JP2014002122A - Method of estimating total battery capacity - Google Patents

Method of estimating total battery capacity Download PDF

Info

Publication number
JP2014002122A
JP2014002122A JP2012139395A JP2012139395A JP2014002122A JP 2014002122 A JP2014002122 A JP 2014002122A JP 2012139395 A JP2012139395 A JP 2012139395A JP 2012139395 A JP2012139395 A JP 2012139395A JP 2014002122 A JP2014002122 A JP 2014002122A
Authority
JP
Japan
Prior art keywords
battery capacity
battery
total
soc
terminal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012139395A
Other languages
Japanese (ja)
Other versions
JP5772737B2 (en
Inventor
Takayuki Nakayama
孝之 中山
Akio Mizuguchi
暁夫 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012139395A priority Critical patent/JP5772737B2/en
Publication of JP2014002122A publication Critical patent/JP2014002122A/en
Application granted granted Critical
Publication of JP5772737B2 publication Critical patent/JP5772737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a total battery capacity estimation method configured to reduce the time required for acquiring the total battery capacity.SOLUTION: A total battery capacity estimation method includes: a measurement step S2 that discharges a battery 100 in a range smaller than the total range from SOC 0% to SOC 100% to measure a sectional discharge amount Qa discharged at that time; and a total capacity estimation step S3 that estimates a total battery capacity Cb of the battery 100 from the sectional discharge amount Qa.

Description

本発明は、電池の全電池容量を推定する全電池容量推定方法に関する。   The present invention relates to a total battery capacity estimation method for estimating a total battery capacity of a battery.

従来より、全電池容量を測定する方法として、電池の充電状態(SOC:State Of Charge)がSOC100%となるまで電池を充電した後、SOC100%からSOC0%まで(リチウムイオン二次電池では例えば4.1Vから3.0Vまで)放電させて、その際に放電された放電電気量を全電池容量(放電容量)とする方法がある。なお、関連する従来技術として、例えば特許文献1が挙げられる。   Conventionally, as a method of measuring the total battery capacity, after charging the battery until the state of charge (SOC) of the battery reaches 100% SOC, from 100% SOC to 0% SOC (for example, 4 for a lithium ion secondary battery). .1V to 3.0V), and the amount of discharged electricity discharged at that time is the total battery capacity (discharge capacity). In addition, as a related prior art, patent document 1 is mentioned, for example.

特開2002−352864号公報JP 2002-352864 A

しかしながら、正確な放電容量を測定するには、電池をSOC100%からSOC0%まで放電させるにあたり、放電電流の大きさを例えば0.3C程度の低電流とするため、全電池容量を測定するのに多くの時間が掛かる。   However, in order to accurately measure the discharge capacity, when discharging the battery from SOC 100% to SOC 0%, the discharge current is set to a low current of, for example, about 0.3 C. It takes a lot of time.

本発明は、かかる現状に鑑みてなされたものであって、全電池容量の取得に掛かる時間を短くできる全電池容量推定方法を提供するものである。   The present invention has been made in view of the present situation, and provides a total battery capacity estimation method capable of shortening the time taken to acquire the total battery capacity.

上記課題を解決するための本発明の一態様は、電池を、SOC0%からSOC100%の全区間よりも狭い区間で放電させて、そのときに放電された区間放電電気量Qaを測定する測定ステップと、前記区間放電電気量Qaから前記電池の全電池容量Cbを推定する全容量推定ステップと、を備える全電池容量推定方法である。   One aspect of the present invention for solving the above problems is a measurement step in which a battery is discharged in a section narrower than the entire section from SOC 0% to SOC 100%, and the section discharge electricity quantity Qa discharged at that time is measured. And a total capacity estimating step of estimating the total battery capacity Cb of the battery from the section discharge electricity quantity Qa.

この全電池容量推定方法では、全電池容量Cbを推定するために行う電池の放電を、SOC100%からSOC0%の全区間よりも狭い区間、例えば、SOC70%からSOC20%までの区間としている。このため、放電時間が短く済み、全電池容量Cbの取得に掛かる時間を短くできる。   In this total battery capacity estimation method, the discharge of the battery performed to estimate the total battery capacity Cb is a section narrower than the entire section from SOC 100% to SOC 0%, for example, the section from SOC 70% to SOC 20%. For this reason, the discharge time is shortened, and the time required for obtaining the total battery capacity Cb can be shortened.

更に、上記の全電池容量推定方法であって、前記測定ステップよりも前に、開回路電圧が第1端子間電圧V1の第1充電状態にある前記電池を、定電流値Iaで放電させて、放電を開始した直後の第2端子間電圧V2と前記第1端子間電圧V1との差分(V1−V2)である電圧降下量αを取得する電圧降下量取得ステップを備え、充電状態がSOC100%よりも小さい第2充電状態における前記電池の開回路電圧を第3端子間電圧V3とし、第4端子間電圧V4をV4=V3−αとし、充電状態がSOC0%よりも大きい第3充電状態における前記電池の開回路電圧を第5端子間電圧V5(但し、V5<V3)とし、第6端子間電圧V6をV6=V5−αとしたとき、前記測定ステップは、前記電池を、少なくとも前記第4端子間電圧V4から前記第6端子間電圧V6に至るまで、前記定電流値Iaで放電させて、前記第4端子間電圧V4から前記第6端子間電圧V6に至るまでに放電された前記区間放電電気量Qaを測定するステップである全電池容量推定方法とすると良い。   Furthermore, in the total battery capacity estimation method described above, before the measurement step, the battery in which the open circuit voltage is in the first charging state with the first terminal voltage V1 is discharged at a constant current value Ia. A voltage drop amount obtaining step for obtaining a voltage drop amount α which is a difference (V1−V2) between the second terminal voltage V2 immediately after the start of discharge and the first terminal voltage V1, and the state of charge is SOC100. In the second charging state smaller than%, the open circuit voltage of the battery is the third inter-terminal voltage V3, the fourth inter-terminal voltage V4 is V4 = V3-α, and the third charging state is greater than SOC 0%. When the open circuit voltage of the battery at 5 is the fifth inter-terminal voltage V5 (where V5 <V3) and the sixth inter-terminal voltage V6 is V6 = V5-α, the measuring step includes at least the battery Fourth terminal voltage V4 From the fourth inter-terminal voltage V4 to the sixth inter-terminal voltage V6, the interval discharge electricity quantity Qa discharged from the fourth inter-terminal voltage V4 to the sixth inter-terminal voltage V6. The total battery capacity estimation method which is a step of measuring

測定ステップにおいて、例えば0.7C以上の比較的大きな電流で電池を放電させると、放電時間が短くなるので、全電池容量Cbの取得に掛かる時間をより短縮できる。しかし、このような比較的大きな電流で電池を放電させると、電池内部抵抗による電圧降下が大きく生じるので、全電池容量を正確に測定できない。即ち、電圧降下によって見掛けの端子間電圧が例えば0.1V下がったとすると、例えば4.1Vから3.0Vまでの電圧区間で放電電流を測定したつもりでも、実際にはそれよりも0.1V高い3.1Vまでの電圧区間で放電電流を測定したこととなるので、全電池容量を正確に求められない。しかも、電池内部抵抗の大きさは電池毎にばらつくので、電圧降下量も電池毎に異なるため、電圧降下量を考慮して測定する電圧区間を予め決めておくことは困難である。   In the measurement step, for example, if the battery is discharged with a relatively large current of 0.7 C or more, the discharge time is shortened, so that the time required for obtaining the total battery capacity Cb can be further shortened. However, if the battery is discharged with such a relatively large current, a voltage drop due to the internal resistance of the battery is large, so that the total battery capacity cannot be measured accurately. That is, if the apparent terminal voltage drops by 0.1 V due to the voltage drop, for example, even if the discharge current is measured in the voltage section from 4.1 V to 3.0 V, for example, it is actually 0.1 V higher than that. Since the discharge current was measured in the voltage interval up to 3.1 V, the total battery capacity cannot be obtained accurately. In addition, since the magnitude of the battery internal resistance varies from battery to battery, the amount of voltage drop also varies from battery to battery, so it is difficult to predetermine a voltage interval to be measured in consideration of the amount of voltage drop.

これに対し、この全電池容量推定方法では、測定に係る電池を定電流値Iaで放電させたときに生じる電圧降下量αを考慮に入れて、少なくとも第4端子間電圧V4から第6端子間電圧V6まで定電流値Iaで電池の放電を行う。そして、第4端子間電圧V4から第6端子間電圧V6までの区間放電電気量Qaを測定して、この区間放電電気量Qaから全電池容量Cbを推定する。これにより、電池毎に異なる電池内部抵抗による電圧降下の影響を除くことができるので、定電流値Iaの大きさに拘わらず、全電池容量Cbを精度良く推定できる。   On the other hand, in this total battery capacity estimation method, taking into account the voltage drop amount α generated when the battery in measurement is discharged at the constant current value Ia, at least the voltage between the fourth terminal V4 and the sixth terminal. The battery is discharged at a constant current value Ia up to a voltage V6. Then, the section discharge electricity quantity Qa from the fourth terminal voltage V4 to the sixth terminal voltage V6 is measured, and the total battery capacity Cb is estimated from the section discharge electricity quantity Qa. As a result, the influence of the voltage drop due to the battery internal resistance that differs for each battery can be eliminated, so that the total battery capacity Cb can be accurately estimated regardless of the magnitude of the constant current value Ia.

なお、電圧降下量αを取得する電圧降下量取得ステップは、区間放電電気量Qaを測定する測定ステップとは時間的に離れて行ってもよいし、測定ステップの直前に行って引き続き測定ステップを行うようにしてもよい。
また、第1充電状態は、適宜選択することができ、第2充電状態のSOCよりもSOCが大きい充電状態、第2充電状態のSOCとSOCが等しい充電状態(第1充電状態=第2充電状態)、第2充電状態のSOCよりもSOCが小さく、第3充電状態のSOCよりもSOCが大きい充電状態、第3充電状態のSOCとSOCが等しい充電状態(第1充電状態=第3充電状態)、或いは、第3充電状態のSOCよりもSOCが小さい充電状態とすることができる。
Note that the voltage drop amount acquisition step for acquiring the voltage drop amount α may be performed away from the measurement step for measuring the section discharge electricity quantity Qa, or may be performed immediately before the measurement step to continue the measurement step. You may make it perform.
Further, the first charge state can be selected as appropriate, a charge state in which the SOC is larger than the SOC in the second charge state, a charge state in which the SOC and SOC in the second charge state are equal (first charge state = second charge) State), a charging state in which the SOC is smaller than the SOC in the second charging state and the SOC is larger than that in the third charging state, and a charging state in which the SOC and SOC in the third charging state are equal (first charging state = third charging) State) or a state of charge having a smaller SOC than that of the third state of charge.

更に、上記の全電池容量推定方法であって、前記第3充電状態は、SOC20%以下の充電状態である全電池容量推定方法とすると良い。   Furthermore, in the total battery capacity estimation method described above, the third charge state may be a total battery capacity estimation method in which the SOC is 20% or less.

電池は、正極板における正極活物質及び負極板における負極活物質の目付け量の多寡によって、電池毎に全電池容量Cbがばらつく。そして、この全電池容量Cbのバラツキは、横軸をSOC(%)、縦軸を開回路電圧の端子間電圧(V)とした放電曲線において、SOC20%以下の領域内で大きな違いとなって現れる傾向にある。従って、区間放電電気量Qaを測定する領域内にこのSOC20%以下の領域を含むように、第3充電状態をSOC20%以下とすることにより、電池毎の区間放電電気量Qa(区間電池容量Ca)の差が明確になり易くなる。これにより、各々の電池の全電池容量Cbをより精度良く推定できる。
なお、第3充電状態を、SOC15%以下の充電状態とすると更に好ましい。
In the battery, the total battery capacity Cb varies from battery to battery depending on the amount of the positive electrode active material in the positive electrode plate and the basis weight of the negative electrode active material in the negative electrode plate. The variation in the total battery capacity Cb is greatly different within a region where the SOC is 20% or less in a discharge curve in which the horizontal axis is SOC (%) and the vertical axis is the open-circuit voltage (V) between terminals. It tends to appear. Therefore, by setting the third state of charge to SOC 20% or less so that the area in which the section discharge electricity amount Qa is measured includes this SOC 20% or less region, the section discharge electricity amount Qa (section battery capacity Ca) for each battery is set. ) Is easily clarified. Thereby, the total battery capacity Cb of each battery can be estimated more accurately.
It is more preferable that the third state of charge is a state of charge of SOC 15% or less.

更に、上記のいずれかに記載の全電池容量推定方法であって、前記第2充電状態は、SOC70%以上の充電状態である全電池容量推定方法とすると良い。   Furthermore, the total battery capacity estimation method according to any one of the above, wherein the second charge state is a total battery capacity estimation method in which the SOC is 70% or more.

第2充電状態をこのようにすることで、測定ステップで測定する区間放電電気量Qaと、全容量推定ステップで推定する全電池容量Cbとの相関をより高くできるので、全電池容量Cbをより精度良く推定できる。
なお、第2充電状態を、SOC75%以上の充電状態とすると更に好ましい。
By making the second state of charge in this way, the correlation between the section discharge electricity quantity Qa measured in the measurement step and the total battery capacity Cb estimated in the total capacity estimation step can be made higher, so that the total battery capacity Cb is further increased. It can be estimated with high accuracy.
It is more preferable that the second state of charge is a state of charge of SOC 75% or more.

更に、上記のいずれかに記載の全電池容量推定方法であって、前記定電流値Iaは、0.7C以上である全電池容量推定方法とすると良い。   Furthermore, the total battery capacity estimation method according to any one of the above, wherein the constant current value Ia is preferably a total battery capacity estimation method of 0.7 C or more.

このように定電流値Iaを大きくすることで、電池の放電時間を短くできる。従って、全電池容量Cbの推定に掛かる時間をより短くできる。   By increasing the constant current value Ia in this way, the battery discharge time can be shortened. Therefore, the time required for estimating the total battery capacity Cb can be further shortened.

更に、上記のいずれかに記載の全電池容量推定方法であって、前記第2充電状態は、SOC95%以下の充電状態であり、前記第3充電状態は、SOC5%以上の充電状態である全電池容量推定方法とするのが好ましい。
第2充電状態及び第3充電状態をこのようにすることで、電池を実際に放電させる電圧区間(V4→V6)が小さくなり、放電時間を短くできる。従って、全電池容量Cbの推定に掛かる時間をより短くできる。
Furthermore, in the total battery capacity estimation method according to any one of the above, the second charging state is a charging state of SOC 95% or less, and the third charging state is a charging state of SOC 5% or more. The battery capacity estimation method is preferred.
By making the second charge state and the third charge state in this way, the voltage interval (V4 → V6) for actually discharging the battery is reduced, and the discharge time can be shortened. Therefore, the time required for estimating the total battery capacity Cb can be further shortened.

実施形態1,2に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to Embodiments 1 and 2. FIG. 実施形態1に係り、全電池容量推定方法を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 and shows the total battery capacity estimation method. 実施形態1,2に係り、SOCと端子間電圧との関係を示すグラフである。6 is a graph illustrating a relationship between the SOC and a voltage between terminals according to the first and second embodiments. 実施形態1,2に係り、全電池容量Cbと区間電池容量Caとの関係を示すグラフである。It is a graph which concerns on Embodiment 1, 2, and shows the relationship between the total battery capacity Cb and the section battery capacity Ca.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に用いるリチウムイオン二次電池100(以下、単に電池100とも言う)を示す。この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型の密閉型電池である。この電池100は、直方体形状の電池ケース110と、この電池ケース110内に収容された扁平状捲回型の電極体120と、電池ケース110に支持された正極端子150及び負極端子160等から構成されている。また、電池ケース110内には、非水系の電解液117が保持されている。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium ion secondary battery 100 (hereinafter also simply referred to as battery 100) used in the first embodiment. The battery 100 is a rectangular sealed battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular parallelepiped battery case 110, a flat wound electrode body 120 accommodated in the battery case 110, a positive terminal 150 and a negative terminal 160 supported by the battery case 110, and the like. Has been. In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

次いで、本実施形態1に係り、上記電池100の全電池容量Cbを推定する全電池容量推定方法について説明する(図2及び図3参照)。
まず、充電状態がSOC95%で、開回路電圧が第1端子間電圧V1(本実施形態1では4.00V)の第1充電状態とされた電池100を用意する。そして、電圧降下量取得ステップS1において、この電池100を、0.7C以上の定電流値Ia(本実施形態1ではIa=0.8C)で放電させる。放電を開始した直後(詳細には10sec後)の第2端子間電圧V2を測定し、この第2端子間電圧V2と第1端子間電圧V1との差分(V1−V2)である電圧降下量α(V)を算出する。本実施形態1では、第1端子間電圧V1が前述のように4.00Vであるので、測定に係る電池100の第2端子間電圧V2が例えば3.90Vであったとすると、電圧降下量αは、α=V1−V2=4.00−3.90=0.10(V)となる。
Next, a total battery capacity estimation method for estimating the total battery capacity Cb of the battery 100 according to the first embodiment will be described (see FIGS. 2 and 3).
First, a battery 100 that is in a first charge state in which the state of charge is SOC 95% and the open circuit voltage is the first terminal voltage V1 (4.00 V in the first embodiment) is prepared. Then, in the voltage drop amount acquisition step S1, the battery 100 is discharged at a constant current value Ia of 0.7 C or more (Ia = 0.8 C in the first embodiment). A voltage V2 between the second terminals is measured immediately after the start of discharge (specifically, after 10 seconds), and a voltage drop amount which is a difference (V1−V2) between the voltage V2 between the second terminals and the voltage V1 between the first terminals. α (V) is calculated. In the first embodiment, since the first terminal voltage V1 is 4.00V as described above, assuming that the second terminal voltage V2 of the battery 100 to be measured is, for example, 3.90V, the voltage drop amount α Is α = V1-V2 = 4.00-3.90 = 0.10 (V).

その後、この電池100を放電させて、充電状態がSOC100%未満、更にはSOC95%以下、かつ、SOC70%以上(本実施形態1ではSOC90%)で、開回路電圧が第3端子間電圧V3(本実施形態1では3.90V)の第2充電状態とする。また、第4端子間電圧V4をV4=V3−αとする。前述のように電圧降下量αが0.10Vであったとすると、第4端子間電圧V4は、V4=V3−α=3.90−0.10=3.80(V)となる。   Thereafter, the battery 100 is discharged, and the state of charge is less than SOC 100%, further SOC 95% or less, and SOC 70% or more (SOC 90% in the first embodiment), and the open circuit voltage is the third terminal voltage V3 ( In the first embodiment, the second charging state is 3.90 V). Further, the voltage V4 between the fourth terminals is set to V4 = V3−α. As described above, when the voltage drop amount α is 0.10 V, the voltage V4 between the fourth terminals is V4 = V3−α = 3.90−0.10 = 3.80 (V).

また、SOC0%よりも大きく、更にはSOC5%以上、かつ、SOC20%以下(本実施形態1ではSOC10%)で、開回路電圧が第5端子間電圧V5(本実施形態1では3.40V)である電池100の状態を第3充電状態とする。また、第6端子間電圧V6をV6=V5−αとする。前述のように電圧降下量αが0.10Vであったとすると、第6端子間電圧V6は、V6=V5−α=3.40−0.10=3.30(V)となる。   Further, when the SOC is larger than 0%, further SOC is 5% or more and SOC is 20% or less (SOC 10% in the first embodiment), the open circuit voltage is the fifth terminal voltage V5 (3.40 V in the first embodiment). The state of the battery 100 is defined as the third charging state. Further, the sixth inter-terminal voltage V6 is set to V6 = V5-α. As described above, when the voltage drop amount α is 0.10 V, the voltage V6 between the sixth terminals is V6 = V5−α = 3.40−0.10 = 3.30 (V).

そして、測定ステップS2において、第4端子間電圧V4(具体的には3.80V)から第6端子間電圧V6(具体的には3.30V)に至るまで、前述の定電流値Ia(具体的には0.8C)で電池100を放電させる。また、その期間に放電された(第4端子間電圧V4から第6端子間電圧V6に至るまでに放電された)区間放電電気量Qa(Ah)を測定する。   In the measurement step S2, the constant current value Ia (specifically described above) is obtained from the fourth terminal voltage V4 (specifically 3.80 V) to the sixth terminal voltage V6 (specifically 3.30 V). Specifically, the battery 100 is discharged at 0.8 C). In addition, the section discharge electricity quantity Qa (Ah) discharged during that period (discharged from the fourth inter-terminal voltage V4 to the sixth inter-terminal voltage V6) is measured.

次に、全容量推定ステップS3において、上述の区間放電電気量Qa(Ah)、即ち、第2充電状態から第3充電状態までの区間電池容量Ca(Ah)から、全電池容量Cb(Ah)を推定する。具体的には、区間電池容量Caと全電池容量Cbとの関係は、予め実験等により求めておく。本実施形態1では、図4において実線で示す(実施例1として示す)全電池容量Cbと区間電池容量Caとの関係から判るように、全電池容量Cbと区間電池容量Caは、Cb=A×Ca+Bの関係を満たしている。なお、A,Bはそれぞれ係数であり、第4端子間電圧V4及び第6端子間電圧V6の大きさによって決まる。この式に区間電池容量Ca(Ah)を代入して、全電池容量Cb(Ah)を求める。かくして、測定に係る電池100の全電池容量Cbを短時間で推定できる。   Next, in the total capacity estimation step S3, the total battery capacity Cb (Ah) from the above-described section discharge electricity quantity Qa (Ah), that is, the section battery capacity Ca (Ah) from the second charge state to the third charge state. Is estimated. Specifically, the relationship between the section battery capacity Ca and the total battery capacity Cb is obtained in advance through experiments or the like. In the first embodiment, as can be seen from the relationship between the total battery capacity Cb and the section battery capacity Ca shown by a solid line in FIG. 4 (shown as Example 1), the total battery capacity Cb and the section battery capacity Ca are Cb = A The relationship of × Ca + B is satisfied. A and B are coefficients, respectively, and are determined by the magnitudes of the fourth terminal voltage V4 and the sixth terminal voltage V6. Substituting the section battery capacity Ca (Ah) into this equation, the total battery capacity Cb (Ah) is obtained. Thus, the total battery capacity Cb of the battery 100 related to the measurement can be estimated in a short time.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係る全電池容量推定方法では、電圧降下量取得ステップS1を行わず、電圧降下量α(V)を考慮しないで測定ステップS2を行う点が、実施形態1と異なる。それ以外は、実施形態1と同様であるので、実施形態1と同様な部分の説明は、省略または簡略化する。
(Embodiment 2)
Next, a second embodiment will be described. The total battery capacity estimation method according to the second embodiment is different from the first embodiment in that the voltage drop amount acquisition step S1 is not performed and the measurement step S2 is performed without considering the voltage drop amount α (V). Other than that, the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.

まず、開回路電圧が第3端子間電圧V3(本実施形態2では3.90V)の第2充電状態とされた電池100を用意する。そして、測定ステップS2において、放電時の端子間電圧が第5端子間電圧V5(具体的には3.40V)に至るまで、定電流値Ia(具体的には0.8C)で電池100を放電させる。また、その期間に放電された区間放電電気量Qa(Ah)を測定する。   First, the battery 100 in which the open circuit voltage is in the second charging state with the third terminal voltage V3 (3.90 V in the second embodiment) is prepared. Then, in the measurement step S2, the battery 100 is set at the constant current value Ia (specifically 0.8C) until the terminal voltage during discharging reaches the fifth terminal voltage V5 (specifically 3.40V). Discharge. Moreover, the section discharge electricity quantity Qa (Ah) discharged in the period is measured.

次に、全容量推定ステップS3において、測定された区間放電電気量Qa(区間電池容量Ca)から、全電池容量Cb(Ah)を推定する。なお、区間電池容量Caと全電池容量Cbとの関係は、予め実験等により求めておく。本実施形態2では、図4において破線で示す(実施例2として示す)全電池容量Cbと区間電池容量Caとの関係から判るように、全電池容量Cbと区間電池容量Caは、Cb=E×Ca+Fの関係を満たしている。なお、E,Fはそれぞれ係数である。この式に区間電池容量Ca(Ah)を代入して、全電池容量Cb(Ah)を求める。かくして、測定に係る電池100の全電池容量Cbを短時間で推定できる。   Next, in the total capacity estimation step S3, the total battery capacity Cb (Ah) is estimated from the measured section discharge electricity quantity Qa (section battery capacity Ca). The relationship between the section battery capacity Ca and the total battery capacity Cb is obtained in advance through experiments or the like. In the second embodiment, as can be seen from the relationship between the total battery capacity Cb indicated by a broken line in FIG. 4 (shown as Example 2) and the section battery capacity Ca, the total battery capacity Cb and the section battery capacity Ca are Cb = E. XCa + F relationship is satisfied. E and F are coefficients. Substituting the section battery capacity Ca (Ah) into this equation, the total battery capacity Cb (Ah) is obtained. Thus, the total battery capacity Cb of the battery 100 related to the measurement can be estimated in a short time.

(実施例及び比較例)
次いで、実施形態1,2に係る全電池容量推定方法の効果を検証するために行った試験の結果について説明する。実施例1として、実施形態1に係る全電池容量推定方法により電池100の全電池容量Cb(Ah)を推定した。この全電池容量推定方法では、前述したように、電圧降下量取得ステップS1、測定ステップS2及び全容量推定ステップS3を行うことで、電池100毎の電圧降下量αを考慮しつつ区間電池容量Caを測定し、この区間電池容量Caから全電池容量Cbを推定した。表1の「測定方法」に、「区間電池容量Caの測定+電圧降下量αの補正」と示す。また、全電池容量Cbを求めるのに掛かった全体の時間(表1に「測定時間」と示す)は、測定ステップS2に掛かった放電時間とほぼ等しく、約1時間であった。
(Examples and Comparative Examples)
Next, the results of tests performed to verify the effects of the total battery capacity estimation methods according to Embodiments 1 and 2 will be described. As Example 1, the total battery capacity Cb (Ah) of the battery 100 was estimated by the total battery capacity estimation method according to the first embodiment. In this total battery capacity estimation method, as described above, the voltage drop amount acquisition step S1, the measurement step S2, and the total capacity estimation step S3 are performed, thereby taking into account the voltage drop amount α for each battery 100, and the interval battery capacity Ca. And the total battery capacity Cb was estimated from the section battery capacity Ca. “Measurement method” in Table 1 indicates “measurement of interval battery capacity Ca + correction of voltage drop amount α”. Further, the total time taken to obtain the total battery capacity Cb (shown as “measurement time” in Table 1) was approximately equal to the discharge time taken for the measurement step S2, which was about 1 hour.

なお、この実施例1に先立ち、多数の電池100について、区間電池容量Ca(測定ステップS2で得られる区間放電電気量Qa)を測定する一方、当該電池100について全電池容量Cbを実測して、区間電池容量Caと全電池容量Cbとの関係を調査した(図4において◆印で示す)。なお、図4では、この電池100の公称容量Co(Ah)を「1」として、公称容量Coとの比で区間電池容量Ca及び全電池容量Cbの大きさを示してある。
更に、一次回帰直線を求めて、各測定点との相関係数R(決定係数R2 )を求めたところ、R2 =0.99であった。なお、この全電池容量Cbは、SOC100%に充電した電池100を、小さな定電流値(具体的にはI=0.3C)でSOC0%まで放電させたときに放電された放電電気量である。その結果を表1に示す。
Prior to the first embodiment, for a number of batteries 100, the section battery capacity Ca (section discharge electricity quantity Qa obtained in measurement step S2) is measured, while the total battery capacity Cb is measured for the battery 100, The relationship between the section battery capacity Ca and the total battery capacity Cb was investigated (indicated by ♦ in FIG. 4). In FIG. 4, the nominal capacity Co (Ah) of the battery 100 is set to “1”, and the size of the section battery capacity Ca and the total battery capacity Cb is shown in a ratio to the nominal capacity Co.
Further, when a linear regression line was obtained and a correlation coefficient R (determination coefficient R 2 ) with each measurement point was obtained, R 2 = 0.99. The total battery capacity Cb is the amount of discharged electricity that is discharged when the battery 100 charged to SOC 100% is discharged to SOC 0% with a small constant current value (specifically, I = 0.3C). . The results are shown in Table 1.

Figure 2014002122
Figure 2014002122

また、実施例2として、実施形態2に係る全電池容量推定方法により電池100の全電池容量Cb(Ah)を推定した。この全電池容量推定方法では、前述したように、電圧降下量取得ステップS1を行わずに測定ステップS2及び全容量推定ステップS3を行うことで、電池100毎の電圧降下量αを考慮に入れないで区間電池容量Caを測定し、この区間電池容量Caから全電池容量Cbを推定した。表1の「測定方法」に、「区間電池容量Caの測定」と示す。また、全電池容量Cbを求めるのに掛かった全体の時間(放電時間とほぼ等しい)は、実施例1と同じく約1時間であった。   Further, as Example 2, the total battery capacity Cb (Ah) of the battery 100 was estimated by the total battery capacity estimation method according to the second embodiment. In this total battery capacity estimation method, as described above, the voltage drop amount α for each battery 100 is not taken into consideration by performing the measurement step S2 and the total capacity estimation step S3 without performing the voltage drop amount acquisition step S1. Then, the battery capacity Ca was measured, and the total battery capacity Cb was estimated from the battery capacity Ca. The “measurement method” in Table 1 indicates “measurement of interval battery capacity Ca”. Further, the total time required to obtain the total battery capacity Cb (approximately equal to the discharge time) was about 1 hour as in Example 1.

また、多数の電池100について、実施例2と同様に区間電池容量Ca(区間放電電気量Qa)を測定する一方、当該電池100について全電池容量Cbを実測して、区間電池容量Caと全電池容量Cbとの関係を調査した(図4において▲印で示す)。更に、一次回帰直線を求めて、各測定点との相関係数R(決定係数R2 )を求めたところ、実施例1よりは低いがR2 =0.90であった。これらの結果も表1に示す。 In addition, for a large number of batteries 100, the section battery capacity Ca (section discharge electricity quantity Qa) is measured in the same manner as in Example 2, while the total battery capacity Cb is measured for the battery 100 to determine the section battery capacity Ca and the total battery. The relationship with the capacity Cb was investigated (indicated by ▲ in FIG. 4). Furthermore, when a linear regression line was obtained and a correlation coefficient R (determination coefficient R 2 ) with each measurement point was obtained, it was R 2 = 0.90 although it was lower than that in Example 1. These results are also shown in Table 1.

一方、比較例では、SOC100%に充電した電池100を、定電流値(具体的にはI=0.3C)でSOC0%まで放電させて、そのときに放電された放電電気量を測定し、これを全電池容量Cbとした。表1の「測定方法」に、「全電池容量Cbの測定」と示す。また、全電池容量Cbを求めるのに掛かった全体の時間は、約3時間であった。この比較例では、全電池容量Cbを実際に測定しているので、表1の相関係数R(決定係数R2 )は、R2 =1.0と示してある。 On the other hand, in the comparative example, the battery 100 charged to SOC 100% is discharged to SOC 0% at a constant current value (specifically, I = 0.3C), and the amount of discharged electricity discharged at that time is measured. This was defined as the total battery capacity Cb. “Measurement method” in Table 1 indicates “measurement of total battery capacity Cb”. Further, the total time required to obtain the total battery capacity Cb was about 3 hours. In this comparative example, since the total battery capacity Cb is actually measured, the correlation coefficient R (determination coefficient R 2 ) in Table 1 is shown as R 2 = 1.0.

表1において、まず測定時間(全電池容量Cbを求めるのに掛かった時間)について見ると、比較例では、約3時間も掛かったのに対し、実施例1及び実施例2では、約1時間で済むことが判る。これは、実施例1及び実施例2では、放電時の電流値をIa=0.8Cとしており、比較例の場合(I=0.3C)よりも大きくしたからである。加えて、比較例では、SOC100%からSOC0%までの全領域にわたって電池100を放電させているのに対し、実施例1及び実施例2では、SOC90%からSOC10%までの区間領域についてのみ電池100を放電させたからである。   In Table 1, first, the measurement time (time taken to obtain the total battery capacity Cb) was about 3 hours in the comparative example, but about 1 hour in Example 1 and Example 2. You can see that This is because in Example 1 and Example 2, the current value at the time of discharge was set to Ia = 0.8C, which was larger than that in the comparative example (I = 0.3C). In addition, in the comparative example, the battery 100 is discharged over the entire region from SOC 100% to SOC 0%, whereas in Example 1 and Example 2, the battery 100 is only in the section region from SOC 90% to SOC 10%. This is because the was discharged.

次に、相関係数R(決定係数R2 )について見ると、実施例2では、相関係数R(決定係数R2 )がR2 =0.90であり、全電池容量Cbの推定精度が相対的に低いのに対し、実施例1では、相関係数R(決定係数R2 )がR2 =0.99であり、全電池容量Cbの推定精度が極めて高いことが判る。なお、前述のように、比較例は、全電池容量Cbそのものを実測しているので、相関係数R(決定係数R2 )はR2 =1.0となる。 Next, regarding the correlation coefficient R (determination coefficient R 2 ), in Example 2, the correlation coefficient R (determination coefficient R 2 ) is R 2 = 0.90, and the estimation accuracy of the total battery capacity Cb is high. On the other hand, in Example 1, the correlation coefficient R (determination coefficient R 2 ) is R 2 = 0.99, and it can be seen that the estimation accuracy of the total battery capacity Cb is extremely high. As described above, in the comparative example, since the total battery capacity Cb itself is actually measured, the correlation coefficient R (determination coefficient R 2 ) is R 2 = 1.0.

実施例2で相関係数R(決定係数R2 )が相対的に小さかった理由は、放電を大きな電流値(Ia=0.8C)で行っており、電池内部抵抗による電圧降下が大きく生じたにも拘わらず、各々の電池100における電圧降下量αを考慮しなかったからである。即ち、第2充電状態から、第3充電状態まで(例えば電圧降下量α=0.10Vならば、第6端子間電圧V6=3.30Vまで)放電すべきところを、実際には各々の電池100の電圧降下量αの大きさを考慮することなく、一律に端子間電圧が3.40Vとなるまで放電させた。このため、放電終了時のSOCにバラツキが生じ、第2充電状態から第3充電状態までの区間放電電気量Qaを正確に測定できなかったからである。 The reason why the correlation coefficient R (determination coefficient R 2 ) was relatively small in Example 2 was that discharging was performed at a large current value (Ia = 0.8 C), and a large voltage drop due to battery internal resistance occurred. Nevertheless, the voltage drop amount α in each battery 100 is not considered. That is, from the second charging state to the third charging state (for example, if the voltage drop amount α = 0.10V, the voltage between the sixth terminals V6 = 3.30V) is actually discharged. Without considering the magnitude of the voltage drop amount α of 100, discharging was performed until the inter-terminal voltage reached 3.40V. For this reason, variation occurs in the SOC at the end of discharge, and the section discharge electricity quantity Qa from the second charge state to the third charge state cannot be measured accurately.

これに対し、実施例1で相関係数R(決定係数R2 )が極めて大きく、特に良好な相関となった理由は、各々の電池100の電池内部抵抗による電圧降下量αを考慮に入れて、正確に第2充電状態から第3充電状態まで放電させた(例えば電圧降下量α=0.10Vならば、端子間電圧が第6端子間電圧V6=3.30Vとなるまで、また例えば電圧降下量α=0.05Vならば、端子間電圧が第6端子間電圧V6=3.35Vとなるまで放電させた)。このため、第2充電状態から第3充電状態までの区間放電電気量Qaを正確に測定できたからである。 On the other hand, the correlation coefficient R (determination coefficient R 2 ) in Example 1 is extremely large, and the reason for the particularly good correlation is that the voltage drop amount α due to the battery internal resistance of each battery 100 is taken into consideration. The battery was accurately discharged from the second charge state to the third charge state (for example, if the voltage drop amount α = 0.10V, the voltage between the terminals becomes the sixth inter-terminal voltage V6 = 3.30V, for example, the voltage If the drop amount α = 0.05V, the terminal voltage was discharged until the sixth terminal voltage V6 = 3.35V). For this reason, it is because the section discharge electricity quantity Qa from the 2nd charge state to the 3rd charge state was measured correctly.

以上で説明したように、実施形態1,2の全電池容量推定方法では、全電池容量Cbを推定するために行う電池の放電を、SOC100%からSOC0%の全区間よりも狭い区間としている。このため、放電時間が短く済み、全電池容量Cbの取得に掛かる時間を短くできる。
更に、実施形態1の全電池容量推定方法では、測定に係る電池100を定電流値Iaで放電させたときに生じる電圧降下量αを考慮に入れて、第4端子間電圧V4から第6端子間電圧V6まで定電流値Iaで電池100の放電を行う。そして、その期間の(第4端子間電圧V4から第6端子間電圧V6までの)区間放電電気量Qaを測定して、この区間放電電気量Qa(区間電池容量Ca)から全電池容量Cbを推定する。これにより、電池100毎に異なる電池内部抵抗による電圧降下の影響を除くことができるので、全電池容量Cbを精度良く推定できる。
As described above, in the total battery capacity estimation methods of the first and second embodiments, the battery discharge performed for estimating the total battery capacity Cb is a section narrower than the entire section from SOC 100% to SOC 0%. For this reason, the discharge time is shortened, and the time required for obtaining the total battery capacity Cb can be shortened.
Furthermore, in the total battery capacity estimation method according to the first embodiment, the voltage drop amount α generated when the battery 100 to be measured is discharged at the constant current value Ia is taken into consideration and the fourth terminal voltage V4 to the sixth terminal. The battery 100 is discharged at a constant current value Ia up to the voltage V6. Then, the section discharge electricity quantity Qa (from the fourth terminal voltage V4 to the sixth terminal voltage V6) of that period is measured, and the total battery capacity Cb is calculated from this section discharge electricity quantity Qa (section battery capacity Ca). presume. Thereby, since the influence of the voltage drop by the battery internal resistance which changes for every battery 100 can be excluded, the total battery capacity Cb can be estimated with high accuracy.

更に、電池100は、正極板における正極活物質及び負極板における負極活物質の目付け量の多寡によって、電池100毎に全電池容量Cbがばらつく。そして、この全電池容量Cbのバラツキは、横軸をSOC(%)、縦軸を開回路電圧の端子間電圧(V)とした放電曲線において、SOC20%以下の領域内で大きな違いとなって現れる。従って、区間放電電気量Qa(区間電池容量Ca)を測定する領域内にこのSOC20%以下の領域を含むように、第3充電状態をSOC20%以下とすることにより、電池100毎の放電電気量(区間電池容量Ca)の差が明確になる。これにより、各々の電池100の全電池容量Cbをより精度良く推定できる。   Furthermore, in the battery 100, the total battery capacity Cb varies from battery 100 to battery 100 depending on the amount of the positive electrode active material in the positive electrode plate and the negative electrode active material in the negative electrode plate. The variation in the total battery capacity Cb is greatly different within a region where the SOC is 20% or less in a discharge curve in which the horizontal axis is SOC (%) and the vertical axis is the open-circuit voltage (V) between terminals. appear. Therefore, by setting the third state of charge to SOC 20% or less so that the area where the SOC is 20% or less is included in the area where the section discharge electricity amount Qa (section battery capacity Ca) is measured, the discharge electricity amount for each battery 100 is set. The difference in (interval battery capacity Ca) becomes clear. Thereby, the total battery capacity Cb of each battery 100 can be estimated more accurately.

また、第2充電状態をSOC70%以上とすることで、測定ステップS2で測定する区間放電電気量Qa(区間電池容量Ca)と、全容量推定ステップS3で推定する全電池容量Cbとの相関をより高くできるので、全電池容量Cbをより精度良く推定できる。
また、定電流値Iaを0.7C以上に大きくすることで、電池100の放電時間を短くできる。従って、全電池容量Cbの推定に掛かる時間をより短くできる。
また、第2充電状態をSOC95%以下、第3充電状態をSOC5%以上とすることで、電池100を実際に放電させる電圧区間(V4→V6)が小さくなり、放電時間を短くできる。従って、全電池容量Cbの推定に掛かる時間をより短くできる。
Further, by setting the second state of charge to SOC 70% or more, the correlation between the section discharge electricity quantity Qa (section battery capacity Ca) measured in the measurement step S2 and the total battery capacity Cb estimated in the total capacity estimation step S3 is obtained. Since it can be made higher, the total battery capacity Cb can be estimated with higher accuracy.
Moreover, the discharge time of the battery 100 can be shortened by increasing the constant current value Ia to 0.7 C or more. Therefore, the time required for estimating the total battery capacity Cb can be further shortened.
Further, by setting the second charged state to SOC 95% or lower and the third charged state to SOC 5% or higher, the voltage interval (V4 → V6) for actually discharging the battery 100 is reduced, and the discharge time can be shortened. Therefore, the time required for estimating the total battery capacity Cb can be further shortened.

以上において、本発明を実施形態1,2に即して説明したが、本発明は上述の実施形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described first and second embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, you can.

100 リチウムイオン二次電池(電池)
110 電池ケース
120 電極体
150 正極端子
160 負極端子
100 Lithium ion secondary battery (battery)
110 Battery Case 120 Electrode Body 150 Positive Terminal 160 Negative Terminal

Claims (5)

電池を、SOC0%からSOC100%の全区間よりも狭い区間で放電させて、そのときに放電された区間放電電気量Qaを測定する測定ステップと、
前記区間放電電気量Qaから前記電池の全電池容量Cbを推定する全容量推定ステップと、を備える
全電池容量推定方法。
A measurement step of discharging the battery in a section narrower than the entire section from SOC 0% to SOC 100% and measuring the section discharge electricity quantity Qa discharged at that time;
A total capacity estimating step of estimating a total battery capacity Cb of the battery from the section discharge electricity quantity Qa.
請求項1に記載の全電池容量推定方法であって、
前記測定ステップよりも前に、開回路電圧が第1端子間電圧V1の第1充電状態にある前記電池を、定電流値Iaで放電させて、放電を開始した直後の第2端子間電圧V2と前記第1端子間電圧V1との差分(V1−V2)である電圧降下量αを取得する電圧降下量取得ステップを備え、
充電状態がSOC100%よりも小さい第2充電状態における前記電池の開回路電圧を第3端子間電圧V3とし、第4端子間電圧V4をV4=V3−αとし、
充電状態がSOC0%よりも大きい第3充電状態における前記電池の開回路電圧を第5端子間電圧V5(但し、V5<V3)とし、第6端子間電圧V6をV6=V5−αとしたとき、
前記測定ステップは、
前記電池を、少なくとも前記第4端子間電圧V4から前記第6端子間電圧V6に至るまで、前記定電流値Iaで放電させて、前記第4端子間電圧V4から前記第6端子間電圧V6に至るまでに放電された前記区間放電電気量Qaを測定するステップである
全電池容量推定方法。
The total battery capacity estimation method according to claim 1,
Prior to the measuring step, the battery in the first charging state with the open circuit voltage of the first inter-terminal voltage V1 is discharged at a constant current value Ia, and the second inter-terminal voltage V2 immediately after starting the discharge. And a voltage drop amount acquisition step of acquiring a voltage drop amount α that is a difference (V1−V2) between the first terminal voltage V1 and
The open circuit voltage of the battery in the second charging state in which the charging state is smaller than SOC 100% is the third terminal voltage V3, the fourth terminal voltage V4 is V4 = V3-α,
When the open circuit voltage of the battery in the third charging state where the charging state is greater than SOC 0% is the fifth inter-terminal voltage V5 (where V5 <V3), and the sixth inter-terminal voltage V6 is V6 = V5-α. ,
The measuring step includes
The battery is discharged at the constant current value Ia at least from the fourth inter-terminal voltage V4 to the sixth inter-terminal voltage V6 to change from the fourth inter-terminal voltage V4 to the sixth inter-terminal voltage V6. A method for estimating the total battery capacity, which is a step of measuring the section discharge electricity quantity Qa discharged until now.
請求項2に記載の全電池容量推定方法であって、
前記第3充電状態は、SOC20%以下の充電状態である
全電池容量推定方法。
The total battery capacity estimation method according to claim 2,
The method for estimating the total battery capacity, wherein the third state of charge is a state of charge of SOC 20% or less.
請求項2または請求項3に記載の全電池容量推定方法であって、
前記第2充電状態は、SOC70%以上の充電状態である
全電池容量推定方法。
A total battery capacity estimation method according to claim 2 or claim 3, wherein
The second battery state is a total battery capacity estimating method in which the SOC is 70% or more.
請求項2〜請求項4のいずれか一項に記載の全電池容量推定方法であって、
前記定電流値Iaは、0.7C以上である
全電池容量推定方法。
A total battery capacity estimation method according to any one of claims 2 to 4,
The method for estimating the total battery capacity, wherein the constant current value Ia is 0.7 C or more.
JP2012139395A 2012-06-21 2012-06-21 Total battery capacity estimation method Active JP5772737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139395A JP5772737B2 (en) 2012-06-21 2012-06-21 Total battery capacity estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139395A JP5772737B2 (en) 2012-06-21 2012-06-21 Total battery capacity estimation method

Publications (2)

Publication Number Publication Date
JP2014002122A true JP2014002122A (en) 2014-01-09
JP5772737B2 JP5772737B2 (en) 2015-09-02

Family

ID=50035408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139395A Active JP5772737B2 (en) 2012-06-21 2012-06-21 Total battery capacity estimation method

Country Status (1)

Country Link
JP (1) JP5772737B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990818A2 (en) 2014-09-01 2016-03-02 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
EP3196663A1 (en) 2016-01-21 2017-07-26 Yokogawa Electric Corporation Secondary battery capacity measuring system and secondary battery capacity measuring method
WO2022086175A1 (en) * 2020-10-21 2022-04-28 주식회사 엘지에너지솔루션 Method for determining remaining capacity of lithium-sulfur battery, and battery pack implementing same method
CN116613864A (en) * 2023-07-17 2023-08-18 安徽博诺思信息科技有限公司 Online nuclear capacity inspection method and device for storage battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134678A (en) * 2001-10-17 2003-05-09 Toyota Motor Corp Vehicular secondary battery control device
JP2005049216A (en) * 2003-07-29 2005-02-24 Sony Corp Residual capacity calculation method of secondary battery, and battery pack
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
JP2006038593A (en) * 2004-07-26 2006-02-09 Mazda Motor Corp Battery capacity detection device, and generating set equipped therewith
JP2008141846A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Charging state prediction program, cable-less traffic system and its charging method
JP2010133919A (en) * 2008-11-10 2010-06-17 Ntt Facilities Inc Device and method for estimating secondary battery capacity
JP2012029455A (en) * 2010-07-23 2012-02-09 Toyota Motor Corp Device and method of controlling vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134678A (en) * 2001-10-17 2003-05-09 Toyota Motor Corp Vehicular secondary battery control device
JP2005049216A (en) * 2003-07-29 2005-02-24 Sony Corp Residual capacity calculation method of secondary battery, and battery pack
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
JP2006038593A (en) * 2004-07-26 2006-02-09 Mazda Motor Corp Battery capacity detection device, and generating set equipped therewith
JP2008141846A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Charging state prediction program, cable-less traffic system and its charging method
JP2010133919A (en) * 2008-11-10 2010-06-17 Ntt Facilities Inc Device and method for estimating secondary battery capacity
JP2012029455A (en) * 2010-07-23 2012-02-09 Toyota Motor Corp Device and method of controlling vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990818A2 (en) 2014-09-01 2016-03-02 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
US10126369B2 (en) 2014-09-01 2018-11-13 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
EP3196663A1 (en) 2016-01-21 2017-07-26 Yokogawa Electric Corporation Secondary battery capacity measuring system and secondary battery capacity measuring method
US10353009B2 (en) 2016-01-21 2019-07-16 Yokogawa Electric Corporation Secondary battery capacity measuring system and secondary battery capacity measuring method
WO2022086175A1 (en) * 2020-10-21 2022-04-28 주식회사 엘지에너지솔루션 Method for determining remaining capacity of lithium-sulfur battery, and battery pack implementing same method
CN116613864A (en) * 2023-07-17 2023-08-18 安徽博诺思信息科技有限公司 Online nuclear capacity inspection method and device for storage battery
CN116613864B (en) * 2023-07-17 2023-10-20 安徽博诺思信息科技有限公司 Online nuclear capacity inspection method and device for storage battery

Also Published As

Publication number Publication date
JP5772737B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2018019101A1 (en) Measurement method and measurement apparatus for real-time state of charge of storage battery, and storage medium
CN104698385B (en) Battery state calculating device and battery state calculating method
JP6414336B2 (en) Deterioration degree estimation device and deterioration degree estimation method
EP2728368B1 (en) Condition estimation device and method for battery
EP2980595A1 (en) Battery life estimation method and battery life estimation device
EP2725371A2 (en) Electric storage condition detecting apparatus
JP6701938B2 (en) Deterioration determination device, computer program, and deterioration determination method
JP5474993B2 (en) Method for determining the state of charge of a battery in the charge or discharge phase
JP6655801B2 (en) Lithium ion secondary battery life estimation device
US8994334B2 (en) Battery state-of-charge calculation device
WO2019225032A1 (en) Method for ascertaining capacity of storage battery, and capacity-monitoring device
TW201105993A (en) Battery capacity estimation by DCIR
CN110850306B (en) Inspection method and manufacturing method for electricity storage device
EP2664938A3 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
JP5772737B2 (en) Total battery capacity estimation method
KR101268082B1 (en) SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
JP6529972B2 (en) In situ recalibration of a reference electrode incorporated into an electrochemical system
JP2014059227A (en) Soundness calculation device for battery and soundness calculation method therefor
JP2011172415A (en) Secondary battery device
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
US20150234028A1 (en) State of Charge Gauge Device and State of Charge Gauge Method Thereof
CN109425834B (en) Impedance estimation device
JP7102742B2 (en) Power system
JP2014059251A (en) Internal resistance estimation device and internal resistance estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5772737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151