JP2015118021A - Deterioration detection apparatus - Google Patents

Deterioration detection apparatus Download PDF

Info

Publication number
JP2015118021A
JP2015118021A JP2013261979A JP2013261979A JP2015118021A JP 2015118021 A JP2015118021 A JP 2015118021A JP 2013261979 A JP2013261979 A JP 2013261979A JP 2013261979 A JP2013261979 A JP 2013261979A JP 2015118021 A JP2015118021 A JP 2015118021A
Authority
JP
Japan
Prior art keywords
charge
secondary battery
latest
time
soh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261979A
Other languages
Japanese (ja)
Other versions
JP6221728B2 (en
Inventor
治之 齊藤
Haruyuki Saito
治之 齊藤
行成 加藤
Yukinari Kato
行成 加藤
昇 中野
Noboru Nakano
昇 中野
泰仁 宮崎
Yasuhito Miyazaki
泰仁 宮崎
下井田 良雄
Yoshio Shimoida
良雄 下井田
智也 久保田
Tomoya Kubota
智也 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013261979A priority Critical patent/JP6221728B2/en
Publication of JP2015118021A publication Critical patent/JP2015118021A/en
Application granted granted Critical
Publication of JP6221728B2 publication Critical patent/JP6221728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration detection apparatus configured to accurately detect deterioration of a second battery regardless of a length of a suspension period.SOLUTION: A deterioration detection apparatus 2 includes: an SOH detection unit 29 which detects deterioration of a secondary battery 4, on the basis of a charging state difference ΔSOC and an integrated value detected by a charge/discharge current integration unit 24 which detects the integrated value of charge/discharge current from the end of the previous suspension period to the start of the latest suspension period; and a correction unit 25 which corrects the integrated value of the charge/discharge current. When a suspension period determination unit 23 determines that the latest suspension period is less than a predetermined period, the correction unit 25 corrects the integrated value of the charge/discharge current, on the basis of the latest suspension period. When the suspension period determination unit determines that the latest suspension period is less than the predetermined period, the SOH detection unit 29 detects deterioration, on the basis of the integrated value of the charge/discharge current corrected by the correction unit 25.

Description

本発明は、二次電池の劣化状態を検出する劣化状態検出装置に関するものである。   The present invention relates to a deterioration state detection device that detects a deterioration state of a secondary battery.

二次電池の容量演算周期の間における充電率の変化量から演算した当該二次電池の満充電容量と、当該容量演算周期の間の電流積算値と、に基づいて、二次電池の劣化による満充電容量変化を加味して充電率の推定を行う技術が知られている(例えば特許文献1参照)。   Due to the deterioration of the secondary battery based on the full charge capacity of the secondary battery calculated from the amount of change in the charging rate during the capacity calculation cycle of the secondary battery and the current integrated value during the capacity calculation cycle A technique for estimating a charging rate in consideration of a change in full charge capacity is known (see, for example, Patent Document 1).

特開2012−185124号公報JP 2012-185124 A

二次電池が休止状態となった後、当該二次電池内の電子状態が均一化するには、長い時間(約24時間)を必要とする。このため、上記の技術において、短い休止時間(数分後〜数時間)の後に充電率の推定を行う場合には、二次電池内の電子状態が充分に均一化していないため推定値の誤差が増大し、当該推定値に基づく二次電池の劣化状態の検出精度も悪化する場合があるという問題がある。   It takes a long time (about 24 hours) for the electronic state in the secondary battery to become uniform after the secondary battery enters the resting state. For this reason, in the above technique, when the charge rate is estimated after a short pause (several minutes to several hours), the electronic state in the secondary battery is not sufficiently uniform, and thus the estimated value error There is a problem that the detection accuracy of the deterioration state of the secondary battery based on the estimated value may deteriorate.

本発明が解決しようとする課題は、休止時間の長さによらず二次電池の劣化状態を精度良く検出することができる劣化状態検出装置を提供することである。   The problem to be solved by the present invention is to provide a deterioration state detection device capable of accurately detecting the deterioration state of a secondary battery regardless of the length of the downtime.

本発明は、二次電池の休止時間が所定時間未満の場合に、当該休止時間に基づいて二次電池の充放電電流の積算量を補正し、補正した当該積算量に基づいて、当該二次電池の劣化状態を検出することにより上記課題を解決する。   The present invention corrects the integrated amount of charge / discharge current of the secondary battery based on the suspension time when the suspension time of the secondary battery is less than the predetermined time, and based on the corrected integrated amount, The above-described problem is solved by detecting the deterioration state of the battery.

本発明によれば、二次電池の休止時間が所定時間未満の場合に、当該休止時間に基づいて二次電池の充放電電流の積算量を補正することにより、休止時間の長さによらず当該二次電池の劣化状態を精度良く検出することができる。   According to the present invention, when the suspension time of the secondary battery is less than the predetermined time, the amount of charge / discharge current of the secondary battery is corrected based on the suspension time, regardless of the length of the suspension time. The deterioration state of the secondary battery can be detected with high accuracy.

図1は、本発明の実施形態における劣化状態検出装置を備えた車両を示すブロック図である。FIG. 1 is a block diagram showing a vehicle equipped with a deterioration state detection apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態における劣化状態検出装置が二次電池の劣化状態を検出する際のフローチャートである。FIG. 2 is a flowchart when the deterioration state detection apparatus according to the embodiment of the present invention detects the deterioration state of the secondary battery.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態における劣化状態検出装置2を備えた車両1を示すブロック図である。   FIG. 1 is a block diagram showing a vehicle 1 provided with a deterioration state detection device 2 in the present embodiment.

本実施形態における劣化状態検出装置2を備えた車両1は、例えば、電気自動車やハイブリッド自動車である。この車両1は、図1に示すように、当該劣化状態検出装置2に加えて、モータ等から構成される電池負荷3と、二次電池4と、報知装置5と、を備えている。本実施形態において、二次電池4はリチウムイオン二次電池等から構成されており、当該二次電池4によって、電池負荷3への放電や、電池負荷3等で発生した回生電力或いは外部電源(不図示)の電力による充電を行うことが可能となっている。   The vehicle 1 provided with the deterioration state detection device 2 in the present embodiment is, for example, an electric vehicle or a hybrid vehicle. As shown in FIG. 1, the vehicle 1 includes a battery load 3 including a motor, a secondary battery 4, and a notification device 5 in addition to the deterioration state detection device 2. In the present embodiment, the secondary battery 4 is composed of a lithium ion secondary battery or the like, and the secondary battery 4 discharges to the battery load 3, regenerative power generated by the battery load 3, or the like or an external power source ( It is possible to perform charging with electric power (not shown).

劣化状態検出装置2は、休止時間(後述)の終了後に二次電池4の劣化状態(以下、SOHとも称する。)を検出する装置であり、タイマー21と、イベント発生判定部22と、休止時間判定部23と、充放電電流積算部24と、補正部25と、SOC検出部27と、充電状態差検出部28と、SOH検出部29と、記憶部29Bと、を備えている。   The deterioration state detection device 2 is a device that detects the deterioration state (hereinafter also referred to as SOH) of the secondary battery 4 after the end of a pause time (described later), and includes a timer 21, an event occurrence determination unit 22, and a pause time. The determination part 23, the charging / discharging electric current integration part 24, the correction | amendment part 25, the SOC detection part 27, the charge condition difference detection part 28, the SOH detection part 29, and the memory | storage part 29B are provided.

タイマー21は、二次電池4が休止状態となっている時間(以下、休止時間とも称する。)を測定する装置である。なお、この休止状態とは、例えば、二次電池4が充電も放電も行っていない状態のことである。このタイマー21は、図1に示すように、車両1に発生したイベントの有無や、その種類等を判定するイベント発生判定部22と接続されており、このイベント発生判定部22によるイベントの開始及び終了の判定に基づいて、二次電池4の当該休止時間を計測する。   The timer 21 is a device that measures a time during which the secondary battery 4 is in a resting state (hereinafter also referred to as a resting time). In addition, this dormant state is a state in which the secondary battery 4 is not charged or discharged, for example. As shown in FIG. 1, the timer 21 is connected to an event occurrence determination unit 22 that determines the presence / absence of an event that has occurred in the vehicle 1, the type thereof, and the like. Based on the end determination, the rest time of the secondary battery 4 is measured.

なお、このイベントとは、例えば、運転者が車両1の運転を開始してから当該運転を終了するまでのトリップや、充電ステーション等において二次電池4の充電を開始してから当該充電を終了するまでの充電工程、或いは、車両1のパワースイッチがオンのまま停止している状態等である。   Note that this event is, for example, a trip from when the driver starts driving the vehicle 1 to the end of the driving or charging of the secondary battery 4 at a charging station or the like, and then ends the charging. The charging process until it is done, or the state where the power switch of the vehicle 1 is stopped while being on.

休止時間判定部23は、タイマー21が測定した二次電池4の休止時間が、24時間以上であるか否かを判定する。当該判定の結果は補正部25に送出される。   The downtime determination unit 23 determines whether the downtime of the secondary battery 4 measured by the timer 21 is 24 hours or more. The result of the determination is sent to the correction unit 25.

充放電電流積算部24は、二次電池4の端子間に流れる充放電電流を測定する機能を有しており、二次電池4における前回の休止時間の終了時taから、最新の休止時間の開始時tbまでの間に、二次電池4の端子間に流れた充放電電流の積算量(∫Idt(ただし、左記積分は時間taからtbまでの定積分))を測定する。   The charge / discharge current integrating unit 24 has a function of measuring the charge / discharge current flowing between the terminals of the secondary battery 4, and from the end ta of the previous pause time in the secondary battery 4, The integrated amount of charge / discharge current flowing between the terminals of the secondary battery 4 (tIdt (where the left integral is a constant integral from time ta to tb)) is measured until the start time tb.

補正部25は、休止時間判定部23によって二次電池4の最新の休止時間が24時間未満であると判定された場合に、充放電電流積算部24が測定した充放電電流の積算量(∫Idt)を補正する。また、補正部25は、充電状態差検出部28が検出したΔSOC(後述)と、タイマー21が測定した二次電池4の休止時間と、の間における相関の強弱を判断する機能を有しており、当該相関が強い場合に上記の補正を行う。なお、補正を行う具体的な方法については後に述べる。   The correction unit 25 determines the accumulated amount of charge / discharge current (∫) measured by the charge / discharge current integration unit 24 when the suspension time determination unit 23 determines that the latest suspension time of the secondary battery 4 is less than 24 hours. Idt) is corrected. The correction unit 25 has a function of determining the strength of the correlation between ΔSOC (described later) detected by the charge state difference detection unit 28 and the downtime of the secondary battery 4 measured by the timer 21. If the correlation is strong, the above correction is performed. A specific method for performing the correction will be described later.

カウンタ26は、充放電電流積算部24が測定した充放電電流の積算量に基づいて、二次電池4が充放電サイクルを繰り返した回数(以下、充放電サイクル数とも称する。)をカウントする。具体的には、カウンタ26は、充放電電流積算部24が積算する充放電電流に基づいて二次電池4の最初の使用開始時からの放電容量を積算し、当該放電容量の積算量を当該二次電池4の初期の電池容量で除算することによって二次電池4の充放電サイクル数を算出する。そして、カウンタ26は、当該充放電サイクル数を補正部25に送出する。   The counter 26 counts the number of times the secondary battery 4 repeats the charge / discharge cycle (hereinafter also referred to as charge / discharge cycle number) based on the accumulated amount of the charge / discharge current measured by the charge / discharge current integrating unit 24. Specifically, the counter 26 accumulates the discharge capacity from the start of the first use of the secondary battery 4 based on the charge / discharge current accumulated by the charge / discharge current accumulation unit 24, and calculates the accumulated amount of the discharge capacity. The number of charge / discharge cycles of the secondary battery 4 is calculated by dividing by the initial battery capacity of the secondary battery 4. Then, the counter 26 sends the charge / discharge cycle number to the correction unit 25.

SOC検出部27は、二次電池4の開放電圧を測定する機能を有していると共に、二次電池4の開放電圧と、当該二次電池4の充電状態(以下、SOCとも称する。)と、の関係を表すマップを予め備えている。そして、測定した二次電池4の開放電圧及び当該マップに基づいて、二次電池4における休止時間の開始時及び終了時に当該二次電池4のSOCを検出する。検出した二次電池4のSOCは充電状態差検出部28に送出される。   The SOC detection unit 27 has a function of measuring the open circuit voltage of the secondary battery 4, the open circuit voltage of the secondary battery 4, and the state of charge of the secondary battery 4 (hereinafter also referred to as SOC). A map representing the relationship is provided in advance. Then, based on the measured open-circuit voltage of the secondary battery 4 and the map, the SOC of the secondary battery 4 is detected at the start and end of the rest time of the secondary battery 4. The detected SOC of the secondary battery 4 is sent to the charge state difference detection unit 28.

充電状態差検出部28は、前回の休止時間の終了時にSOC検出部27から送出された二次電池4のSOCを記憶しており、前回の休止時間の終了時における当該SOCと、最新の休止状態の開始時にSOC検出部27から送出されたSOCと、の差(以下、ΔSOCとも称する。)を検出する。そして、検出した当該ΔSOCを補正部25、及びSOH検出部29に送出する。   The charge state difference detection unit 28 stores the SOC of the secondary battery 4 sent from the SOC detection unit 27 at the end of the previous pause time, and the SOC at the end of the previous pause time and the latest pause. A difference (hereinafter also referred to as ΔSOC) from the SOC sent from the SOC detector 27 at the start of the state is detected. Then, the detected ΔSOC is sent to the correction unit 25 and the SOH detection unit 29.

SOH検出部29は、充電状態差検出部28が検出したΔSOCと、充放電電流積算部24が測定した充放電電流の積算量と、記憶部29Bに記憶された二次電池4の使用初期における満充電量Qmax,iと、に基づいて、二次電池4のSOHを検出すると共に、当該SOHの加重平均値SOHn,aveを算出する。次いで、SOHの当該加重平均値SOHn,aveを、報知装置5に送出する。 The SOH detection unit 29 detects ΔSOC detected by the charge state difference detection unit 28, the integrated amount of charge / discharge current measured by the charge / discharge current integration unit 24, and the initial use of the secondary battery 4 stored in the storage unit 29B. Based on the full charge amount Qmax, i , the SOH of the secondary battery 4 is detected, and the weighted average value SOHn , ave of the SOH is calculated. Next, the weighted average value SOH n, ave of the SOH is sent to the notification device 5.

記憶部29Bは、二次電池4の使用初期における満充電量Qmax,iを記憶すると共に、SOH検出部29が算出したSOHの加重平均値SOHn,aveを記憶する。 The storage unit 29B stores the full charge amount Q max, i at the initial use of the secondary battery 4 , and also stores the weighted average value SOH n, ave of the SOH calculated by the SOH detection unit 29.

報知装置5は、SOH検出部29が検出したSOHの加重平均値SOHn,aveの大きさに基づき、音声や映像等により車両1の運転者に対して二次電池4のSOHに関する情報を報知する。 The notification device 5 notifies the driver of the vehicle 1 of the SOH of the secondary battery 4 to the driver of the vehicle 1 based on the magnitude of the weighted average value SOH n, ave of the SOH detected by the SOH detection unit 29. To do.

次に、劣化状態検出装置2により二次電池4のSOHを検出する際の処理について、図2を参考にしながら説明する。図2は、本実施形態における劣化状態検出装置2が二次電池4のSOHを検出する際のフローチャートである。   Next, processing when detecting the SOH of the secondary battery 4 by the deterioration state detection device 2 will be described with reference to FIG. FIG. 2 is a flowchart when the deterioration state detection device 2 in the present embodiment detects the SOH of the secondary battery 4.

まず、ステップS11として、イベント発生判定部22がイベントの開始又は終了を判定すると、タイマー21は、当該判定に基づいて二次電池4の最新の休止時間の測定を行う。次いで、測定した最新の休止時間を休止時間判定部23に送出する。   First, as step S11, when the event occurrence determination unit 22 determines the start or end of an event, the timer 21 measures the latest pause time of the secondary battery 4 based on the determination. Next, the latest measured pause time is sent to the pause time determination unit 23.

次に、ステップS12では、休止時間判定部23において、二次電池4の最新の休止時間が24時間以上であるか否かを判定する。当該休止時間は24時間以上であると休止時間判定部23が判定した場合には、ステップS13へと進む。   Next, in step S12, the rest time determination unit 23 determines whether or not the latest rest time of the secondary battery 4 is 24 hours or more. If the pause time determination unit 23 determines that the pause time is 24 hours or longer, the process proceeds to step S13.

ステップS13では、最新の休止時間の開始時においてSOC検出部27が検出した二次電池4のSOCと、前回の休止時間の終了時にSOC検出部27が検出した二次電池4のSOCと、の差ΔSOCを充電状態差検出部28が検出し、当該ΔSOCをSOH検出部29に送出する。   In step S13, the SOC of the secondary battery 4 detected by the SOC detection unit 27 at the start of the latest pause time and the SOC of the secondary battery 4 detected by the SOC detection unit 27 at the end of the previous pause time are calculated. The charge state difference detection unit 28 detects the difference ΔSOC and sends the ΔSOC to the SOH detection unit 29.

次いで、ステップS14では、SOH検出部29において、下記(1)式に基づいて、二次電池4の満充電容量Qmaxを求める。なお、この満充電容量Qmaxは、SOC=100%のときの二次電池4の容量を意味する。 Next, in step S14, the SOH detection unit 29 obtains the full charge capacity Qmax of the secondary battery 4 based on the following equation (1). The full charge capacity Q max means the capacity of the secondary battery 4 when SOC = 100%.

max=(∫Idt)/ΔSOC×100・・・(1)
なお、上記(1)式において、∫Idtは、二次電池4が前回の休止状態の終了時taから、最新の休止時間の開始時tbまでの間の定積分であり、充放電電流積算部24によって測定された値である。
Q max = (∫Idt) / ΔSOC × 100 (1)
In the above formula (1), ∫Idt is a constant integral from the end time ta of the secondary battery 4 to the start time tb of the latest rest time, and the charge / discharge current integrating portion The value measured by 24.

次いで、ステップS15では、SOH検出部29が下記(2)式に基づいて、二次電池4の最新の休止時間後(n回目の休止時間後)におけるSOH(SOH)を求める。
SOH=Qmax/Qmax,i・・・(2)
なお、Qmax,iは、記憶部29Bに記憶された二次電池4の使用初期における満充電量である。
Next, in step S15, the SOH detector 29 obtains SOH (SOH n ) after the latest rest time (after the nth rest time) of the secondary battery 4 based on the following equation (2).
SOH n = Q max / Q max, i (2)
Note that Q max, i is the full charge amount in the initial use of the secondary battery 4 stored in the storage unit 29B.

次いで、ステップS16では、SOH検出部29が、下記(3)式に基づいて、SOHの加重平均値SOHn,aveを算出する。そして、記憶部29Bは、当該加重平均値SOHn,aveを記憶する。 Next, in step S16, the SOH detector 29 calculates a weighted average value SOH n, ave of the SOH based on the following equation (3). Then, the storage unit 29B stores the weighted average value SOH n, ave .

SOHn,ave=((n−1)×SOHn−1,ave+SOH)/n・・・(3)
なお、SOHn−1,aveは、前回の休止時間(n−1回目の休止時間)終了後において、SOH検出部29が算出し、記憶部29Bが記憶した値である。
SOH n, ave = ((n−1) × SOH n−1, ave + SOH n ) / n (3)
SOH n−1, ave is a value calculated by the SOH detection unit 29 and stored in the storage unit 29B after the previous stop time (n−1 stop time) ends.

このようにして算出した加重平均値SOHn,aveは、報知装置5に送出され(ステップS17)、劣化状態検出装置2における処理を終了する。その後、報知装置5は、加重平均値SOHn,aveに応じて、必要な場合には運転者に対して報知を行う。 The weighted average value SOH n, ave calculated in this way is sent to the notification device 5 (step S17), and the process in the degradation state detection device 2 is terminated. Thereafter, the notification device 5 notifies the driver if necessary according to the weighted average value SOH n, ave .

次に、ステップS12において、二次電池4の最新の休止時間が24時間未満であった場合(ステップS12において「No」)について説明する。二次電池4の最新の休止時間が24時間未満である場合には、ステップS18へと進む。   Next, the case where the latest suspension time of the secondary battery 4 is less than 24 hours in Step S12 (“No” in Step S12) will be described. If the latest pause time of the secondary battery 4 is less than 24 hours, the process proceeds to step S18.

ステップS18では、最新の休止時間の開始時においてSOC検出部27が検出した二次電池4のSOCと、前回の休止時間の終了時にSOC検出部27が検出した二次電池4のSOCと、の差ΔSOCを充電状態差検出部28が検出し、当該ΔSOCを補正部25に送出する。   In step S18, the SOC of the secondary battery 4 detected by the SOC detection unit 27 at the start of the latest pause time and the SOC of the secondary battery 4 detected by the SOC detection unit 27 at the end of the previous pause time are calculated. The charge state difference detection unit 28 detects the difference ΔSOC and sends the ΔSOC to the correction unit 25.

次いで、ステップS19では、ステップS18で検出したΔSOCと、二次電池4の最新の休止時間と、の間の相関の強弱を補正部25が判断する。具体的には、二次電池4の最新の休止時間と、ΔSOCと、の間の相関係数(R)を示すマップ(下記の表1)を補正部25が予め有しており、当該マップを参照することによって当該判断を行う。 Next, in step S <b> 19, the correction unit 25 determines the strength of the correlation between ΔSOC detected in step S <b> 18 and the latest rest time of the secondary battery 4. Specifically, the correction unit 25 has a map (Table 1 below) indicating a correlation coefficient (R 2 ) between the latest downtime of the secondary battery 4 and ΔSOC in advance, The determination is made by referring to the map.

このマップ(表1)を作成するに際しては、まず、所定容量の二次電池を搭載した車両について、ランダムにイベントの実行及び休止時間の取得を行うと共に、取得したそれぞれの休止時間の間におけるΔSOC、及び、各休止時間t(ΔSOCに対応するイベント後に開始される休止時間)の測定を行う。次いで、取得された複数のデータ(ΔSOC、t)を、ΔSOCの値及び休止時間tの値の違いに応じて計70個のグループ(ΔSOCが10段階、休止時間tが7段階)に分け、各グループごとのデータについて相関係数を求めることにより当該マップを作成する。なお、データ(ΔSOC、t)の取得は、各グループに少なくとも10個の当該データが含まれるまで行った。   When creating this map (Table 1), first, for a vehicle equipped with a secondary battery of a predetermined capacity, event execution and pause time acquisition are performed at random, and ΔSOC during each pause time acquired. , And each pause time t (the pause time started after the event corresponding to ΔSOC) is measured. Next, the plurality of acquired data (ΔSOC, t) is divided into a total of 70 groups (ΔSOC has 10 levels, and the downtime t has 7 levels) according to the difference between the value of ΔSOC and the value of downtime t, The map is created by obtaining the correlation coefficient for the data for each group. The data (ΔSOC, t) was acquired until at least 10 pieces of the data were included in each group.

Figure 2015118021
Figure 2015118021

本実施形態において、補正部25は、上記の表1における相関係数が0.1以上である場合には(表1において「〇」部分)、ΔSOCと休止時間tとの間の相関が強いものとして判断する。一方、相関係数が0.1未満である場合には(表1において「×」部分)、ΔSOCと休止時間tとの間の相関が弱いものとして補正部25は判断する。なお、ΔSOCと休止時間tとの間における相関の強弱を判断する基準となる相関係数の値は特に限定されない。本実施形態における上記のマップ(表1)が、本発明の「最新の前記休止時間と、前記充電状態差と、の間の相関係数を示すマップ」の一例に相当する。   In the present embodiment, the correction unit 25 has a strong correlation between ΔSOC and the downtime t when the correlation coefficient in the above Table 1 is 0.1 or more (“◯” portion in Table 1). Judge as a thing. On the other hand, when the correlation coefficient is less than 0.1 (“x” portion in Table 1), the correction unit 25 determines that the correlation between ΔSOC and the downtime t is weak. Note that the value of the correlation coefficient serving as a reference for determining the strength of the correlation between ΔSOC and the downtime t is not particularly limited. The above map (Table 1) in the present embodiment corresponds to an example of “a map indicating a correlation coefficient between the latest pause time and the charge state difference” of the present invention.

本実施形態において、相関係数が0.1以上である場合(表1において「〇」の場合)には、ステップS20へと進む。   In this embodiment, when the correlation coefficient is 0.1 or more (in the case of “◯” in Table 1), the process proceeds to step S20.

ステップS20では、補正部25が、充放電サイクル数及び最新の休止時間に基づいて補正係数Aを求める。この補正係数Aは、補正部25が予め有するマップ(下記の表2)を参照して求める。例えば、劣化状態検出装置2による検出時において、カウンタ26が計測した充放電サイクル数が50回であり、最新の休止時間が10時間であった場合には、下記表2における「1.0018」を補正係数Aとして採用する。   In step S20, the correction unit 25 calculates the correction coefficient A based on the number of charge / discharge cycles and the latest pause time. The correction coefficient A is obtained with reference to a map (Table 2 below) that the correction unit 25 has in advance. For example, when the number of charge / discharge cycles measured by the counter 26 is 50 and the latest pause time is 10 hours at the time of detection by the deterioration state detection device 2, “1.0018” in Table 2 below. Is adopted as the correction coefficient A.

Figure 2015118021
Figure 2015118021

このマップ(表2)を作成するに際しては、まず、所定容量の二次電池について、SOC0%の状態から1Cの充電レートで充電してSOC100%とし、10分休止した後に1Cの放電レートで放電してSOC0%とする。これを1サイクルとして、各サイクルの間に10分の休止時間を挟みながら当該サイクルを所定回数(繰り返し数Nとする。)繰り返す。次いで、所定の休止時間(休止時間Tとする。)を挟み、0.2Cの充放電レートで充放電を行った際における放電容量Pを求め、休止時間Tを24時間として同様に求めた放電容量Qに対する比として補正係数Aを設定する(A=P/Q)。   When creating this map (Table 2), first, charge a secondary battery of a predetermined capacity from the SOC 0% state at a charge rate of 1C to 100% SOC, and after 10 minutes of rest, discharge at a discharge rate of 1C. And set the SOC to 0%. This is defined as one cycle, and the cycle is repeated a predetermined number of times (repetition number N) with a 10-minute rest period between each cycle. Next, the discharge capacity P when charging / discharging was performed at a charge / discharge rate of 0.2 C with a predetermined pause time (referred to as pause time T) was obtained, and the discharge time was similarly obtained with the pause time T being 24 hours. A correction coefficient A is set as a ratio to the capacity Q (A = P / Q).

例えば、表1において、休止時間が「1時間以上 9時間未満」、充放電サイクル数が「101回〜200回」における値「1.0047」を求める際は、まず、上記の繰り返し数Nを100回とし、休止時間Tを1時間として上記の放電容量Pを求める。そして、繰り返し数Nを同様に100回とし、休止時間Tを24時間として求めた放電容量Qに対する比(P/Q)を計算して求めた値である。この様にして、充放電サイクル数及び休止時間Tの条件ごとに補正係数Aを算出する。   For example, in Table 1, when calculating the value “1.0047” when the pause time is “1 hour or more and less than 9 hours” and the number of charge / discharge cycles is “101 times to 200 times”, first, the above repetition number N is set to The discharge capacity P is determined with 100 times and a rest time T of 1 hour. The value is obtained by calculating the ratio (P / Q) with respect to the discharge capacity Q obtained by setting the repetition number N to 100 times in the same manner and the rest time T being 24 hours. In this way, the correction coefficient A is calculated for each condition of the number of charge / discharge cycles and the downtime T.

次いで、ステップS21では、充放電電流積算部24が計測した充放電電流の積算量(∫Idt)に対し、ステップS20で求めた補正係数Aを乗じることにより、補正積算量(A×∫Idt)を算出する。そして、下記(4)式に基づいて、二次電池4の補正満充電容量Qmax,rを求める。 Next, in step S21, the correction integrated amount (A × ∫Idt) is obtained by multiplying the integrated amount (∫Idt) of the charge / discharge current measured by the charge / discharge current integration unit 24 by the correction coefficient A obtained in step S20. Is calculated. Then, the corrected full charge capacity Q max, r of the secondary battery 4 is obtained based on the following equation (4).

max,r=(A×∫Idt)/ΔSOC×100・・・(4)
なお、上記(4)式において、∫Idtは、前回の休止時間の終了時taから、最新の休止時間の開始時tbまでの間の定積分であり、ΔSOCは充電状態差検出部28が検出した二次電池4の充電状態差である。
Q max, r = (A × ∫Idt) / ΔSOC × 100 (4)
In the above equation (4), ∫Idt is a definite integral from the end time ta of the previous stop time to the start time tb of the latest stop time, and ΔSOC is detected by the charge state difference detection unit 28. The charged state difference of the secondary battery 4 is.

次いで、ステップS22では、下記(5)式に基づいて、二次電池4の補正後のSOH(SOHn,r)を求める。
SOHn,r=Qmax,r/Qmax,i・・・(5)
Next, in step S22, the corrected SOH (SOH n, r ) of the secondary battery 4 is obtained based on the following formula (5).
SOH n, r = Q max, r / Q max, i (5)

次いで、SOH検出部29は、当該SOHn,rを用いて加重平均値を算出し(ステップS16)、記憶部29Bは当該加重平均値を記憶する。また、当該加重平均値は、報知装置5に送出され(ステップS17)、劣化状態検出装置2における処理を終了する。 Next, the SOH detection unit 29 calculates a weighted average value using the SOH n, r (step S16), and the storage unit 29B stores the weighted average value. Moreover, the said weighted average value is sent to the alerting | reporting apparatus 5 (step S17), and the process in the degradation state detection apparatus 2 is complete | finished.

ステップS19において、相関係数が0.1未満である場合(表1において「×」の場合)、ステップS23へと進む。   In step S19, when the correlation coefficient is less than 0.1 (in the case of “x” in Table 1), the process proceeds to step S23.

ステップS23では、既に説明したステップS14と同様に、上記(1)式に基づいて、二次電池4の満充電容量Qmaxの算出を行う。次いで、ステップS24では、ステップS15と同様に、上記(2)式を用いて二次電池4のSOHを求める。 In step S23, the full charge capacity Qmax of the secondary battery 4 is calculated based on the above equation (1), as in step S14 already described. Next, in step S24, as in step S15, the SOH n of the secondary battery 4 is obtained using the above equation (2).

次いで、SOH検出部29は、当該SOHを用いて加重平均値を算出し(ステップS16)、記憶部29Bは当該加重平均値を記憶する。そして、当該加重平均値は、報知装置5に送出され(ステップS17)、劣化状態検出装置2における処理を終了する。 Next, the SOH detection unit 29 calculates a weighted average value using the SOH n (step S16), and the storage unit 29B stores the weighted average value. And the said weighted average value is sent to the alerting | reporting apparatus 5 (step S17), and the process in the degradation state detection apparatus 2 is complete | finished.

なお、本例においては、二次電池4としてリチウムイオン二次電池を用いているが、このようなリチウムイオン二次電池は、例えば以下の方法により作製することができる。   In this example, a lithium ion secondary battery is used as the secondary battery 4, but such a lithium ion secondary battery can be manufactured by the following method, for example.

まず、硫酸ニッケルと硫酸コバルトと硫酸アルミニウムとを溶解した水溶液に、水酸化ナトリウムとアンモニアを供給し、共沈法によりニッケルとコバルトとアルミニウムのモル比が80:15:5で固溶してなる金属複合水酸化物を作成する。次いで、この金属複合水酸化物と市販の水酸化リチウム一水和物(FMC社製)とを、Li以外の金属(Ni、Co、Al)の合計のモル数とLiのモル数の比が1:1となるように秤量して十分混合した後、昇温速度3℃/minで昇温して本焼成(900℃ 10時間)し、その後室温まで冷却し、これを正極活物質とする。   First, sodium hydroxide and ammonia are supplied to an aqueous solution in which nickel sulfate, cobalt sulfate, and aluminum sulfate are dissolved, and are dissolved in a molar ratio of nickel, cobalt, and aluminum by a coprecipitation method at 80: 15: 5. Create a metal composite hydroxide. Next, the ratio of the total number of moles of metals other than Li (Ni, Co, Al) and the number of moles of Li is determined by combining this metal composite hydroxide and commercially available lithium hydroxide monohydrate (manufactured by FMC). After being weighed and mixed sufficiently so as to be 1: 1, the temperature was raised at a heating rate of 3 ° C./min, followed by main firing (900 ° C. for 10 hours), and then cooling to room temperature, which was used as a positive electrode active material .

また、電極の作製は、上記の正極活物質を90質量%、導電助剤としてTIMCAL社製SuperPとTIMCAL社製KS6を1:1で混合したものを5質量%、バインダとしてポリフッ化ビニリデン(PVDF)5質量%、及びスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合して正極活物質スラリーを作製し、得られた正極活物質スラリーを集電体であるアルミニウム箔の一方の面側に塗布し乾燥させる。その後、プレス処理を行い、正極活物質層を片面に有する正極を作製する。   The electrode was prepared by 90% by mass of the above positive electrode active material, 5% by mass of 1: 1 mixture of TIMCAL SuperP and TIMCAL KS6 as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder. ) 5% by mass and an appropriate amount of N-methyl-2-pyrrolidone (NMP) as a slurry viscosity adjusting solvent were mixed to prepare a positive electrode active material slurry, and the obtained positive electrode active material slurry was used as an aluminum foil as a current collector. It is applied to one side of and dried. Then, a press process is performed and the positive electrode which has a positive electrode active material layer on one side is produced.

また、グラファイト90質量%、アセチレンブラック5質量%、PVdF10質量%、およびNMP適量を混合して、負極活物質スラリーを作製し、得られた負極活物質スラリーを集電体である銅箔の一方の面側に塗布し乾燥させる。次いで、プレス処理を行い、負極活物質層を片面に有する負極を作製する。   Also, 90% by mass of graphite, 5% by mass of acetylene black, 10% by mass of PVdF, and an appropriate amount of NMP were mixed to prepare a negative electrode active material slurry, and the obtained negative electrode active material slurry was one side of a copper foil as a current collector. Apply to the surface side of and dry. Next, press treatment is performed to produce a negative electrode having a negative electrode active material layer on one side.

次に、得られた電極を15cm×15cmの正方形にカットする。また、正極と負極の間に入れるセパレータ(材質:ポリプロピレン、厚さ:25um)を18cm×18cmの正方形にカットする。そして、当該電極の未塗工部に超音波溶接でタブ(正極:Alタブ、負極:Niタブ)を取り付け、正極電極−セパレータ(材質:ポリプロピレン、厚さ:25um)−負極電極の順に積層し、真空ラミネートすることにより、リチウムイオン二次電池を作製することができる。なお、当該リチウムイオン二次電池の電解液としては、エチレンカーボネート(EC)およびジエチレンカーボネート(DEC)を体積比2:3で混合した溶媒に、リチウム塩LiPFを1Mの濃度で溶解させたものを用いることができる。 Next, the obtained electrode is cut into a 15 cm × 15 cm square. In addition, a separator (material: polypropylene, thickness: 25 um) inserted between the positive electrode and the negative electrode is cut into a 18 cm × 18 cm square. Then, a tab (positive electrode: Al tab, negative electrode: Ni tab) is attached to the uncoated portion of the electrode by ultrasonic welding, and stacked in the order of positive electrode-separator (material: polypropylene, thickness: 25 um) -negative electrode. The lithium ion secondary battery can be manufactured by vacuum lamination. In addition, as an electrolytic solution of the lithium ion secondary battery, lithium salt LiPF 6 is dissolved at a concentration of 1M in a solvent in which ethylene carbonate (EC) and diethylene carbonate (DEC) are mixed at a volume ratio of 2: 3. Can be used.

次に、本実施形態における作用について説明する。   Next, the operation in this embodiment will be described.

本実施形態では、二次電池4の最新の休止時間が24時間未満である場合(二次電池4内の電子状態が均一化していない場合)、当該休止時間後に当該二次電池4のSOHを検出する際に、休止時間に応じて充放電電流の積算量(∫Idt)を補正し、補正後の積算量(A×∫Idt)を用いてSOHの検出を行う。このため、休止時間の長さによらず、当該二次電池4のSOHを精度良く検出することができる。   In the present embodiment, when the latest suspension time of the secondary battery 4 is less than 24 hours (when the electronic state in the secondary battery 4 is not uniform), the SOH of the secondary battery 4 is changed after the suspension time. At the time of detection, the integrated amount (∫Idt) of the charge / discharge current is corrected according to the resting time, and the SOH is detected using the corrected integrated amount (A × ∫Idt). For this reason, the SOH of the secondary battery 4 can be accurately detected regardless of the length of the downtime.

また、本実施形態における劣化状態検出装置2は、二次電池4の充放電サイクル数に応じて充放電電流の積算量(∫Idt)を補正する。このため、二次電池4の充放電サイクル数を加味してより精度の良いSOHの検出を行うことができる。   Moreover, the deterioration state detection apparatus 2 in the present embodiment corrects the integrated amount (∫Idt) of the charge / discharge current according to the number of charge / discharge cycles of the secondary battery 4. For this reason, more accurate detection of SOH can be performed in consideration of the number of charge / discharge cycles of the secondary battery 4.

また、本実施形態では、二次電池4の最新の休止時間が24時間未満の場合において、当該最新の休止時間と、ΔSOC(前回の休止時間の終了時における二次電池4のSOCと最新の休止状態の開始時における二次電池4のSOCとの差)と、に基づく相関係数が、所定値(本例では0.1)以上の場合において上記の積算量(∫Idt)の補正を行う。このため、より確実に当該補正による検出精度向上の効果を奏することができる。   In the present embodiment, when the latest suspension time of the secondary battery 4 is less than 24 hours, the latest suspension time and ΔSOC (the SOC of the secondary battery 4 at the end of the previous suspension time and the latest When the correlation coefficient based on the difference between the SOC and the SOC of the secondary battery 4 at the start of the hibernation state is equal to or greater than a predetermined value (0.1 in this example), the integration amount (∫Idt) is corrected. Do. For this reason, the effect of the detection accuracy improvement by the said correction | amendment can be show | played more reliably.

また、本実施形態では、SOH検出部29が上記(3)式に基づいて、SOHの加重平均値SOHn,aveを算出する。これにより、SOHの測定時におけるバラツキを平滑化することができる。また、加重平均値SOHn,aveを算出する際に、二次電池4の休止時間とΔSOCとの相関係数が0.1未満である場合の値(即ち、ステップS24で求めたSOH)を除外することとしてもよい。この場合には、二次電池4の最新の休止時間及びΔSOCの相関が弱いデータが加重平均値SOHn,aveの算出に用いられることによる当該算出値の精度低下を抑制することができる。 In the present embodiment, the SOH detector 29 calculates the weighted average value SOH n, ave of the SOH based on the above equation (3). Thereby, the variation at the time of measurement of SOH can be smoothed. Further, when the weighted average value SOH n, ave is calculated, a value when the correlation coefficient between the rest time of the secondary battery 4 and ΔSOC is less than 0.1 (that is, SOH n obtained in step S24). May be excluded. In this case, it is possible to suppress a decrease in accuracy of the calculated value due to the use of data having a weak correlation between the latest downtime of the secondary battery 4 and ΔSOC for calculating the weighted average value SOH n, ave .

なお、以上に説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

例えば、ステップS19において、二次電池4の最新の休止時間及びΔSOCの相関係数が0.1未満である場合には、前回(n−1回)の休止時間の終了後にSOH検出部29で検出し、記憶部29Bで記憶したSOHn−1を報知装置5に送出することとしてもよい。 For example, in step S19, when the latest downtime of the secondary battery 4 and the correlation coefficient of ΔSOC are less than 0.1, the SOH detection unit 29 performs after the end of the previous downtime (n−1 times). The SOH n−1 detected and stored in the storage unit 29B may be sent to the notification device 5.

また、例えば、上記の場合において、当該相関係数が0.1未満である状態が所定回数連続した際に、その後の処理において強制的にステップS14へ進むこととしてもよい。この場合には、劣化状態検出装置2による検出値が連続して更新されないことによる当該検出値の鮮度劣化を抑制することができる。   Further, for example, in the above case, when the state where the correlation coefficient is less than 0.1 continues for a predetermined number of times, the process may be forced to proceed to step S14 in the subsequent processing. In this case, it is possible to suppress the deterioration of the freshness of the detected value due to the fact that the detected value by the deterioration state detecting device 2 is not continuously updated.

1・・・車両
2・・・劣化状態検出装置
21・・・タイマー
23・・・休止時間判定部
24・・・充放電電流積算部
25・・・補正部
26・・・カウンタ
27・・・SOC検出部
28・・・充電状態差検出部
29・・・SOH検出部
4・・・二次電池
DESCRIPTION OF SYMBOLS 1 ... Vehicle 2 ... Degradation state detection apparatus 21 ... Timer 23 ... Rest time determination part 24 ... Charge / discharge current integration part 25 ... Correction part 26 ... Counter 27 ... SOC detection unit 28 ... charge state difference detection unit 29 ... SOH detection unit 4 ... secondary battery

Claims (3)

二次電池の充電状態を検出するSOC検出部と、
前記二次電池の休止時間を測定するタイマーと、
前記休止時間が所定時間以上か否かを判定する休止時間判定部と、
前回の前記休止時間の終了時から最新の前記休止時間の開始時までの充放電電流の積算量を検出する充放電電流積算部と、
前回の前記休止時間の終了時における前記二次電池の充電状態と、最新の前記休止状態の開始時における前記二次電池の充電状態と、の差である充電状態差を検出する充電状態差検出部と、
前記積算量と、前記充電状態差と、に基づいて、前記二次電池の劣化状態を検出するSOH検出部と、
前記充放電電流積算部が検出した前記積算量を補正する補正部と、を備え、
前記補正部は、最新の前記休止時間が前記所定時間未満であると前記休止時間判定部が判定した場合に、最新の前記休止時間に基づいて、前記積算量を補正し、
前記SOH検出部は、最新の前記休止時間が前記所定時間未満であると前記休止時間判定部が判定した場合に、前記補正部が補正した前記積算量に基づいて、前記劣化状態を検出することを特徴とする前記二次電池の劣化状態検出装置。
An SOC detector for detecting a charge state of the secondary battery;
A timer for measuring the rest time of the secondary battery;
A pause time determination unit that determines whether the pause time is a predetermined time or more;
A charge / discharge current integrating unit that detects an integrated amount of charge / discharge current from the end of the previous stop time to the start of the latest stop time;
Charge state difference detection for detecting a charge state difference that is a difference between the state of charge of the secondary battery at the end of the previous rest period and the state of charge of the secondary battery at the start of the latest rest state And
An SOH detector that detects a deterioration state of the secondary battery based on the integrated amount and the charge state difference;
A correction unit for correcting the integrated amount detected by the charge / discharge current integrating unit,
The correction unit corrects the integrated amount based on the latest pause time when the pause time determination unit determines that the latest pause time is less than the predetermined time,
The SOH detection unit detects the deterioration state based on the integrated amount corrected by the correction unit when the pause time determination unit determines that the latest pause time is less than the predetermined time. The deterioration state detection apparatus of the said secondary battery characterized by these.
請求項1に記載の劣化状態検出装置であって、
前記二次電池の充放電サイクル数をカウントするカウンタをさらに備え、
前記補正部は、最新の前記休止時間が前記所定時間未満であると前記休止時間判定部が判定した場合に、最新の前記休止時間に加え、前記充放電サイクル数に基づいて、前記積算量を補正することを特徴とする劣化状態検出装置。
The deterioration state detection apparatus according to claim 1,
A counter that counts the number of charge / discharge cycles of the secondary battery;
The correction unit, when the pause time determination unit determines that the latest pause time is less than the predetermined time, in addition to the latest pause time, based on the charge / discharge cycle number, A deterioration state detection device characterized by correcting.
請求項1又は2に記載の劣化状態検出装置であって、
前記補正部は、最新の前記休止時間と、前記充電状態差と、の間の相関係数を示すマップを有しており、前記マップにおける前記相関係数が所定値以上である場合に、前記積算量を補正することを特徴とする劣化状態検出装置。
The deterioration state detection apparatus according to claim 1 or 2,
The correction unit has a map indicating a correlation coefficient between the latest pause time and the state of charge difference, and when the correlation coefficient in the map is equal to or greater than a predetermined value, A deterioration state detecting device, wherein the integrated amount is corrected.
JP2013261979A 2013-12-19 2013-12-19 Degradation state detection device Active JP6221728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261979A JP6221728B2 (en) 2013-12-19 2013-12-19 Degradation state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261979A JP6221728B2 (en) 2013-12-19 2013-12-19 Degradation state detection device

Publications (2)

Publication Number Publication Date
JP2015118021A true JP2015118021A (en) 2015-06-25
JP6221728B2 JP6221728B2 (en) 2017-11-01

Family

ID=53530866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261979A Active JP6221728B2 (en) 2013-12-19 2013-12-19 Degradation state detection device

Country Status (1)

Country Link
JP (1) JP6221728B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123245A (en) * 2016-01-06 2017-07-13 トヨタ自動車株式会社 Battery system of electric motor vehicle
WO2018008469A1 (en) * 2016-07-08 2018-01-11 株式会社カネカ Electricity storage device, electricity storage system, and power supply system
KR102210696B1 (en) * 2020-07-29 2021-02-02 주식회사 피엠그로우 Apparatus and method for charging and discharging test scheduling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646265A (en) * 2017-01-22 2017-05-10 华南理工大学 Method for estimating SOC of lithium battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191109A (en) * 1993-12-27 1995-07-28 Honda Motor Co Ltd Residual capacity detecting method for electric automobile battery
JP2001272444A (en) * 2000-03-27 2001-10-05 Hitachi Maxell Ltd Estimating device for remaining capacity of secondary battery
JP2007055450A (en) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd Estimating system for deteriorated state of capacitor device
US20120035873A1 (en) * 2008-08-08 2012-02-09 Kang Jung-Soo Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2012050014A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
WO2013141100A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Cell state estimation device
US20130320989A1 (en) * 2011-03-07 2013-12-05 Hitachi, Ltd. Battery state estimation method and battery control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191109A (en) * 1993-12-27 1995-07-28 Honda Motor Co Ltd Residual capacity detecting method for electric automobile battery
JP2001272444A (en) * 2000-03-27 2001-10-05 Hitachi Maxell Ltd Estimating device for remaining capacity of secondary battery
JP2007055450A (en) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd Estimating system for deteriorated state of capacitor device
US20120035873A1 (en) * 2008-08-08 2012-02-09 Kang Jung-Soo Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2012050014A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
US20130320989A1 (en) * 2011-03-07 2013-12-05 Hitachi, Ltd. Battery state estimation method and battery control system
WO2013141100A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Cell state estimation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123245A (en) * 2016-01-06 2017-07-13 トヨタ自動車株式会社 Battery system of electric motor vehicle
WO2018008469A1 (en) * 2016-07-08 2018-01-11 株式会社カネカ Electricity storage device, electricity storage system, and power supply system
JPWO2018008469A1 (en) * 2016-07-08 2019-04-25 株式会社カネカ Power storage device, power storage system, and power supply system
KR102210696B1 (en) * 2020-07-29 2021-02-02 주식회사 피엠그로우 Apparatus and method for charging and discharging test scheduling

Also Published As

Publication number Publication date
JP6221728B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US10126367B2 (en) Detection method of LI plating, method and apparatus for charging secondary battery and secondary battery system using the same
JP5594371B2 (en) Lithium-ion battery degradation rate estimation method and degradation rate estimation apparatus
US9041405B2 (en) Condition estimation device and method of generating open circuit voltage characteristic
US20120226455A1 (en) Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
JP6256765B2 (en) Charge state estimation method
JP6355552B2 (en) Lithium ion secondary battery charging method and charging control system thereof
WO2013133017A1 (en) Method for controlling charging/discharging of lithium-ion secondary cell, and charging/discharging controller
JP6221728B2 (en) Degradation state detection device
JP2010266221A (en) Battery state estimating device
US20140111214A1 (en) Electric storage condition detecting apparatus
JP6128014B2 (en) Vehicle charging control device
JP2017133870A (en) Device for detecting abnormal degradation of lithium ion secondary battery and method for detecting abnormal degradation
JP2012003863A (en) Method and device for detecting lithium dendrite precipitation
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2017203659A (en) Degradation determination device, computer program and degradation determination method
JP5565276B2 (en) Method for correcting the amount of charge in a lithium ion battery
JP2013019852A (en) Device and method for estimating deterioration rate
JP2013196820A (en) Lithium ion secondary battery system and precipitation determination method
JP2017032294A (en) Method for estimating charge rate of secondary battery, charge rate estimation device, and soundness estimation device
JP4954791B2 (en) Voltage prediction method for power storage devices
JP6493762B2 (en) Battery system
JP2019197698A (en) Lithium ion battery diagnosis method and its diagnosis apparatus
JP2019032274A (en) Battery state estimation device and power supply device
JP2015065119A (en) Power storage device
JP2014002122A (en) Method of estimating total battery capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151