JP6175822B2 - Lead frame or substrate for optical semiconductor devices - Google Patents

Lead frame or substrate for optical semiconductor devices Download PDF

Info

Publication number
JP6175822B2
JP6175822B2 JP2013052918A JP2013052918A JP6175822B2 JP 6175822 B2 JP6175822 B2 JP 6175822B2 JP 2013052918 A JP2013052918 A JP 2013052918A JP 2013052918 A JP2013052918 A JP 2013052918A JP 6175822 B2 JP6175822 B2 JP 6175822B2
Authority
JP
Japan
Prior art keywords
alloy
plating
palladium
nickel
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052918A
Other languages
Japanese (ja)
Other versions
JP2014179492A (en
Inventor
保夫 加藤
保夫 加藤
芳樹 里
芳樹 里
耕司 黒田
耕司 黒田
正和 酒本
正和 酒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2013052918A priority Critical patent/JP6175822B2/en
Publication of JP2014179492A publication Critical patent/JP2014179492A/en
Application granted granted Critical
Publication of JP6175822B2 publication Critical patent/JP6175822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、光半導体装置用のリードフレーム又は基板に関する。   The present invention relates to a lead frame or a substrate for an optical semiconductor device.

発光ダイオード(Light Emitting Diode:LED)などの光半導体装置は、照明や各種ディスプレイ、液晶テレビや携帯電話のバックライトなどの光源として、広く利用されている。これらの光半導体装置は、光半導体素子が、リードフレームや、プリント基板、セラミックス基板又はフレキシブル基板などの各種基板上にダイボンディングやワイヤーボンディングにより実装されて構成されている。そして、実装信頼性向上のため、リードフレームや各種基板上には、金めっきか銀めっきのいずれかが施されることが一般的である。金めっきは、酸化しにくく接合信頼性が高いが、光半導体素子から発せられる可視領域の光を吸収しやすいため、光半導体装置では、可視領域の光に対して光反射性に優れる銀めっきが広く使用されている(例えば特許文献1,2参照)。   2. Description of the Related Art Optical semiconductor devices such as light emitting diodes (LEDs) are widely used as light sources for lighting, various displays, liquid crystal televisions, and mobile phone backlights. These optical semiconductor devices are configured by mounting an optical semiconductor element on various substrates such as a lead frame, a printed substrate, a ceramic substrate, or a flexible substrate by die bonding or wire bonding. And in order to improve mounting reliability, it is common to perform either gold plating or silver plating on the lead frame and various substrates. Gold plating is difficult to oxidize and has high bonding reliability. However, since it easily absorbs light in the visible region emitted from the optical semiconductor element, the optical semiconductor device uses silver plating that is highly reflective to light in the visible region. Widely used (see, for example, Patent Documents 1 and 2).

特開2007−258514号公報JP 2007-258514 A 特開2012−089830号公報JP 2012-089830 A

従来の光半導体装置に使用されるリードフレーム又は基板の銀めっきは、高い光束と信頼性の高いダイボンディング性やワイヤーボンディング性を確保するため、一般的に2.0μm以上の厚さに施す必要があった。しかしながら、製造コスト削減のため、光半導体装置用のリードフレーム又は基板の銀めっき厚を低減することが要求されている。   Silver plating of lead frames or substrates used in conventional optical semiconductor devices generally requires a thickness of 2.0 μm or more to ensure high luminous flux and reliable die bonding and wire bonding properties. was there. However, to reduce the manufacturing cost, it is required to reduce the silver plating thickness of the lead frame or the substrate for the optical semiconductor device.

そこで、本発明は、かかる事情に鑑みてなされたものであり、銀めっき厚を低減しても、初期光束を高く維持し、さらに硫化腐食による光半導体装置の寿命低下を抑制可能な、光半導体装置用のリードフレーム又は基板を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an optical semiconductor capable of maintaining a high initial luminous flux even when the silver plating thickness is reduced and further suppressing a decrease in the lifetime of the optical semiconductor device due to sulfidation corrosion. An object is to provide a lead frame or substrate for an apparatus.

上記課題を解決するために、本発明の光半導体装置用のリードフレーム又は基板は、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金、セラミックス、プラスチックスからなる群から選択される母材の表面の上に、厚さ1μm以上7μm以下の光沢性のニッケルめっき又は光沢性のニッケル合金めっきの第1層であって、30ppm以上1000ppm以下の炭素又は/及び50ppm以上1000ppm以下の硫黄を含有している第1層と、厚さ0.005μm以上0.1μm以下のパラジウムめっき又はパラジウム合金めっきの第2層と、厚さ0.05μm以上2.0μm未満であって、かつ光沢度1.3以上の銀めっきの第3層と、をこの順に有することを特徴とする。
In order to solve the above problems, a lead frame or substrate for an optical semiconductor device of the present invention is a base material selected from the group consisting of copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy, ceramics, and plastics. A first layer of glossy nickel plating or glossy nickel alloy plating with a thickness of 1 μm or more and 7 μm or less on the surface of the steel , containing 30 ppm or more and 1000 ppm or less of carbon or / and 50 ppm or more and 1000 ppm or less of sulfur a first layer being a second layer less than the thickness 0.005 .mu.m 0.1 [mu] m palladium plating or palladium alloy plating, a less than a thickness of 0.05 .mu.m 2.0 .mu.m, and gloss 1. It has 3rd or more silver plating 3rd layers in this order, It is characterized by the above-mentioned.

本発明の光半導体装置用のリードフレーム及び基板によれば、光半導体装置の材料コストを削減することができる。また、銀めっきの硫化腐食の進行を抑制することができるため、光半導体装置の寿命の向上が可能である。さらに、光半導体装置の光束の向上を実現できるため、LED電球や液晶テレビ用バックライト内の搭載部品数低減により、省エネルギ−化とともに製造コストの削減が可能となる。   According to the lead frame and substrate for an optical semiconductor device of the present invention, the material cost of the optical semiconductor device can be reduced. Further, since the progress of sulfidation corrosion of silver plating can be suppressed, the life of the optical semiconductor device can be improved. Furthermore, since the luminous flux of the optical semiconductor device can be improved, the number of mounted parts in the LED bulb and the backlight for the liquid crystal television can be reduced, thereby making it possible to save energy and reduce the manufacturing cost.

<実施の形態1>
光半導体装置は、電気回路を形成し、電圧を印加すると発光する窒化ガリウムなどの化合物半導体の光半導体素子をリードフレームや基板(プリント基板、セラミック基板、フレキシブル基板など)に、ペーストなどでダイボンディングして固定し、p型とn型の電極に金線などでワイヤーボンディングし、樹脂で封止して製造されることが多い。また、光半導体装置は、LED電球などに搭載する際に、はんだリフロ−などで実装される。
<Embodiment 1>
An optical semiconductor device forms an electrical circuit and die-bonds an optical semiconductor element of a compound semiconductor such as gallium nitride that emits light when a voltage is applied to a lead frame or a substrate (printed substrate, ceramic substrate, flexible substrate, etc.) using a paste It is often manufactured by wire bonding to p-type and n-type electrodes with a gold wire or the like and sealing with resin. The optical semiconductor device is mounted by solder reflow or the like when mounted on an LED bulb or the like.

このような組み立て工程や実装工程を安定した品質で工業的に行うため、光半導体装置用のリードフレームや基板には、金めっきや銀めっきを行うことが一般的である。特に、銀めっきは、高い反射率が得られるため、広く実用化されている。このような銀めっき皮膜には、高い信頼性のあるワイヤーボンディング性、安定したダイボンディング性、安定したはんだ濡れ性、封止樹脂密着性などの要求のほか、より大きい光束特性が要求される。   In order to industrially perform such an assembly process and a mounting process with stable quality, it is common to perform gold plating or silver plating on a lead frame or a substrate for an optical semiconductor device. In particular, silver plating has been widely put into practical use because high reflectance can be obtained. Such a silver plating film is required to have higher luminous flux characteristics in addition to requirements such as highly reliable wire bonding, stable die bonding, stable solder wettability, and sealing resin adhesion.

銀めっき付きのリードフレーム又は基板は、高い反射率が得られるため、光半導体装置に広く採用されている。しかし、銀は、硫黄含有ガスの中でも、特に、硫化水素を含む雰囲気下で反応しやすい。また、母材の鉄や銅は、硫黄酸化物、特に二酸化硫黄を含む雰囲気下で反応して、変質(腐食)しやすい。なお、本明細書において、これらの硫黄含有ガスを主成分とするガスを「腐食性ガス」、また、このガスによって発生する硫化反応及びそれに付随して発生する複合的な反応を含めて「腐食」と称する。   Silver-plated lead frames or substrates are widely used in optical semiconductor devices because of their high reflectivity. However, silver easily reacts in an atmosphere containing hydrogen sulfide, among sulfur-containing gases. In addition, iron or copper as a base material reacts in an atmosphere containing sulfur oxides, particularly sulfur dioxide, and is easily altered (corroded). In the present specification, the gas mainly composed of these sulfur-containing gases is referred to as “corrosive gas”, and “corrosion” including sulfidation reaction generated by this gas and a complex reaction accompanying it. ".

これらの腐食による接合境界の破壊を抑制するために、また銀めっきと母材との間の局部腐食や変質を抑制するために、各種金属層の組み合わせを検討した。以下、具体的な例を説明するが、使用されるめっき液の組成や操作条件は、一つの例であり、これに限定されるものではない。   In order to suppress the destruction of the joint boundary due to these corrosions, and to suppress local corrosion and alteration between the silver plating and the base metal, combinations of various metal layers were examined. Hereinafter, although a specific example is demonstrated, the composition and operation conditions of the plating solution used are one example, and are not limited thereto.

第1層としては、硫化腐食抑制又は光束向上のため、厚さ1μm以上7μm以下の光沢性のニッケルめっき又は光沢性のニッケル合金めっきが好ましい。このニッケル又はニッケル合金は、その表面が光沢性のため、光束の向上の機能を持つ。また、ニッケル又はニッケル合金皮膜中に炭素や硫黄が含まれていると、ニッケル又はニッケル合金皮膜の下地金属又は上層のパラジウム又はパラジウム合金の金属との間の腐食電位が調整されるため、硫化腐食抑制機能を持つ。光沢性のニッケルめっき又は光沢性のニッケル合金めっき皮膜中の炭素含有量や硫黄含有量は、使用する有機物光沢剤の種類及び濃度やめっき条件によって管理することができる。光沢性のニッケルめっき又は光沢性のニッケル合金めっき皮膜中の炭素含有量は、めっき皮膜が光沢性であれば特に制限はないが、30ppm以上1000ppm以下が好ましい。また、光沢性のニッケルめっき又は光沢性のニッケル合金めっき皮膜中の硫黄含有量も、めっき皮膜が光沢性であれば特に制限はないが、50ppm以上1000ppm以下が好ましい。   The first layer is preferably glossy nickel plating or glossy nickel alloy plating having a thickness of 1 μm or more and 7 μm or less in order to suppress sulfide corrosion or improve luminous flux. This nickel or nickel alloy has a function of improving luminous flux because its surface is glossy. In addition, if carbon or sulfur is contained in the nickel or nickel alloy film, the corrosion potential between the base metal of the nickel or nickel alloy film or the palladium or palladium alloy metal of the upper layer is adjusted. Has a suppression function. The carbon content and sulfur content in the glossy nickel plating or glossy nickel alloy plating film can be controlled by the type and concentration of the organic brightener used and the plating conditions. The carbon content in the glossy nickel plating or glossy nickel alloy plating film is not particularly limited as long as the plating film is glossy, but is preferably 30 ppm or more and 1000 ppm or less. The sulfur content in the glossy nickel plating or glossy nickel alloy plating film is not particularly limited as long as the plating film is glossy, but is preferably 50 ppm or more and 1000 ppm or less.

ニッケルめっき又はニッケル合金めっきは、硫黄を含まない有機物又は硫黄を含む有機物を添加して光沢ニッケル又は光沢ニッケル合金めっき液から形成することができる。具体的には、銅リードフレームをアルカリ性の脱脂液で、脱脂したあと、酸中和し、下記光沢ニッケルめっき液でニッケルめっきすることができる。   Nickel plating or nickel alloy plating can be formed from bright nickel or bright nickel alloy plating solution by adding an organic substance containing no sulfur or an organic substance containing sulfur. Specifically, the copper lead frame can be degreased with an alkaline degreasing solution, acid neutralized, and nickel plated with the following bright nickel plating solution.

ニッケルめっき液の組成は、スルファミン酸ニッケル=450g/L、塩化ニッケル=5g/L、ほう酸=30g/L、光沢剤SN−1000(株式会社ムラタ)又はSN−20(株式会社ムラタ)=10ml/L、pH4.0−4.4である。ニッケルめっき条件は、液温55℃、強攪拌、陰極電流密度5A/dm、めっき時間2分である。 The composition of the nickel plating solution is as follows: nickel sulfamate = 450 g / L, nickel chloride = 5 g / L, boric acid = 30 g / L, brightener SN-1000 (Murata Co., Ltd.) or SN-20 (Murata Co., Ltd.) = 10 ml / L, pH 4.0-4.4. The nickel plating conditions are a liquid temperature of 55 ° C., strong stirring, a cathode current density of 5 A / dm 2 , and a plating time of 2 minutes.

ニッケルめっき又はニッケル合金めっきの厚さは、1μm以上が好ましい。ニッケルめっき又はニッケル合金めっきの厚さが1μm未満であると、銀めっきを施したときの銀めっき反射率が低下するため、光半導体装置として組み立てたとき、高い光束が得られないほか、腐食しやすくなる。また、ニッケルめっき又はニッケル合金めっきの厚さは、7μm以下が好ましい。ニッケルめっき又はニッケル合金めっきの厚さが7μmを超えると、ニッケルめっき又はニッケル合金めっきの皮膜応力が大きくなり、リードフレームのリード曲げ加工によるクラックが発生するほか、基板を部品に個片化するときに、切断バリが発生しやすくなる。   The thickness of the nickel plating or nickel alloy plating is preferably 1 μm or more. If the thickness of the nickel plating or nickel alloy plating is less than 1 μm, the silver plating reflectivity when silver plating is performed decreases, so when assembled as an optical semiconductor device, a high luminous flux cannot be obtained and corrosion occurs. It becomes easy. The thickness of the nickel plating or nickel alloy plating is preferably 7 μm or less. When the thickness of nickel plating or nickel alloy plating exceeds 7μm, the film stress of nickel plating or nickel alloy plating increases, cracks due to lead bending of the lead frame occur, and when the board is separated into parts In addition, cutting burrs are likely to occur.

ニッケル合金としては、 ニッケルコバルト合金、ニッケル錫合金、ニッケルりん合金、ニッケルホウ素合金、ニッケルクロム合金のうちのいずれかが好ましい。   As the nickel alloy, any one of nickel cobalt alloy, nickel tin alloy, nickel phosphorus alloy, nickel boron alloy and nickel chromium alloy is preferable.

なお、第1層のニッケルめっき又はニッケル合金めっきを施す前に、母材の表面に銅めっき層が設けられてもよい。この銅めっきの厚さは、0.1μm以上10μm以下が好ましい。銅めっきの厚さが0.1μm未満であると、銅素材のキズや孔欠陥などを防止することが十分できないためである。また、銅めっきの厚さが10μmを超えると、リードフレームや基板の寸法誤差が大きくなる。   Note that a copper plating layer may be provided on the surface of the base material before the first layer of nickel plating or nickel alloy plating. The thickness of the copper plating is preferably 0.1 μm or more and 10 μm or less. This is because if the thickness of the copper plating is less than 0.1 μm, scratches or hole defects in the copper material cannot be sufficiently prevented. Further, when the thickness of the copper plating exceeds 10 μm, the dimensional error of the lead frame and the substrate becomes large.

第2層としては、硫化腐食抑制のため、厚さ0.005μm以上0.1μm以下のパラジウムめっき又はパラジウム合金めっきが好ましい。パラジウムめっき又はパラジウム合金めっきは、下地のニッケルめっき層又はニッケル合金めっき層と銀めっき層との間の腐食電位を調整し、硫化腐食の抑制の機能を有する。ニッケルめっき又はニッケル合金めっきを行った後、引き続き水洗し、パラジウムめっき又はパラジウム合金めっきを行うことが好ましい。   The second layer is preferably palladium plating or palladium alloy plating with a thickness of 0.005 μm or more and 0.1 μm or less in order to suppress sulfide corrosion. Palladium plating or palladium alloy plating adjusts the corrosion potential between the underlying nickel plating layer or nickel alloy plating layer and the silver plating layer, and has a function of suppressing sulfide corrosion. After performing nickel plating or nickel alloy plating, it is preferable to wash with water and perform palladium plating or palladium alloy plating.

パラジウムめっき液の組成は、パラブライトSST−L(日本高純度化学株式会社製)、パラジウム濃度5g/L、pH8.5である。パラジウムめっき条件は、液温55℃、強攪拌、電流密度1A/dm、めっき時間8秒である。 The composition of the palladium plating solution is Parabright SST-L (manufactured by Nippon Kojun Kagaku Co., Ltd.), a palladium concentration of 5 g / L, and a pH of 8.5. The palladium plating conditions are a liquid temperature of 55 ° C., strong stirring, a current density of 1 A / dm 2 , and a plating time of 8 seconds.

パラジウムめっき又はパラジウム合金めっきの厚さとしては、0.005μm以上が好ましい。パラジウムめっき又はパラジウム合金めっきの厚さが0.005μm未満であると、下地のニッケルめっき層又はニッケル合金めっき層と銀めっき層の間の腐食電位状態が腐食傾向を示しやすくなる。また、パラジウムめっき又はパラジウム合金めっきの厚さとしては、0.1μm以下が好ましい。パラジウムめっき又はパラジウム合金めっきの厚さが0.1μmを超えると、材料費が高くなる。   The thickness of palladium plating or palladium alloy plating is preferably 0.005 μm or more. When the thickness of the palladium plating or palladium alloy plating is less than 0.005 μm, the corrosion potential state between the underlying nickel plating layer or nickel alloy plating layer and the silver plating layer tends to show a corrosion tendency. Moreover, as thickness of palladium plating or palladium alloy plating, 0.1 micrometer or less is preferable. When the thickness of the palladium plating or palladium alloy plating exceeds 0.1 μm, the material cost increases.

パラジウム合金としては、パラジウムニッケル合金、パラジウム銅合金、パラジウム鉄合金、パラジウム錫合金、パラジウムテルル合金、パラジウムビスマス合金、パラジウムゲルマニウム合金、パラジウム白金合金のうちのいずれかが好ましい。   As the palladium alloy, any one of a palladium nickel alloy, a palladium copper alloy, a palladium iron alloy, a palladium tin alloy, a palladium tellurium alloy, a palladium bismuth alloy, a palladium germanium alloy, and a palladium platinum alloy is preferable.

第2層と銀めっき層(第3層とする)の間に、金めっき層又は金合金めっき層が設けられてもよい。金めっき又は金合金めっきの厚さとしては、0.002μm以上が好ましい。金めっき又は金合金めっきの厚さが0.002μm未満であると、下地のパラジウムめっき層又はパラジウム合金めっき層と銀めっき層の腐食電位状態が腐食傾向を示しやすくなる。また、金めっき又は金合金めっきの厚さとしては、0.05μm以下が好ましい。金めっき又は金合金めっきの厚さが0.05μmを超えると、材料費が高くなる。パラジウムめっき又はパラジウム合金めっきをした後、水洗し、引き続き金めっき又は金合金めっきを行うことができる。   A gold plating layer or a gold alloy plating layer may be provided between the second layer and the silver plating layer (referred to as the third layer). The thickness of gold plating or gold alloy plating is preferably 0.002 μm or more. If the thickness of the gold plating or gold alloy plating is less than 0.002 μm, the corrosion potential state of the underlying palladium plating layer or palladium alloy plating layer and silver plating layer tends to show a corrosion tendency. Moreover, as thickness of gold plating or gold alloy plating, 0.05 micrometer or less is preferable. When the thickness of gold plating or gold alloy plating exceeds 0.05 μm, the material cost increases. After palladium plating or palladium alloy plating, washing with water and subsequent gold plating or gold alloy plating can be performed.

金めっき液の組成は、シアン化金カリウム=2g/L、クエン酸カリウム=150g/L、pH5.5である。金めっき条件は、液温50℃、弱攪拌、電流密度2A/dm、めっき時間5秒である。 The composition of the gold plating solution is potassium gold cyanide = 2 g / L, potassium citrate = 150 g / L, and pH 5.5. The gold plating conditions are a liquid temperature of 50 ° C., weak stirring, a current density of 2 A / dm 2 , and a plating time of 5 seconds.

金合金としては、金銀合金、金ニッケル合金、金銅合金、金インジウム合金、金錫合金、金亜鉛合金、金タリウム合金、金コバルト合金のうちのいずれかが好ましい。   As the gold alloy, any of gold-silver alloy, gold-nickel alloy, gold-copper alloy, gold-indium alloy, gold-tin alloy, gold-zinc alloy, gold thallium alloy, and gold-cobalt alloy is preferable.

銀めっき液は、セレン化合物、硫黄化合物、アンチモン化合物を微量添加してシアン化合物を含有しためっき液が好ましい。下地のパラジウムめっき又はパラジウム合金めっきを行った後、若しくは、金めっき又は金合金めっきを行った後、水洗し、引き続き銀めっきを行う。但し、銀めっきを行う前に、密着性向上やめっき外観の均一性維持のために、銀ストライクめっきを行ってもよい。   The silver plating solution is preferably a plating solution containing a cyanide compound by adding a small amount of a selenium compound, a sulfur compound or an antimony compound. After the underlying palladium plating or palladium alloy plating is performed, or after gold plating or gold alloy plating is performed, the substrate is washed with water and subsequently subjected to silver plating. However, silver strike plating may be performed before silver plating in order to improve adhesion and maintain uniformity of plating appearance.

銀めっき液の組成は、シアン化銀カリウム=80g/L、シアン化カリウム=100g/L、炭酸カリウム=30g/L、シルバーグロー3K=30ml/L(メルテックス株式会社)である。銀めっき条件は、液温25℃、強攪拌、電流密度3A/dmである。 The composition of the silver plating solution is: potassium potassium cyanide = 80 g / L, potassium cyanide = 100 g / L, potassium carbonate = 30 g / L, silver glow 3K = 30 ml / L (Meltex Co., Ltd.). The silver plating conditions are a liquid temperature of 25 ° C., strong stirring, and a current density of 3 A / dm 2 .

銀めっきの厚さは、0.05μm以上が好ましい。銀めっきの厚さが、0.05μm未満であると、光半導体装置の光束が低下する。また、銀めっきの厚さは、2μm未満が好ましい。銀めっきの厚さが2μmを超えると、材料費が高くなる。さらに、銀めっきの厚さは、1μm以下がより好ましい。銀めっきの下地に、上記のような光沢性のニッケルめっき又は光沢性のニッケル合金めっきがあることで、高い初期光束及び耐腐食性を有しながら、銀めっきの厚さを1μm以下に低減することができる。   The thickness of the silver plating is preferably 0.05 μm or more. When the thickness of the silver plating is less than 0.05 μm, the luminous flux of the optical semiconductor device is lowered. The thickness of the silver plating is preferably less than 2 μm. When the thickness of the silver plating exceeds 2 μm, the material cost becomes high. Furthermore, the thickness of the silver plating is more preferably 1 μm or less. The presence of the above-mentioned glossy nickel plating or glossy nickel alloy plating on the base of the silver plating reduces the thickness of the silver plating to 1 μm or less while having high initial luminous flux and corrosion resistance. be able to.

銀めっきの光沢度は、1.3以上が好ましい。銀めっきの光沢度は、銀めっきリードフレーム業界で一般に使用されている光沢度の数値で、例えばGAM社製のDensitmeter Model 144や日本電色工業株式会社製の微小面色彩計・反射率計VSR400やデンシトメーター(反射濃度計)ND−11で測定される数値である。光半導体装置に使用される銀の光沢度は、1.3以上であることが好ましい。銀めっきの光沢度が1.3未満になると、反射率が低下し、光半導体装置の光束が低下する。一方、上限は問わないが、測定機器の検出限界が上限となる。一般には3.0前後となる。   The glossiness of silver plating is preferably 1.3 or more. The glossiness of silver plating is a numerical value of glossiness commonly used in the silver plating lead frame industry. For example, Densitmeter Model 144 manufactured by GAM or a micro surface colorimeter / reflectometer VSR400 manufactured by Nippon Denshoku Industries Co., Ltd. Or a densitometer (reflection densitometer) ND-11. The glossiness of silver used in the optical semiconductor device is preferably 1.3 or more. When the glossiness of silver plating is less than 1.3, the reflectance is lowered, and the luminous flux of the optical semiconductor device is lowered. On the other hand, the upper limit is not limited, but the detection limit of the measuring device is the upper limit. Generally, it is around 3.0.

もちろん、本発明の銀めっき皮膜は、高い信頼性のあるワイヤーボンディング性、安定したダイボンディング性、安定したはんだ濡れ性、封止樹脂密着性などにおいても優れている。   Of course, the silver plating film of the present invention is also excellent in highly reliable wire bonding properties, stable die bonding properties, stable solder wettability, sealing resin adhesion, and the like.

本発明のめっきの厚さは、めっき業界で広く使用される微小部蛍光X線膜厚計で測定することができる。   The plating thickness of the present invention can be measured with a micro fluorescent X-ray film thickness meter widely used in the plating industry.

本発明のめっきは、リードフレーム又は基板を陽極とし、金属銀、ステンレス、白金族金属又は白金族金属を被覆したチタンを陰極とし、本発明の銀めっき液に浸漬し、電気めっきを行うめっき方法により実現可能である。   The plating of the present invention is a plating method in which the lead frame or the substrate is used as an anode, metal silver, stainless steel, platinum group metal or titanium coated with a platinum group metal is used as a cathode, and immersed in the silver plating solution of the present invention for electroplating. Can be realized.

本発明のめっき方法は、マニュアル又は自動エレベーター方式のいわゆるラック式めっき方法、リールツーリール方式の電気めっき槽がオーバーフロー式のめっき方法、あるいは半導体リードフレームの部分めっきに採用されている噴流式めっき方法のどれにも対応可能である。   The plating method of the present invention is a so-called rack type plating method of a manual or automatic elevator system, a reel-to-reel type electroplating tank is an overflow type plating method, or a jet type plating method in which a semiconductor lead frame is partially plated Any of these can be accommodated.

また、本発明の銀めっきした後のリードフレームを圧延加工などして塑性変形させることもできる。また、本発明のリードフレームは、本発明のめっき処理を行ったあとに、リード形状をプレス打ち抜きで形成することもできる。さらに、本発明のリードフレーム又は基板の銀めっき表面にスパッタや化学蒸着などの方法により保護膜を設けることができる。この保護膜は、光半導体装置の組み立て前でも組み立て後でも施すことができる。   Further, the lead frame after silver plating of the present invention can be plastically deformed by rolling or the like. In addition, the lead frame of the present invention can be formed by press punching after performing the plating treatment of the present invention. Furthermore, a protective film can be provided on the silver plating surface of the lead frame or the substrate of the present invention by a method such as sputtering or chemical vapor deposition. This protective film can be applied before or after the optical semiconductor device is assembled.

次に、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

<実施例>
リードフレームとしては、株式会社神戸製鋼所製の銅合金KLF194(CDA No.C19400、鉄含有率2.3%)の板厚0.11mmの平板を使用し、株式会社エノモトのLED用オープンフレームFLASH LED 6PIN OP1(外形寸法5050)のタイプに型抜きしたものを使用する。アルカリ系の脱脂剤で脱脂処理したあと、希硫酸で酸中和し、その後シアン浴により銅めっきを0.5μm施す。その後、本発明の金属めっき層を順次行った後、銀めっきを行い、清浄な純水で洗浄した後、乾燥し、銀めっき付きリードフレームを製作する。銀めっきは、全面銀めっきとする。このリードフレームを金型内に配置し、成形材料として、ポリフタルアミド樹脂を注入し、硬化させて金型から外す。そして、得られた樹脂成形後のリードフレーム上にInGaN系の青色発光ダイオードチップをペーストでダイボンドした後、150℃で1時間加熱して接合させる。その後、発光ダイオードチップの電極と、リードフレームを25μm径の金線ワイヤーにてワイヤーボンディングする。次に、変性シリコーン樹脂にYAG蛍光体を20%の割合で配合したものを、成形開口部に充填し、熱風乾燥機にて硬化させ(硬化条件:150℃、4時間)、封止を完了する。この後、個別のLEDとして個片化する。基板についても同様にしてサンプルを作成する。
<Example>
As the lead frame, a copper alloy KLF194 (CDA No. C19400, iron content rate 2.3%) flat plate made by Kobe Steel Co., Ltd. with a thickness of 0.11 mm was used, and Enomoto's LED open frame FLASH Die-cut type LED 6PIN OP1 (outer dimension 5050) is used. After degreasing with an alkaline degreasing agent, the solution is neutralized with dilute sulfuric acid, and then copper plating is applied in a thickness of 0.5 μm using a cyan bath. Then, after sequentially performing the metal plating layers of the present invention, silver plating is performed, washed with clean pure water, and then dried to produce a lead frame with silver plating. Silver plating shall be whole surface silver plating. The lead frame is placed in a mold, polyphthalamide resin is injected as a molding material, and cured to be removed from the mold. Then, an InGaN-based blue light emitting diode chip is die-bonded with a paste on the obtained lead frame after resin molding, and then heated and bonded at 150 ° C. for 1 hour. Thereafter, the electrode of the light emitting diode chip and the lead frame are wire-bonded with a gold wire having a diameter of 25 μm. Next, 20% of YAG phosphor blended with the modified silicone resin is filled into the molding opening and cured with a hot air dryer (curing conditions: 150 ° C., 4 hours) to complete sealing. To do. After that, it is separated into individual LEDs. Samples are prepared in the same manner for the substrate.

製作したリードフレームを、上記手順で製作された光半導体装置として組み立て、LEDとして積分式全光束測定装置にて初期の全光束Φv(lm)の測定を行う。   The manufactured lead frame is assembled as an optical semiconductor device manufactured according to the above procedure, and an initial total luminous flux Φv (lm) is measured as an LED using an integrating total luminous flux measuring device.

また、上記LEDを下記のような硫化試験にて処理した後、初期光束と同様に積分式全光束測定装置にて、光束を測定する。硫化試験は、硫化水素と硫黄酸化物の混合ガス雰囲気内に光半導体装置を投入することによって行う。具体的には、JIS C0048に準拠した方法で行い、温度30℃75RHで、硫化水素:0.1〜3ppm、酸化窒素:0.1〜0.5ppm、塩素0.01〜0.05ppmの範囲で行う。光束維持率は、この硫化試験前の光束に対する光束比である。この光束維持率が高いほど、腐食ガスによる影響が小さく、耐腐食性に優れていることを示す。   Further, after the LED is processed by a sulfuration test as described below, the luminous flux is measured with an integral-type total luminous flux measurement device in the same manner as the initial luminous flux. The sulfidation test is performed by placing the optical semiconductor device in a mixed gas atmosphere of hydrogen sulfide and sulfur oxide. Specifically, it is carried out by a method according to JIS C0048, and the temperature is 30 ° C. and 75 RH, hydrogen sulfide: 0.1 to 3 ppm, nitric oxide: 0.1 to 0.5 ppm, chlorine 0.01 to 0.05 ppm. To do. The luminous flux maintenance factor is a luminous flux ratio with respect to the luminous flux before the sulfidation test. The higher the luminous flux maintenance factor, the smaller the influence of the corrosive gas and the better the corrosion resistance.

表1に、比較例と実施例を示す。なお、表1中のカッコ内はめっき厚(μm)を表す。めっき構成は、金属の種類を元素記号で示している。   Table 1 shows comparative examples and examples. The brackets in Table 1 represent the plating thickness (μm). The plating configuration indicates the type of metal with an element symbol.

Figure 0006175822
Figure 0006175822

表1に示すとおり、比較例1〜3に比べて、実施例1〜25の光束値は、硫化試験処理後の光束維持率が改善されている。   As shown in Table 1, compared with Comparative Examples 1 to 3, the luminous flux maintenance rates after the sulfurization test treatment are improved in the luminous flux values of Examples 1 to 25.

Claims (8)

銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金、セラミックス、プラスチックスからなる群から選択される母材の表面の上に、
厚さ1μm以上7μm以下の光沢性のニッケルめっき又は光沢性のニッケル合金めっきの第1層であって、30ppm以上1000ppm以下の炭素又は/及び50ppm以上1000ppm以下の硫黄を含有している第1層と、
厚さ0.005μm以上0.1μm以下のパラジウムめっき又はパラジウム合金めっきの第2層と、
厚さ0.05μm以上2.0μm未満であって、かつ光沢度1.3以上の銀めっきの第3層と、をこの順に有することを特徴とする光半導体装置用のリードフレーム又は基板。
On the surface of the base material selected from the group consisting of copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy, ceramics, plastics,
A first layer of glossy nickel plating or glossy nickel alloy plating having a thickness of 1 μm or more and 7 μm or less, and containing 30 ppm or more and 1000 ppm or less of carbon and / or 50 ppm or more and 1000 ppm or less of sulfur When,
A second layer of palladium plating or palladium alloy plating with a thickness of 0.005 μm to 0.1 μm;
A lead frame or substrate for an optical semiconductor device, comprising a third layer of silver plating having a thickness of 0.05 μm or more and less than 2.0 μm and a glossiness of 1.3 or more in this order.
前記第3層の厚さは、0.05μm 以上1.0μm 以下である請求項1に記載の光半導体装置用のリードフレーム又は基板。   2. The lead frame or substrate for an optical semiconductor device according to claim 1, wherein a thickness of the third layer is 0.05 μm or more and 1.0 μm or less. 前記母材の表面に、厚さ0.1μm以上10μm以下の銅めっき層を有する請求項1又は2に記載の光半導体装置用のリードフレーム又は基板。 Wherein the surface of the base, a lead frame or a substrate for an optical semiconductor device according to claim 1 or 2 having the following copper plating layer 10μm or more thick 0.1 [mu] m. 前記ニッケル合金めっきが、ニッケルコバルト合金、ニッケル錫合金、ニッケルりん合金、ニッケルホウ素合金、ニッケルクロム合金のうちのいずれかである請求項1乃至のいずれか一項に記載の光半導体装置用のリードフレーム又は基板。 Said nickel alloy plating, nickel-cobalt alloy, nickel-tin alloy, nickel phosphorus alloy, nickel boron alloy, for an optical semiconductor device according to any one of claims 1 to 3 is any one of a nickel-chromium alloy Lead frame or substrate. 前記パラジウム合金めっきが、パラジウムニッケル合金、パラジウム銅合金、パラジウム鉄合金、パラジウム錫合金、パラジウムテルル合金、パラジウムビスマス合金、パラジウムゲルマニウム合金、パラジウム白金合金のうちのいずれかである請求項1乃至のいずれか一項に記載の光半導体装置用のリードフレーム又は基板。 The palladium alloy plating, palladium nickel alloy, palladium copper alloy, palladium-iron alloy, palladium-tin alloy, palladium tellurium alloy, palladium bismuth alloy, palladium germanium alloy of claims 1 to 4 is any one of a palladium platinum alloy The lead frame or board | substrate for optical semiconductor devices as described in any one. 前記第2層と前記第3層の間に、厚さ0.002μm以上0.05μm以下の金めっき層又は金合金めっき層を有する請求項1乃至のいずれか一項に記載の光半導体装置用のリードフレーム又は基板。 Between the third layer and the second layer, an optical semiconductor device according to any one of claims 1 to 5 having a thickness of 0.002μm or more 0.05μm or less of the gold plating layer or gold alloy plating layer Lead frame or substrate for use. 前記金合金が、金銀合金、金ニッケル合金、金銅合金、金インジウム合金、金錫合金、金亜鉛合金、金タリウム合金、金コバルト合金のうちのいずれかである請求項に記載の光半導体装置用のリードフレーム又は基板。 The optical semiconductor device according to claim 6 , wherein the gold alloy is any one of a gold-silver alloy, a gold-nickel alloy, a gold-copper alloy, a gold-indium alloy, a gold-tin alloy, a gold-zinc alloy, a gold thallium alloy, and a gold-cobalt alloy. Lead frame or substrate for use. 請求項1乃至のいずれか一項に記載の光半導体装置用のリードフレーム又は基板上に光半導体素子を搭載した光半導体装置。 An optical semiconductor device in which an optical semiconductor element is mounted on a lead frame or a substrate for an optical semiconductor device according to any one of claims 1 to 7 .
JP2013052918A 2013-03-15 2013-03-15 Lead frame or substrate for optical semiconductor devices Active JP6175822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052918A JP6175822B2 (en) 2013-03-15 2013-03-15 Lead frame or substrate for optical semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052918A JP6175822B2 (en) 2013-03-15 2013-03-15 Lead frame or substrate for optical semiconductor devices

Publications (2)

Publication Number Publication Date
JP2014179492A JP2014179492A (en) 2014-09-25
JP6175822B2 true JP6175822B2 (en) 2017-08-09

Family

ID=51699144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052918A Active JP6175822B2 (en) 2013-03-15 2013-03-15 Lead frame or substrate for optical semiconductor devices

Country Status (1)

Country Link
JP (1) JP6175822B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448986B2 (en) * 2014-10-31 2019-01-09 Shマテリアル株式会社 Lead frame manufacturing method
JP6648467B2 (en) 2014-12-25 2020-02-14 日亜化学工業株式会社 Light emitting device
JP6481499B2 (en) * 2015-05-15 2019-03-13 日亜化学工業株式会社 Lead frame or substrate for optical semiconductor device, and optical semiconductor device using the same
JP6657331B2 (en) * 2018-07-26 2020-03-04 大口マテリアル株式会社 Lead frame, lead frame with resin and optical semiconductor device, and method of manufacturing lead frame
JP7116308B2 (en) * 2018-09-27 2022-08-10 日亜化学工業株式会社 METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110804B2 (en) * 2006-03-24 2012-12-26 日本エレクトロプレイテイング・エンジニヤース株式会社 LED manufacturing method
JP2008091818A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Lead frame for optical semiconductor device, optical semiconductor device using it, and these manufacturing methods
JP4911622B2 (en) * 2007-09-21 2012-04-04 柿原工業株式会社 Defect prevention method for microporous plating
JP2011210946A (en) * 2010-03-30 2011-10-20 Panasonic Corp Optical semiconductor device, lead frame, and method of manufacturing the same
JP2011228589A (en) * 2010-04-22 2011-11-10 Panasonic Corp Component for optical semiconductor device and method of manufacturing the same
JP2012089830A (en) * 2010-09-21 2012-05-10 Nichia Chem Ind Ltd Light emitting device

Also Published As

Publication number Publication date
JP2014179492A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6230778B2 (en) Electrolytic silver plating solution for optical semiconductor devices
JP6175822B2 (en) Lead frame or substrate for optical semiconductor devices
JP4897981B2 (en) Lead frame for optical semiconductor device, manufacturing method thereof, and optical semiconductor device
TWI577057B (en) Plating structure and method for manufacturing electric material
JP4763094B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
KR101485226B1 (en) Lead frame for optical semiconductor device, manufacturing method of lead frame for optical semiconductor device, and optical semiconductor device
US20080083973A1 (en) Lead frame for an optical semiconductor device, optical semiconductor device using the same, and manufacturing method for these
TWI514629B (en) A semiconductor light-emitting element mounting substrate, and a semiconductor light-emitting device using the same
TW201220524A (en) Leadframe or substrate for led, semiconductor device, and method for manufacturing leadframe or substrate for led
JP2012089830A (en) Light emitting device
JP5578960B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP6481499B2 (en) Lead frame or substrate for optical semiconductor device, and optical semiconductor device using the same
CN111863764A (en) Pre-plated lead frame and preparation method thereof
KR101341159B1 (en) Method for plating light emitting diode lead frame having high reflectivity
JP2010166044A (en) Lead frame for optical semiconductor device, and method for manufacturing the same
JP2020053599A (en) Metal material for optical semiconductor device, method of manufacturing the same, and optical semiconductor device using the same
JP5767521B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP6331388B2 (en) Lead frame or substrate for light emitting device and light emitting device including the same
JP6318613B2 (en) Plating solution used for lead frame or substrate for light emitting device, lead frame or substrate manufactured using the same, method for manufacturing the same, and light emitting device including the same
JP2012122115A (en) METHOD FOR PLATING Ag-Sn ONTO COPPER OR COPPER ALLOY PLATE AND Ag-Sn-PLATED COPPER OR COPPER ALLOY PLATE PRODUCED BY THE METHOD
JP2012151289A (en) Optical semiconductor mounting board, manufacturing method of the same and optical semiconductor device
JP2020053601A (en) Metal material for optical semiconductor device, method of manufacturing the same, and optical semiconductor device using the same
JP7339566B2 (en) METHOD FOR MANUFACTURING METAL STRUCTURE FOR OPTO-SEMICONDUCTOR DEVICE, PACKAGE, AND SOLUTION CONTAINING POLYALLYLAMINE POLYMER
JP2011129658A (en) Lead frame for optical semiconductor device, method for manufacturing the same, and optical semiconductor device
JP6635152B2 (en) Lead frame, light emitting device package, light emitting device, and method of manufacturing light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6175822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250