JP2015124427A - Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate produced using the same and method of producing the same, and light emitting device comprising the same - Google Patents

Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate produced using the same and method of producing the same, and light emitting device comprising the same Download PDF

Info

Publication number
JP2015124427A
JP2015124427A JP2013271070A JP2013271070A JP2015124427A JP 2015124427 A JP2015124427 A JP 2015124427A JP 2013271070 A JP2013271070 A JP 2013271070A JP 2013271070 A JP2013271070 A JP 2013271070A JP 2015124427 A JP2015124427 A JP 2015124427A
Authority
JP
Japan
Prior art keywords
silver
light emitting
emitting device
lead frame
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013271070A
Other languages
Japanese (ja)
Other versions
JP6318613B2 (en
Inventor
保夫 加藤
Yasuo Kato
保夫 加藤
耕司 黒田
Koji Kuroda
耕司 黒田
智恵 炭谷
Chie Sumiya
智恵 炭谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013271070A priority Critical patent/JP6318613B2/en
Publication of JP2015124427A publication Critical patent/JP2015124427A/en
Application granted granted Critical
Publication of JP6318613B2 publication Critical patent/JP6318613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silver or silver alloy plating solution which makes it possible to obtain a higher total luminous flux of a light emitting device as compared with conventional one.SOLUTION: A plating solution of the invention is a silver or silver alloy plating solution used for plating of a lead frame or substrate for a light emitting device, at least comprising 0.1 g/L or more and 15 g/L or less of a silver cyanide complex and 50 g/L or more and 250 g/L or less of an electrical conductive salt, and having a pH of 8 or more and 13.5 or less and a deposition efficiency of 0.5% or more and 50% or less.

Description

本発明は、発光装置用リードフレーム又は基板のめっきに用いられる銀又は銀合金めっき液、並びに、それを用いて製造される発光装置用リードフレーム又は基板、及びその製造方法、及びそれを備える発光装置に関するものである。   The present invention relates to a silver or silver alloy plating solution used for plating of a lead frame or substrate for a light emitting device, a lead frame or substrate for a light emitting device manufactured using the same, a method of manufacturing the same, and light emission including the same. It relates to the device.

発光ダイオード(LED)に代表される発光装置は、照明や各種ディスプレイ、液晶テレビや携帯電話のバックライトなどの光源として、広く利用されている。これらの機器への発光装置の実装信頼性向上のため、リードフレームや各種基板上には、多くの場合、銀めっきが施される。   A light-emitting device typified by a light-emitting diode (LED) is widely used as a light source for lighting, various displays, a liquid crystal television, and a backlight of a mobile phone. In many cases, silver plating is applied to the lead frame and various substrates in order to improve the mounting reliability of the light emitting device to these devices.

従来、発光装置用のリードフレームや基板に対して銀めっきを施すときに使用される銀めっき液は、トランジスタやICなど電子デバイス向けのリードフレーム用の銀めっき液が使用されているにすぎなかった。このような銀めっき液について、例えば特許文献1や特許文献2には、銀めっき膜を光沢化する光沢剤の製造方法が記載されている。また、例えば特許文献3及び特許文献4には、銀めっき膜のダイボンディング性やワイヤーボンディング性、生産性を向上するため、部分めっきできるように工夫された銀めっき液が記載されている。しかし、これらは、発光装置に求められる光反射特性について何ら検討されていないものである。   Conventionally, the silver plating solution used when silver plating is applied to a lead frame or a substrate for a light emitting device is only a silver plating solution for a lead frame for an electronic device such as a transistor or an IC. It was. Regarding such a silver plating solution, for example, Patent Literature 1 and Patent Literature 2 describe a method for producing a brightener for glossing a silver plating film. For example, Patent Literature 3 and Patent Literature 4 describe a silver plating solution devised so that partial plating can be performed in order to improve die bonding property, wire bonding property, and productivity of a silver plating film. However, these have not been studied at all for the light reflection characteristics required for the light emitting device.

一方、発光装置の光取り出し効率の向上のため、例えば、特許文献5には銀めっき膜の結晶サイズを調整する技術、特許文献6には銀めっき膜の最上層に別の膜を形成する技術、特許文献7には銀合金めっきを利用する技術、が各々記載されているが、使用される銀めっき液は、何ら新規なものではなく、従来の銀めっき液にすぎない。   On the other hand, in order to improve the light extraction efficiency of the light emitting device, for example, Patent Document 5 discloses a technique for adjusting the crystal size of a silver plating film, and Patent Document 6 discloses a technique for forming another film on the uppermost layer of the silver plating film. Patent Document 7 discloses a technique using silver alloy plating, but the silver plating solution used is not a novel one, but only a conventional silver plating solution.

現在、発光装置のより高い光取り出し効率を実現するため、実装部材であるリードフレームや基板のリフレクターとしての性能向上が期待されている。しかしながら、従来の銀めっき液や銀めっき方法では、得られる銀めっき膜の反射率が向上することはあるものの、発光装置の実際の明るさの指標となる全光束が必ずしも向上しない、という欠点があった。   Currently, in order to realize higher light extraction efficiency of the light emitting device, improvement in performance as a lead frame as a mounting member or a reflector of a substrate is expected. However, the conventional silver plating solution or silver plating method may improve the reflectivity of the obtained silver plating film, but it does not necessarily improve the total luminous flux that is an indicator of the actual brightness of the light emitting device. there were.

米国特許第2807576号U.S. Pat. No. 2,807,576 米国特許第3580821号U.S. Pat. No. 3,580,821 米国特許第4247372号U.S. Pat. No. 4,247,372 特開平05−222569号公報Japanese Patent Laid-Open No. 05-222569 特許第4367457号Japanese Patent No. 4367457 特開2011−204790号公報JP 2011-204790 A

そこで、本発明は、かかる事情に鑑みてなされたものであり、従来に比べて発光装置の高い全光束が得られる銀又は銀合金めっき液を提供することを課題とする。   Then, this invention is made | formed in view of this situation, and makes it a subject to provide the silver or silver alloy plating solution from which the high total luminous flux of a light-emitting device is obtained compared with the former.

上記問題点を解決するために、本発明のめっき液は、発光装置用リードフレーム又は基板のめっきに用いられる、銀又は銀合金めっき液であって、0.1g/L以上15g/L以下のシアン化銀錯体と50g/L以上250g/L以下の電気伝導塩を少なくとも含有し、pHが8以上13.5以下であり、析出効率が0.5%以上50%以下であることを特徴とする。   In order to solve the above problems, the plating solution of the present invention is a silver or silver alloy plating solution used for plating of a lead frame for a light emitting device or a substrate, and has a concentration of 0.1 g / L to 15 g / L. It contains at least a silver cyanide complex and an electric conductive salt of 50 g / L or more and 250 g / L or less, has a pH of 8 or more and 13.5 or less, and has a precipitation efficiency of 0.5% or more and 50% or less. To do.

また、本発明の発光装置用リードフレーム又は基板は、本発明のめっき液でめっきされた光沢度1.0以上の銀又は銀合金めっき膜を表面に備えること、若しくは本発明のめっき液でめっきされた波長450nm以上の光に対する反射率が90%以上の銀又は銀合金めっき膜を表面に備えることを特徴とする。   The lead frame or substrate for a light emitting device of the present invention has a silver or silver alloy plating film having a glossiness of 1.0 or more plated with the plating solution of the present invention on the surface, or is plated with the plating solution of the present invention. The surface is provided with a silver or silver alloy plating film having a reflectance of 90% or more with respect to light having a wavelength of 450 nm or more.

また、本発明の発光装置は、本発明の発光装置用リードフレーム又は基板と、そのリードフレーム又は基板に載置された発光素子と、を備えることを特徴とする。   The light-emitting device of the present invention includes the light-emitting device lead frame or substrate of the present invention and a light-emitting element mounted on the lead frame or substrate.

また、本発明の発光装置用リードフレーム又は基板の製造方法は、基体の表面に、電気めっきで厚さ0.1μm以上10μm以下の銀又は銀合金の下地膜を成膜したあと、本発明のめっき液を用いて、液温として15℃以上60℃以下、陰極電流密度として0.5A/dm以上30A/dm以下、めっき時間として3秒間以上3分間以下の条件で、電気めっきを行う工程を含むことを特徴とする。 The method for producing a lead frame or substrate for a light emitting device according to the present invention comprises forming a base film of silver or a silver alloy having a thickness of 0.1 μm or more and 10 μm or less by electroplating on the surface of the substrate, Using a plating solution, electroplating is performed at a temperature of 15 ° C. to 60 ° C., a cathode current density of 0.5 A / dm 2 to 30 A / dm 2 and a plating time of 3 seconds to 3 minutes. Including a process.

本発明の銀又は銀合金めっき液は、発光装置用リードフレーム及び基板のめっきに適用することによって、発光装置の発光効率の向上及び発光装置間の発光特性の品質安定化を得ることができる。これにより、例えばLED電球や液晶テレビ用バックライト内の発光装置の搭載数を削減でき、省エネルギ−化とともに製造コストの削減が可能となる。また、発光装置間の発光特性のばらつきが抑えられ、製造歩留まりの向上が可能である。   By applying the silver or silver alloy plating solution of the present invention to the plating of a lead frame for a light emitting device and a substrate, it is possible to improve the light emission efficiency of the light emitting device and stabilize the quality of the light emitting characteristics between the light emitting devices. Thereby, for example, the number of light emitting devices mounted in LED light bulbs and backlights for liquid crystal televisions can be reduced, and energy saving and manufacturing cost can be reduced. In addition, variation in light emission characteristics between light emitting devices can be suppressed, and manufacturing yield can be improved.

<実施の形態1>
以下に、発明の実施の形態について説明する。但し、以下に説明する銀又は銀合金めっき液、発光装置用リードフレーム又は基板、及びその製造方法、及びそれを備える発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。
<Embodiment 1>
Embodiments of the invention will be described below. However, the silver or silver alloy plating solution described below, the lead frame or substrate for a light emitting device, and the manufacturing method thereof, and the light emitting device provided therewith are for embodying the technical idea of the present invention, Unless specifically stated, the invention is not limited to the following.

本実施の形態において、発光装置用リードフレームとは、少なくとも発光素子が載置されるリードフレームのことをいい、好ましくは正極と負極になる対を含むリードフレームのことをいう。また、発光装置用基板とは、少なくとも発光素子が載置される基板のことをいう。この基板は、配線や回路が形成された、樹脂(繊維強化樹脂を含む)などのプリント基板、セラミック基板、フレキシブル基板などが挙げられる。   In the present embodiment, the lead frame for a light emitting device refers to a lead frame on which at least a light emitting element is mounted, and preferably refers to a lead frame including a pair of a positive electrode and a negative electrode. The light emitting device substrate means a substrate on which at least a light emitting element is placed. Examples of the substrate include a printed substrate such as a resin (including a fiber reinforced resin), a ceramic substrate, a flexible substrate, and the like on which wirings and circuits are formed.

発光装置は、例えば、発光素子を、リードフレームや基板に、銀ペーストや樹脂などの接着剤でダイボンディングし、更に金線などでワイヤーボンディングし、樹脂などの封止部材で封止することにより、製造されることが多い。また、発光装置は、例えばLED電球や液晶テレビ用バックライトなどに搭載される際に、はんだリフローなどで実装される。   For example, the light-emitting device is obtained by die-bonding a light-emitting element to a lead frame or a substrate with an adhesive such as silver paste or resin, wire bonding with a gold wire, or the like, and sealing with a sealing member such as resin. Often manufactured. The light emitting device is mounted by solder reflow or the like when mounted on, for example, an LED bulb or a backlight for a liquid crystal television.

なお、発光素子は、蛍光体を効率良く励起可能な短波長光を発光できる観点において、窒化物半導体(InAlGa1−x−yN、0≦x、0≦y、x+y≦1)の素子が好ましいが、ガリウム砒素系半導体やガリウム燐系半導体の素子でもよい。発光素子の発光波長は、特に限定されないが、蛍光体の発光との混色関係や発光効率などの観点から、例えば400nm以上530nm以下が挙げられ、430nm以上490nm以下であることが好ましく、450nm以上475nm以下であることがより好ましい。蛍光体は、セリウムで賦活されたイットリウム・アルミニウム・ガーネット、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム、ユウロピウムで賦活されたサイアロン、ユウロピウムで賦活されたシリケート、マンガンで賦活されたフッ化珪酸カリウムなどが挙げられる。封止部材は、シリコーン樹脂、エポキシ樹脂、又はこれらの変性樹脂やハイブリッド樹脂が挙げられる。また、発光装置用リードフレーム又は基板には、発光素子を包囲する包囲体が設けられてもよい。包囲体の母材は、エポキシ樹脂やシリコーン樹脂などの熱硬化性樹脂、ポリアミド樹脂やポリシクロヘキサンテレフタレートなどの熱可塑性樹脂、又はこれらの変性樹脂やハイブリッド樹脂が挙げられる。これらの母材中には、充填剤又は着色顔料として、ガラス、珪酸カルシウム、チタン酸カリウム、酸化チタン、酸化亜鉛、酸化珪素などの粒子又は繊維を含有させてもよい。包囲体は、トランスファ成形や射出成形、滴下(ポッティング)法により形成することができる。 Note that the light-emitting element is a nitride semiconductor (In x Al y Ga 1-xy N, 0 ≦ x, 0 ≦ y, x + y ≦ 1 from the viewpoint of emitting short-wavelength light that can excite the phosphor efficiently. ) Is preferable, but a gallium arsenide semiconductor or gallium phosphorus semiconductor may also be used. The emission wavelength of the light-emitting element is not particularly limited, but from the viewpoint of the color mixing relationship with the light emission of the phosphor and the light emission efficiency, for example, 400 nm to 530 nm can be mentioned, and preferably 430 nm to 490 nm, preferably 450 nm to 475 nm. The following is more preferable. Phosphors include cerium activated yttrium aluminum garnet, europium and / or chromium activated nitrogen-containing calcium aluminosilicate, europium activated sialon, europium activated silicate, manganese activated fluoride. Examples thereof include potassium silicate. Examples of the sealing member include a silicone resin, an epoxy resin, or a modified resin or a hybrid resin thereof. In addition, the lead frame or the substrate for the light emitting device may be provided with an enclosure for surrounding the light emitting element. Examples of the base material of the enclosure include thermosetting resins such as epoxy resins and silicone resins, thermoplastic resins such as polyamide resins and polycyclohexane terephthalate, and modified resins and hybrid resins thereof. These base materials may contain particles or fibers of glass, calcium silicate, potassium titanate, titanium oxide, zinc oxide, silicon oxide or the like as a filler or a coloring pigment. The enclosure can be formed by transfer molding, injection molding, or a dropping (potting) method.

このような発光装置の組み立て工程や実装工程を安定した品質で工業的に行うため、発光装置用のリードフレームや基板には、銀めっきが施される。このような銀めっきには、信頼性の高いダイ・ワイヤーボンディング性、安定したはんだ濡れ性、封止樹脂との高い密着性などの要求のほか、発光装置として高い全光束を得ることが求められる。しかし、従来の銀めっきは、上述のように電子デバイス向けのリードフレーム用の銀めっきとして開発されたものであり、高い全光束の要求を満たすように考慮されたものではなかった。   In order to industrially perform the assembly process and mounting process of such a light emitting device with stable quality, the lead frame and the substrate for the light emitting device are subjected to silver plating. Such silver plating is required to obtain a high total luminous flux as a light emitting device, in addition to demands such as highly reliable die / wire bonding, stable solder wettability, and high adhesion to a sealing resin. . However, the conventional silver plating has been developed as a silver plating for lead frames for electronic devices as described above, and has not been considered to satisfy the requirement of high total luminous flux.

そこで、発光装置用のリードフレームや基板のめっきに用いるための銀又は銀合金めっき液を鋭意研究したところ、0.1g/L以上15g/L以下のシアン化銀錯体と50g/L以上250g/L以下の電気伝導塩を少なくとも含有し、pHが8以上13.5以下であり、析出効率が0.5%以上50%以下であるめっき液を用いて、発光装置用のリードフレームや基板に銀又は銀合金のめっきを施すことにより、従来に比べて全光束が飛躍的に向上した発光装置を製造することが可能になることを見出した。   Accordingly, when a silver or silver alloy plating solution for use in plating of a lead frame or a substrate for a light emitting device is intensively studied, a silver cyanide complex of 0.1 g / L to 15 g / L and 50 g / L to 250 g / L are obtained. A lead frame or a substrate for a light-emitting device is used by using a plating solution containing at least an L or less electrical conductive salt, having a pH of 8 or more and 13.5 or less, and a deposition efficiency of 0.5% or more and 50% or less. It has been found that by applying silver or silver alloy plating, it is possible to manufacture a light emitting device in which the total luminous flux is dramatically improved as compared with the conventional case.

このような効果が得られる詳細なメカニズムは、現状では定かではないが、本実施の形態の銀又は銀合金めっき液を用いると、めっき表面に特異な銀析出粒子が生成するため、近紫外〜可視域で高い反射率が得られ、発光装置として組み立てた後においても、反射率の高い反射膜としての機能を維持することができると推察する。   The detailed mechanism for obtaining such an effect is not clear at present, but when the silver or silver alloy plating solution of the present embodiment is used, specific silver precipitate particles are generated on the plating surface. It is assumed that a high reflectivity is obtained in the visible range, and the function as a reflective film having a high reflectivity can be maintained even after the light emitting device is assembled.

もちろん、本実施の形態のめっき液により得られる銀又は銀合金めっき膜は、信頼性の高いダイ・ワイヤーボンディング性、安定したはんだ濡れ性、封止樹脂との高い密着性などの従来の性能要求を満たすことができるものである。   Of course, the silver or silver alloy plating film obtained by the plating solution of the present embodiment is required for conventional performance such as highly reliable die / wire bonding, stable solder wettability, and high adhesion to the sealing resin. It can be satisfied.

本実施の形態の銀又は銀合金めっき液の銀源としては、シアン化銀錯体を用いる。シアン化銀錯体は、水溶液中で安定であり、析出電位が貴であるため、ワイヤーボンディング性の良い緻密な銀又は銀合金めっき膜が得られる。シアン銀錯体としては、工業的な入手のしやすさの観点から、シアン化銀、シアン化銀カリウム、シアン化銀ナトリウムから選ばれる少なくとも1種を含有することが好ましい。   A silver cyanide complex is used as the silver source of the silver or silver alloy plating solution of the present embodiment. Since the silver cyanide complex is stable in an aqueous solution and has a noble deposition potential, a dense silver or silver alloy plating film having good wire bonding properties can be obtained. The cyanogen silver complex preferably contains at least one selected from silver cyanide, potassium silver cyanide and sodium silver cyanide from the viewpoint of industrial availability.

本実施の形態の銀又は銀合金めっき液のシアン化銀錯体の濃度としては、0.1g/L以上15g/L以下が好ましく、2g/L以上10g/L以下がより好ましい。シアン化銀錯体の濃度が0.1g/L未満では、析出効率が低くなりすぎ、所望のめっき厚を得るために必要なめっき時間が非常に長くなり、経済的でない。一方、シアン化銀錯体の濃度が15g/Lを超えると、析出効率が高くなりすぎ、高い全光束が得られる銀又は銀合金めっき膜が得られなくなる。   The concentration of the silver cyanide complex in the silver or silver alloy plating solution of the present embodiment is preferably 0.1 g / L or more and 15 g / L or less, and more preferably 2 g / L or more and 10 g / L or less. When the concentration of the silver cyanide complex is less than 0.1 g / L, the deposition efficiency becomes too low, and the plating time required to obtain a desired plating thickness becomes very long, which is not economical. On the other hand, when the concentration of the silver cyanide complex exceeds 15 g / L, the deposition efficiency becomes too high, and a silver or silver alloy plating film that can obtain a high total luminous flux cannot be obtained.

本実施の形態の銀又は銀合金めっき液の電気伝導塩は、水溶液で電気伝導性を有するものであれば、特に種類は問わないが、工業的に安定して使用することや経済的に銀又は銀合金めっき液を製造するために、シアン塩、りん酸塩、硝酸塩、クエン酸塩、酒石酸から選ばれる少なくとも1種を含有することが好ましい。その他、可溶性有機酸塩なども好ましい。また、これらの化合物の単独でも2種類以上を混合したものでもよい。シアン塩としては、シアン化カリウムやシアン化ナトリウムなどが挙げられる。りん酸塩としては、りん酸カリウム、りん酸ナトリウム、りん酸アンモニウム、ピロリン酸カリウムなどが挙げられる。硝酸塩としては、硝酸カリウム、硝酸ナトリウム、硝酸アンモニウムなどが挙げられる。クエン酸塩としては、クエン酸カリウム、クエン酸ナトリウム、クエン酸アンモニウムなどが挙げられる。酒石酸としては、酒石酸カリウム、酒石酸ナトリウムなどが挙げられる。   The electrical conductive salt of the silver or silver alloy plating solution of the present embodiment is not particularly limited as long as it is an aqueous solution and has electrical conductivity, but it can be used stably industrially or economically. Alternatively, in order to produce a silver alloy plating solution, it is preferable to contain at least one selected from cyanate, phosphate, nitrate, citrate, and tartaric acid. In addition, soluble organic acid salts are also preferred. These compounds may be used alone or in combination of two or more. Examples of cyanate include potassium cyanide and sodium cyanide. Examples of the phosphate include potassium phosphate, sodium phosphate, ammonium phosphate, and potassium pyrophosphate. Examples of nitrates include potassium nitrate, sodium nitrate, and ammonium nitrate. Examples of the citrate include potassium citrate, sodium citrate, and ammonium citrate. Examples of tartaric acid include potassium tartrate and sodium tartrate.

本実施の形態の銀又は銀合金液の電気伝導塩の濃度は、銀又は銀合金めっき液の電気抵抗を適切にするために、50g/L以上250g/L以下が好ましい。電気伝導塩の濃度が50g/L未満となると、めっき液の電気抵抗が高くなりすぎ、適切な陰極電流密度によるめっき製造ができない。また、電気伝導塩濃度が250g/Lを超えると、めっき液の粘性が過剰となり、イオン移動度が低下し、適切な陰極電流密度によるめっきができなくなるほか、被めっき物による、いわゆるめっき液の持ち出しが多くなり経済的でない。   The concentration of the electrically conductive salt of the silver or silver alloy solution of the present embodiment is preferably 50 g / L or more and 250 g / L or less in order to make the electric resistance of the silver or silver alloy plating solution appropriate. If the concentration of the electroconductive salt is less than 50 g / L, the electric resistance of the plating solution becomes too high, and plating production with an appropriate cathode current density cannot be performed. On the other hand, if the concentration of the electrically conductive salt exceeds 250 g / L, the viscosity of the plating solution becomes excessive, ion mobility decreases, and plating with an appropriate cathode current density cannot be performed. It is not economical because there are many carry-outs.

本実施の形態の銀又は銀合金めっき液のpHは、8以上13.5以下が好ましい。pHが8未満となると、シアン化銀錯体が不安定となり、不溶性のシアン化銀となりやすい。また、pHが13.5を超えると、pHを維持するために多量のアルカリが必要となるため経済的でない。なお、ここでいうpHは、液温25℃での測定値とする。   The pH of the silver or silver alloy plating solution of the present embodiment is preferably 8 or more and 13.5 or less. When the pH is less than 8, the silver cyanide complex becomes unstable and tends to be insoluble silver cyanide. On the other hand, if the pH exceeds 13.5, a large amount of alkali is required to maintain the pH, which is not economical. In addition, let pH here be a measured value at the liquid temperature of 25 degreeC.

本実施の形態の銀又は銀合金めっき液の析出効率は、0.5%以上50%以下であることが好ましく、1%以上40%以下であることがより好ましい。なお、ここでいう析出効率とは、ファラデ−の法則に従い、下記計算式で計算されるものを言う。   The deposition efficiency of the silver or silver alloy plating solution of the present embodiment is preferably 0.5% or more and 50% or less, and more preferably 1% or more and 40% or less. In addition, the precipitation efficiency here means what is calculated by the following formula according to Faraday's law.

析出効率(%)=100×{96500×析出重量(グラム)×原子価}/{原子量×電流(アンペア)×めっき時間(秒)}   Deposition efficiency (%) = 100 × {96500 × precipitation weight (grams) × valence} / {atomic weight × current (ampere) × plating time (seconds)}

析出効率が0.5%未満となると、高い全光束が得られる銀又は銀合金めっき膜が得られるが、所望のめっき厚を得るために必要なめっき時間が非常に長くなり、経済的でない。一方、析出効率が50%を越えると、高い全光束が得られる銀又は銀合金めっき膜が得られなくなる。   When the deposition efficiency is less than 0.5%, a silver or silver alloy plating film capable of obtaining a high total luminous flux can be obtained. However, the plating time required for obtaining a desired plating thickness becomes very long, which is not economical. On the other hand, if the deposition efficiency exceeds 50%, a silver or silver alloy plating film that provides a high total luminous flux cannot be obtained.

本実施の形態の銀合金めっき液としては、シアン化銀錯体のほかに、金、銅、パラジウム、白金、ニッケル、アンチモンなどの可溶性の金属塩を添加したものが挙げられる。   Examples of the silver alloy plating solution of the present embodiment include those added with a soluble metal salt such as gold, copper, palladium, platinum, nickel, and antimony in addition to the silver cyanide complex.

また、本実施の形態の銀又は銀合金めっき液には、銀又は銀合金めっき膜のムラ発生を抑制するために、各種界面活性剤を添加することができる。界面活性剤としては、例えばポリオキシアルキルエ−テル縮合物などのノニオン界面活性剤が挙げられる。   In addition, various surfactants can be added to the silver or silver alloy plating solution of the present embodiment in order to suppress the occurrence of unevenness in the silver or silver alloy plating film. Examples of the surfactant include nonionic surfactants such as polyoxyalkyl ether condensates.

また、本実施の形態の銀又は銀合金めっき液には、pHを安定化させるためのpH緩衝剤を添加することができる。pH緩衝剤としては、例えばほう酸やメタほう酸カリウム、フタル酸塩などが挙げられる。   Further, a pH buffering agent for stabilizing the pH can be added to the silver or silver alloy plating solution of the present embodiment. Examples of the pH buffer include boric acid, potassium metaborate, and phthalate.

また、本実施の形態の銀又は銀合金めっき液には、イオウ化合物、セレン化合物、アンチモン化合物などの光沢剤を添加してもよい。   Moreover, you may add brighteners, such as a sulfur compound, a selenium compound, and an antimony compound, to the silver or silver alloy plating solution of this Embodiment.

本実施の形態の銀又は銀合金めっき液は、例えば、被めっき物(本例ではリードフレーム又は基板)を陽極とし、金属銀、金属銀合金、ステンレス、白金族金属又は白金族金属などで被覆されたチタンを陰極としためっき液に浸漬し、電気めっきを行うめっき方法に適用可能である。   The silver or silver alloy plating solution of the present embodiment is coated with, for example, metallic silver, metallic silver alloy, stainless steel, platinum group metal, or platinum group metal, using an object to be plated (in this example, a lead frame or substrate) as an anode. The present invention can be applied to a plating method in which electroplating is performed by immersing in a plating solution using titanium as a cathode.

本実施の形態の銀又は銀合金めっき液は、マニュアル又は自動エレベーター方式のいわゆるラック式めっき方法、リールツーリール方式であって電気めっき槽がオーバーフロー式のめっき方法、若しくは、電子デバイス向けリードフレームの部分めっきに採用されている噴流式めっき方法のいずれにも対応可能である。   The silver or silver alloy plating solution of the present embodiment is a so-called rack type plating method of a manual or automatic elevator system, a reel-to-reel type and an electroplating tank is an overflow type plating method, or an electronic device lead frame. Any of the jet-type plating methods employed for partial plating can be used.

本実施の形態において、銀又は銀合金めっきを行う液温は、めっき装置の流速や攪拌状態によって異なるが、概ね15℃以上60℃以下であることが好ましい。液温が15℃未満になると、高い電流密度によるめっきができず、また夏季にめっき液の冷却を行うエネルギ−ロスが大きくなる。また、液温が60℃を超えると、めっき液の蒸発が大きくなり、液量の調整が困難となる。   In the present embodiment, the liquid temperature at which silver or silver alloy plating is performed varies depending on the flow rate and stirring state of the plating apparatus, but is preferably approximately 15 ° C. or higher and 60 ° C. or lower. When the liquid temperature is less than 15 ° C., plating with a high current density cannot be performed, and energy loss for cooling the plating liquid in the summer increases. On the other hand, when the liquid temperature exceeds 60 ° C., the evaporation of the plating solution becomes large, and the adjustment of the liquid amount becomes difficult.

また、本実施の形態において、銀又は銀合金めっきを行う陰極電流密度は、めっき装置の流速や攪拌状態によって異なる。陰極電流密度としては、ラック式めっきやオーバーフロー式めっきでは0.5A/dm以上10A/dm以下が好ましく、噴流式めっきでは5A/dm以上30A/dm以下が好ましい。陰極電流密度が0.5dm未満であると、析出速度が極端に低下するため、経済的でない。また、陰極電流密度が30A/dmを超えると、粗雑なめっき析出となり、高い全光束が得られる銀又は銀合金めっき膜が得られなくなる。 Moreover, in this Embodiment, the cathode current density which performs silver or silver alloy plating changes with the flow rates and stirring state of a plating apparatus. The cathode current density is preferably 0.5 A / dm 2 or more and 10 A / dm 2 or less in rack plating or overflow plating, and is preferably 5 A / dm 2 or more and 30 A / dm 2 or less in jet plating. When the cathode current density is less than 0.5 dm 2 , the deposition rate is extremely reduced, which is not economical. On the other hand, when the cathode current density exceeds 30 A / dm 2 , rough plating deposition occurs, and a silver or silver alloy plating film capable of obtaining a high total luminous flux cannot be obtained.

また、本実施の形態において、銀又は銀合金めっきを行うめっき時間は、めっき装置の流速や攪拌状態、液温、陰極電流密度、シアン化銀錯体の濃度によって、適宜調整できるが、3秒以上3分以下が好ましい。めっき時間が3秒未満となると、高い全光束が得られる銀又は銀合金めっき膜が得られなくなる。また、めっき時間が3分を超えても、高い全光束が得られる銀又は銀合金めっき膜が得られなくなる。   Further, in the present embodiment, the plating time for performing silver or silver alloy plating can be appropriately adjusted according to the flow rate and stirring state of the plating apparatus, the liquid temperature, the cathode current density, and the concentration of the silver cyanide complex, but 3 seconds or more. 3 minutes or less is preferable. If the plating time is less than 3 seconds, a silver or silver alloy plating film that provides a high total luminous flux cannot be obtained. Further, even if the plating time exceeds 3 minutes, a silver or silver alloy plating film that can obtain a high total luminous flux cannot be obtained.

また、本実施の形態の銀又は銀合金めっき液は、リードフレームの銀又は銀合金めっきに使用できるが、銀又は銀合金めっきした後のリードフレームを圧延加工などして塑性変形したリードフレームにも適用することができる。   Further, the silver or silver alloy plating solution of the present embodiment can be used for silver or silver alloy plating of a lead frame, but the lead frame after silver or silver alloy plating is formed into a lead frame that is plastically deformed by rolling or the like. Can also be applied.

また、本実施の形態は、基体の表面に、電気めっきで、厚さ0.1μm以上10μm以下の銀又は銀合金の下地膜を成膜したあと、本実施の形態の銀又は銀合金めっき液を用いて、液温として15℃以上60℃以下、陰極電流密度として0.5A/dm以上30A/dm以下、めっき時間として3秒間以上3分間以下の条件で、電気めっきを行うことができる。なお、基体としては、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金、セラミック、樹脂から選ばれる1種が挙げられる。 In the present embodiment, a silver or silver alloy plating film having a thickness of 0.1 μm or more and 10 μm or less is formed on the surface of the substrate by electroplating, and then the silver or silver alloy plating solution of the present embodiment is used. Electroplating under conditions of a liquid temperature of 15 ° C. to 60 ° C., a cathode current density of 0.5 A / dm 2 to 30 A / dm 2 and a plating time of 3 seconds to 3 minutes. it can. In addition, as a base | substrate, 1 type chosen from copper, a copper alloy, iron, an iron alloy, aluminum, an aluminum alloy, a ceramic, and resin is mentioned.

本実施の形態で得られる銀又は銀合金めっき膜の光沢度は、特に限定されないが、高い全光束を得るために、1.0以上であることが好ましく、1.3以上であることがより好ましい。また、上記下地膜の光沢度が1.0以上であると、より高い全光束が得られやすく、好ましい。ここでいう光沢度とは、リードフレーム業界で広く使用されている光沢度であり、例えばGAM社製のDensitmeter Model 144や日本電色工業株式会社製の微小面色彩計・反射率計VSR400やデンシトメーター(反射濃度計)ND−11で測定される数値である。また、本実施の形態で得られる銀又は銀合金めっき膜の波長450nm以上の光に対する反射率は、90%以上であることが好ましく、95%以上であることがより好ましい。なお、銀又は銀合金めっき膜はリードフレーム又は基板の表面にあることが好ましいが、銀又は銀合金めっき層上に透光性の被膜が設けられてもよい。この被膜は、例えば酸化アルミニウム、酸化珪素、窒化アルミニウム、窒化珪素又はこれらの混合物、若しくは各種樹脂で構成することができる。   The glossiness of the silver or silver alloy plating film obtained in the present embodiment is not particularly limited, but is preferably 1.0 or more and more preferably 1.3 or more in order to obtain a high total luminous flux. preferable. Moreover, it is preferable that the glossiness of the base film is 1.0 or more because a higher total luminous flux can be easily obtained. The glossiness here is glossiness widely used in the lead frame industry. For example, Densitmeter Model 144 manufactured by GAM, Micro Surface Color Meter / Reflectometer VSR400 manufactured by Nippon Denshoku Industries Co., Ltd. It is a numerical value measured with a tometer (reflection densitometer) ND-11. Further, the reflectance of the silver or silver alloy plating film obtained in the present embodiment with respect to light having a wavelength of 450 nm or more is preferably 90% or more, and more preferably 95% or more. The silver or silver alloy plating film is preferably on the surface of the lead frame or substrate, but a translucent film may be provided on the silver or silver alloy plating layer. This film can be made of, for example, aluminum oxide, silicon oxide, aluminum nitride, silicon nitride, a mixture thereof, or various resins.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited only to these Examples.

<実施例1〜23>
実施例1〜23の発光装置は、以下のようにして作製する。リードフレームの材料(基体)としては、株式会社神戸製鋼所製のKLF194(CDA No.C19400、鉄含有率2.3%)銅材の板厚0.11mmの平板を使用し、株式会社エノモトのLED用オープンフレーム FLASH LED 6PIN OP1(外形寸法5050)のタイプに型抜きしたものを使用する。まず、これに、アルカリ系の脱脂剤で脱脂処理を施したあと、希硫酸で酸中和し、その後シアン浴により銅めっきを0.5μm施す。その後、本発明のめっき液にて銀又は銀合金めっきを行い、清浄な純水で洗浄した後、乾燥し、銀又は銀合金めっき膜を表面に備えるリードフレームを作製する。銀又は銀合金めっきは、全面銀めっき又は全面銀合金めっきとする。このリードフレームを金型内に配置し、成形材料として、ポリフタルアミド樹脂を注入し、硬化させて金型からはずす。そして、樹脂成形後のリードフレーム上にInGaN系の青色発光ダイオード素子を、樹脂の接着剤を介して載置した後、150℃で1時間加熱して接合する。その後、発光ダイオード素子の電極と、リードフレームと、を25μm径の金線にて接続する。次に、変性シリコーン樹脂にYAG蛍光体を20%の割合で配合したものを、樹脂成形体の開口部に充填し、熱風乾燥機にて硬化させ(硬化条件:150℃、4時間)、封止する。その後、個別の発光装置として切断する。
<Examples 1 to 23>
The light emitting devices of Examples 1 to 23 are manufactured as follows. As a lead frame material (base), a KLF194 (CDA No. C19400, iron content rate 2.3%) copper plate 0.11 mm made by Kobe Steel Co., Ltd. was used. LED open frame FLASH LED 6PIN OP1 (external dimension: 5050) type is used. First, this is degreased with an alkaline degreasing agent, then acid neutralized with dilute sulfuric acid, and then copper plating is applied in a thickness of 0.5 μm with a cyan bath. Thereafter, silver or silver alloy plating is performed with the plating solution of the present invention, washed with clean pure water, and then dried to produce a lead frame having a silver or silver alloy plating film on the surface. The silver or silver alloy plating is full silver plating or full silver alloy plating. This lead frame is placed in a mold, polyphthalamide resin is injected as a molding material, and cured to be removed from the mold. Then, an InGaN-based blue light-emitting diode element is placed on a resin-molded lead frame via a resin adhesive, and then heated and bonded at 150 ° C. for 1 hour. Thereafter, the electrode of the light emitting diode element and the lead frame are connected with a gold wire having a diameter of 25 μm. Next, a 20% proportion of YAG phosphor blended with the modified silicone resin is filled into the opening of the resin molded body and cured with a hot air dryer (curing conditions: 150 ° C., 4 hours), and sealed. Stop. Then, it cut | disconnects as an individual light-emitting device.

<比較例1,2>
比較例1及び2の発光装置は、従来の銀めっき液を使用すること以外、実施例1〜23の発光装置と同様にして作製する。
<Comparative Examples 1 and 2>
The light emitting devices of Comparative Examples 1 and 2 are fabricated in the same manner as the light emitting devices of Examples 1 to 23 except that a conventional silver plating solution is used.

<評価1>
以上のようにして得られた実施例1〜23及び比較例1,2の発光装置における全光束Φv(lm)を積分式全光束測定装置にて測定する。表1に、各実施例及び比較例における、銀又は銀合金めっき液及び銀又は銀合金めっき条件と、発光装置の全光束Φv(lm)と、を示す。
<Evaluation 1>
The total luminous flux [Phi] v (lm) in the light emitting devices of Examples 1 to 23 and Comparative Examples 1 and 2 obtained as described above is measured with an integral type total luminous flux measuring apparatus. Table 1 shows the silver or silver alloy plating solution and the silver or silver alloy plating conditions and the total luminous flux Φv (lm) of the light emitting device in each of the examples and comparative examples.

Figure 2015124427
Figure 2015124427

<実施例24〜46>
実施例24〜46の発光装置は、以下のようにして作製する。リードフレームの材料(基体)としては、株式会社神戸製鋼所製のKLF194(CDA No.C19400、鉄含有率2.3%)銅材の板厚0.11mmの平板を使用し、株式会社エノモトのLED用オープンフレーム FLASH LED 6PIN OP1(外形寸法5050)のタイプに型抜きしたものを使用する。まず、これに、アルカリ系の脱脂剤で脱脂処理を施したあと、希硫酸で酸中和し、その後シアン浴により銅めっきを0.5μm施す。その後、銀めっき液として、シアン化銀カリウム=70g/L、シアン化カリウム=100g/L、シアン化セレンカリウム=2ppmを用いて、液温25℃、電流密度3A/dmで2分間めっき行い、約3μmの光沢度1.5の銀めっきの下地膜を得る。その後、本発明のめっき液にて銀又は銀合金めっきを行い、清浄な純水で洗浄した後、乾燥し、銀又は銀合金めっき膜を表面に備えるリードフレームを作製する。銀又は銀合金めっきは、全面銀めっき又は全面銀合金めっきとする。このリードフレームを金型内に配置し、成形材料として、ポリフタルアミド樹脂を注入し、硬化させて金型からはずす。そして、樹脂成形後のリードフレーム上にInGaN系の青色発光ダイオード素子を、樹脂の接着剤を介して載置した後、150℃で1時間加熱して接合する。その後、発光ダイオード素子の電極と、リードフレームと、を25μm径の金線にて接続する。次に、変性シリコーン樹脂にYAG蛍光体を20%の割合で配合したものを、樹脂成形体の開口部に充填し、熱風乾燥機にて硬化させ(硬化条件:150℃、4時間)、封止する。その後、個別の発光装置として切断する。
<Examples 24-46>
The light emitting devices of Examples 24-46 are manufactured as follows. As a lead frame material (base), a KLF194 (CDA No. C19400, iron content rate 2.3%) copper plate 0.11 mm made by Kobe Steel Co., Ltd. was used. LED open frame FLASH LED 6PIN OP1 (external dimension: 5050) type is used. First, this is degreased with an alkaline degreasing agent, then acid neutralized with dilute sulfuric acid, and then copper plating is applied in a thickness of 0.5 μm with a cyan bath. Thereafter, using a silver plating solution of silver potassium cyanide = 70 g / L, potassium cyanide = 100 g / L, potassium selenium cyanide = 2 ppm, plating is performed at a liquid temperature of 25 ° C. and a current density of 3 A / dm 2 for 2 minutes. A base film of silver plating having a glossiness of 1.5 μm of 3 μm is obtained. Thereafter, silver or silver alloy plating is performed with the plating solution of the present invention, washed with clean pure water, and then dried to produce a lead frame having a silver or silver alloy plating film on the surface. The silver or silver alloy plating is full silver plating or full silver alloy plating. This lead frame is placed in a mold, polyphthalamide resin is injected as a molding material, and cured to be removed from the mold. Then, an InGaN-based blue light-emitting diode element is placed on a resin-molded lead frame via a resin adhesive, and then heated and bonded at 150 ° C. for 1 hour. Thereafter, the electrode of the light emitting diode element and the lead frame are connected with a gold wire having a diameter of 25 μm. Next, a 20% proportion of YAG phosphor blended with the modified silicone resin is filled into the opening of the resin molded body and cured with a hot air dryer (curing conditions: 150 ° C., 4 hours), and sealed. Stop. Then, it cut | disconnects as an individual light-emitting device.

<比較例3,4>
比較例3及び4の発光装置は、従来の銀めっき液を使用すること以外、実施例24〜46の発光装置と同様にして作製する。
<Comparative Examples 3 and 4>
The light emitting devices of Comparative Examples 3 and 4 are produced in the same manner as the light emitting devices of Examples 24-46, except that a conventional silver plating solution is used.

<評価2>
以上のようにして得られた実施例1〜23及び比較例1,2の発光装置における全光束Φv(lm)を積分式全光束測定装置にて測定する。以下、各実施例及び比較例における、銀又は銀合金めっき液及び銀又は銀合金めっき条件と、発光装置の全光束Φv(lm)と、を表2に示す。
<Evaluation 2>
The total luminous flux [Phi] v (lm) in the light emitting devices of Examples 1 to 23 and Comparative Examples 1 and 2 obtained as described above is measured with an integral type total luminous flux measuring apparatus. Table 2 shows the silver or silver alloy plating solution and the silver or silver alloy plating conditions and the total luminous flux Φv (lm) of the light emitting device in each example and comparative example.

Figure 2015124427
Figure 2015124427

表1に示すとおり、比較例1及び2に比べて、実施例1〜23の全光束値は、6〜10%程度高くなっている。また、表2に示すとおり、比較例3及び4に比べて、実施例24〜46の全光束値は、10〜15%程度高くなっている。   As shown in Table 1, the total luminous flux values of Examples 1 to 23 are about 6 to 10% higher than those of Comparative Examples 1 and 2. Moreover, as shown in Table 2, compared with Comparative Examples 3 and 4, the total luminous flux values of Examples 24-46 are about 10-15% higher.

Claims (7)

発光装置用リードフレーム又は基板のめっきに用いられる、銀又は銀合金めっき液であって、
0.1g/L以上15g/L以下のシアン化銀錯体と50g/L以上250g/L以下の電気伝導塩を少なくとも含有し、pHが8以上13.5以下であり、析出効率が0.5%以上50%以下であるめっき液。
A silver or silver alloy plating solution used for plating of a lead frame or a substrate for a light emitting device,
It contains at least 0.1 g / L or more and 15 g / L or less of a silver cyanide complex and 50 g / L or more and 250 g / L or less of an electrically conductive salt, has a pH of 8 or more and 13.5 or less, and a deposition efficiency of 0.5. A plating solution that is not less than 50% and not more than 50%.
前記シアン化銀錯体として、シアン化銀、シアン化銀カリウム、シアン化銀ナトリウムから選ばれる少なくとも1種を含有する請求項1に記載のめっき液。   The plating solution according to claim 1, wherein the silver cyanide complex contains at least one selected from silver cyanide, potassium potassium cyanide, and sodium silver cyanide. 前記電気伝導塩として、シアン塩、りん酸塩、硝酸塩、クエン酸塩、酒石酸塩から選ばれる少なくとも1種を含有する請求項1又は2に記載のめっき液。   The plating solution according to claim 1 or 2, comprising at least one selected from cyanate, phosphate, nitrate, citrate, and tartrate as the electrically conductive salt. 請求項1乃至3のいずれか一項に記載のめっき液でめっきされた光沢度1.0以上の銀又は銀合金めっき膜を表面に備える発光装置用リードフレーム又は基板。
[請求項5]
前記銀又は銀合金めっき膜は、波長450nm以上の光に対する反射率が90%以上である請求項4に記載の発光装置用リードフレーム又は基板。
A lead frame or a substrate for a light emitting device, comprising a silver or silver alloy plating film having a glossiness of 1.0 or more plated with the plating solution according to any one of claims 1 to 3.
[Claim 5]
The lead frame or substrate for a light-emitting device according to claim 4, wherein the silver or silver alloy plating film has a reflectance of 90% or more with respect to light having a wavelength of 450 nm or more.
請求項1乃至3のいずれか一項に記載のめっき液でめっきされた波長450nm以上の光に対する反射率が90%以上の銀又は銀合金めっき膜を表面に備える発光装置用リードフレーム又は基板。
[請求項7]
請求項4乃至6のいずれか一項に記載の発光装置用リードフレーム又は基板と、前記リードフレーム又は基板に載置された発光素子と、を備える発光装置。
A lead frame or a substrate for a light emitting device, comprising a silver or silver alloy plating film having a reflectance of 90% or more with respect to light having a wavelength of 450 nm or more plated with the plating solution according to any one of claims 1 to 3.
[Claim 7]
A light emitting device comprising: the lead frame or substrate for a light emitting device according to any one of claims 4 to 6; and a light emitting element placed on the lead frame or substrate.
基体の表面に、電気めっきで厚さ0.1μm以上10μm以下の銀又は銀合金の下地膜を成膜したあと、請求項1乃至3のいずれか一項に記載のめっき液を用いて、液温として15℃以上60℃以下、陰極電流密度として0.5A/dm以上30A/dm以下、めっき時間として3秒間以上3分間以下の条件で、電気めっきを行う工程を含む発光装置用リードフレーム又は基板の製造方法。 After a base film of silver or a silver alloy having a thickness of 0.1 μm or more and 10 μm or less is formed on the surface of the substrate by electroplating, the plating solution according to claim 1 is used to form a liquid Lead for light-emitting device including a step of performing electroplating under conditions of a temperature of 15 ° C. to 60 ° C., a cathode current density of 0.5 A / dm 2 to 30 A / dm 2 and a plating time of 3 seconds to 3 minutes. A method for manufacturing a frame or a substrate. 前記下地膜の光沢度が1.0以上である請求項8に記載の発光装置用リードフレーム又は基板の製造方法。   The method for manufacturing a lead frame or a substrate for a light emitting device according to claim 8, wherein the glossiness of the base film is 1.0 or more.
JP2013271070A 2013-12-27 2013-12-27 Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate manufactured using the same, method for manufacturing the same, and light emitting device including the same Active JP6318613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271070A JP6318613B2 (en) 2013-12-27 2013-12-27 Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate manufactured using the same, method for manufacturing the same, and light emitting device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271070A JP6318613B2 (en) 2013-12-27 2013-12-27 Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate manufactured using the same, method for manufacturing the same, and light emitting device including the same

Publications (2)

Publication Number Publication Date
JP2015124427A true JP2015124427A (en) 2015-07-06
JP6318613B2 JP6318613B2 (en) 2018-05-09

Family

ID=53535359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271070A Active JP6318613B2 (en) 2013-12-27 2013-12-27 Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate manufactured using the same, method for manufacturing the same, and light emitting device including the same

Country Status (1)

Country Link
JP (1) JP6318613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305007B2 (en) 2016-07-27 2019-05-28 Ohkuchi Materials Co., Ltd. Multi-row LED wiring member and method for manufacturing the same
JP2020053599A (en) * 2018-09-27 2020-04-02 日亜化学工業株式会社 Metal material for optical semiconductor device, method of manufacturing the same, and optical semiconductor device using the same
JP2020181924A (en) * 2019-04-26 2020-11-05 日亜化学工業株式会社 Manufacturing method of light-emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278635A (en) * 1975-12-12 1977-07-02 Tokyo Shibaura Electric Co Silver plating solution
JPS56156790A (en) * 1980-05-08 1981-12-03 Nippon Mining Co Ltd Silver-palladium alloy plating solution and its method
JPS61148883A (en) * 1984-12-22 1986-07-07 Toshiba Corp Lead frame for optical semiconductor device
JPS62164890A (en) * 1986-01-16 1987-07-21 Seiko Instr & Electronics Ltd Gold-silver-copper alloy plating solution
JP2004084035A (en) * 2002-08-28 2004-03-18 Seiko Epson Corp Surface treatment method, metal component and watch
JP2004307907A (en) * 2003-04-04 2004-11-04 Shinko Electric Ind Co Ltd Method for removing potassium ion from silver plating liquid
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
JP2008016674A (en) * 2006-07-06 2008-01-24 Matsushita Electric Works Ltd Silver film, manufacturing method thereof, led mounting substrate, and manufacturing method thereof
JP2008091818A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Lead frame for optical semiconductor device, optical semiconductor device using it, and these manufacturing methods
JP2012124310A (en) * 2010-12-08 2012-06-28 Nitto Denko Corp Reflection film and formation method therefor
JP2013249514A (en) * 2012-05-31 2013-12-12 Nichia Corp Electrolytic silver plating solution for optical semiconductor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278635A (en) * 1975-12-12 1977-07-02 Tokyo Shibaura Electric Co Silver plating solution
JPS56156790A (en) * 1980-05-08 1981-12-03 Nippon Mining Co Ltd Silver-palladium alloy plating solution and its method
JPS61148883A (en) * 1984-12-22 1986-07-07 Toshiba Corp Lead frame for optical semiconductor device
JPS62164890A (en) * 1986-01-16 1987-07-21 Seiko Instr & Electronics Ltd Gold-silver-copper alloy plating solution
JP2004084035A (en) * 2002-08-28 2004-03-18 Seiko Epson Corp Surface treatment method, metal component and watch
JP2004307907A (en) * 2003-04-04 2004-11-04 Shinko Electric Ind Co Ltd Method for removing potassium ion from silver plating liquid
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
JP2008016674A (en) * 2006-07-06 2008-01-24 Matsushita Electric Works Ltd Silver film, manufacturing method thereof, led mounting substrate, and manufacturing method thereof
JP2008091818A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Lead frame for optical semiconductor device, optical semiconductor device using it, and these manufacturing methods
JP2012124310A (en) * 2010-12-08 2012-06-28 Nitto Denko Corp Reflection film and formation method therefor
JP2013249514A (en) * 2012-05-31 2013-12-12 Nichia Corp Electrolytic silver plating solution for optical semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305007B2 (en) 2016-07-27 2019-05-28 Ohkuchi Materials Co., Ltd. Multi-row LED wiring member and method for manufacturing the same
JP2020053599A (en) * 2018-09-27 2020-04-02 日亜化学工業株式会社 Metal material for optical semiconductor device, method of manufacturing the same, and optical semiconductor device using the same
JP7148792B2 (en) 2018-09-27 2022-10-06 日亜化学工業株式会社 METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME
JP2020181924A (en) * 2019-04-26 2020-11-05 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP7256382B2 (en) 2019-04-26 2023-04-12 日亜化学工業株式会社 Method for manufacturing light emitting device

Also Published As

Publication number Publication date
JP6318613B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6230778B2 (en) Electrolytic silver plating solution for optical semiconductor devices
JP6481499B2 (en) Lead frame or substrate for optical semiconductor device, and optical semiconductor device using the same
US20160099395A1 (en) Led leadframe or led substrate, semiconductor device, and method for manufacturing led leadframe or led substrate
KR102333434B1 (en) Lead frame and production method therefor
WO2013005717A1 (en) Insulating reflective substrate and method for producing same
JP6318613B2 (en) Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate manufactured using the same, method for manufacturing the same, and light emitting device including the same
KR20130127380A (en) Substrate for optical semiconductor device and method for manufacturing the same, and optical semiconductor device and method for manufacturing the same
JP2013062500A (en) Reflection substrate for led light-emitting element and led package
JP6175822B2 (en) Lead frame or substrate for optical semiconductor devices
JP2012201891A (en) Insulating substrate and wiring substrate, semiconductor package and led package each using the insulating substrate
JP6331388B2 (en) Lead frame or substrate for light emitting device and light emitting device including the same
CN109427952A (en) Lead frame, light emitting device packaging body, light emitting device and its manufacturing method
JP7348567B2 (en) Metal material for optical semiconductor devices, method for manufacturing the same, and optical semiconductor devices using the same
JP2015088541A (en) Light-emitting element lead frame substrate
JP7116308B2 (en) METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME
KR20120033997A (en) Insulating substrate, method for manufacturing the substrate, optical module utilizing the substrate and liquid crystal display device utilizing the substrate
JP7339566B2 (en) METHOD FOR MANUFACTURING METAL STRUCTURE FOR OPTO-SEMICONDUCTOR DEVICE, PACKAGE, AND SOLUTION CONTAINING POLYALLYLAMINE POLYMER
KR101663695B1 (en) Leadframe and semiconductor package thereof and manufacture method thereof
JP6635152B2 (en) Lead frame, light emitting device package, light emitting device, and method of manufacturing light emitting device
JP7148793B2 (en) METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME
CN105789420A (en) LED (Light-Emitting Diode) ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6318613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250