles increased. For this reason, in the method of the example, even if the number of cycles was repeated, the amount of generated heat was not easily increased.

実施例では、上述したとおりピン20を電極25(図1)に比較例よりも小さな荷重58(図3)で押し付けた。図10は実施例におけるパルス通電及び充放電を行う前のピン20の先端形状を表す写真である。図10ではピン20の先端、すなわち接触部21の中心70を囲むように、プローブピンの先端71が配置されている。   In the example, as described above, the pin 20 was pressed against the electrode 25 (FIG. 1) with a load 58 (FIG. 3) smaller than that of the comparative example. FIG. 10 is a photograph showing the tip shape of the pin 20 before performing pulse energization and charge / discharge in the example. In FIG. 10, the tip 71 of the probe pin is disposed so as to surround the tip of the pin 20, that is, the center 70 of the contact portion 21.

図11は実施例と対比される比較例において、サイクル試験を行った際において充放電を行った後のピン20の先端形状を表す写真である。図10と比較しても、図11では中心70で磨耗が抑制されていた又は磨耗が少なかった(表1)。また観察されるプローブピンの先端71の拡大は後述する比較例よりも小さかった。   FIG. 11 is a photograph showing the tip shape of the pin 20 after charging and discharging when a cycle test is performed in a comparative example compared with the example. Compared to FIG. 10, in FIG. 11, the wear was suppressed at the center 70 or the wear was small (Table 1). Further, the observed enlargement of the tip 71 of the probe pin was smaller than the comparative example described later.

このため実施例6−8においてはサイクル数が大きくなっても、上述したピン20(図1)の磨耗が少ないものと推定された。また、その磨耗は比較例に比べて少なくなることが推定された。すなわち上記実施例にかかる方法では、磨耗したピン20(図1)のメンテナンスの頻度を減らす効果のあることが示された。   For this reason, in Example 6-8, even if the cycle number became large, it was estimated that the pin 20 (FIG. 1) mentioned above had little abrasion. In addition, it was estimated that the wear was less than that of the comparative example. That is, it was shown that the method according to the above example has an effect of reducing the maintenance frequency of the worn pin 20 (FIG. 1).

図12は比較例にかかる接触抵抗R(図1)とサイクル数との関係を表すグラフである。図12に示すようにサイクル数が大きくなると接触抵抗R(図1)の抵抗値が大きくなった。このため、比較例の方法ではサイクル数を重ねるごとに発熱量が大きくなった。図12の白い丸は正極の接触抵抗値を表す。黒い丸は負極の接触抵抗値を表す。   FIG. 12 is a graph showing the relationship between the contact resistance R (FIG. 1) and the number of cycles according to the comparative example. As shown in FIG. 12, as the number of cycles increased, the resistance value of the contact resistance R (FIG. 1) increased. For this reason, in the method of the comparative example, the calorific value increased as the number of cycles increased. The white circle in FIG. 12 represents the contact resistance value of the positive electrode. A black circle represents the contact resistance value of the negative electrode.

図13は比較例7において充放電を行った後のピン20の先端形状を表す写真である。図10と比較すると、図13では中心70で磨耗が進んでいた又は多かった(表1)。また観察されるプローブピンの先端71の拡大は後述する実施例よりも大きかった。   FIG. 13 is a photograph showing the tip shape of the pin 20 after charging and discharging in Comparative Example 7. Compared with FIG. 10, in FIG. 13, the wear progressed or increased at the center 70 (Table 1). Further, the observed enlargement of the tip 71 of the probe pin was larger than in the examples described later.

比較例ではサイクル数が大きくなると、上述したピン20(図1)の磨耗がさらに進むことが推定された。その磨耗は実施例6−8に比べて多くなることが推定された。したがって磨耗したピン20(図1)のメンテナンスの頻度が実施例よりも上昇することが推定された。   In the comparative example, it was estimated that the wear of the pin 20 (FIG. 1) described above further progressed as the number of cycles increased. It was estimated that the wear increased as compared with Examples 6-8. Therefore, it was estimated that the frequency of maintenance of the worn pin 20 (FIG. 1) is higher than that of the example.

発明者らはピン20を電極25(図1)に大きな荷重61(図7)で押し付けることにより、ピン20の先端が磨耗したと考察した。また発明者らは、かかる磨耗の進行が接触抵抗R(図1)の抵抗値(Ω)に反映されたと考えた。   The inventors considered that the tip of the pin 20 was worn by pressing the pin 20 against the electrode 25 (FIG. 1) with a large load 61 (FIG. 7). Further, the inventors considered that the progress of the wear was reflected in the resistance value (Ω) of the contact resistance R (FIG. 1).

図14は実施例及び比較例にかかる接触抵抗R(図1)の抵抗値(表1)を表すグラフである。接触抵抗R(図1)の抵抗値を特に抑制できたのは実施例3であった。かかる抵抗値をさらに抑制できたのは実施例4であり、最も抑制できたのは実施例5であった。上述したとおり、実施例6−8では放電時の荷重を小さくしたためさらに耐久性が向上した(表1、磨耗欄)。   FIG. 14 is a graph showing the resistance value (Table 1) of the contact resistance R (FIG. 1) according to the example and the comparative example. In Example 3, the resistance value of the contact resistance R (FIG. 1) could be particularly suppressed. Example 4 was able to further suppress this resistance value, and Example 5 was the most effective. As described above, in Example 6-8, since the load at the time of discharge was reduced, the durability was further improved (Table 1, wear column).

上述したとおり実施例5ではパルス時間が、放電時間よりも長かった。このため表1及び図14に示すように、抵抗値は低いもののパルス通電時に上昇した温度の影響を受けた。   As described above, in Example 5, the pulse time was longer than the discharge time. For this reason, as shown in Table 1 and FIG. 14, although the resistance value was low, it was affected by the temperature increased during pulse energization.

なお、本発明は上記実施及び実施例の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   In addition, this invention is not limited to the form of the said Example and Example, It can change suitably in the range which does not deviate from the meaning.

20 ピン 21 接触部
24 端子金属部 25 電極
26 皮膜 27 表面
37 電流 40 電流
41−44 電流レベル 45 電流値曲線
46 パルス開始点 47 パルス通電
48 パルス終了点 49 充放電開始点
50 パルス電流値 51 充放電電流値
52 充放電 55 荷重曲線
56 荷重 57 加圧開始点
58 荷重 60 荷重曲線
61 荷重 65 電流値曲線
70 中心 71 プローブピンの先端
20 pin 21 contact portion 24 terminal metal portion 25 electrode 26 film 27 surface 37 current 40 current 41-44 current level 45 current value curve 46 pulse start point 47 pulse energization 48 pulse end point 49 charge / discharge start point 50 pulse current value 51 charge Discharge current value 52 Charging / discharging 55 Load curve 56 Load 57 Pressurization start point 58 Load 60 Load curve 61 Load 65 Current value curve 70 Center 71 Tip of probe pin

Claims (2)

プローブピンを電池の電極に接触させ、
前記電極と前記プローブピンとの間にパルス通電を行い、
前記パルス通電後に前記電池の充放電を行う、
二次電池の充放電方法。
Touch the probe pin to the battery electrode,
A pulse energization is performed between the electrode and the probe pin,
The battery is charged and discharged after the pulse energization,
Charge / discharge method of secondary battery.
前記パルス通電時よりも大きい荷重で、前記電極に前記プローブピンを押し付けながら前記充放電を行う、
請求項1に記載の二次電池の充放電方法。
The charge / discharge is performed while pressing the probe pin against the electrode with a load larger than that during the pulse energization.
The charging / discharging method of the secondary battery of Claim 1.
JP2013271875A 2013-12-27 2013-12-27 Method for charging/discharging secondary battery Pending JP2015125977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271875A JP2015125977A (en) 2013-12-27 2013-12-27 Method for charging/discharging secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271875A JP2015125977A (en) 2013-12-27 2013-12-27 Method for charging/discharging secondary battery

Publications (1)

Publication Number Publication Date
JP2015125977A true JP2015125977A (en) 2015-07-06

Family

ID=53536534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271875A Pending JP2015125977A (en) 2013-12-27 2013-12-27 Method for charging/discharging secondary battery

Country Status (1)

Country Link
JP (1) JP2015125977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301335A (en) * 2018-09-12 2019-02-01 风帆有限责任公司 A kind of chemical synthesizing method of flexible packing lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142490A (en) * 1997-11-11 1999-05-28 Toshiba Battery Co Ltd Method and device for evaluating characteristic of battery
JP2001305158A (en) * 2000-04-26 2001-10-31 Sony Corp Contacting probe of charging and discharging device and charging and discharging method thereof
JP2004101327A (en) * 2002-09-09 2004-04-02 Kataoka Seisakusho:Kk Contact probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142490A (en) * 1997-11-11 1999-05-28 Toshiba Battery Co Ltd Method and device for evaluating characteristic of battery
JP2001305158A (en) * 2000-04-26 2001-10-31 Sony Corp Contacting probe of charging and discharging device and charging and discharging method thereof
JP2004101327A (en) * 2002-09-09 2004-04-02 Kataoka Seisakusho:Kk Contact probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301335A (en) * 2018-09-12 2019-02-01 风帆有限责任公司 A kind of chemical synthesizing method of flexible packing lithium ion battery

Similar Documents

Publication Publication Date Title
JP6103821B2 (en) Probe for current test
CN103765687B (en) Contact
JP5394309B2 (en) Probe and probe manufacturing method
JP5624740B2 (en) Contact probe and socket
JP2011195919A5 (en)
CN206515372U (en) A kind of flat probe of integrated circuit testing
JP5482809B2 (en) Equalization equipment
JP2015125977A (en) Method for charging/discharging secondary battery
TW200807006A (en) Automatic polarity detecting device for battery
JP6155725B2 (en) Semiconductor device inspection method and semiconductor device manufacturing method using the same
KR101624130B1 (en) Test probe for detecting charge and discharge of the secondary battery
JP2015004614A (en) Contact probe
TW201803242A (en) Battery internal resistance detection device with electricity recharge, and application method thereof capable of recovering energy consumed during battery internal resistance measurement
JP6689510B2 (en) Battery cell assembly
TWI582434B (en) Probe device
JP2015169518A (en) contact probe
JP2014085207A (en) Probe pin for semiconductor device test
CN103026555A (en) Electrical contact and testing platform
KR101386040B1 (en) Probe of battery cycler
JP6958863B2 (en) Deterioration degree diagnostic device for electrical connections and deterioration degree diagnosis method
JP2020101542A (en) Resistance assembly for battery sensor and battery sensor
CN203275494U (en) Current detection circuit
CN109188033A (en) A kind of new-type probe
KR20060014125A (en) A construction of contact pin in lithium polymer battery and capacitor jig
CN105319443B (en) Insulation resistance measuring device for capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523