JP2007055450A - Estimating system for deteriorated state of capacitor device - Google Patents

Estimating system for deteriorated state of capacitor device Download PDF

Info

Publication number
JP2007055450A
JP2007055450A JP2005243320A JP2005243320A JP2007055450A JP 2007055450 A JP2007055450 A JP 2007055450A JP 2005243320 A JP2005243320 A JP 2005243320A JP 2005243320 A JP2005243320 A JP 2005243320A JP 2007055450 A JP2007055450 A JP 2007055450A
Authority
JP
Japan
Prior art keywords
deterioration
vehicle system
vehicle
soh
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005243320A
Other languages
Japanese (ja)
Inventor
Mikio Ono
幹夫 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2005243320A priority Critical patent/JP2007055450A/en
Publication of JP2007055450A publication Critical patent/JP2007055450A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the effects of the accumulation of errors resulting from actual environmental conditions, and to grasp the deteriorated state of a capacitor device with a high precision. <P>SOLUTION: When the using environment of a battery is judged to be under a constantly severe environment deviating from a normal range which is predicted in advance from a vehicle position and the data of a driving situation, a deterioration rate SOH' is calculated by using a correction factor which is calculated based on an environment continuing period of time (S15). When a difference between the deterioration rates SOH and SOH' exceeds a reference value, and the deterioration rate SOH needs to be cleared, an operation correcting indication is transmitted to a vehicle system so that the deterioration rate SOH is cleared and the deterioration rate SOH' is used (S19). By the operation correcting indication, the vehicle system clears the deterioration rate SOH which has been calculated by the last operation cycle, and the deterioration operation is resumed with the transmitted deterioration rate SOH' as an initial value. Thus, the effects of the accumulation of errors resulting from the actual environmental conditions are reduced, and the deteriorated state of the capacitor device can be grasped with high precision. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両に搭載される蓄電デバイスの劣化状態を推定する蓄電デバイスの劣化状態推定システムに関する。   The present invention relates to a storage device degradation state estimation system that estimates a degradation state of a storage device mounted on a vehicle.

自動車等の車両においては、バッテリ等の蓄電デバイスの劣化状態を把握することは重要であり、特にハイブリッド自動車や電気自動車等では、バッテリが劣化すると走行性能や燃費に及ぼす影響が大きいことから、バッテリの劣化の程度を正確に把握することが求められている。   In vehicles such as automobiles, it is important to grasp the deterioration state of power storage devices such as batteries. Especially in hybrid cars and electric cars, battery deterioration has a large effect on running performance and fuel consumption. It is required to accurately grasp the degree of deterioration.

このため、従来からバッテリの劣化状態を推測する技術が種々提案されており、例えば、特許文献1には、エンジン始動期間に二次蓄電池に流れる電流及び開回路電圧を測定して内部抵抗を算出し、この内部抵抗に基づいて二次蓄電池の残存寿命を算出する技術が開示されている。   For this reason, various technologies for estimating the deterioration state of the battery have been proposed. For example, Patent Document 1 calculates the internal resistance by measuring the current flowing through the secondary storage battery and the open circuit voltage during the engine start period. And the technique of calculating the remaining life of a secondary storage battery based on this internal resistance is disclosed.

また、特許文献2には、蓄電池の容量の時間経過に伴う劣化状況が複数の温度域における蓄電池温度の在時間をパラメータとして表される演算式を求めておき、蓄電池の、時間経過に伴う予想温度変化から各温度域における蓄電池温度の在時間を把握し、その各温度域における蓄電池温度の在時間を演算式に当てはめることにより、蓄電池の劣化状況を予測する技術が開示されている。
特開2003−129927号公報 特開2003−161768号公報
Further, Patent Document 2 obtains an arithmetic expression in which the deterioration state of the storage battery capacity with the passage of time is expressed as a parameter of the time of storage battery temperature in a plurality of temperature ranges, and the prediction of the storage battery with the passage of time is obtained. A technique for predicting the deterioration state of a storage battery by grasping the time of storage battery temperature in each temperature range from the temperature change and applying the time of storage battery temperature in each temperature range to an arithmetic expression is disclosed.
JP 2003-129927 A JP 2003-161768 A

しかしながら、特許文献1の技術では、エンジン始動時の最大負荷端子電圧と電流値とを用いているため、測定周期、スタータ、エンジンの状態等の環境条件によってデータが微妙に変化することが予想され、長期的に数mΩ単位で徐々に変化する内部抵抗値を捉えきれない虞がある。   However, since the technique of Patent Document 1 uses the maximum load terminal voltage and current value at the time of starting the engine, it is expected that the data slightly changes depending on environmental conditions such as the measurement cycle, starter, and engine state. There is a possibility that the internal resistance value that gradually changes in units of several mΩ cannot be captured over the long term.

また、特許文献2の技術では、蓄電池のカレンダー寿命をベースとして充放電深度を加えているが、短い周期で環境温度や負荷が大きく変化する自動車、特に、ハイブリッド自動車や電気自動車では、誤差が蓄積し易く、実際の環境条件によっては、劣化推定の精度が低下する虞がある。   In the technique of Patent Document 2, the charge / discharge depth is added based on the calendar life of the storage battery. However, in an automobile in which the environmental temperature and the load change greatly in a short cycle, particularly in a hybrid car or an electric car, errors accumulate. However, depending on actual environmental conditions, the accuracy of deterioration estimation may be reduced.

本発明は上記事情に鑑みてなされたもので、実際の環境条件による誤差の蓄積の影響を低減し、蓄電デバイスの劣化状態を高精度に把握することのできる蓄電デバイスの劣化状態推定システムを提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a degradation state estimation system for an electricity storage device that can reduce the influence of error accumulation due to actual environmental conditions and can accurately grasp the degradation state of the electricity storage device. The purpose is to do.

上記目的を達成するため、本発明によるバッテリの劣化度推定システムは、車両に搭載される蓄電デバイスの劣化状態を推定する蓄電デバイスの劣化状態推定システムであって、予め設定した環境条件を前提として組み込まれた演算機能に従って上記蓄電デバイスの劣化度を算出すると共に、上記蓄電デバイスの充放電データを含む運転履歴を外部に無線送信する車両システムと、上記車両システムと無線通信網を介して双方向通信可能に接続され、上記車両システムから送信された運転履歴に基づいて上記蓄電デバイスの劣化度を算出し、該劣化度と上記車両システムで算出した劣化度との差が基準値を越えたとき、上記車両システムに劣化度演算の修正指示を送信する外部演算システムとを備えたことを特徴とする。   In order to achieve the above object, a battery deterioration level estimation system according to the present invention is a storage device deterioration state estimation system that estimates a deterioration state of an electricity storage device mounted on a vehicle, on the premise of preset environmental conditions. A vehicle system that calculates the degree of deterioration of the electricity storage device according to a built-in calculation function and wirelessly transmits an operation history including charge / discharge data of the electricity storage device to the outside, and bidirectionally via the vehicle system and a wireless communication network When the deterioration degree of the electricity storage device is calculated based on the driving history transmitted from the vehicle system and connected so as to be communicable, and the difference between the deterioration degree and the deterioration degree calculated by the vehicle system exceeds a reference value The vehicle system further includes an external calculation system that transmits a correction instruction for deterioration degree calculation.

その際、車両システムは、運転履歴に車両の位置情報を含めて外部に無線送信することが望ましく、外部演算システムは、車両システムへの劣化度演算の修正指示を、車両システムで算出した劣化度をクリアし、外部演算システムで算出した劣化度を初期値として劣化度演算を再開する指示として送信することが望ましい。   At this time, it is desirable that the vehicle system wirelessly transmits the driving history including the position information of the vehicle to the outside, and the external computing system sends the deterioration degree calculated by the vehicle system to the vehicle system. Is preferably transmitted as an instruction to restart the deterioration degree calculation using the deterioration degree calculated by the external calculation system as an initial value.

本発明による蓄電デバイスの劣化状態推定システムは、実際の環境条件による誤差の蓄積の影響を低減し、蓄電デバイスの劣化状態を高精度に把握することができる。   The degradation state estimation system for an electricity storage device according to the present invention can reduce the influence of error accumulation due to actual environmental conditions and can grasp the degradation state of the electricity storage device with high accuracy.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図7は本発明の実施の一形態に係わり、図1は劣化状態推定システムの構成図、図2は抵抗増加率と保存時間との関係を示す説明図、図3は抵抗増加率とサイクル時間との関係を示す説明図、図4は通常の使用環境下での内部抵抗増加率とサイクル時間との関係を示す説明図、図5は想定されていない環境下での内部抵抗増加率を補正する補正係数と環境継続時間との関係を示す説明図、図6は車両システム側の処理を示すフローチャート、図7は中央管理センタ側の処理を示すフローチャートである。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 relate to an embodiment of the present invention, FIG. 1 is a configuration diagram of a deterioration state estimation system, FIG. 2 is an explanatory diagram showing a relationship between a resistance increase rate and storage time, and FIG. 3 is a resistance increase rate. 4 is an explanatory diagram showing the relationship between the cycle time and FIG. 4 is an explanatory diagram showing the relationship between the rate of increase in internal resistance and the cycle time in a normal use environment, and FIG. 5 is an increase in internal resistance in an environment that is not assumed. FIG. 6 is a flowchart showing processing on the vehicle system side, and FIG. 7 is a flowchart showing processing on the central management center side.

図1は、本発明をエンジンとモータとを併用して走行するハイブリッド車両(HEV)に適用した例を示し、主として、個々の車両の車両システム1と、外部演算システムとしての中央管理センタ100とにより、個々の車両の電源装置における蓄電デバイスの劣化状態を推定する劣化状態推定システムが形成されている。個々の車両の車両システム1と中央管理センタ100とは、無線通信網を介して互いに双方向通信可能に接続される。   FIG. 1 shows an example in which the present invention is applied to a hybrid vehicle (HEV) that travels using both an engine and a motor, and mainly includes a vehicle system 1 of each vehicle and a central management center 100 as an external computing system. Thus, a degradation state estimation system that estimates the degradation state of the electricity storage device in the power supply device of each vehicle is formed. The vehicle system 1 of each individual vehicle and the central management center 100 are connected to each other via a wireless communication network so that bidirectional communication is possible.

車両システム1には、車載電源の管理を行う電源ユニット10、HEV全体を統括制御するHEV制御用電子制御ユニット(HEV制御用ECU)20、GPS(Global Positioning System)衛星から電波を受信して車両位置や時間情報を取得するためのGPS受信機50等が備えられている。   The vehicle system 1 includes a power supply unit 10 that manages in-vehicle power supplies, a HEV control electronic control unit (HEV control ECU) 20 that performs overall control of the entire HEV, and a vehicle that receives radio waves from a GPS (Global Positioning System) satellite. A GPS receiver 50 for acquiring position and time information is provided.

電源ユニット10は、蓄電デバイスとして例えば複数のセルを封止した電池パックを複数個直列に接続して構成されるバッテリ11と、バッテリ11の残存容量SOCや劣化状態の推定、バッテリ11の冷却や充電の制御、異常検出及び異常検出時の保護動作等のエネルギーマネージメントを行う演算ユニット(演算ECU)12と、無線通信網を介して外部の中央管理センタ100とデータ通信を行うための通信モジュール13とを備え、これらが1つの筐体内にパッケージされている。通信モジュール13は、演算ECU12によって制御される。   The power supply unit 10 includes, for example, a battery 11 configured by connecting a plurality of battery packs in which a plurality of cells are sealed in series as an electricity storage device, estimation of a remaining capacity SOC and a deterioration state of the battery 11, cooling of the battery 11, An arithmetic unit (arithmetic ECU) 12 for performing energy management such as charging control, abnormality detection and protection operation at the time of abnormality detection, and a communication module 13 for performing data communication with an external central management center 100 via a wireless communication network These are packaged in one housing. The communication module 13 is controlled by the arithmetic ECU 12.

尚、本形態においては、蓄電デバイスとしてリチウムイオン二次電池を例に取って説明するが、本発明は、その他の二次電池や電気二重層コンデンサ等のキャパシタにも適用可能である。   In this embodiment, a lithium ion secondary battery will be described as an example of a power storage device, but the present invention can also be applied to other secondary batteries and capacitors such as electric double layer capacitors.

演算ECU12は、マイクロコンピュータ等から構成され、電圧センサ14で測定したバッテリ11の端子電圧V、電流センサ15で測定したバッテリ11の充放電電流I、温度センサ16で測定したバッテリ11の温度(セル温度)Tに基づいて、一定時間毎にバッテリ11の残存容量SOCを演算し、また、バッテリ11の劣化状態を、予め組み込まれた演算機能に従って演算する。この演算ECU12で演算した残存容量SOCや劣化状態等のバッテリ情報は、例えばCAN(Controller Area Network)通信等を介してHEV制御用ECU20に出力され、車両制御用の基本データ、バッテリ残量や警告用の表示用データ等として使用される。   The arithmetic ECU 12 is composed of a microcomputer or the like, and the terminal voltage V of the battery 11 measured by the voltage sensor 14, the charge / discharge current I of the battery 11 measured by the current sensor 15, and the temperature (cell) of the battery 11 measured by the temperature sensor 16. Based on the temperature (T), the remaining capacity SOC of the battery 11 is calculated at regular intervals, and the deterioration state of the battery 11 is calculated according to a previously incorporated calculation function. The battery information such as the remaining capacity SOC and the deterioration state calculated by the calculation ECU 12 is output to the HEV control ECU 20 via, for example, CAN (Controller Area Network) communication or the like, and is used for basic data for vehicle control, battery remaining amount and warning. It is used as display data for use.

HEV制御用ECU20は、同様にマイクロコンピュータ等から構成され、運転者からの指令に基づいて、HEVの運転、その他、必要な制御を行う。すなわち、HEV制御用ECU20は、電源ユニット10からの信号や図示しないセンサ・スイッチ類からの信号により、車両の状態を検出し、バッテリ11の直流電力を交流電力に変換してモータ25を駆動するインバータ30を初めとして、エンジン40や図示しない自動変速機等を、専用の制御ユニットを介して或いは直接的に制御する。   The HEV control ECU 20 is similarly composed of a microcomputer or the like, and performs HEV operation and other necessary control based on a command from the driver. That is, the HEV control ECU 20 detects the state of the vehicle based on signals from the power supply unit 10 and signals from sensors and switches (not shown), and converts the DC power of the battery 11 into AC power to drive the motor 25. Beginning with the inverter 30, the engine 40, an automatic transmission (not shown), and the like are controlled via a dedicated control unit or directly.

一方、中央管理センタ100は、演算装置101を中心として構成され、個々の車両のバッテリ情報を保有すると共に、車両の使用環境や運転状況の履歴等を蓄積するデータベース102、車両システム1と無線通信するための通信装置103を備えている。演算装置101は、個々の車両のバッテリ充放電の使用環境をモニタし、想定外の厳しい使用環境にあると判断したとき、別途、演算装置101で劣化状態を演算し、車両システム1の演算ECU12による演算値と比較する。そして、車両システム1の演算ECU12で算出したバッテリ劣化状態の演算値と、中央管理センタ100の演算装置101で算出したバッテリ劣化状態の演算値との間に基準値を越えて差が生じた場合、中央管理センタ100から車両システム1に劣化演算の修正指令を送信し、使用環境に応じた劣化状態の推定精度を確保する。   On the other hand, the central management center 100 is configured with the arithmetic device 101 as a center, and stores the battery information of each vehicle, and stores the vehicle usage environment, the history of driving conditions, and the like, and the wireless communication with the vehicle system 1. A communication device 103 is provided. The computing device 101 monitors the battery charging / discharging usage environment of each individual vehicle. When the computing device 101 determines that it is in an unexpected severe usage environment, the computing device 101 separately computes the deterioration state, and the computing ECU 12 of the vehicle system 1 Compare with the calculated value by. When the difference between the calculated value of the battery deterioration state calculated by the calculation ECU 12 of the vehicle system 1 and the calculated value of the battery deterioration state calculated by the calculation device 101 of the central management center 100 exceeds the reference value. Then, a correction command for deterioration calculation is transmitted from the central management center 100 to the vehicle system 1, and the estimation accuracy of the deterioration state according to the use environment is ensured.

すなわち、バッテリの劣化進捗状況は、充放電の回数や充放電深度より影響を受けるが、同じ充放電サイクルにおいても使用環境によって大きく左右される。特に、バッテリが高温であるときの充放電や想定されていない環境下での使用が長時間継続した場合には、劣化が促進される。しかしながら、車両の使用環境や運転状況は、個々の車両毎に大きく異なり、すべての状況に対応して劣化状態を演算することは困難であるため、車両システム1側の劣化演算機能としては、標準的な使用環境を前提として劣化演算のための関数やマップを作成し、これらを演算ECU12に組み込まざるを得ない。従って、車両の実使用状態が、標準とは異なる想定外の厳しい環境下に置かれた場合、組み込まれた関数やマップから演算した劣化状態が実際の劣化状態と乖離してしまう虞がある。   In other words, the progress of battery deterioration is affected by the number of charge / discharge cycles and the depth of charge / discharge, but greatly depends on the use environment even in the same charge / discharge cycle. In particular, deterioration is promoted when charging / discharging when the battery is at a high temperature or when the battery is used in an environment that is not assumed for a long time. However, the usage environment and driving conditions of the vehicle vary greatly from one vehicle to another, and it is difficult to calculate the deterioration state corresponding to all the conditions. Therefore, as a deterioration calculation function on the vehicle system 1 side, It is necessary to create functions and maps for deterioration calculation on the assumption of a typical use environment, and to incorporate these into the calculation ECU 12. Therefore, when the actual use state of the vehicle is placed in an unexpected severe environment different from the standard, there is a possibility that the deterioration state calculated from the built-in function or map may deviate from the actual deterioration state.

このため、中央管理センタ100では、無線通信を介して車両システム1からGPS位置情報やバッテリ11の電圧、電流、温度等を充放電データを含む運転履歴を受信して車両の使用環境を特定し、高温下での激しい充放電を伴い急加速、急停止、峠越え等のバッテリにとって厳しい環境下(想定されていない環境下)での使用が継続的且つ長期的に行われているか否かを判定する。そして、車両の使用状態が想定されていない環境下にあると判断したときには、車両システム1外部の演算装置101で劣化進捗状況を演算しておき、車両システム1側で推定したバッテリ劣化状態と比較し、両者に基準値を越えて差が生じた場合には、中央管理センタ100から車両システム1に、車両システム1側の劣化演算に対する修正指令を送信することにより、劣化状態の推定精度を確保する。   For this reason, the central management center 100 receives the driving history including charging / discharging data such as GPS position information, voltage, current, temperature, etc. of the battery 11 from the vehicle system 1 via wireless communication, and specifies the usage environment of the vehicle. Whether or not the battery is used continuously and for a long time under severe conditions (unexpected environment) for batteries such as sudden acceleration, sudden stop, and overshooting with intense charging and discharging at high temperatures judge. When it is determined that the vehicle usage state is not assumed, the deterioration progress is calculated by the calculation device 101 outside the vehicle system 1 and compared with the battery deterioration state estimated on the vehicle system 1 side. However, if there is a difference between the two in excess of the reference value, the central control center 100 sends a correction command for the deterioration calculation on the vehicle system 1 side to the vehicle system 1 to ensure the estimation accuracy of the deterioration state. To do.

一般に、バッテリの劣化状態は、初期の満充電容量に対する劣化時の満充電容量の比率で示されるバッテリ健康状態SOH(State of health)を用いて評価することができる。充電容量の変化はバッテリの内部抵抗の変化で精度高く推定できることから、本形態においては、バッテリの初期内部抵抗に対する劣化時の内部抵抗の増加率で劣化の進行度を置き換え、劣化度SOHとして演算する。   Generally, the deterioration state of the battery can be evaluated using a battery health state SOH (State of health) indicated by a ratio of the full charge capacity at the time of deterioration to the initial full charge capacity. Since the change in charge capacity can be estimated with high accuracy by the change in the internal resistance of the battery, in this embodiment, the progress of deterioration is replaced by the rate of increase of the internal resistance at the time of deterioration relative to the initial internal resistance of the battery, and calculated as the deterioration degree SOH. To do.

この劣化度SOHの演算は、本形態においては、化学反応における温度と反応速度との関係を表すアレニウスの法則を基本としており、バッテリの負荷変動に関係なく、常時、劣化状態の変化を捉えることが可能である。ここで、アレニウスの法則に基づくバッテリ劣化状態の推定処理について説明する。   In this embodiment, the calculation of the deterioration degree SOH is based on Arrhenius' law representing the relationship between the temperature and the reaction rate in the chemical reaction, and always captures the change in the deterioration state regardless of the load fluctuation of the battery. Is possible. Here, the battery deterioration state estimation process based on Arrhenius' law will be described.

周知のように、アレニウスの法則は、以下の(1)式に示すように、化学反応速度の温度依存性を定量的に記述したものであり、各種機器の温度劣化による残存寿命を評価する場合に利用される。   As is well known, the Arrhenius law is a quantitative description of the temperature dependence of the chemical reaction rate, as shown in the following equation (1). Used for

K=A×e-Ea/RT…(1)
但し、K :反応速度定数
A :頻度因子
Ea:活性化エネルギー
R :気体定数(8.314J/mol−K)
T :温度(絶対温度K)
アレニウスの法則は、バッテリのカレンダー寿命の速度定数についても適用することができ、バッテリの劣化の度合いをYrとすると、この劣化度合いYrの時間Txに対する変化(劣化速度)dYr/dTxが反応速度定数Kに相当するものと考えることができる。この場合、(1)式を自然対数で表現した以下の(1’)式からもわかるように、劣化速度は、温度Tによる影響に加えて、頻度因子Aによる影響を考慮する必要がある。頻度因子Aは、温度に無関係な因子であり、充放電によるバッテリへのストレスの大きさを劣化の速度定数へ置き換えた値と見做すことができる。
K = A × e −Ea / RT (1)
Where K: reaction rate constant
A: Frequency factor
Ea: Activation energy
R: Gas constant (8.314 J / mol-K)
T: temperature (absolute temperature K)
The Arrhenius law can also be applied to the rate constant of the battery's calendar life. If the degree of deterioration of the battery is Yr, the change (deterioration rate) dYr / dTx of the degree of deterioration Yr with respect to time Tx is the reaction rate constant. It can be considered that it corresponds to K. In this case, as can be seen from the following equation (1 ′) in which equation (1) is expressed by a natural logarithm, the deterioration rate needs to consider the influence of frequency factor A in addition to the influence of temperature T. The frequency factor A is a factor irrelevant to the temperature, and can be regarded as a value obtained by replacing the magnitude of stress on the battery due to charging / discharging with a deterioration rate constant.

lnK=(−Ea/R)×(1/T)+lnA…(1’)
温度による劣化では、内部抵抗増加率と活性化エネルギーとの関係がバッテリの種類によって異なるため、実験データによって検証する。一例として、リチウムイオン蓄電池について、充放電がなくストレスの頻度因子AがA=1である状態(放置状態)で、低温、常温、高温の各温度域での内部抵抗増加率と保存時間(平方根)との関係を検証すると、図2に示す関係が得られる。これによると、温度一定の条件下において、バッテリの内部抵抗増加率(劣化の度合い)をYr、保存時間(平方根)をTxとしたとき、Yr=aTxで示される線形関係となることが実証され、直線の傾きa(=dYr/dTx)が(1’)式の活性化エネルギーEaに関する項で関連付けられる。
lnK = (− Ea / R) × (1 / T) + lnA (1 ′)
In the case of deterioration due to temperature, the relationship between the rate of increase in internal resistance and the activation energy differs depending on the type of battery. As an example, with respect to a lithium ion battery, the rate of increase in internal resistance and storage time (square root) at low temperature, normal temperature, and high temperature in a state in which there is no charge / discharge and the stress frequency factor A is A = 1 (standby state). 2 is obtained, the relationship shown in FIG. 2 is obtained. According to this, under a constant temperature condition, it is proved that the linear relationship represented by Yr = aTx is obtained when the internal resistance increase rate (degree of deterioration) of the battery is Yr and the storage time (square root) is Tx. The slope of the straight line a (= dYr / dTx) is related in terms of the activation energy Ea in the equation (1 ′).

この温度による劣化は、バッテリの充放電がない放置状態での劣化であり、車両の運転中は、充放電のストレスによる劣化について考える必要がある。ストレスの頻度因子Aは、バッテリ使用中、ストレスの大きさによって常時変化し、ストレスの定義や大きさは、バッテリの種類により異なる。一例として、リチウムイオン蓄電池について検証すると、リチウムイオン蓄電池の劣化は、電気化学的に、主に負極に生成される不活性物質によって引き起こされる。この不活性物質の生成速度は、温度と電流密度に依存し、外部電源によって非自発的な反応を駆動する場合、不活性物質(析出、気体)が生成されるのは、印加する電圧が無電流電池電位を超えているとき(過電圧)に限られる。   The deterioration due to the temperature is a deterioration in a state where the battery is not charged / discharged, and it is necessary to consider the deterioration due to the charge / discharge stress while the vehicle is operating. The stress frequency factor A constantly changes depending on the magnitude of the stress during use of the battery, and the definition and magnitude of the stress vary depending on the type of battery. As an example, when a lithium ion storage battery is verified, the deterioration of the lithium ion storage battery is caused electrochemically by an inert substance mainly generated in the negative electrode. The generation rate of this inert substance depends on temperature and current density, and when an involuntary reaction is driven by an external power source, the inert substance (precipitation, gas) is generated because no voltage is applied. Only when the current battery potential is exceeded (overvoltage).

以上を踏まえて、CC(Constant Current)充放電による各サイクル試験を実施し、或るサイクル時における内部抵抗増加率を測定する。その結果、図3に示すように、各充放電深度毎に、内部抵抗増加率を劣化の度合いをYr、経過時間(トータル充電時間)をTxとしたとき、Yr=a’Txで示される線形関係となることが実証される。この充放電による劣化速度(直線の傾きa’)は、以下の(2)式で頻度因子Aと関連付けることができる。   Based on the above, each cycle test by CC (Constant Current) charge / discharge is performed, and the internal resistance increase rate at a certain cycle is measured. As a result, as shown in FIG. 3, for each charging / discharging depth, when the internal resistance increase rate is Yr and the elapsed time (total charging time) is Tx, the linearity indicated by Yr = a′Tx. It is proven to be a relationship. This deterioration rate due to charge / discharge (straight line a ′) can be related to the frequency factor A by the following equation (2).

a’= A/dTx…(2)
尚、正極劣化等の他の劣化因子(劣化の要因に占めるウエイトが低いもの)をモデル化し、頻度因子Aへ組み込んでも良く、より精度を向上することができる。
a ′ = A / dTx (2)
It should be noted that other deterioration factors such as positive electrode deterioration (those having a low weight in the deterioration factors) may be modeled and incorporated into the frequency factor A, and the accuracy can be further improved.

以上のアレニウスの法則に基づく劣化度SOHは、具体的には、車両システム1側に組み込まれた関数やマップによって算出される。すなわち、図4に示すように、車両システム1の演算ECU12には、通常の車両の走行環境下で想定されるバッテリ11の温度及び充放電範囲を前提とした内部抵抗増加率と充放電のサイクル時間との関係を、劣化速度aを傾きとする直線関係で表した基本特性の関数或いはマップが組み込まれている。演算ECU12は、この基本特性を頻度因子Aによる劣化速度a’で補正して算出した内部抵抗増加率を設定時間毎に積算してゆき、車両運転時の劣化度SOHとして算出する。頻度因子Aによる劣化速度a’は、バッテリ電流Iをパラメータとして関数或いはマップ化しておく。   Specifically, the degree of deterioration SOH based on the above Arrhenius law is calculated by a function or map incorporated in the vehicle system 1 side. That is, as shown in FIG. 4, the calculation ECU 12 of the vehicle system 1 has an internal resistance increase rate and a charge / discharge cycle on the assumption of the temperature and charge / discharge range of the battery 11 assumed in a normal vehicle traveling environment. A function or map of basic characteristics that expresses the relationship with time as a linear relationship with the deterioration rate a as an inclination is incorporated. The arithmetic ECU 12 integrates the rate of increase in internal resistance calculated by correcting this basic characteristic with the deterioration rate a ′ due to the frequency factor A for each set time, and calculates the deterioration degree SOH during vehicle operation. The deterioration rate a 'due to the frequency factor A is a function or map using the battery current I as a parameter.

一方、中央管理センタ100は、長期的な充放電試験等により、車両システム1に対して想定した通常の使用環境下における内部抵抗増加率に対し、高温下での激しい充放電を伴う急加速、急停止、峠越え等のバッテリにとって厳しい環境下(想定されていない環境下)での内部抵抗増加率の変化を把握しており、図5に示すように、通常の使用環境下における内部抵抗増加率を補正するための補正係数Eを、環境継続時間をパラメータとする関数或いはマップとして保有している。   On the other hand, the central management center 100 performs rapid acceleration with intense charging / discharging at a high temperature with respect to the internal resistance increase rate under a normal use environment assumed for the vehicle system 1 by a long-term charging / discharging test or the like. We know changes in the rate of increase in internal resistance under severe conditions (unexpected environments) for batteries such as sudden stops and overpasses. As shown in Fig. 5, the internal resistance increases under normal operating conditions. A correction coefficient E for correcting the rate is held as a function or map using the environmental duration as a parameter.

そして、中央管理センタ100において、演算装置101で補正係数Eを用いて補正した劣化度SOH’と、車両システム1の演算ECU12で算出した劣化度SOHとを比較し、両者の差が基準値を越えたとき、中央管理センタ100から車両システム1に劣化演算の修正指示を送信すると共に、補正した劣化度SOH’を送信する。車両システム1側では、中央管理センタ100からの演算修正指示を受信すると、前回までの劣化度SOHの演算値をクリアし、中央管理センタ100から送信された劣化度SOH’を初期値として劣化度演算を再開する。   Then, in the central management center 100, the deterioration degree SOH ′ corrected by the arithmetic unit 101 using the correction coefficient E is compared with the deterioration degree SOH calculated by the arithmetic ECU 12 of the vehicle system 1, and the difference between the two values becomes a reference value. When it exceeds, the central management center 100 transmits a deterioration calculation correction instruction to the vehicle system 1 and transmits the corrected deterioration degree SOH ′. When receiving the calculation correction instruction from the central management center 100, the vehicle system 1 clears the calculated value of the deterioration degree SOH up to the previous time and sets the deterioration degree SOH ′ transmitted from the central management center 100 as an initial value. Resume computation.

次に、以上のシステムによる劣化推定処理について、図6及び図7のフローチャートを用いて説明する。   Next, the degradation estimation process by the above system is demonstrated using the flowchart of FIG.6 and FIG.7.

図6に示す処理は、車両システム1側の演算ECU12における処理を示し、最初のステップS1で、外部の演算装置(中央管理センタ100の演算装置101)へGPS受信機50からの受信データに基づく車両位置と、バッテリ11の電圧V、電流I、温度T等による運転状況とを通信モジュール13を介して送信する。次に、ステップS2へ進み、外部の演算装置101より劣化度SOHに対する修正指示が有り、外部の演算装置101で算出した劣化度SOH’への変更が指示されているか否かを調べる。   The processing shown in FIG. 6 shows processing in the arithmetic ECU 12 on the vehicle system 1 side, and is based on data received from the GPS receiver 50 to an external arithmetic device (the arithmetic device 101 of the central management center 100) in the first step S1. The vehicle position and the driving situation based on the voltage V, current I, temperature T, etc. of the battery 11 are transmitted via the communication module 13. Next, the process proceeds to step S <b> 2, and it is checked whether or not there is a correction instruction for the deterioration degree SOH from the external arithmetic device 101 and an instruction to change to the deterioration degree SOH ′ calculated by the external arithmetic device 101 is instructed.

その結果、劣化度の修正指示が無い場合には、ステップS3へ進んで、車載ECU(演算ECU12)による劣化度SOHの算出を実行して処理を抜ける。また、外部の演算装置101からの修正指示が有る場合には、ステップS2からステップS4へ進み、前回の演算周期までに算出した劣化度SOHをクリアし、外部の演算装置101で算出した劣化度SOH’に置き換える。そして、以後、この劣化度SOH’を初期値として車載の演算ECU12での劣化度演算を再開する。   As a result, if there is no instruction to correct the deterioration level, the process proceeds to step S3, the deterioration level SOH is calculated by the in-vehicle ECU (calculation ECU 12), and the process is exited. If there is a correction instruction from the external arithmetic unit 101, the process proceeds from step S2 to step S4, the degree of degradation SOH calculated up to the previous arithmetic cycle is cleared, and the degree of degradation calculated by the external arithmetic unit 101 is cleared. Replace with SOH '. Thereafter, the deterioration degree calculation in the in-vehicle operation ECU 12 is restarted with the deterioration degree SOH ′ as an initial value.

一方、図7に示す処理は、中央管理センタ100の演算装置101における処理の流れを示すものであり、最初のステップS11において、車両システム1側の演算ECU12より車両位置と運転状況のデータ入力が有るか否かを調べる。その結果、データ入力が無い場合には、処理を抜けて次のデータ入力まで待機し、データ入力が有る場合、ステップS12でデータをメモリに格納し、ステップS13で、バッテリの使用環境が予め想定した通常の範囲を逸脱して定常的に厳しい環境にあるか否かを入力されたデータから判断する。   On the other hand, the process shown in FIG. 7 shows the flow of the process in the arithmetic unit 101 of the central management center 100. In the first step S11, the data input of the vehicle position and driving situation is input from the arithmetic ECU 12 on the vehicle system 1 side. Check if it exists. As a result, if there is no data input, the process exits and waits until the next data input. If there is data input, the data is stored in the memory in step S12, and the battery usage environment is assumed in advance in step S13. From the input data, it is determined whether the environment is constantly in a severe environment that deviates from the normal range.

その結果、バッテリの使用環境が予め想定した通常の範囲にある場合には、ステップS13から処理を抜け、バッテリの使用環境が定常的に厳しい環境にある場合、ステップS13からステップS14へ進んで環境継続時間に基づいて前述の補正係数Eを算出し、ステップS15で補正係数Eを使用して劣化度SOH’を算出する。   As a result, if the battery usage environment is in the normal range assumed in advance, the process is skipped from step S13, and if the battery usage environment is constantly in a severe environment, the process proceeds from step S13 to step S14. The above-described correction coefficient E is calculated based on the duration, and the degree of deterioration SOH ′ is calculated using the correction coefficient E in step S15.

次に、ステップS16へ進み、車両システム1側の演算ECU12で算出した劣化度SOHと、劣化度SOH’との差が基準値以下であり、且つ劣化度SOH’の計算を継続する必要があるか否か(つまり、バッテリの厳しい使用環境が継続しているか否か)を調べる。その結果、双方の劣化度SOH,SOH’の差が基準値以下で劣化度SOH’の計算を継続する必要があると判断される場合、ステップS16からステップS17へ進んで、車両システム1側の演算ECU12より車両位置と運転状況のデータ入力が有るか否かを調べる。そして、データ入力が無い場合には処理を抜け、データ入力が有る場合には、ステップS14へ戻って補正係数Eの算出による劣化度SOH’の算出を続行する。   Next, the process proceeds to step S16, and the difference between the deterioration degree SOH calculated by the arithmetic ECU 12 on the vehicle system 1 side and the deterioration degree SOH ′ is equal to or less than the reference value, and the calculation of the deterioration degree SOH ′ needs to be continued. (That is, whether or not the severe battery usage environment continues). As a result, when it is determined that the difference between the two deterioration levels SOH and SOH ′ is equal to or less than the reference value and the calculation of the deterioration level SOH ′ needs to be continued, the process proceeds from step S16 to step S17, and the vehicle system 1 side It is checked whether or not there is data input of the vehicle position and driving situation from the arithmetic ECU 12. If there is no data input, the process is terminated. If there is data input, the process returns to step S14 to continue calculating the deterioration degree SOH 'by calculating the correction coefficient E.

また、ステップS16において、双方の劣化度SOH,SOH’の差が基準値を越えている場合或いは劣化度SOH’の計算を継続する必要が無いと判断される場合には、ステップS16からステップS18へ進み、車両システム1側の演算ECU12で算出した劣化度SOHをクリアする必要があるか否かを調べる。そして、劣化度SOH,SOH’の差が基準値を越えていても過渡的なものであって、劣化の進捗には影響がないと判断される場合には、劣化度SOHをクリアする必要はないと判断してステップS18から処理を抜け、劣化度SOHをクリアする必要がある場合、ステップS18からステップS19へ進む。   In step S16, if the difference between the two deterioration levels SOH and SOH ′ exceeds the reference value, or if it is determined that the calculation of the deterioration level SOH ′ does not need to be continued, step S16 to step S18. Then, it is checked whether or not the deterioration degree SOH calculated by the arithmetic ECU 12 on the vehicle system 1 side needs to be cleared. If it is determined that the difference between the deterioration levels SOH and SOH ′ exceeds the reference value and is transient and does not affect the progress of the deterioration, it is necessary to clear the deterioration level SOH. If it is determined that there is no need to exit the process from step S18 and clear the degradation degree SOH, the process proceeds from step S18 to step S19.

ステップS19では、車両システム1側の演算ECU12で算出した劣化度SOHをクリアして中央管理センタ100側の演算装置101で算出した劣化度SOH’を使用するよう演算修正指示を送信する。この中央管理センタ100からの演算修正指示により、車両システム1の演算ECU12は、前回の演算周期までに算出した劣化度SOHをクリアし、中央管理センタ100側から送信された劣化度SOH’を初期値として劣化度演算を再開する。   In step S19, a calculation correction instruction is transmitted so that the deterioration degree SOH calculated by the calculation ECU 12 on the vehicle system 1 side is cleared and the deterioration degree SOH ′ calculated by the calculation device 101 on the central management center 100 side is used. In response to the calculation correction instruction from the central management center 100, the calculation ECU 12 of the vehicle system 1 clears the deterioration degree SOH calculated up to the previous calculation cycle, and initially sets the deterioration degree SOH ′ transmitted from the central management center 100 side. The deterioration degree calculation is restarted as a value.

以上のように、本形態においては、車両の実使用状態が標準とは異なる想定外の厳しい環境下に置かれた場合、標準的な使用環境を前提として組み込まれた演算機能で算出した劣化状態を修正するようにしているので、実際の環境条件による誤差の蓄積の影響を低減して実際のバッテリの劣化状態と乖離することが防止され、蓄電デバイスの劣化状態を高精度に把握することができる。   As described above, in this embodiment, when the actual usage state of the vehicle is placed in an unexpected severe environment different from the standard, the deterioration state calculated by the calculation function incorporated on the assumption of the standard usage environment Therefore, it is possible to reduce the effect of error accumulation due to actual environmental conditions and prevent it from deviating from the actual battery deterioration state, and to accurately grasp the deterioration state of the electricity storage device. it can.

劣化状態推定システムの構成図Configuration diagram of degradation state estimation system 抵抗増加率と保存時間との関係を示す説明図Explanatory diagram showing the relationship between resistance increase rate and storage time 抵抗増加率とサイクル時間との関係を示す説明図Explanatory diagram showing the relationship between resistance increase rate and cycle time 通常の使用環境下での内部抵抗増加率とサイクル時間との関係を示す説明図Explanatory diagram showing the relationship between internal resistance increase rate and cycle time under normal use environment 想定されていない環境下での内部抵抗増加率を補正する補正係数と環境継続時間との関係を示す説明図Explanatory drawing which shows the relationship between the correction coefficient which correct | amends the internal resistance increase rate in the environment where it is not assumed, and environmental duration 車両システム側の処理を示すフローチャートFlow chart showing processing on the vehicle system side 中央管理センタ側の処理を示すフローチャートFlow chart showing processing on the central management center side

符号の説明Explanation of symbols

1 車両システム
11 バッテリ(蓄電デバイス)
100 中央管理センタ(外部演算システム)
SOH 劣化度(車両システムで算出した劣化度)
SOH’ 劣化度(外部演算システムで算出した劣化度)
1 Vehicle system 11 Battery (power storage device)
100 Central management center (external computing system)
SOH degradation level (degradation level calculated by vehicle system)
SOH 'degradation level (degradation level calculated by an external computing system)

Claims (3)

車両に搭載される蓄電デバイスの劣化状態を推定する蓄電デバイスの劣化状態推定システムであって、
予め設定した環境条件を前提として組み込まれた演算機能に従って上記蓄電デバイスの劣化度を算出すると共に、上記蓄電デバイスの充放電データを含む運転履歴を外部に無線送信する車両システムと、
上記車両システムと無線通信網を介して双方向通信可能に接続され、上記車両システムから送信された運転履歴に基づいて上記蓄電デバイスの劣化度を算出し、該劣化度と上記車両システムで算出した劣化度との差が基準値を越えたとき、上記車両システムに劣化度演算の修正指示を送信する外部演算システムとを備えたことを特徴とする蓄電デバイスの劣化状態推定システム。
A storage device deterioration state estimation system for estimating a deterioration state of a storage device mounted on a vehicle,
A vehicle system that calculates the degree of deterioration of the power storage device according to a calculation function incorporated on the assumption of a preset environmental condition, and wirelessly transmits an operation history including charge / discharge data of the power storage device to the outside,
The vehicle system is connected to the vehicle system via a wireless communication network so as to be capable of two-way communication. Based on the driving history transmitted from the vehicle system, the deterioration degree of the power storage device is calculated, and the deterioration degree and the vehicle system are calculated. An electrical storage device degradation state estimation system comprising: an external computation system that transmits a degradation degree computation correction instruction to the vehicle system when a difference between the degradation degree exceeds a reference value.
上記車両システムは、
上記運転履歴に上記車両の位置情報を含めて外部に無線送信することを特徴とする請求項1記載の蓄電デバイスの劣化状態推定システム。
The vehicle system is
The deterioration state estimation system for an electricity storage device according to claim 1, wherein the driving history includes the position information of the vehicle and wirelessly transmits the information to the outside.
上記外部演算システムは、
上記車両システムへの劣化度演算の修正指示を、上記車両システムで算出した劣化度をクリアし、上記外部演算システムで算出した劣化度を初期値として劣化度演算を再開する指示として送信することを特徴とする請求項1又は2記載の蓄電デバイスの劣化状態推定システム。
The external computing system is
An instruction to correct the deterioration degree calculation to the vehicle system is transmitted as an instruction to clear the deterioration degree calculated by the vehicle system and restart the deterioration degree calculation using the deterioration degree calculated by the external calculation system as an initial value. The degradation state estimation system of the electrical storage device of Claim 1 or 2 characterized by the above-mentioned.
JP2005243320A 2005-08-24 2005-08-24 Estimating system for deteriorated state of capacitor device Pending JP2007055450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243320A JP2007055450A (en) 2005-08-24 2005-08-24 Estimating system for deteriorated state of capacitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243320A JP2007055450A (en) 2005-08-24 2005-08-24 Estimating system for deteriorated state of capacitor device

Publications (1)

Publication Number Publication Date
JP2007055450A true JP2007055450A (en) 2007-03-08

Family

ID=37919305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243320A Pending JP2007055450A (en) 2005-08-24 2005-08-24 Estimating system for deteriorated state of capacitor device

Country Status (1)

Country Link
JP (1) JP2007055450A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261807A (en) * 2009-05-07 2010-11-18 Hitachi Ltd Storage battery deterioration determination method and charge/discharge control device
EP2362482A1 (en) 2010-01-29 2011-08-31 Hitachi, Ltd. Secondary battery system
JP2011524591A (en) * 2008-06-17 2011-09-01 ゼネラル・エレクトリック・カンパニイ System and method for predicting maintenance of intelligent electronic devices
JP2012083179A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Battery monitoring device, battery monitoring system, battery diagnosis method for vehicle
JP2012527212A (en) * 2009-05-11 2012-11-01 マヒンドラ レバ エレクトリック ビークルズ プライベート リミテッド System and method for monitoring and controlling energy systems
JP2013213691A (en) * 2012-03-30 2013-10-17 Toyota Motor Corp Estimation apparatus and estimation method
JP2014059226A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
WO2015060200A1 (en) * 2013-10-22 2015-04-30 三菱重工業株式会社 Deterioration function calculation device, deterioration rate estimation device, deterioration rate estimation system, deterioration function calculation method, deterioration rate estimation method, and program
JP2015118021A (en) * 2013-12-19 2015-06-25 日産自動車株式会社 Deterioration detection apparatus
CN106585422A (en) * 2017-02-17 2017-04-26 合肥国轩高科动力能源有限公司 SOH estimation method for power battery
EP3054674A4 (en) * 2013-09-30 2017-06-07 Sony Corporation Information processing apparatus and information processing method
JPWO2016143400A1 (en) * 2015-03-12 2018-01-11 オムロン株式会社 Battery, system, battery damage degree calculation device, battery management method, battery management program, and recording medium
JP2018148650A (en) * 2017-03-03 2018-09-20 株式会社Gsユアサ Power storage system
EP3392076A1 (en) 2017-04-20 2018-10-24 Toyota Jidosha Kabushiki Kaisha Information collection system for electric storage device
CN110018427A (en) * 2019-05-24 2019-07-16 福建工程学院 A kind of battery health of electric automobile appraisal procedure based on travelling data
WO2019181583A1 (en) * 2018-03-20 2019-09-26 本田技研工業株式会社 Management device, battery and management system
CN110609188A (en) * 2019-09-25 2019-12-24 潍柴动力股份有限公司 Method, device and equipment for detecting aging of oil quantity metering unit
CN110873841A (en) * 2019-11-05 2020-03-10 北京匠芯电池科技有限公司 Battery life prediction method based on combination of data driving and battery characteristics
KR20210134137A (en) * 2020-04-29 2021-11-09 주식회사 피엠그로우 Apparatus and method for predicting remaining life of electric vehicle battery
CN117930027A (en) * 2024-03-18 2024-04-26 中国汽车技术研究中心有限公司 Power battery capacity abnormality detection method, device and platform

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524591A (en) * 2008-06-17 2011-09-01 ゼネラル・エレクトリック・カンパニイ System and method for predicting maintenance of intelligent electronic devices
JP2010261807A (en) * 2009-05-07 2010-11-18 Hitachi Ltd Storage battery deterioration determination method and charge/discharge control device
JP2012527212A (en) * 2009-05-11 2012-11-01 マヒンドラ レバ エレクトリック ビークルズ プライベート リミテッド System and method for monitoring and controlling energy systems
EP2362482A1 (en) 2010-01-29 2011-08-31 Hitachi, Ltd. Secondary battery system
US8581555B2 (en) 2010-01-29 2013-11-12 Hitachi, Ltd. Secondary battery system including an arrangement to determine a temporary increase in direct current resistance of the secondary battery
JP2012083179A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Battery monitoring device, battery monitoring system, battery diagnosis method for vehicle
JP2013213691A (en) * 2012-03-30 2013-10-17 Toyota Motor Corp Estimation apparatus and estimation method
JP2014059226A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
EP3054674A4 (en) * 2013-09-30 2017-06-07 Sony Corporation Information processing apparatus and information processing method
US20160231389A1 (en) * 2013-10-22 2016-08-11 Mitsubishi Heavy Industries, Ltd. Deterioration function calculation device, deterioration rate estimation device, deterioration rate estimation system, deterioration function calculation method, deterioration rate estimation method, and program
WO2015060200A1 (en) * 2013-10-22 2015-04-30 三菱重工業株式会社 Deterioration function calculation device, deterioration rate estimation device, deterioration rate estimation system, deterioration function calculation method, deterioration rate estimation method, and program
JP2015118021A (en) * 2013-12-19 2015-06-25 日産自動車株式会社 Deterioration detection apparatus
US10686225B2 (en) 2015-03-12 2020-06-16 Omron Corporation Battery, system, battery damage calculation device, battery management method, battery management program, and recording medium
JPWO2016143400A1 (en) * 2015-03-12 2018-01-11 オムロン株式会社 Battery, system, battery damage degree calculation device, battery management method, battery management program, and recording medium
CN106585422A (en) * 2017-02-17 2017-04-26 合肥国轩高科动力能源有限公司 SOH estimation method for power battery
JP2018148650A (en) * 2017-03-03 2018-09-20 株式会社Gsユアサ Power storage system
US10814738B2 (en) 2017-04-20 2020-10-27 Toyota Jidosha Kabushiki Kaisha Information collection system for electric storage device
EP3392076A1 (en) 2017-04-20 2018-10-24 Toyota Jidosha Kabushiki Kaisha Information collection system for electric storage device
WO2019181583A1 (en) * 2018-03-20 2019-09-26 本田技研工業株式会社 Management device, battery and management system
CN110018427A (en) * 2019-05-24 2019-07-16 福建工程学院 A kind of battery health of electric automobile appraisal procedure based on travelling data
CN110609188A (en) * 2019-09-25 2019-12-24 潍柴动力股份有限公司 Method, device and equipment for detecting aging of oil quantity metering unit
CN110873841A (en) * 2019-11-05 2020-03-10 北京匠芯电池科技有限公司 Battery life prediction method based on combination of data driving and battery characteristics
CN110873841B (en) * 2019-11-05 2021-12-07 蓝谷智慧(北京)能源科技有限公司 Battery life prediction method based on combination of data driving and battery characteristics
KR20210134137A (en) * 2020-04-29 2021-11-09 주식회사 피엠그로우 Apparatus and method for predicting remaining life of electric vehicle battery
KR102422594B1 (en) * 2020-04-29 2022-07-21 주식회사 피엠그로우 Apparatus and method for predicting remaining life of electric vehicle battery
CN117930027A (en) * 2024-03-18 2024-04-26 中国汽车技术研究中心有限公司 Power battery capacity abnormality detection method, device and platform

Similar Documents

Publication Publication Date Title
JP2007055450A (en) Estimating system for deteriorated state of capacitor device
JP4864383B2 (en) Deterioration state estimation device for power storage device
EP2700966B1 (en) Apparatus and method for estimating battery state
US8489264B2 (en) Battery measuring device, battery control system and vehicle
JP2007057433A (en) Degradation estimation system for electricity accumulation device
US7800345B2 (en) Battery management system and method of operating same
JP2007057434A (en) Degradation estimation system for electricity accumulation device
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4089691B2 (en) Vehicle battery control device
WO2011108249A1 (en) Full charge capacity value correction circuit, battery pack, and charging system
US7518375B2 (en) Method of estimating maximum output of battery for hybrid electric vehicle
US20060220619A1 (en) Remaining capacity calculating device and method for electric power storage
JP5338807B2 (en) Battery state determination method and automobile
WO2014080764A1 (en) Secondary battery state estimating device and method
EP3627166B1 (en) Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
JP2007024687A (en) Battery management system
CN105102999A (en) Battery life estimation method and battery life estimation device
JP4288958B2 (en) Degradation estimation method
JP2006250905A (en) Battery management system
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP5162971B2 (en) Battery state detection system and automobile
KR20180116988A (en) A system for calculating the state of charge of a lfp battery for car and method thereof
EP1164680B1 (en) Method for charging a battery pack including a plurality of battery units
CN111114385A (en) Detection and mitigation for rapid capacity loss in aged batteries
JP2009241646A (en) Battery state determination system, and automobile having the system