JP2015117402A - Surface-treated steel plate, organic resin-coated metal container, and method for manufacturing surface-treated steel plate - Google Patents

Surface-treated steel plate, organic resin-coated metal container, and method for manufacturing surface-treated steel plate Download PDF

Info

Publication number
JP2015117402A
JP2015117402A JP2013260930A JP2013260930A JP2015117402A JP 2015117402 A JP2015117402 A JP 2015117402A JP 2013260930 A JP2013260930 A JP 2013260930A JP 2013260930 A JP2013260930 A JP 2013260930A JP 2015117402 A JP2015117402 A JP 2015117402A
Authority
JP
Japan
Prior art keywords
steel sheet
treated steel
treatment
fluorine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013260930A
Other languages
Japanese (ja)
Other versions
JP6530885B2 (en
Inventor
亙 黒川
Wataru Kurokawa
亙 黒川
宗光 弘津
Munemitsu Hirotsu
宗光 弘津
光英 粟飯原
Mitsuhide Aihara
光英 粟飯原
真彦 松川
Masahiko Matsukawa
真彦 松川
美和 内川
Miwa Uchikawa
美和 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Toyo Kohan Co Ltd
Toyo Seikan Group Holdings Ltd
Original Assignee
Nippon Paint Co Ltd
Toyo Kohan Co Ltd
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Toyo Kohan Co Ltd, Toyo Seikan Kaisha Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2013260930A priority Critical patent/JP6530885B2/en
Priority to US15/035,940 priority patent/US20160289843A1/en
Priority to PCT/JP2014/082239 priority patent/WO2015093318A1/en
Priority to CN201480069019.XA priority patent/CN105874107B/en
Priority to EP14872878.5A priority patent/EP3085816B1/en
Publication of JP2015117402A publication Critical patent/JP2015117402A/en
Application granted granted Critical
Publication of JP6530885B2 publication Critical patent/JP6530885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treated steel plate excellent in adhesiveness to an organic resin layer and in corrosion resistance, an organic resin-coated metal container excellent in adhesiveness to a resin applied on outer or inner surfaces of can and in resistance to fluorine elution, and a method for manufacturing the surface-treated steel plate.SOLUTION: The surface-treated steel plate has a surface treatment layer containing fluorine and essentially comprising zirconium and oxygen on at least one surface of a steel plate; and the surface-treated steel plate contains a group 2 element on a surface side of the surface treatment layer.

Description

本発明は、表面処理鋼板、有機樹脂被覆金属容器、及び表面処理鋼板の製造方法に関するものであり、より詳細には、有機樹脂被覆との密着性及び耐溶出性に優れた表面処理鋼板及びその製造方法に関する。   The present invention relates to a surface-treated steel sheet, an organic resin-coated metal container, and a method for producing the surface-treated steel sheet. More specifically, the present invention relates to a surface-treated steel sheet having excellent adhesion and elution resistance to an organic resin coating and its It relates to a manufacturing method.

家電製品や建材、車両、航空機、容器等の分野において,鋼板と有機被覆との密着性を向上させる処理として、クロメート処理が従来より知られており、その優れた耐食性と密着性から、幅広く用いられてきた。
クロメート処理には、被膜中に6価クロムを含有するタイプと含有しないタイプがあるが、近年、環境および労働衛生の観点から、出発原料として6価クロムを使用するものであれば、最終製品の状態にかかわらず出発原料自体への6価クロム含有を禁止しようとする動きが強まっている。
In the fields of home appliances, building materials, vehicles, aircraft, containers, etc., chromate treatment has been known as a treatment for improving the adhesion between steel sheet and organic coating, and it has been widely used due to its excellent corrosion resistance and adhesion. Has been.
There are two types of chromate treatment, one containing hexavalent chromium and the other containing no hexavalent chromium. However, in recent years, from the viewpoint of environment and occupational health, if hexavalent chromium is used as a starting material, Regardless of the situation, there is an increasing trend to ban the inclusion of hexavalent chromium in the starting material itself.

缶や缶蓋などの金属容器用材料では、当然、最終製品には6価クロムが残存しないタイプのクロメート処理が利用されており、通常、更にその上に有機樹脂等のコーティングが行われている。例えば、錫めっき鋼板を重クロム酸ソーダの水溶液中で陰極電解したり、鋼板をフッ化物含有無水クロム酸水溶液中で陰極電解処理したり、アルミニウム合金をリン酸クロメート処理し、その上に有機樹脂がコーティングされたものが用いられている。   Of course, in metal container materials such as cans and can lids, a chromate treatment of the type in which hexavalent chromium does not remain is used in the final product, and usually, coating with an organic resin or the like is further performed thereon. . For example, cathodic electrolysis of a tin-plated steel plate in an aqueous solution of sodium dichromate, cathodic electrolysis treatment of a steel plate in a fluoride-containing chromic anhydride aqueous solution, or treatment of an aluminum alloy with phosphoric acid chromate and an organic resin thereon The one coated with is used.

缶や缶蓋などの金属容器は、内容物の殺菌を目的とした熱水レトルト処理が多く行われている。これにより、材料が過酷な環境に晒されるため、有機樹脂被覆と金属表面の密着が低下しやすいという問題が存在し、問題の解決に向けて過去に様々な検討が行われてきた。現在、缶用材料として用いられているぶりきや電解クロム酸処理鋼板などは、熱水密着性の向上を目的として、表面処理の最終工程において、温水洗浄や熱水洗浄を行うことで、処理被覆中の硫酸イオンやフッ素イオンなどのアニオンを制御し有機被覆との密着性に優れた金属表面とする技術が用いられている(非特許文献1、特許文献2)。   Metallic containers such as cans and can lids are often subjected to hot water retort treatment for the purpose of sterilizing the contents. As a result, the material is exposed to a harsh environment, and thus there is a problem that the adhesion between the organic resin coating and the metal surface tends to be lowered, and various studies have been conducted in the past to solve the problem. Currently, tinplate and electrolytic chromic acid-treated steel sheets used as materials for cans are treated by performing hot water washing or hot water washing in the final surface treatment process for the purpose of improving hot water adhesion. A technique is used in which an anion such as sulfate ion or fluorine ion in the coating is controlled to form a metal surface having excellent adhesion to the organic coating (Non-patent Documents 1 and 2).

近年、鋼板材において検討されているノンクロム系表面処理として、Zr(ジルコニウム)又はTi(チタン)を含有する処理液を用いた浸漬処理が提案されている(特許文献1)。しかしながら、Zr又はTi浸漬処理による表面処理鋼板は、被覆の耐食性に劣ると共に、従来より缶用材料として利用されている電解クロム酸処理鋼板(TFS)に比して、被膜析出速度が遅いために、著しく生産性が劣るという問題を有していた。このため、浸漬処理に代わる高速処理プロセスとして、陰極電解を適用したZr及び/又はTi処理及び/又はAl処理が提案されており、これらはいずれも基材の表面に高速で金属酸素化合物を形成させることができることが知られている(特許文献3,4,5)。   In recent years, an immersion treatment using a treatment liquid containing Zr (zirconium) or Ti (titanium) has been proposed as a non-chromium-based surface treatment being studied for steel sheets (Patent Document 1). However, the surface-treated steel sheet by Zr or Ti immersion treatment is inferior in the corrosion resistance of the coating, and the coating deposition rate is slower than the electrolytic chromic acid-treated steel sheet (TFS) conventionally used as a can material. The problem was that the productivity was remarkably inferior. For this reason, Zr and / or Ti treatment and / or Al treatment using cathodic electrolysis have been proposed as high-speed treatment processes instead of immersion treatment, all of which form a metal oxygen compound on the surface of the substrate at high speed. It is known that it can be made (Patent Documents 3, 4, and 5).

また、金属酸素化合物被膜の有機樹脂層に対する密着性を向上させる方法として、基材上にZrの酸素化合物を含有する金属酸素化合物被膜を形成した後、該金属酸素化合物被膜の表面を80℃以上の熱水で洗浄し、金属Zr量1〜100mg/m、F量0.1mg/m以下である化成被膜を有する容器用鋼鈑の製造方法に関する技術が開示されている(特許文献6)。 Further, as a method for improving the adhesion of the metal oxygen compound film to the organic resin layer, after forming a metal oxygen compound film containing a Zr oxygen compound on the substrate, the surface of the metal oxygen compound film is 80 ° C. or higher. A technology relating to a method for producing a steel plate for containers having a chemical conversion coating having a metal Zr content of 1 to 100 mg / m 2 and an F content of 0.1 mg / m 2 or less is disclosed (Patent Document 6). ).

国際公開第2002/103080号International Publication No. 2002/103080 特開平7−11483号公報Japanese Patent Laid-Open No. 7-11483 特開2004−190121号公報JP 2004-190121 A 特開2005−97712号公報JP-A-2005-97712 特開2006−348360号公報JP 2006-348360 A 国際公開第2012/036200号International Publication No. 2012/036200

「我が国における缶用表面処理鋼板の技術史」社団法人 日本鉄鋼協会発行、平成10年10月31日発行、p87最終行〜p90"Technology History of Surface-treated Steel Sheets for Cans in Japan" Published by Japan Iron and Steel Institute, published on October 31, 1998, p87 last line to p90

金属基材上に金属めっき層を設けずに、Zr、Al、Tiなどの酸素化合物を主成分とした金属酸素化合物被膜を金属基材表面に直接形成し基材の耐食性を向上させることを目的とする場合には、金属めっき層を設けた場合と比較して、被覆厚(被覆量)を大きくする必要がある。特に加工度の大きいシームレス缶用途においては、加工により下地の鉄が露出したり、有機樹脂との密着性が低下したりしやすいため、被覆量を大きくすることによる耐食性の確保と同時に有機樹脂との密着性を改善することが求められていた。   Aiming to improve the corrosion resistance of the substrate by directly forming a metal oxygen compound film mainly composed of oxygen compounds such as Zr, Al, Ti, etc. on the metal substrate surface without providing a metal plating layer on the metal substrate. In this case, it is necessary to increase the coating thickness (coating amount) as compared with the case where the metal plating layer is provided. Especially in seamless can applications where the degree of processing is large, the underlying iron is likely to be exposed by processing, or the adhesion to the organic resin is likely to decline, so ensuring the corrosion resistance by increasing the coating amount and simultaneously with the organic resin There was a need to improve the adhesion of the.

また、上述のような密着性に関する項目以外に、本発明が解決しようとするもう一つの課題として、金属容器を構成する成分が内容物に溶出することを防ぐという目的がある。金属容器にとって、内容品の品質を維持することは、非常に重要であり、金属容器からの内容品への成分溶出には、特に注意を払う必要がある。一般に、容器構成金属材料成分の溶出の代表的例としては、腐食による鉄溶出や、被膜中の硫酸イオンやフッ素イオンなどのアニオン溶出があり、内容物のpHや殺菌条件の他、金属表面処理の被覆量及び表面形態、あるいはフィルムや塗膜などの有機樹脂被覆との密着力など多くのことに留意する必要がある。   In addition to the above-mentioned items related to adhesion, another object to be solved by the present invention is to prevent the components constituting the metal container from eluting into the contents. For metal containers, maintaining the quality of the contents is very important, and special attention must be paid to the dissolution of components from the metal containers into the contents. In general, typical examples of elution of metallic components of containers are iron elution due to corrosion and elution of anions such as sulfate ions and fluorine ions in the coating. In addition to the pH of the contents and sterilization conditions, metal surface treatment It is necessary to pay attention to many things such as the coating amount and surface morphology of the film, or the adhesion strength with organic resin coatings such as films and coatings.

特許文献2には、金属めっき層上の金属酸素化合物被膜の表面を熱水で洗浄して密着性を改善する例が示してある。しかしながら、前述の様な大きな被覆量が必要な場合、目的の表面処理特性、溶出抑制を達成するためには、従来から使用されている電解クロム酸処理鋼板に利用されている熱水洗浄では不十分であることを見出した。従って、金属酸素化合物被膜の形成に電解クロム酸処理ラインを転用する場合には、従来より更に長時間の洗浄を必要とするため、表面処理ラインの操業速度が制約されたり、洗浄するための処理タンク数を増加させる他、熱水を大量に使用するなど、生産性負荷やエネルギー使用負荷の増大など、多くの課題も存在することが分かった。   Patent Document 2 shows an example in which the surface of a metal oxygen compound coating on a metal plating layer is cleaned with hot water to improve adhesion. However, when a large coating amount as described above is required, in order to achieve the desired surface treatment characteristics and elution suppression, it is not possible with the hot water cleaning used in the conventionally used electrolytic chromic acid-treated steel sheets. I found it sufficient. Therefore, when diverting an electrolytic chromic acid treatment line to form a metal oxygen compound film, it requires longer cleaning time than before, so that the operation speed of the surface treatment line is restricted or a treatment for washing. In addition to increasing the number of tanks, it has been found that there are many problems such as increasing the productivity load and energy use load, such as using a large amount of hot water.

本発明は、このような実状に鑑みてなされ、その目的は、表面に有機樹脂層を形成した場合に、有機樹脂層との密着性、耐食性に優れた表面処理鋼板を提供すると共に、缶内外面樹脂との密着性及びフッ素溶出耐性に優れた有機樹脂被覆容器、及び上記表面処理鋼板の製造方法を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to provide a surface-treated steel sheet having excellent adhesion and corrosion resistance with an organic resin layer when an organic resin layer is formed on the surface. An object of the present invention is to provide an organic resin coated container excellent in adhesion to an outer surface resin and fluorine elution resistance, and a method for producing the surface-treated steel sheet.

本発明によれば、鋼板の少なくとも片面上に、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を有する表面処理鋼板であって、前記表面処理層の表面側に、2族元素を含有することを特徴とする表面処理鋼板が提供される。
本発明の表面処理鋼板においては、
(1)前記2族元素がフッ素化合物として存在すること、
(2)前記2族元素が、カルシウム又はマグネシウムの少なくとも一つであること、
(3)前記表面処理層中の2族元素(AE)とジルコムニウム(Zr)とのモル比AE/Zrが0.2以上であること、
(4)前記表面処理層中のジルコニウムの重量膜厚が、100〜200mg/mであること、が好適である。
According to the present invention, there is provided a surface-treated steel sheet having a surface treatment layer containing fluorine and mainly composed of zirconium and oxygen on at least one surface of the steel sheet, wherein a group 2 element is provided on the surface side of the surface treatment layer. A surface-treated steel sheet characterized by containing is provided.
In the surface-treated steel sheet of the present invention,
(1) The group 2 element is present as a fluorine compound,
(2) the group 2 element is at least one of calcium and magnesium;
(3) The molar ratio AE / Zr between the group 2 element (AE) and the zircomnium (Zr) in the surface treatment layer is 0.2 or more,
(4) It is preferable that the weight film thickness of zirconium in the surface treatment layer is 100 to 200 mg / m 2 .

本発明によればまた、上記表面処理鋼板に有機樹脂被覆を形成してなる有機樹脂被覆表面処理鋼板から成ることを特徴とする有機樹脂被覆金属容器が提供される。   According to the present invention, there is also provided an organic resin-coated metal container comprising an organic resin-coated surface-treated steel sheet obtained by forming an organic resin coating on the surface-treated steel sheet.

本発明によれば更に、鋼板の少なくとも片面上に、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を有する表面処理鋼板の製造方法であって、Zrイオン、Fイオンを含む水溶液中で鋼板を陰極電解することによる被膜形成工程と、それに続いて、2族元素を含有する表面調整用水溶液を用いて、浸漬処理、スプレー処理、陰極電解処理のいずれか一つ以上の処理を行うことによる表面調整工程、とを有することを特徴とする表面処理鋼板の製造方法が提供される。
本発明の表面処理鋼板の製造方法においては、
(1)前記2族元素がカルシウム又はマグネシウムの少なくとも一つであること、
(2)前記表面調整工程において、被膜形成工程からのフッ素の減少率が30%以下であること、
が好適である。
According to the present invention, there is further provided a method for producing a surface-treated steel sheet having a surface treatment layer mainly containing zirconium and oxygen on at least one surface of the steel sheet, wherein the surface-treated steel sheet comprises an aqueous solution containing Zr ions and F ions. The film formation step by cathodic electrolysis of the steel sheet in the step, followed by one or more of immersion treatment, spray treatment, and cathodic electrolysis treatment using a surface conditioning aqueous solution containing a group 2 element There is provided a method for producing a surface-treated steel sheet, comprising a surface conditioning step.
In the method for producing the surface-treated steel sheet of the present invention,
(1) The group 2 element is at least one of calcium and magnesium,
(2) In the surface conditioning step, the fluorine reduction rate from the film forming step is 30% or less,
Is preferred.

本発明によれば、表面に有機樹脂層を形成した場合に、有機樹脂層との密着性、耐食性に優れた表面処理鋼板を提供できると共に、容器として、フッ素溶出耐性や有機樹脂との密着性、耐食性に優れた有機樹脂被覆金属容器を提供でき、上記表面処理鋼板の製造方法を提供することができる。
特に本発明においては、表面処理層の表面側に2族元素、特に2族元素のフッ素化合物が存在することにより、フッ素を不溶化してフッ素溶出を抑制することができると共に、ジルコニウムを溶解することなく表面処理層の構造を安定化し、表面処理層全体の欠陥部を減少させることが可能になる。
また表面に有機樹脂層を形成した後に、加工や熱処理を施した際においても有機樹脂層の剥離を有効に防止することができると共に、有機樹脂層に亀裂が入り、湿潤環境下で金属面が露出した状態でも腐食が進行し難く、容器構成金属材料成分の溶出を抑制することができる表面処理鋼板、表面処理鋼板を利用した有機樹脂被覆金属容器、並びに表面処理鋼板の製造方法を提供することができる。
According to the present invention, when an organic resin layer is formed on the surface, it is possible to provide a surface-treated steel sheet having excellent adhesion and corrosion resistance with the organic resin layer, and as a container, fluorine elution resistance and adhesion with organic resin. An organic resin-coated metal container excellent in corrosion resistance can be provided, and a method for producing the surface-treated steel sheet can be provided.
In particular, in the present invention, the presence of a group 2 element, particularly a group 2 element fluorine compound, on the surface side of the surface treatment layer makes it possible to insolubilize fluorine and suppress elution of fluorine and dissolve zirconium. Therefore, it becomes possible to stabilize the structure of the surface treatment layer and to reduce defects in the entire surface treatment layer.
In addition, after the organic resin layer is formed on the surface, it is possible to effectively prevent peeling of the organic resin layer even when processing or heat treatment is performed, and the organic resin layer is cracked, so that the metal surface is exposed in a wet environment. To provide a surface-treated steel sheet that is less prone to corrosion even in an exposed state and can suppress the elution of metal constituent components of the container, an organic resin-coated metal container using the surface-treated steel sheet, and a method for producing the surface-treated steel sheet Can do.

本発明の表面処理鋼板の製造方法においては、表面調整工程において、2族元素を含有する表面調整用水溶液を用いて、浸漬処理、スプレー処理、陰極電解処理の何れか1つ以上の処理を行うことにより、従来、電解クロム酸処理鋼板の洗浄に用いていた熱水洗浄を、温水または常温水に変更でき、熱水洗浄のみを用いた場合に比べて処理時間が短く、エネルギー負荷に優れている。
また2族元素を含有する表面調整用水溶液を用いた表面調整工程を採用することにより、熱水洗浄のみを行う場合のように、被膜中のフッ素を除去して環境に排出するのではなく、被膜中のフッ素を2族元素と反応させて被膜中で不溶化させることが可能になり、これにより被膜形成工程後の表面処理鋼板からのフッ素減少率を30%以下に抑制し、排水中のフッ素濃度を低減でき、排水負荷が小さく、環境保全性に優れた表面処理鋼板の製造方法を提供することができる。
In the method for producing a surface-treated steel sheet according to the present invention, in the surface adjustment step, any one or more of immersion treatment, spray treatment, and cathodic electrolysis treatment is performed using a surface adjustment aqueous solution containing a group 2 element. Therefore, the hot water cleaning used to clean electrolytic chromic acid-treated steel sheets can be changed to warm water or room temperature water, and the processing time is shorter and the energy load is better than when only hot water cleaning is used. Yes.
Moreover, by adopting a surface conditioning process using a surface conditioning aqueous solution containing a group 2 element, instead of removing fluorine in the coating and discharging it to the environment, as in the case of performing only hot water cleaning, Fluorine in the coating can be insolubilized in the coating by reacting with group 2 elements, thereby suppressing the fluorine reduction rate from the surface-treated steel sheet after the coating forming step to 30% or less, and fluorine in the waste water. The manufacturing method of the surface treatment steel plate which can reduce a density | concentration, has a small waste_water | drain load, and was excellent in environmental conservation can be provided.

本発明の表面処理鋼板の表面処理層について、X線光電子分光装置により求めた深さ方向の原子濃度変化を示す図である。It is a figure which shows the atomic concentration change of the depth direction calculated | required with the X-ray photoelectron spectrometer about the surface treatment layer of the surface treatment steel plate of this invention. 比較例4の表面処理鋼板の表面処理層について、X線光電子分光装置により求めた深さ方向の原子濃度変化を示す図である。It is a figure which shows the atomic concentration change of the depth direction calculated | required with the X-ray photoelectron spectrometer about the surface treatment layer of the surface treatment steel plate of the comparative example 4. 本発明の表面処理鋼板の断面構造を模式的に表す図である。It is a figure which represents typically the cross-section of the surface treatment steel plate of this invention.

本発明の表面処理鋼板は、鋼板の少なくとも片面上に、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を有する表面処理鋼板であって、この表面処理層の表面側に2族元素を含有することが重要な特徴である。
本発明の表面処理鋼板において、表面処理層の表面側に、2族元素を有することや、フッ素化合物を有することは、X線光電子分光分析(XPS)やオージェ電子分光分析(AES)、分析電子顕微鏡(SEM、TEM)等の各種表面分析や断面分析により把握することができる。
The surface-treated steel sheet of the present invention is a surface-treated steel sheet having a surface treatment layer containing fluorine and mainly containing zirconium and oxygen on at least one surface of the steel sheet, and a group 2 element on the surface side of the surface treatment layer It is an important feature to contain.
In the surface-treated steel sheet of the present invention, having a group 2 element on the surface side of the surface treatment layer or having a fluorine compound means that X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and analytical electrons It can be grasped by various surface analysis and cross-sectional analysis such as a microscope (SEM, TEM).

前述した通り、本発明により得られる表面処理鋼板1は、図3に示すように、鋼板2の少なくとも片面上(図では両面)に、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層3を有しており、この表面処理層の表面側3bには2族元素、特に2族元素のフッ素化合物が含有されている。通常はこの表面処理層3上に、有機樹脂層が形成された有機樹脂被覆表面処理鋼板とした後、缶などの金属容器部材として用いられる。
以下に、本発明における表面処理鋼板、表面処理鋼板を利用した有機樹脂被覆容器、および表面処理鋼板の製造方法について説明する。
As described above, the surface-treated steel sheet 1 obtained by the present invention includes a surface-treated layer mainly containing zirconium and oxygen on at least one side (both sides in the figure) of the steel sheet 2 as shown in FIG. 3 and the surface side 3b of the surface treatment layer contains a group 2 element, particularly a fluorine compound of the group 2 element. Usually, an organic resin-coated surface-treated steel sheet having an organic resin layer formed on the surface-treated layer 3 is used, and then used as a metal container member such as a can.
Below, the surface treatment steel plate in this invention, the organic resin coating container using the surface treatment steel plate, and the manufacturing method of a surface treatment steel plate are demonstrated.

(表面処理鋼板)
本発明の表面処理鋼板に形成される、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層は、ZrOx(OH)y―zFzのような非結晶性の構造をとると考えられる。この被膜は、乾燥や焼成により、脱水すると共にFが抜けて、結晶成分を多く持つ酸化被膜に変化し、更に加熱が進むと最終的にはZrO2に近い被膜となると考えられる。しかし、通常の缶材が受ける熱履歴を越える過度の加熱は、構造変化に起因する被膜のクラックを誘発すると共に、よりセラミックスライクな被膜となるため、加工性の低下はもちろん、樹脂被覆との密着性低下を招くため好ましくない。また、熱水洗浄などにより表面処理層中のF量を極端に低減してしまうと、僅かな加熱でも被膜の構造変化を誘発し易い状態となり、被膜の凝集力低下を招き、樹脂被覆金属板でのクロスカット試験における耐食性低下を誘発したり、缶体に衝撃を受けた際に耐食性や密着性が低下する原因となる。
したがって、表面処理層としては、FやOHを含有したZrOx(OH)y―zFzのような構造を保持していることが好ましい。
(Surface-treated steel sheet)
The surface treatment layer containing fluorine and mainly composed of zirconium and oxygen formed on the surface-treated steel sheet of the present invention is considered to have an amorphous structure such as ZrOx (OH) y-zFz. It is considered that this film is dehydrated by drying or baking, and F is removed to change to an oxide film having a large amount of crystal components, and when heating further proceeds, the film finally becomes close to ZrO2. However, excessive heating that exceeds the thermal history experienced by normal cans induces cracks in the coating due to structural changes, and results in a more ceramic-like coating. This is not preferable because it causes a decrease in adhesion. In addition, if the amount of F in the surface treatment layer is extremely reduced by washing with hot water or the like, it becomes easy to induce structural changes in the coating even with slight heating, leading to a reduction in the cohesive strength of the coating, and the resin-coated metal plate This causes a decrease in corrosion resistance in the cross-cut test, and causes a decrease in corrosion resistance and adhesion when the can body is impacted.
Therefore, the surface treatment layer preferably has a structure such as ZrOx (OH) y-zFz containing F or OH.

我々は長期に亘り、Zr量やF量などの被膜成分とレトルト後のクロスカット耐食性、被覆樹脂との密着性の関係について調査してきた。その結果、これらの性質にはジルコニウムやフッ素が多く含まれる表面処理被膜が有効であることを見出した。
しかしながら、フッ素に関しては、被膜中のF量が非常に大きい表面処理鋼板を金属缶用途に利用した場合、缶のレトルト殺菌時や高温保管時に、表面処理層中に余分に存在するフッ素が内容品中に溶出し、内容品の風味を損なう可能性がある。一方で、熱水洗浄などにより、強制的に被膜中のフッ素を排除した場合には、前述のように、被膜の構造変化を誘発しやすい状態となり、耐食性や密着性などの性能低下を招く原因となる。したがって、本発明の表面処理鋼板においては、表面調整処理を行うことにより、表面処理被膜中のフッ素の溶出を抑制することが、内容品の風味維持にとっても、金属缶の性能維持にとっても有用となる。
一方、ジルコニウムに関しては、Zr量が少ないと表面処理被膜の欠陥部が多く存在するため、基材である鉄の溶出を起こしやすい被膜となる。鉄溶出を起こすと、アノード反応では鉄の溶出が起こるが、その対反応であるカソード反応により、被覆樹脂と金属被膜との界面でアルカリが生成する。アルカリの生成は、表面処理被膜中のフッ素溶出を加速すると共に、被覆樹脂と表面処理層との界面剥離の原因となる。従って、レトルト後のクロスカット耐食性、被覆樹脂との密着性の点で、ジルコニウムが多く含まれる表面処理被膜が好適である。
For a long period of time, we have investigated the relationship between coating components such as Zr content and F content, cross-cut corrosion resistance after retorting, and adhesion to the coating resin. As a result, it was found that a surface treatment film containing a large amount of zirconium and fluorine is effective for these properties.
However, with regard to fluorine, when surface-treated steel sheets with a very large F content in the coating are used for metal cans, the extra fluorine present in the surface-treated layer during retort sterilization and high-temperature storage of the can It may elute in and impair the flavor of the contents. On the other hand, when fluorine in the film is forcibly excluded by hot water cleaning, etc., as described above, it is likely to induce structural changes in the film, causing deterioration in performance such as corrosion resistance and adhesion. It becomes. Therefore, in the surface-treated steel sheet of the present invention, it is useful to suppress the elution of fluorine in the surface-treated film by performing the surface conditioning treatment, for maintaining the flavor of the contents and maintaining the performance of the metal can. Become.
On the other hand, with respect to zirconium, when the amount of Zr is small, there are many defective portions of the surface-treated film, so that the film is likely to cause elution of iron as a base material. When iron elution occurs, iron elution occurs in the anodic reaction, but alkali is generated at the interface between the coating resin and the metal coating due to the counter reaction, the cathode reaction. The generation of alkali accelerates the elution of fluorine in the surface-treated film and causes interface peeling between the coating resin and the surface-treated layer. Accordingly, a surface-treated film containing a large amount of zirconium is preferable in terms of cross-cut corrosion resistance after retorting and adhesion to the coating resin.

本発明の表面処理鋼板においては、表面処理被膜中のフッ素が表面調整用水溶液中の2族元素と反応して、フッ素が不溶化したフッ素化合物として表面側に形成されることから、フッ素溶出の抑制に加えて、後述するような表面処理層の欠陥部を減少させる効果も生じる。その結果、本発明による表面処理鋼板では、従来より少ないZr量でも、耐食性や密着性の維持が可能となる。
本発明の表面処理鋼板における表面処理層における被膜量としては、Zr量が10〜350mg/mの範囲にあることが好ましい。Zr量が10mg/m未満では、有機樹脂被覆後のクロスカット耐食性やレトルト後の缶内外面の樹脂密着性が不十分となる。一方、Zr量が350mg/mを超えると、不経済であるばかりでなく、加工密着性も徐々に低下するので好ましくない。
また、F量としては、0.3〜30mg/mであることが好ましい。F量が30mg/mを超えると、表面側に2族元素の化合物層を形成した場合でも、フッ素溶出を抑制することが困難となり、一方、0.3mg/m未満であると、水和による構造変化で被膜の凝集力が下がり、密着性や耐食性が低下するので好ましくない。
In the surface-treated steel sheet of the present invention, fluorine in the surface-treated film reacts with a group 2 element in the aqueous solution for surface conditioning, and is formed on the surface side as a fluorine compound in which fluorine is insolubilized. In addition, the effect of reducing the defects in the surface treatment layer as described later is also produced. As a result, the surface-treated steel sheet according to the present invention can maintain corrosion resistance and adhesion even with a smaller amount of Zr than in the past.
As the coating amount in the surface treatment layer in the surface-treated steel sheet of the present invention, the Zr amount is preferably in the range of 10 to 350 mg / m 2 . If the amount of Zr is less than 10 mg / m 2 , the cross-cut corrosion resistance after the organic resin coating and the resin adhesion on the inner and outer surfaces of the can after the retort become insufficient. On the other hand, if the amount of Zr exceeds 350 mg / m 2 , not only is it uneconomical but also the work adhesion is gradually lowered, which is not preferable.
Moreover, as F amount, it is preferable that it is 0.3-30 mg / m < 2 >. When the amount of F exceeds 30 mg / m 2 , it becomes difficult to suppress elution of fluorine even when a compound layer of a group 2 element is formed on the surface side. On the other hand, when the amount of F is less than 0.3 mg / m 2 , It is not preferable because the cohesive force of the film is reduced due to the structural change due to the sum, and the adhesion and corrosion resistance are reduced.

本発明において、表面調整処理により表面処理層の表面に含有される2族元素としては、ベリリウム,マグネシウム,カルシウム,ストロンチウム,バリウム、ラジウムなどがあるが、フッ素と反応して難溶性の化合物を形成する他に、安全性・衛生性や入手性、コストに優れる点から、Ca,Mgが好ましく、このうち反応性と難溶性の点から、Caが最も好ましい。
特に、Zr量が多い場合には、被膜中にフッ素をより多く含む為、フッ素溶出耐性がより重要となり、表面処理層中のカルシウム等の2族元素AEとジルコニウムZrとのモル比、AE/Zrは0.2以上であることが好適であり、またカルシウム等の2族元素AEの重量膜厚が7〜150mg/mの範囲にあることが好ましい。7mg/m未満であると、フッ素溶出の抑制や表面欠陥の減少への寄与が小さい。150mg/mを超えると、被膜の凝集力が低下し、加工性や密着性が低下するので好ましくない。なお、2族元素を複数含む場合、AEはその総量を示すものである。
In the present invention, group 2 elements contained on the surface of the surface treatment layer by the surface conditioning treatment include beryllium, magnesium, calcium, strontium, barium, radium, etc., but react with fluorine to form a hardly soluble compound. In addition, Ca and Mg are preferable from the viewpoint of safety, hygiene, availability, and cost, and Ca is most preferable from the viewpoint of reactivity and poor solubility.
In particular, when the amount of Zr is large, the coating film contains more fluorine, so fluorine elution resistance becomes more important. The molar ratio of the group 2 element AE such as calcium and zirconium Zr in the surface treatment layer, AE / Zr is preferably 0.2 or more, and the weight film thickness of the group 2 element AE such as calcium is preferably in the range of 7 to 150 mg / m 2 . If it is less than 7 mg / m 2 , the contribution to suppression of fluorine elution and reduction of surface defects is small. If it exceeds 150 mg / m 2 , the cohesive force of the coating is lowered, and the workability and adhesiveness are lowered. In addition, when two or more group 2 elements are included, AE shows the total amount.

本発明の表面処理鋼板においては、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を有する表面処理鋼板であって、前記表面処理層の表面側に、2族元素の化合物層を有することが一つの重要な特徴である。
図1は、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を含有する表面処理鋼板を表面調整工程によりカルシウム含有水溶液で処理し、表面処理層の表面側にカルシウムとフッ素を主体とする化合物層を形成した、本発明の表面処理鋼板を用いて、深さ方向の原子濃度変化を示した。
図1の例において、X線光電子分光装置(以下、XPSという)
により、C1s、O 1 s、F1s、Fe2p3、Zr3d、Ca2p3のピークを用いて、これら元素の合計を100%とし、横軸を表面からのArスパッタリング深さ(SiO2換算値)として、各原子濃度の変化を示した。また、参考のために、表面調整工程によりカルシウム含有水溶液で処理する前の表面処理鋼板を用いて深さ方向の原子濃度分布を調べた結果を図2に示した。なお、図1は後述の実施例11、図2は後述の比較例4、で作成した表面処理鋼板の分析結果に相当する。
The surface-treated steel sheet of the present invention is a surface-treated steel sheet having a surface treatment layer containing fluorine and mainly composed of zirconium and oxygen, and having a group 2 element compound layer on the surface side of the surface treatment layer. This is an important feature.
FIG. 1 shows that a surface-treated steel sheet containing a surface treatment layer containing fluorine and containing zirconium and oxygen as a main component is treated with a calcium-containing aqueous solution by a surface conditioning step, and calcium and fluorine are mainly present on the surface side of the surface treatment layer. Using the surface-treated steel sheet of the present invention in which a compound layer to be formed was formed, the change in atomic concentration in the depth direction was shown.
In the example of FIG. 1, an X-ray photoelectron spectrometer (hereinafter referred to as XPS)
By using the peaks of C1s, O 1 s, F1s, Fe2p3, Zr3d, and Ca2p3, the total of these elements is 100%, the horizontal axis is the Ar sputtering depth (SiO2 equivalent value) from the surface, and each atomic concentration Showed changes. For reference, FIG. 2 shows the results of examining the atomic concentration distribution in the depth direction using the surface-treated steel sheet before being treated with the calcium-containing aqueous solution in the surface conditioning step. 1 corresponds to the analysis result of the surface-treated steel sheet prepared in Example 11 described later and FIG. 2 represents the comparative example 4 described later.

図1から、本発明の表面処理鋼板においては、Caが表面処理層の表面側に存在していることがわかる。また、表面調整工程を経ていない図2に比べて、図1では表面処理層の表面側におけるF濃度が増加し、逆にZr濃度及びO濃度は低下している。これは、カルシウム含有水溶液で処理することで、フッ素とカルシウムが反応し、表面に不溶性の化合物を形成したことによると考えられる。更に、図1では、図2と比較して、表面から深い部分までスパッタリングしても、Feの原子濃度が上昇しにくく、表面処理層の欠陥部が露出しにくい構造となっていることがわかる。
なお、後述する実施例1〜15、比較例1〜5においても同様の傾向を示しており、図2に代表される比較例と比べて、実施例では、図1と同様に2族元素が表面側に存在していると共に、表面側でのF濃度の増加が認められる。
FIG. 1 shows that Ca is present on the surface side of the surface treatment layer in the surface-treated steel sheet of the present invention. Further, in FIG. 1, the F concentration on the surface side of the surface treatment layer is increased and the Zr concentration and the O concentration are decreased compared to FIG. 2 that has not undergone the surface adjustment step. This is considered to be because fluorine and calcium reacted to form an insoluble compound on the surface by treatment with a calcium-containing aqueous solution. Further, in FIG. 1, it can be seen that, compared to FIG. 2, even when sputtering from the surface to a deep part, the atomic concentration of Fe is difficult to increase and the defect portion of the surface treatment layer is difficult to be exposed. .
In addition, the same tendency is shown also in Examples 1 to 15 and Comparative Examples 1 to 5 which will be described later. Compared to the comparative example represented by FIG. While existing on the surface side, an increase in F concentration on the surface side is observed.

(表面処理鋼板の製造方法)
<被膜形成工程>
本発明の表面処理鋼板の製造方法では、まず被膜形成工程において、Zrイオン、Fイオンを含む水溶液の電解処理液中で、鋼板を陰極電解することにより、鋼板の少なくとも片面上に、フッ素を含有し、ジルコニウムと酸素を主体とするZr化合物被膜を、Zr量が10〜350mg/m、より好適には10〜200mg/mの範囲、及びF量が0.3〜30mg/mの範囲、になるように形成する。特に後述する表面調整工程におけるフッ素減少率の抑制は、被膜量が大きいほど効果が大きいことから、Zr量は100mg/m以上、特に100〜200mg/mの範囲にあることが特に好ましい。
表面処理層を形成後の鋼板は、電解処理液をロールで絞った後、水洗し、更に水洗水をロールで絞った後、次の表面調整工程に送られる。
(Method for producing surface-treated steel sheet)
<Film formation process>
In the method for producing a surface-treated steel sheet of the present invention, first, in the film forming step, the steel sheet is subjected to cathodic electrolysis in an aqueous solution containing Zr ions and F ions, so that fluorine is contained on at least one surface of the steel sheet. Zr compound coating mainly composed of zirconium and oxygen has a Zr amount of 10 to 350 mg / m 2 , more preferably 10 to 200 mg / m 2 , and an F amount of 0.3 to 30 mg / m 2 . Form to range. In particular, inhibition of the fluorine reduction rate in the surface conditioning step described below, since the effect the greater the coating amount is large, Zr weight 100 mg / m 2 or more, and particularly preferably in the range especially 100 to 200 mg / m 2.
The steel sheet after forming the surface treatment layer is squeezed with an electrolytic treatment solution with a roll, washed with water, and further squeezed with rinsing water with a roll, and then sent to the next surface adjustment step.

被膜形成工程で用いる電解処理液中のZr濃度は、1,000〜10,000ppmが好ましく、F濃度は600〜13,000ppmが好ましく、電解処理液pHは2〜5が好ましく更には2.5〜4であることがより好ましく、電解処理液温度は30〜60℃であることが好ましい。
被膜形成工程で用いる電解処理液中には、後述のように各種の化合物を添加することができるが、電解水溶液中には、Zrイオン、Fイオンの他、pH調整などに用いる硝酸イオン、アンモニウムイオン、基材からの溶出成分であるFeイオンが、基本的に含まれる。
The Zr concentration in the electrolytic treatment solution used in the film forming step is preferably 1,000 to 10,000 ppm, the F concentration is preferably 600 to 13,000 ppm, and the electrolytic treatment solution pH is preferably 2 to 5, more preferably 2.5. It is more preferable that it is -4, and it is preferable that the electrolytic treatment liquid temperature is 30-60 degreeC.
Various compounds can be added to the electrolytic treatment solution used in the film forming step as described later. In addition to Zr ions and F ions, nitrate ions and ammonium ions used for pH adjustment are included in the aqueous electrolytic solution. Basically, ions and Fe ions, which are components eluted from the substrate, are included.

電解処理液を構成するZrイオンを形成するための薬剤としては、特に限定されないが、たとえば、KZrF、(NHZrF、(NHZrO(CO、HZrF、ZrO(NO、ZrO(CHCOO)などを用いることができる。本発明においては、上述した薬剤を、単独で用いてもよいし、2つ以上を組み合わせ用いてもよい。 The agent for forming the Zr ions constituting the electrolytic treatment solution is not particularly limited, for example, K 2 ZrF 6, (NH 4) 2 ZrF 6, (NH 4) 2 ZrO (CO 3) 2, H 2 ZrF 6 , ZrO (NO 3 ) 2 , ZrO (CH 3 COO) 2 and the like can be used. In the present invention, the above-mentioned drugs may be used alone or in combination of two or more.

なお、陰極電解処理によりZr化合物被膜を形成する場合には、通常、電解処理液として、上述したZrイオンに加えて、Fイオンを含有した処理液を用いることが望ましい。電解処理液にFイオンを含有させることにより、Fイオンが、電解処理液中におけるZrイオンの溶解性を高めるための錯化剤として作用し、これにより、基材上に、均一な膜厚のZr化合物を析出させることができ、そのため、被膜と有機樹脂層との密着性をより向上させることができる。
電解処理液中のFイオンが少ないと、Zrが局部的な析出を起こし、被膜中のZrの存在状態が厚い部分と薄い部分が混在し、膜厚均一性に劣る被膜となるため、結果として加工後の密着性や耐食性に劣る被膜となる。したがって、被膜形成工程において、被膜中のZr原子に対するF原子のモル比F/Zrは0.6以上となるように、被膜中のモル比F/Zrを管理する必要がある。
When forming a Zr compound film by cathodic electrolysis, it is usually desirable to use a treatment liquid containing F ions in addition to the Zr ions described above as the electrolytic treatment liquid. By containing F ions in the electrolytic treatment liquid, the F ions act as a complexing agent for enhancing the solubility of Zr ions in the electrolytic treatment liquid. The Zr compound can be precipitated, and therefore the adhesion between the coating and the organic resin layer can be further improved.
When there are few F ions in the electrolytic treatment solution, Zr causes local precipitation, and a thick portion and a thin portion where Zr is present in the coating are mixed, resulting in a coating with poor film thickness uniformity. The film is inferior in adhesion and corrosion resistance after processing. Therefore, in the film forming step, it is necessary to manage the molar ratio F / Zr in the film so that the molar ratio F / Zr of F atoms to Zr atoms in the film is 0.6 or more.

電解処理液中に含有させるFイオンを形成するための薬剤としては、特に限定されないが、たとえば、フッ化ジルコニウムアンモニウム、フッ化アルミニウム、フッ化チタン、フッ化ナトリウム、フッ化アンモニウム、フッ化水素酸、フッ化カルシウム、ヘキサフルオロ珪酸、ヘキサフルオロ珪酸ナトリウムなどを用いることができ、中でも水への溶解度が高い薬剤が好ましい。   Although it does not specifically limit as a chemical | medical agent for forming F ion contained in an electrolytic processing liquid, For example, zirconium ammonium fluoride, aluminum fluoride, titanium fluoride, sodium fluoride, ammonium fluoride, hydrofluoric acid , Calcium fluoride, hexafluorosilicic acid, sodium hexafluorosilicate, and the like can be used. Among them, a drug having high solubility in water is preferable.

また、電解処理液には、処理液中における導電率の向上や、処理液のpH調整を目的として、Zr化合物被膜の形成を阻害しない範囲で、硝酸イオンやアンモニウムイオンなどの電解質を添加してもよい。
さらに、電解処理液には、クエン酸、乳酸、酒石酸、グリコール酸などの有機酸や、ポリアクリル酸、ポリイタコン酸、フェノール樹脂などの高分子化合物などのうち、1種以上の添加物が添加されていてもよい。本発明においては、電解処理液に有機酸や、フェノール樹脂などの添加物を添加することにより、形成されるZr化合物被膜に有機酸や、フェノール樹脂などの添加物含有させることができ、これにより、金属酸素化合物被膜の柔軟性を付与する他、有機樹脂層との密着性をより向上させることができる。
In addition, an electrolyte such as nitrate ion or ammonium ion is added to the electrolytic treatment liquid within a range not impeding the formation of the Zr compound film for the purpose of improving the conductivity in the treatment liquid and adjusting the pH of the treatment liquid. Also good.
Furthermore, one or more additives among organic acids such as citric acid, lactic acid, tartaric acid and glycolic acid, and polymer compounds such as polyacrylic acid, polyitaconic acid and phenol resin are added to the electrolytic treatment solution. It may be. In the present invention, by adding an additive such as an organic acid or a phenol resin to the electrolytic treatment solution, the formed Zr compound film can contain an additive such as an organic acid or a phenol resin. In addition to imparting flexibility of the metal oxygen compound film, adhesion to the organic resin layer can be further improved.

基材に陰極電解処理を行う場合における電流密度としては、特に限定されないが、好ましくは1〜30A/dmである。
なお、基材に陰極電解処理を行う場合には、通電と通電停止のサイクルを繰り返す断続電解方式を用いることが好ましく、この際においては、基材に対するトータルの通電時間(通電および通電停止のサイクルを複数回繰り返した際の合計の通電時間)は、好ましくは0.3〜30秒である。
また、基材に陰極電解処理を行う際に、基材に対して設置する対極板としては、陰極電解処理を実施している間に電解処理液に溶解しないものであれば何でもよいが、酸素過電圧が小さく電解処理液に溶解し難いという点より、酸化イリジウムで被覆されたチタン板が好ましい。
Although it does not specifically limit as a current density in the case of performing a cathodic electrolysis process to a base material, Preferably it is 1-30 A / dm < 2 >.
In addition, when performing the cathodic electrolysis treatment on the base material, it is preferable to use an intermittent electrolysis method in which a cycle of energization and deenergization is repeated. In this case, the total energization time for the base material (cycle of energization and deenergization) Is preferably 0.3 to 30 seconds.
In addition, when the cathode electrolytic treatment is performed on the base material, the counter electrode installed on the base material may be anything as long as it does not dissolve in the electrolytic processing solution during the cathode electrolytic treatment. A titanium plate coated with iridium oxide is preferred because it has a low overvoltage and is difficult to dissolve in the electrolytic treatment solution.

<表面調整工程>
本発明においては、上記被膜形成工程後に2族元素を用いた表面調整工程を行うことが重要な特徴である。
すなわち、上記被膜形成工程により得られた、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層が形成された表面処理鋼板を、2族元素を含有する表面調整用水溶液を用いて、浸漬処理、スプレー処理、陰極電解処理、のいずれか一つ以上の処理を行う。この処理により表面処理層の表面側に2族元素を存在させるが、前述した通り、特に2族元素がフッ素と反応し、フッ素が不溶化したフッ素化合物として存在させることが好適である。
上記浸漬処理等の処理後、鋼板から表面調整用水溶液をロールで絞った後、水洗し、更に水洗水をロールで絞った後、熱風等により乾燥する。
<Surface adjustment process>
In the present invention, it is an important feature that a surface conditioning process using a group 2 element is performed after the film forming process.
That is, the surface-treated steel sheet containing a fluorine-containing, surface-treated layer mainly composed of zirconium and oxygen obtained by the above-described film forming step is immersed using a surface conditioning aqueous solution containing a group 2 element. Any one or more of treatment, spray treatment, and cathodic electrolysis is performed. By this treatment, the Group 2 element is present on the surface side of the surface treatment layer. As described above, it is particularly preferable that the Group 2 element is present as a fluorine compound in which the fluorine reacts with fluorine and the fluorine is insolubilized.
After the treatment such as the immersion treatment, the surface conditioning aqueous solution is squeezed from the steel sheet with a roll, washed with water, and further washed with squeezed water with a roll, and then dried with hot air or the like.

表面調整工程を経ない場合、前述した通り、有機樹脂被覆が施された有機樹脂被覆表面処理鋼板から成形された容器は、レトルトのような熱水殺菌処理工程において、被膜中に存在するフッ素が内容品中に溶出して、結果的に被膜の構造変化を誘発し、耐食性や密着性などの性能低下を招く原因となる。
したがって、缶用材料として樹脂被覆が施される前に、あらかじめ表面調整工程において、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層中の表面側に拡散するフッ素を2族元素と化合物層を形成して不溶化しておくことが重要になる。
When the surface adjustment process is not performed, as described above, the container formed from the organic resin-coated surface-treated steel sheet coated with the organic resin has a fluorine content present in the film in the hot water sterilization process such as retort. It elutes into the contents and as a result induces a structural change of the film, causing performance degradation such as corrosion resistance and adhesion.
Therefore, before the resin coating is applied as the material for the can, in the surface conditioning step, fluorine that contains fluorine and diffuses to the surface side in the surface treatment layer mainly composed of zirconium and oxygen is added to the group 2 element and the compound. It is important to form a layer and make it insoluble.

表面調整用の水溶液に用いる2族元素としては、ベリリウム,マグネシウム,カルシウム,ストロンチウム,バリウム,ラジウム等を例示することができるが、表面調整用水溶液への利用に際しては、水溶性を有する薬剤があること、フッ素と結合しやすいこと、難溶性のフッ素化合物を形成すること、薬剤の入手が容易であること、安全性・衛生性に優れること、安価であること、などの点を考慮する必要があることから、フッ素と反応後に難溶性のCaFやMgFを形成する、カルシウムやマグネシウムを用いることがより好ましい。
ここで、表面調整水溶液中には、カルシウムイオンまたはマグネシウムイオンの何れか一方を含有しても良いし、両方を含有しても良い。一方のイオンのみ含有する場合には、カルシウムを含有する表面調整用水溶液が最も好適に利用できる。
Examples of group 2 elements used in the aqueous solution for surface conditioning include beryllium, magnesium, calcium, strontium, barium, radium, etc., but there are water-soluble drugs when used in the aqueous solution for surface conditioning. In addition, it is necessary to consider such points as being easy to bond with fluorine, forming a poorly soluble fluorine compound, being readily available, having excellent safety and hygiene, and being inexpensive. For this reason, it is more preferable to use calcium or magnesium which forms hardly soluble CaF 2 or MgF 2 after reaction with fluorine.
Here, the surface conditioning aqueous solution may contain either calcium ions or magnesium ions, or both. When only one ion is contained, an aqueous solution for surface conditioning containing calcium can be most suitably used.

表面調整用水溶液として、カルシウムを用いる場合の薬剤としては、水に溶解すれば特に限定されないが、乳酸カルシウム、水酸化カルシウム、グルコン酸カルシウム、塩化カルシウム、硝酸カルシウム、硫酸カルシウム、クエン酸カルシウム、炭酸カルシウム、リン酸第一水素カルシウムなどがあり、このうち、水溶性の大きいものがより好ましい。また、マグネシウムを用いる薬剤としては、水に溶解すれば特に限定はないが、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、酢酸マグネシウム、グルコン酸マグネシウムなどがあり、水溶液がアルカリ性の場合にはグルコン酸マグネシウムが特に好ましい。   As an aqueous solution for surface adjustment, the drug in the case of using calcium is not particularly limited as long as it is dissolved in water, but calcium lactate, calcium hydroxide, calcium gluconate, calcium chloride, calcium nitrate, calcium sulfate, calcium citrate, carbonate There are calcium, calcium hydrogen hydrogen phosphate and the like, and among these, those having high water solubility are more preferable. In addition, the drug using magnesium is not particularly limited as long as it dissolves in water, but there are magnesium chloride, magnesium nitrate, magnesium sulfate, magnesium citrate, magnesium acetate, magnesium gluconate, etc., and when the aqueous solution is alkaline Magnesium gluconate is particularly preferred.

表面調整用水溶液は、それ自体表面処理被膜のフッ素を不溶化させる役割を持つことからも明らかなように、薬剤調整時の水にフッ素が含まれていたり、表面調整工程で溶解してきたフッ素を含むことはあるが、意図的にフッ素を添加したり含有したりすることはない。   As apparent from the fact that the surface conditioning aqueous solution itself has a role of insolubilizing the fluorine of the surface treatment film, the water during the preparation of the chemical contains fluorine or contains fluorine dissolved in the surface conditioning process. However, there is no intentional addition or inclusion of fluorine.

また、表面調整工程においては、表面調整用水溶液自体の液性は、pH2〜13、特にpH5〜11、より好適にはpH5.5〜7の範囲にあることが好ましく、これにより表面処理層中のフッ素は、錯イオンの形でなく遊離Fイオンの形となり、より効率的に2族元素と結合することが可能になると共に、表面処理層の表面側に安定して2族元素のフッ素化合物を形成し、フッ素溶出耐性を向上できると共に、排水中のフッ素濃度を低減できる。
尚、pHが2未満では、周辺機器や基材である鋼板自体の耐食性にも悪影響を与え、一方、pHが11を超えるアルカリ性であると、表面処理層の表面側にフッ素化合物を安定して形成する能力が低下し、pHが13を越えると特に、表面調整用水溶液に溶解するフッ素の割合が高くなり、最終的には排水中のフッ素濃度が増加するため好ましくない。
Further, in the surface conditioning step, the liquidity of the aqueous solution for surface conditioning itself is preferably in the range of pH 2 to 13, particularly pH 5 to 11, more preferably pH 5.5 to 7, and thereby in the surface treatment layer. Fluorine in the form of free F ions, not complex ions, can be more efficiently combined with group 2 elements, and can be stably group 2 element fluorine compounds on the surface side of the surface treatment layer. Can improve the fluorine elution resistance and reduce the fluorine concentration in the waste water.
In addition, if pH is less than 2, it will have a bad influence also on the corrosion resistance of the steel plate itself which is a peripheral device or a base material, and on the other hand, if pH is more than 11, it will stabilize a fluorine compound on the surface side of a surface treatment layer. When the ability to form decreases and the pH exceeds 13, in particular, the proportion of fluorine dissolved in the aqueous solution for surface adjustment increases, and eventually the fluorine concentration in the waste water increases, which is not preferable.

表面調整用水溶液のpHを調整するために用いる、アルカリ性薬剤としては、水溶してアルカリ性を示す、2族元素の水酸化化合物、例えば、Ca(OH)やMg(OH)などを利用することが最も簡便である。但し、これらの薬剤の水への溶解度は比較的小さいため、浸漬や陰極電解により表面調整工程を連続的に実施する場合や陰極電解する場合などには、薬剤の補給を頻繁に行う必要が生じ、水溶液の維持管理に労力を要する場合がある。このような場合には、常に新しい表面調整用水溶液を鋼板に吹き付けるスプレー方式を採用することが、処理の簡便さの点で好ましい。2族元素薬剤が水溶してアルカリ性を示さなくても、ナトリウム,アンモニウム,カリウムのうち1種又は2種以上を含む薬剤を加えてpH調整することで、アルカリ性表面調整用水溶液として利用することができる。
また表面調整用水溶液のpHを調整するために用いる、2族元素以外の薬剤としては、アンモニア、炭酸ジルコニウムアンモニウム、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、リン酸水素ナトリウム、水酸化カリウム、炭酸カリウム、ホウ酸ナトリウム、ケイ酸ナトリウム等を挙げることができ、2種以上の薬剤を加えてもよい。
また、表面調整用水溶液には、必要に応じて、各種の界面活性剤やキレート剤を添加することもできる。
As an alkaline agent used for adjusting the pH of the aqueous solution for surface adjustment, a hydroxylated compound of a group 2 element that exhibits water-solubility and alkalinity, such as Ca (OH) 2 or Mg (OH) 2 is used. Is the simplest. However, since the solubility of these chemicals in water is relatively small, it is necessary to replenish the chemicals frequently when the surface conditioning process is continuously performed by immersion or cathodic electrolysis or when cathodic electrolysis is performed. In some cases, labor may be required to maintain the aqueous solution. In such a case, it is preferable from the viewpoint of easy processing that a spray method in which a new surface conditioning aqueous solution is always sprayed onto the steel sheet is employed. Even if a Group 2 chemical agent is water-soluble and does not show alkalinity, it can be used as an aqueous solution for alkaline surface conditioning by adding a chemical containing one or more of sodium, ammonium and potassium to adjust the pH. it can.
In addition, as a chemical other than the Group 2 element used for adjusting the pH of the aqueous solution for surface conditioning, ammonia, zirconium zirconium carbonate, sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, sodium hydrogen phosphate, water Examples thereof include potassium oxide, potassium carbonate, sodium borate, sodium silicate and the like, and two or more kinds of chemicals may be added.
In addition, various surfactants and chelating agents can be added to the surface conditioning aqueous solution as necessary.

表面調整用水溶液中に含まれる2族元素イオン濃度としては、0.002〜0.5mol/lの範囲にあることが好ましい。0.002mol/l未満であると表面処理層の表面側に、2族元素のフッ素化合物を形成する際の反応効率が悪く、0.5mol/lを超えると2族元素の析出過多となりやすく、被膜の凝集力が低下するため、好ましくない。
前述した通り、表面調整工程においては、2族元素を含有する表面調整用水溶液を用いて、浸漬処理、スプレー処理或いは陰極電解処理により行うことができるが、迅速処理の観点からは表面調整用水溶液中で陰極電解処理を加えることが好ましく、一方、スプレー処理や浸漬処理は簡便な手段として好適である。用いる表面調整用水溶液の液性は、前述した通りのpHの範囲にあることが望ましく、特に表面調整用水溶液へのフッ素の溶解を低減し、排水負荷を低減するためにはpHが5.5〜7の範囲にあることが好適である。
尚、陰極電解処理を行う場合、2族元素を含有する表面調整用水溶液の電気伝導度は2mS/cm以上であることが処理効率の面から好ましい。
The concentration of group II element ions contained in the aqueous solution for surface conditioning is preferably in the range of 0.002 to 0.5 mol / l. If it is less than 0.002 mol / l, the reaction efficiency when forming the fluorine compound of the group 2 element on the surface side of the surface treatment layer is poor, and if it exceeds 0.5 mol / l, the precipitation of the group 2 element tends to be excessive. This is not preferable because the cohesive strength of the coating is reduced.
As described above, the surface conditioning step can be performed by dipping, spraying or cathodic electrolysis using a surface conditioning aqueous solution containing a Group 2 element, but from the viewpoint of rapid processing, the surface conditioning aqueous solution. Among them, it is preferable to add a cathodic electrolysis treatment, while spray treatment and immersion treatment are suitable as simple means. The liquid property of the aqueous solution for surface adjustment to be used is desirably in the pH range as described above. In particular, in order to reduce the dissolution of fluorine in the aqueous solution for surface adjustment and to reduce the drainage load, the pH is 5.5. It is suitable to be in the range of ~ 7.
In addition, when performing a cathodic electrolysis process, it is preferable from the surface of process efficiency that the electrical conductivity of the aqueous solution for surface adjustment containing a group 2 element is 2 mS / cm or more.

以上のように、表面調整工程により、表面処理層の表面側に、2族元素、特に2族元素の化合物を存在させることが可能になる。ここで、表面処理層の表面側に形成される2族元素の化合物はフッ素化合物であることが好ましく、難溶性であることがより好ましい。難溶性化合物を形成する2族元素は、カルシウム及び/又はマグネシウムの化合物であることが好ましく、カルシウムとマグネシウムのうち1種類の単独化合物であっても良いし、カルシウムとマグネシウムの両方を含む化合物であっても良い。このうち、単独化合物の場合には、難溶性化合物を形成するカルシウムのフッ素化合物が最も好適に利用できる。
表面処理層中の2族元素AEとジルコニウムZrとのモル比、AE/Zrは、0.2以上、特に0.4〜1.8の範囲にあることが好適であり、2族元素の重量膜厚が7mg/m以上であることがより有効である。
As described above, the surface conditioning step allows a group 2 element, particularly a group 2 element compound to be present on the surface side of the surface treatment layer. Here, the group 2 element compound formed on the surface side of the surface treatment layer is preferably a fluorine compound, and more preferably hardly soluble. The group 2 element forming the hardly soluble compound is preferably a calcium and / or magnesium compound, and may be a single compound of calcium and magnesium, or a compound containing both calcium and magnesium. There may be. Among these, in the case of a single compound, a calcium fluorine compound which forms a hardly soluble compound can be most suitably used.
The molar ratio of group 2 element AE to zirconium Zr in the surface treatment layer, AE / Zr is preferably 0.2 or more, particularly preferably in the range of 0.4 to 1.8, and the weight of group 2 element It is more effective that the film thickness is 7 mg / m 2 or more.

表面調整工程において、表面調整用水溶液の温度としては、特に規定する必要はないが、反応性の点と温度管理の点からは、30〜80℃、特に30〜60℃の範囲であることがより好ましい。また、表面調整用水溶液を用いた浸漬処理、スプレー処理、陰極電解処理などの処理時間の合計は、0.1〜5秒であることが好ましく、0.5〜3秒の範囲であることが更に好ましい。
また表面調整工程において、表面調整用水溶液での処理後に、40℃〜95℃程度の温水や熱水での浸漬やスプレーによる洗浄処理を追加して行っても良い。
In the surface conditioning step, the temperature of the aqueous solution for surface conditioning does not need to be specified in particular, but from the point of reactivity and temperature management, it may be in the range of 30 to 80 ° C, particularly 30 to 60 ° C. More preferred. In addition, the total treatment time of the immersion treatment, the spray treatment, the cathodic electrolysis treatment and the like using the surface conditioning aqueous solution is preferably 0.1 to 5 seconds, and is preferably in the range of 0.5 to 3 seconds. Further preferred.
Further, in the surface adjustment step, after the treatment with the aqueous solution for surface adjustment, a washing treatment by warm water or hot water of about 40 ° C. to 95 ° C. or spraying may be additionally performed.

(鋼板基材)
本発明の表面処理鋼板に用いる鋼板としては、例えば、アルミキルド鋼連鋳材などをベースとした熱延鋼板、これらの熱延鋼板を冷間圧延した冷延鋼板、これらの熱延鋼板や冷延鋼板にZn、Sn、Ni、Cu、Alなどを含む金属めっき層を備えた鋼板などを用いることができる。
また、Sn−Ni−Fe合金やSn−Fe合金、Ni−Fe合金などの合金層が表面の一部または表面全体に存在する鋼板を用いることもでき、これら合金層の上にSn、Niなどの金属めっき層が存在する鋼板なども用いることができる。これらのなかでも、コスト的に考えた場合には、金属めっき層を有しないか、めっき層を有していても一部に鉄露出部が表面に分散して存在している鋼板が、基材として最も好適に用いられる。
基材の厚みは、特に限定されず、使用用途に応じて適宜選択すればよいが、好ましくは0.07〜0.4mmである。
(Steel substrate)
Examples of the steel sheet used for the surface-treated steel sheet of the present invention include a hot-rolled steel sheet based on an aluminum killed steel continuous cast material, a cold-rolled steel sheet obtained by cold rolling these hot-rolled steel sheets, and these hot-rolled steel sheets and cold-rolled steel sheets. A steel plate provided with a metal plating layer containing Zn, Sn, Ni, Cu, Al, or the like on the steel plate can be used.
Further, a steel plate in which an alloy layer such as a Sn—Ni—Fe alloy, a Sn—Fe alloy, or a Ni—Fe alloy is present on a part of the surface or the entire surface can also be used. It is also possible to use a steel plate having a metal plating layer. Among these, from the viewpoint of cost, a steel plate that does not have a metal plating layer or has an iron exposed portion dispersed on the surface even if it has a plating layer is the basis. Most preferably used as a material.
The thickness of the substrate is not particularly limited and may be appropriately selected depending on the intended use, but is preferably 0.07 to 0.4 mm.

(有機樹脂被覆)
前述した通り、本発明により得られる表面処理鋼板は表面処理層上に有機樹脂被覆層を形成した場合に、有機樹脂層の密着性に優れており、特にレトルト処理等を施した場合にも有機樹脂層の剥離が防止されると共に、有機樹脂層に亀裂が入り、湿潤環境下で金属面が露出した場合にも腐食の進行が有効に防止され、容器構成金属材料成分の溶出が抑制されている。
このような有機樹脂層を構成する樹脂としては、特に限定されず、本発明の表面処理鋼板の用途(例えば、特定の内容物を充填する缶容器などの用途)に応じて適宜選択すればよいが、各種熱可塑性樹脂から成る樹脂被覆や、熱硬化性塗料又は熱可塑性塗料からなる塗膜を挙げることができる。熱可塑性樹脂から成る樹脂被覆としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリルエステル共重合体、アイオノマー等のオレフィン系樹脂フィルム、またはポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム、もしくはナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミドフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム等の熱可塑性樹脂フィルムの未延伸または二軸延伸したものであってもよい。その中でも、イソフタル酸を共重合化してなる無配向のポリエチレンテレフタレートが特に好ましい。また、このような有機樹脂層を構成するための樹脂は、単独で用いてもよく、異なる樹脂をブレンドして用いてもよい。
(Organic resin coating)
As described above, the surface-treated steel sheet obtained by the present invention is excellent in the adhesion of the organic resin layer when the organic resin coating layer is formed on the surface treatment layer, and is particularly organic even when the retort treatment is performed. In addition to preventing peeling of the resin layer, the organic resin layer is cracked, and even when the metal surface is exposed in a wet environment, the progress of corrosion is effectively prevented, and the elution of the metal component components of the container is suppressed. Yes.
The resin constituting such an organic resin layer is not particularly limited, and may be appropriately selected according to the use of the surface-treated steel sheet of the present invention (for example, a can container filled with a specific content). However, mention may be made of resin coatings made of various thermoplastic resins and coatings made of thermosetting paints or thermoplastic paints. Examples of resin coatings made of thermoplastic resins include polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic ester copolymers, olefin resin films such as ionomers, polyethylene terephthalate, poly Polyethylene film such as butylene terephthalate, or non-stretched or biaxially stretched thermoplastic film such as nylon 6, nylon 6,6, nylon 11, nylon 12 or other polyamide film, polyvinyl chloride film, polyvinylidene chloride film, etc. It may be. Among these, non-oriented polyethylene terephthalate obtained by copolymerizing isophthalic acid is particularly preferable. Moreover, the resin for constituting such an organic resin layer may be used alone, or may be used by blending different resins.

有機樹脂被覆として熱可塑性樹脂を被覆する場合、単層の樹脂層であってもよく、また同時押出等による多層の樹脂層であってもよい。多層のポリエステル樹脂層を用いると、下地層、即ち表面処理鋼板側に接着性に優れた組成のポリエステル樹脂を選択し、表層に耐内容物性、即ち耐抽出性やフレーバー成分の非吸着性に優れた組成のポリエステル樹脂を選択できるので有利である。
多層ポリエステル樹脂層の例を示すと、表層/下層として表示して、ポリエチレンテレフタレート/ポリエチレンテレフタレート・イソフタレート、ポリエチレンテレフタレート/ポリエチレン・シクロへキシレンジメチレン・テレフタレート、イソフタレート含有量の少ないポリエチレンテレフタレート・イソフタレート/イソフタレート含有量の多いポリエチレンテレフタレート・イソフタレート、ポリエチレンテレフタレート・イソフタレート/[ポリエチレンテレフタレート・イソフタレートとポリブチレンテレフタレート・アジペートとのブレンド物]等であるが、勿論上記の例に限定されない。表層:下層の厚み比は、5:95〜95:5の範囲にあるのが望ましい。
When the thermoplastic resin is coated as the organic resin coating, it may be a single resin layer or a multilayer resin layer formed by coextrusion or the like. When a multilayer polyester resin layer is used, a polyester resin having a composition with excellent adhesion is selected for the base layer, that is, the surface-treated steel sheet, and the surface layer is excellent in content resistance, that is, extraction resistance and non-adsorption of flavor components. This is advantageous because polyester resins having different compositions can be selected.
Examples of multilayer polyester resin layers are shown as surface layer / lower layer, polyethylene terephthalate / polyethylene terephthalate / isophthalate, polyethylene terephthalate / polyethylene / cyclohexylene dimethylene / terephthalate, polyethylene terephthalate / isolated with low isophthalate content. Polyethylene terephthalate / isophthalate having a high phthalate / isophthalate content, polyethylene terephthalate / isophthalate / [blend of polyethylene terephthalate / isophthalate and polybutylene terephthalate / adipate] and the like are of course not limited thereto. The thickness ratio of the surface layer to the lower layer is preferably in the range of 5:95 to 95: 5.

上記有機被覆には、それ自体公知の樹脂用配合剤、例えば非晶質シリカ等のアンチブロッキング剤、無機フィラー、各種帯電防止剤、滑剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することができる。
中でも、トコフェロール(ビタミンE)を用いることが好ましい。トコフェロールは、従来より酸化防止剤としてポリエステル樹脂の熱処理時における酸化分解による分子量低下を防止して耐デント性を向上させるものであることが知られているが、特にポリエステル樹脂に前述したエチレン系重合体を改質樹脂成分として配合したポリエステル組成物にこのトコフェロールを配合すると、耐デント性のみならず、レトルト殺菌やホットベンダー等の過酷な条件に付され被膜にクラックが生じたような場合でも、クラックから腐食が進むことが防止され、耐食性が著しく向上するという効果を得ることができる。
トコフェロールは、0.05〜3重量%、特に0.1〜2重量%の量で配合することが好ましい。
In the organic coating, known compounding agents for resins, such as anti-blocking agents such as amorphous silica, inorganic fillers, various antistatic agents, lubricants, antioxidants, ultraviolet absorbers, etc. are blended according to known formulations. can do.
Of these, tocopherol (vitamin E) is preferably used. Tocopherol has been conventionally known as an antioxidant to prevent a decrease in molecular weight due to oxidative decomposition during heat treatment of a polyester resin and to improve dent resistance. When this tocopherol is blended with a polyester composition blended as a modified resin component, not only the dent resistance, but also when the film is cracked due to severe conditions such as retort sterilization and hot bender, It is possible to prevent the corrosion from proceeding from the crack and to obtain the effect that the corrosion resistance is remarkably improved.
Tocopherol is preferably blended in an amount of 0.05 to 3% by weight, particularly 0.1 to 2% by weight.

本発明により得られる表面処理鋼板に適用する有機樹脂被覆の厚みとしては、熱可塑性樹脂被覆で一般に3〜50μm、特に5〜40μmの範囲にあることが望ましく、塗膜の場合には、焼付け後の厚みが1〜50μm、特に3〜30μmの範囲にあることが好ましい。厚みが上記範囲を下回ると、耐腐食性が不十分となり、厚みが上記範囲を上回ると加工性の点で問題を生じやすい。   The thickness of the organic resin coating applied to the surface-treated steel sheet obtained by the present invention is desirably 3 to 50 μm, particularly 5 to 40 μm in general with a thermoplastic resin coating. Is preferably in the range of 1 to 50 μm, particularly 3 to 30 μm. When the thickness is less than the above range, the corrosion resistance becomes insufficient, and when the thickness exceeds the above range, a problem is likely to occur in terms of workability.

本発明により得られる表面処理鋼板への有機被覆の形成は任意の手段で行うことができ、例えば、熱可塑性樹脂被覆の場合は、押出コート法、キャストフィルム熱接着法、二軸延伸フィルム熱接着法等により行うことができる。押出コート法の場合、表面処理金属材料の上にポリエステル樹脂を溶融状態で押出コートして、熱接着させることにより製造することができる。即ち、ポリエステル樹脂を押出機で溶融混練した後、T−ダイから薄膜状に押し出し、押し出された溶融樹脂膜を表面処理金属材料と共に一対のラミネートロール間に通して冷却下に押圧一体化させ、次いで急冷する。多層のポリエステル樹脂層を押出コートする場合には、表層樹脂用の押出機及び下層樹脂用の押出機を使用し、各押出機からの樹脂流を多重多層ダイ内で合流させ、以後は単層樹脂の場合と同様に押出コートを行えばよい。また、一対のラミネートロール間に垂直に表面処理金属材料を通し、その両側に溶融樹脂ウエッブを供給することにより、前記基体両面にポリエステル樹脂の被覆層を形成させることができる。   Formation of the organic coating on the surface-treated steel sheet obtained by the present invention can be performed by any means. For example, in the case of thermoplastic resin coating, extrusion coating, cast film thermal bonding, biaxially stretched film thermal bonding This can be done by law. In the case of the extrusion coating method, it can be manufactured by extrusion coating a polyester resin in a molten state on a surface-treated metal material and thermally bonding it. That is, after melt-kneading the polyester resin with an extruder, it is extruded from a T-die into a thin film, and the extruded molten resin film is passed through a pair of laminating rolls together with a surface-treated metal material and is pressed and integrated under cooling. Then quench rapidly. When extrusion coating a multilayer polyester resin layer, an extruder for surface layer resin and an extruder for lower layer resin are used, and the resin flow from each extruder is merged in a multiple multilayer die, and thereafter a single layer Extrusion coating may be performed as in the case of resin. Further, by passing a surface-treated metal material vertically between a pair of laminate rolls and supplying a molten resin web on both sides thereof, a polyester resin coating layer can be formed on both sides of the substrate.

ポリエステル樹脂から成る有機被覆を有する有機被覆表面処理鋼板の押出コート法による製造は具体的には次のように行われる。表面処理鋼板を必要により加熱装置により予備加熱し、一対のラミネートロール間のニップ位置に供給する。一方、ポリエステル樹脂は、押出機のダイヘッドを通して薄膜の形に押し出し、ラミネートロールと表面処理鋼板との間に供給され、ラミネートロールにより表面処理鋼板に圧着される。ラミネートロールは、一定の温度に保持されており、表面処理鋼板にポリエステル等の熱可塑性樹脂から成る薄膜を圧着して両者を熱接着させると共に両側から冷却して有機被覆表面処理鋼板を得る。一般に、形成される有機被覆表面処理鋼板を更に冷却用水槽等に導いて、熱結晶化を防止するため、急冷を行う。   The production of the organic coated surface-treated steel sheet having an organic coating made of polyester resin by the extrusion coating method is specifically performed as follows. If necessary, the surface-treated steel sheet is preheated by a heating device and supplied to a nip position between a pair of laminate rolls. On the other hand, the polyester resin is extruded in the form of a thin film through a die head of an extruder, supplied between the laminate roll and the surface-treated steel sheet, and pressed onto the surface-treated steel sheet by the laminate roll. The laminating roll is maintained at a constant temperature, and a thin film made of a thermoplastic resin such as polyester is pressure-bonded to the surface-treated steel sheet to thermally bond them together and cooled from both sides to obtain an organic-coated surface-treated steel sheet. In general, the formed organic-coated surface-treated steel sheet is further cooled in order to guide it to a cooling water tank or the like to prevent thermal crystallization.

この押出コート法では、樹脂組成の選択とロールや冷却槽による急冷とにより、ポリエステル樹脂層は、結晶化度が低いレベル、非晶密度との差が0.05g/cm3以下に抑制されているため、次いで行う製缶加工や蓋加工等に対する十分な加工性が保証される。勿論、急冷操作は上記例に限定されるものではなく、形成される有機被覆表面処理鋼板に冷却水を噴霧して、ラミネート板を急冷することもできる。   In this extrusion coating method, the polyester resin layer has a low crystallinity level and the difference from the amorphous density is suppressed to 0.05 g / cm 3 or less by selection of the resin composition and rapid cooling by a roll or a cooling bath. Therefore, sufficient workability with respect to subsequent can manufacturing, lid processing, etc. is guaranteed. Of course, the rapid cooling operation is not limited to the above example, and the laminate sheet can be rapidly cooled by spraying cooling water on the formed organic-coated surface-treated steel sheet.

表面処理鋼板に対するポリエステル樹脂の熱接着は、溶融樹脂層が有する熱量と、表面処理鋼板が有する熱量とにより行われる。表面処理鋼板の加熱温度(T1)は、一般に90℃〜290℃、特に100℃〜280℃の温度が適当であり、一方ラミネートロールの温度は10℃〜150℃の範囲が適当である。
また、本発明の製造方法により得られる表面処理鋼板の有機樹脂被覆は、T−ダイ法やインフレーション製膜法で予め製膜されたポリエステル樹脂フィルムを表面処理鋼板に熱接着させることによっても製造することができる。フィルムとしては、押し出したフィルムを急冷した、キャスト成形法による未延伸フィルムを用いることもでき、また、このフィルムを延伸温度で、逐次或いは同時二軸延伸し、延伸後のフィルムを熱固定することにより製造された二軸延伸フィルムを用いることもできる。
The thermal adhesion of the polyester resin to the surface-treated steel sheet is performed by the amount of heat that the molten resin layer has and the amount of heat that the surface-treated steel sheet has. The heating temperature (T1) of the surface-treated steel sheet is generally 90 ° C. to 290 ° C., particularly 100 ° C. to 280 ° C., while the laminating roll temperature is suitably 10 ° C. to 150 ° C.
Moreover, the organic resin coating of the surface-treated steel sheet obtained by the production method of the present invention is also produced by thermally bonding a polyester resin film previously formed by a T-die method or an inflation film-forming method to the surface-treated steel sheet. be able to. As the film, an unstretched film formed by a cast molding method in which the extruded film is rapidly cooled can be used, and this film is biaxially stretched sequentially or simultaneously at the stretching temperature, and the stretched film is heat-set. It is also possible to use a biaxially stretched film produced by the above method.

(金属容器)
本発明の表面処理鋼板を用いて成形される金属容器(缶体)としては、前述した通り、表面処理鋼板の表面に有機樹脂被覆が形成されて成る有機被覆表面処理鋼板から成形されていることが好ましく、任意の製缶法により成形することができる。具体的には、側面継ぎ目を有するスリーピース缶(溶接缶)や、シームレス缶(ツーピース缶)とすることができるが、前述したように、有機樹脂との密着性の観点からZr量が大きい表面処理鋼板を利用する点を考慮すると、シームレス缶への適用がもっとも好ましい。
シームレス缶は、有機被覆が缶内面側になるように、絞り加工、絞り・再しぼり加工、絞り・再絞りによる曲げ伸ばし加工(ストレッチ加工)、絞り・再絞りによる曲げ伸ばし・しごき加工或いは絞り・しごき加工等の従来公知の手段に付すことによって製造される。
また、絞り・再絞りによる曲げ伸ばし加工(ストレッチ加工)、絞り・再絞りによる曲げ伸ばし・しごき加工等の高度な加工が施されるシームレス缶においては、有機被覆が押出コート法による熱可塑性樹脂被覆から成るものであることが特に好ましい。このような有機被覆表面処理鋼板は、加工密着性に優れていることから、過酷な加工に賦された場合にも被覆の密着性に優れ、優れた耐食性を有するシームレス缶を提供することができる。
(Metal container)
As described above, the metal container (can) formed using the surface-treated steel sheet of the present invention is formed from an organic-coated surface-treated steel sheet in which an organic resin coating is formed on the surface of the surface-treated steel sheet. Is preferable, and can be formed by any can manufacturing method. Specifically, it can be a three-piece can (welded can) having a side seam or a seamless can (two-piece can), but as described above, a surface treatment with a large amount of Zr from the viewpoint of adhesion to an organic resin. Considering the point of using a steel plate, application to a seamless can is most preferable.
Seamless cans are drawn, drawn and re-squeezed, bent and stretched by drawing and redrawing (stretching), and drawn and redrawed by drawing and redrawing, or drawn or drawn so that the organic coating is on the inner surface of the can. It is manufactured by attaching to a conventionally known means such as ironing.
In addition, for seamless cans that are subjected to advanced processing such as bending / stretching (stretching) by drawing / redrawing, bending / stretching / ironing by drawing / redrawing, the organic coating is coated with thermoplastic resin by the extrusion coating method. It is particularly preferred that Such an organic-coated surface-treated steel sheet is excellent in work adhesion, and therefore can provide a seamless can having excellent corrosion resistance and excellent coating adhesion even when subjected to severe processing. .

(蓋)
本発明の表面処理鋼板を用いて成形される缶蓋は、上述した金属容器同様、有機被覆表面処理鋼板から成形されていることが好ましく、従来公知の任意の製蓋法により成形することができる。具体的には、平蓋や、ステイ・オン・タブタイプのイージーオープン缶蓋やフルオープンタイプのイージーオープン缶蓋に適用することができる。
本発明の缶蓋においては本発明の有機被覆表面処理鋼板の種々の態様のものを制限なく用いて蓋を成形することができる。
(lid)
The can lid formed using the surface-treated steel sheet of the present invention is preferably formed from an organic-coated surface-treated steel sheet as in the metal container described above, and can be formed by any conventionally known lid-making method. . Specifically, the present invention can be applied to a flat lid, a stay-on-tab type easy open can lid, and a full open type easy open can lid.
In the can lid of the present invention, the lid can be formed using any of the various embodiments of the organic-coated surface-treated steel sheet of the present invention without limitation.

以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されるものではない。なお,実施例で使用した被処理素材,脱脂剤,有機被覆,は市販されている材料の中から任意に選択したものであり,本発明の表面処理用鋼板の製造方法を限定するものではない。
なお、表面処理板の作製方法および各特性の評価方法は、以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition, the to-be-treated material, degreasing agent, and organic coating used in the examples are arbitrarily selected from commercially available materials, and do not limit the method for manufacturing the steel sheet for surface treatment according to the present invention. .
In addition, the preparation method of a surface treatment board and the evaluation method of each characteristic are as follows.

(被膜形成工程)
原板として、厚さ0.225mm、幅200mmの低炭素鋼板を用い、次いで、前処理としてアルカリ電解脱脂、硫酸浸漬の酸洗を行った。その後、鋼板を電解処理液に浸漬させ、陰極電解処理を行うことにより、鋼板の表面にFを含有し、Zrを主体とする化合物被膜を両面に形成した。次いで鋼板をロールで絞った後、水洗し、更に水洗水をロールで絞り、被膜形成を行った。
電解処理液:Zr化合物としてフッ化ジルコニウムアンモニウムを溶解させ、Zr濃度6,000ppm、F濃度7,500ppmの組成の水溶液
電解処理液のpH:3.0(硝酸及び/又はアンモニアにてpH調整を実施)
電解処理液の温度:40℃
対極:酸化イリジウム被覆チタン板
陰極電解時の通電方法:電流密度3A/dmで0.15秒間の通電を1回または複数回(以後、サイクル数と呼ぶ)実施した。
(Film formation process)
A low carbon steel plate having a thickness of 0.225 mm and a width of 200 mm was used as an original plate, and then alkaline electrolytic degreasing and sulfuric acid immersion pickling were performed as pretreatment. Thereafter, the steel sheet was immersed in an electrolytic treatment solution and subjected to cathodic electrolysis, whereby a compound film containing F on the surface of the steel sheet and mainly composed of Zr was formed on both surfaces. Next, the steel sheet was squeezed with a roll, washed with water, and further washed water was squeezed with a roll to form a film.
Electrolytic treatment solution: Zirconium ammonium fluoride is dissolved as a Zr compound, and an aqueous solution having a Zr concentration of 6,000 ppm and an F concentration of 7,500 ppm. PH of the electrolytic treatment solution: 3.0 (pH adjustment with nitric acid and / or ammonia) Implementation)
Electrolytic solution temperature: 40 ° C
Counter electrode: iridium oxide-coated titanium plate Method of energization during cathodic electrolysis: Energization for 0.15 seconds at a current density of 3 A / dm 2 was performed once or a plurality of times (hereinafter referred to as the number of cycles).

(表面調整工程)
被膜形成工程終了後の鋼板を、表面調整用水溶液で所定時間処理し、次いで鋼板をロールで絞った後、水洗し、更にロールで絞った後、熱風により乾燥し表面処理鋼板を得た。
本発明においては表面調整工程として、2族元素を含有した表面調整用水溶液を用いて、浸漬処理、スプレー処理、陰極電解処理のいずれか一つ以上の処理を利用できるが、本実施例では、カルシウムまたはマグネシウムを含有した表面調整用水溶液を用いて、浸漬処理、スプレー処理または陰極電解処理を行った。表面調整工程における陰極電解では、対極に酸化イリジウム被覆チタン板を用いて0.15秒通電、0.1秒通電停止のサイクルを複数回実施した。
(Surface adjustment process)
The steel sheet after completion of the film forming step was treated with an aqueous solution for surface conditioning for a predetermined time, and then the steel sheet was squeezed with a roll, washed with water, further squeezed with a roll, and then dried with hot air to obtain a surface-treated steel sheet.
In the present invention, as the surface adjustment step, using an aqueous solution for surface adjustment containing a group 2 element, any one or more of immersion treatment, spray treatment, and cathodic electrolysis treatment can be used. A surface treatment aqueous solution containing calcium or magnesium was used for immersion treatment, spray treatment, or cathodic electrolysis treatment. In the cathode electrolysis in the surface adjustment step, an iridium oxide-coated titanium plate was used as the counter electrode, and a cycle of energizing 0.15 seconds and stopping energization for 0.1 seconds was performed a plurality of times.

(有機樹脂被覆表面処理鋼板の作製)
得られた表面処理鋼板を、缶内面側となる金属板の片面上に、イソフタル酸成分を11モル%含有するポリエチレンテレフタレート/イソフタレート共重合組成を有する、厚さ19μmの延伸フィルムを、缶外面側となるもう一方の片面上に、イソフタル酸成分を12モル%含有するポリエチレンテレフタレート/イソフタレート共重合組成を有し、酸化チタンを含有してホワイトに着色した、厚さ13μmの延伸フィルムを、ラミネートロールを介して熱圧着後、直ちに水冷することにより、フィルムに適度な配向状態が残るように留意しながら有機樹脂被覆表面処理鋼板を得た。作製した有機樹脂被覆表面処理鋼板は、一部をクロスカット耐食性評価用として用いた以外は、金属缶の作製に使用した。
(Production of organic resin-coated surface-treated steel sheet)
The obtained surface-treated steel sheet is a 19 μm-thick stretched film having a polyethylene terephthalate / isophthalate copolymer composition containing 11 mol% of an isophthalic acid component on one side of a metal plate on the inner surface side of the can. A stretched film having a thickness of 13 μm, having a polyethylene terephthalate / isophthalate copolymer composition containing 12 mol% of an isophthalic acid component and colored in white containing titanium oxide, on the other surface on the side, After thermocompression bonding via a laminate roll, water-cooling was immediately performed to obtain an organic resin-coated surface-treated steel sheet while paying attention to an appropriate orientation state remaining in the film. The produced organic resin-coated surface-treated steel sheet was used for the production of metal cans, except that a part was used for cross-cut corrosion resistance evaluation.

(金属缶の作製)
得られた有機樹脂被覆表面処理鋼板の両面に、パラフィンワックスを両面に静電塗油後、直径143mmの円形に打抜き、定法に従い、径91mm、高さ36mmの絞りカップを作製した。ついでこの絞りカップを同時絞りしごき加工を2回繰り返して径が小さくハイトの大きいカップに成形した。この様にして得られたカップの諸特性は以下の通りであった。
カップ径 52.0mm
カップ高さ 111.7mm
元板厚に対する缶壁部の板厚減少率 30%
このカップはドーミング成形後、樹脂フィルムの歪みをとるために220℃で60秒間熱処理を行い、続いて開口端端部のトリミング加工、曲面印刷し、直径50.8mmにネックイン加工、フランジ加工を行い、200ml用シームレス缶を作製した。
(Production of metal cans)
Paraffin wax was electrostatically applied to both surfaces of the obtained organic resin-coated surface-treated steel sheet, and then punched into a circle having a diameter of 143 mm, and a drawn cup having a diameter of 91 mm and a height of 36 mm was produced according to a conventional method. Subsequently, the drawn cup was simultaneously drawn and ironed twice to form a cup having a small diameter and a large height. Various characteristics of the cup thus obtained were as follows.
Cup diameter 52.0mm
Cup height 111.7mm
30% reduction in the thickness of the can wall relative to the original thickness
This cup is heat-treated at 220 ° C. for 60 seconds after doming molding, followed by trimming of the end of the opening, curved printing, neck-in processing and flange processing to a diameter of 50.8 mm And a 200 ml seamless can was produced.

(Zr量、AE量(2族元素量)の測定)
得られた表面処理鋼板について、蛍光X線分析装置(リガク社製、型番:ZSX100e)を用いて、金属化合物被膜に含まれるZr量、AE量(実施例中ではCa量またはMg量)を測定した。また、モル比AE/Zrは以下の式にて求めた。
AE/Zr=(AE量/AE原子量)/(Zr量/Zr原子量)
(Measurement of Zr amount, AE amount (Group 2 element amount))
About the obtained surface-treated steel sheet, the amount of Zr and the amount of AE (Ca amount or Mg amount in the examples) contained in the metal compound film are measured using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, model number: ZSX100e). did. The molar ratio AE / Zr was determined by the following formula.
AE / Zr = (AE amount / AE atomic weight) / (Zr amount / Zr atomic weight)

(F量の測定)
得られた表面処理鋼板について、蛍光X線分析ではF量の微量分析は定量精度の点で限界があり、特にF量1.5mg/m以下の表面処理鋼板から直接Fを定量する事は困難である。種々検討の結果、我々は以下の測定で定量化した。即ち、表面処理鋼板の片面160cmを183gの超純水に接触させた状態で保持できる特殊セルを用いて、130℃で30分間のレトルト処理を行った。その後、超純水中に抽出されたフッ素イオンをイオンクロマトグラフ(DIONEX製DX−320)により測定した。得られたF濃度から、超純水中に存在するF重量を求め、これを表面処理鋼板の単位面積当たりに存在するF重量に換算することにより、被膜中のF量とした。
なお、実施例に示す、表面調整工程を経た表面処理鋼板については、上述のレトルト処理を行っても、Fはほとんど溶出しないため、表面処理鋼板のF量を知ることが出来ない。したがって、表面調整工程を経た表面処理鋼板については、蛍光X線による測定値を用いた。但し、F量1.5mg/m未満の場合には、蛍光X線のピークが明瞭ではないため、蛍光X線で通常測定する面積の10倍以上に相当する量の表面処理被膜の削り粉を集めて、蛍光X線でFを測定後、単位表面積あたりのF量に換算することにより求めた。
(Measurement of F amount)
With respect to the obtained surface-treated steel sheet, in the fluorescent X-ray analysis, the trace amount analysis of F has a limit in terms of quantitative accuracy, and in particular, it is not possible to directly quantify F from a surface-treated steel sheet with an F amount of 1.5 mg / m 2 or less. Have difficulty. As a result of various studies, we quantified the following measurements. That is, a retort treatment at 130 ° C. for 30 minutes was performed using a special cell that can hold 160 cm 2 on one side of the surface-treated steel sheet in contact with 183 g of ultrapure water. Then, the fluorine ion extracted in the ultrapure water was measured by the ion chromatograph (DX-320 made from DIONEX). From the obtained F concentration, the F weight present in the ultrapure water was determined, and this was converted to the F weight present per unit area of the surface-treated steel sheet to obtain the F amount in the coating.
In addition, about the surface treatment steel plate which passed through the surface adjustment process shown in an Example, even if it performs the above-mentioned retort process, since F hardly elutes, it cannot know F amount of a surface treatment steel plate. Therefore, the measured value by fluorescent X-ray was used about the surface treatment steel plate which passed through the surface adjustment process. However, when the F amount is less than 1.5 mg / m 2 , the peak of the fluorescent X-ray is not clear, and therefore the surface treatment coating shavings in an amount corresponding to 10 times or more of the area normally measured with the fluorescent X-ray Were collected, and after measuring F with fluorescent X-rays, it was calculated by converting to F amount per unit surface area.

(F減少率の測定)
表面調整工程を経た表面処理鋼板のF量が、被膜形成工程のみで形成された表面処理鋼板のF量から、何%減少したかを求めた。この評価は、表面調整工程における排水中のフッ素負荷効果の指標であり、30%以下であることが好ましい。
(Measurement of F decrease rate)
It was determined how much the F amount of the surface-treated steel sheet that had undergone the surface adjustment step was reduced from the F amount of the surface-treated steel plate that was formed only in the film forming step. This evaluation is an index of the fluorine load effect in the waste water in the surface adjustment step, and is preferably 30% or less.

(クロスカット耐食性評価)
得られた表面処理鋼板の缶内面側に相当する部分にカッターで長さ4cmの素地に達するクロスカット傷を入れた試験片を作製し、瓶にいれ、市販のコーヒー(商品名 Blendy・ボトルコーヒー低糖、味の素ゼネラルフーヅ株式会社製)に浸漬させて、瓶を脱気し、37℃で4週間経時して、腐食状態を評価した。なお、この間カビの発生をできるだけ抑えるようにコーヒーは定期的に取り替えた。腐食状態の評価は、試験片をコーヒーから取り出し、クロスカット部分及びその周囲について、有機樹脂層の剥離あるいは、腐食生成物の生成による変色の状態を目視評価にて観察して評価した。
クロスカット部周辺において、変色またはフィルム剥離の最大幅が3mm以上あったものを1点、2mm以上3mm未満のものを2点、1mm以上2mm未満のものを3点、0.5mm以上1mm未満のものを4点、0.5mm未満のものを5点として評価し、3点以上のものを合格と判断した。
(Cross cut corrosion resistance evaluation)
A test piece in which a cross-cut wound reaching a 4 cm-long substrate is made in a portion corresponding to the inner surface side of the obtained surface-treated steel sheet with a cutter is placed in a bottle, and commercially available coffee (trade name Blendy bottle coffee) The bottle was degassed by dipping in low sugar, Ajinomoto General Foods Co., Ltd., and the corrosive state was evaluated after aging at 37 ° C. for 4 weeks. During this period, coffee was periodically replaced to minimize mold generation. For the evaluation of the corrosion state, the test piece was taken out from the coffee, and the cross-cut portion and its surroundings were evaluated by visually observing the state of discoloration due to the peeling of the organic resin layer or the generation of the corrosion product.
In the periphery of the crosscut portion, 1 point has a maximum width of discoloration or film peeling of 3 mm or more, 2 points are 2 mm or more and less than 3 mm, 3 points are 1 mm or more and less than 2 mm, and 0.5 mm or more and less than 1 mm The thing was evaluated as 4 points, and less than 0.5 mm as 5 points, and those of 3 points or more were judged to be acceptable.

(缶内面樹脂密着性評価)
得られたシームレス缶を用いて、蒸留水を充填後缶、蓋を二重巻締し、125℃30分のレトルト処理を行った。その後、蓋を缶胴から取り外して内容品を除去後、表面処理板の圧延45度方向を境にして半分に切断した。次に、この半分に切断された缶を、1重量%塩化ナトリウム水溶液に0.02重量%の界面活性剤を添加した液に1時間浸漬後、更に圧延135度方向を境にして缶底側から更に半分にはさみで切断し、最後に切断した缶内面側ボトムラジアス部切断面の剥離状態を観察し、樹脂密着性を評価した。切断面付近の剥離が10mm以上のものを1点、10mm未満5mm以上のものを2点、5mm未満2mm以上のものを3点、剥離はあるが2mm未満のものを4点、剥離の認められないものを5点として評価し、3点以上を合格とした。
(Can inner surface resin adhesion evaluation)
Using the obtained seamless can, after filling with distilled water, the can and the lid were double-rolled and subjected to a retort treatment at 125 ° C. for 30 minutes. Then, after removing the lid from the can body and removing the contents, the surface-treated plate was cut in half at the 45-degree rolling direction. Next, the can cut into halves was immersed in a solution of 0.02% by weight of a surfactant added to a 1% by weight sodium chloride aqueous solution for 1 hour, and further on the bottom side of the can at the 135 degree direction of rolling. Further, it was cut into half with scissors, and the peeled state of the last cut surface of the inner surface of the bottom surface of the can was observed to evaluate the resin adhesion. 1 point with 10 mm or more peeling near the cut surface, 2 points with less than 10 mm and 5 mm or more, 3 points with less than 5 mm and 2 mm or more, 4 points with peeling but less than 2 mm, None were evaluated as 5 points, and 3 or more points were accepted.

(F溶出耐性評価)
得られたシームレス缶を用いて183gの超純水を充填し二重巻締し、130℃で30分のレトルト処理を行った後、超純水中に抽出されたフッ素イオンをイオンクロマトグラフ(DIONEX製DX−320)により測定した。Fが0.1ppm以上のものを×、0.1ppm未満のものを○とした。
(F elution resistance evaluation)
The obtained seamless can was filled with 183 g of ultrapure water, double-clamped, subjected to a retort treatment at 130 ° C. for 30 minutes, and then the fluorine ions extracted into the ultrapure water were ion chromatographed ( It measured by DIONEX DX-320). The case where F was 0.1 ppm or more was rated as x, and the case where F was less than 0.1 ppm was rated as ◯.

(排水負荷性評価)
前述したF減少率から、排水負荷性を評価した。F量の減少率が30%以下の場合を○、30%を超える場合を△とした。△より○の方がより好ましい。
(Evaluation of drainage load)
Drainage loadability was evaluated from the F decrease rate described above. The case where the decrease rate of the F amount was 30% or less was marked as ◯, and the case where it exceeded 30% was marked as Δ. ○ is more preferable than Δ.

《実施例1》
まず被膜形成工程に於いて、電解処理液中で対極に酸化イリジウム被覆チタン板を用い、鋼板を陰極として、電流密度3A/dmで0.15秒間の通電を1回実施し、電解処理液をロールで絞った後、常温水で水洗し、更に水洗水をロールで絞った。続いて、陰極電解処理による表面調整工程を実施した。表面調整用水溶液には0.1mol/lの乳酸カルシウム水溶液を用い、液の電気伝導度6.57mS/cm、pHは6.96であった。液温30℃とした表面調整用水溶液中で、4A/dmの電流密度で、0.15秒通電、0.1秒通電停止のサイクルを2回繰り返すことで表面調整工程を実施した。表面調整工程後の鋼板は、水溶液をロールで絞った後、水洗し、更に水洗水をロールで絞った後、乾燥することにより、表面処理鋼板を得た。
Example 1
First, in the coating formation step, an iridium oxide-coated titanium plate was used as the counter electrode in the electrolytic treatment solution, and the current was applied once for 0.15 seconds at a current density of 3 A / dm 2 using the steel plate as a cathode. After squeezing with a roll, it was washed with normal temperature water, and further the rinsing water was squeezed with a roll. Subsequently, a surface adjustment step by cathodic electrolysis was performed. As the surface conditioning aqueous solution, a 0.1 mol / l calcium lactate aqueous solution was used, and the electrical conductivity of the solution was 6.57 mS / cm and the pH was 6.96. In the aqueous solution for surface conditioning at a liquid temperature of 30 ° C., the surface conditioning step was carried out by repeating the cycle of 0.15 second energization and 0.1 second energization twice at a current density of 4 A / dm 2 . The steel sheet after the surface conditioning step was squeezed with an aqueous solution after being squeezed with a roll, and further squeezed rinsing water with a roll and then dried to obtain a surface-treated steel sheet.

得られた表面処理鋼板について、上述した方法にしたがって、Zr量、AE量、およびF量を測定した。被膜量測定結果を表1に示した。また、被膜量から計算で求めた2族元素(AE)とZrのモル比を示すAE/Zrの値、及び、前述したF減少率も表1に示した。なお、表中、「−」は実施していない事を意味する。   About the obtained surface-treated steel sheet, according to the method mentioned above, Zr amount, AE amount, and F amount were measured. The coating amount measurement results are shown in Table 1. Table 1 also shows the value of AE / Zr indicating the molar ratio of the Group 2 element (AE) and Zr calculated from the coating amount, and the F reduction rate described above. In the table, “-” means not implemented.

《実施例2》
被膜形成工程における電流密度を10A/dm、サイクル数2回とし、表面調整工程における電流密度を1A/dmとした以外は、実施例1と同様に実施した。
Example 2
The same operation as in Example 1 was performed except that the current density in the film forming step was 10 A / dm 2 and the number of cycles was 2 and the current density in the surface adjustment step was 1 A / dm 2 .

《実施例3》
表面調整工程における電流密度を6.5A/dmとした以外は、実施例2と同様に実施した。
Example 3
The same operation as in Example 2 was performed except that the current density in the surface adjustment step was set to 6.5 A / dm 2 .

《実施例4》
表面調整工程における処理を、60℃で3秒間の浸漬処理とした以外は実施例2と同様に実施した。
Example 4
The treatment in the surface adjustment step was performed in the same manner as in Example 2 except that the immersion treatment was performed at 60 ° C. for 3 seconds.

《実施例5》
被膜形成工程における電流密度を10A/dm、サイクル数4回とした以外は、実施例3と同様に実施した。
Example 5
The same operation as in Example 3 was performed except that the current density in the film forming step was 10 A / dm 2 and the number of cycles was four.

《実施例6》
0.1mol/lの乳酸カルシウム水溶液にアンモニアを加えて、pH11.0、液の伝導度7.13mS/cmの表面調整用水溶液を作成し、液温40℃で電流密度2A/dm、サイクル数2回の陰極電解による表面調整工程を実施した以外は、実施例5と同様に実施した。
Example 6
Ammonia was added to a 0.1 mol / l calcium lactate aqueous solution to prepare a surface conditioning aqueous solution having a pH of 11.0 and a liquid conductivity of 7.13 mS / cm, and a current density of 2 A / dm 2 at a liquid temperature of 40 ° C., a cycle. It carried out like Example 5 except having implemented the surface adjustment process by several times of cathodic electrolysis.

《実施例7》
表面調整工程における陰極電解電流密度を7A/dmとした以外は、実施例6と同様に実施した。
Example 7
The same operation as in Example 6 was performed except that the cathode electrolysis current density in the surface adjustment step was set to 7 A / dm 2 .

《実施例8》
表面調整工程における処理を、3秒間のスプレー処理とした以外は、実施例6と同様に実施した。
Example 8
The same procedure as in Example 6 was performed except that the treatment in the surface adjustment step was a spray treatment for 3 seconds.

《実施例9》
被膜形成工程におけるサイクル数8回とした以外は、実施例2と同様に実施した。
Example 9
The same procedure as in Example 2 was performed except that the number of cycles in the film forming step was eight.

《実施例10》
表面調整工程における電流密度を4A/dmとし、サイクル数を4回とした以外は、実施例9と同様に実施した。
Example 10
The same operation as in Example 9 was performed except that the current density in the surface adjustment step was 4 A / dm 2 and the number of cycles was four.

《実施例11》
表面調整工程における電流密度を6.5A/dmとした以外は、実施例10と同様に実施した。
Example 11
The same operation as in Example 10 was performed except that the current density in the surface adjustment step was set to 6.5 A / dm 2 .

《実施例12》
0.1mol/lの硝酸マグネシウム6水塩を用いて、液の電気伝導度15.1mS/cm、pH5.61、の表面調整用水溶液を作成し、液温40℃で電流密度4A/dm、サイクル数2回の陰極電解による表面調整工程を実施した以外は、実施例11と同様に実施した。
Example 12
Using 0.1 mol / l of magnesium nitrate hexahydrate, an aqueous solution for surface adjustment having a liquid electrical conductivity of 15.1 mS / cm and pH of 5.61 was prepared, and the current density was 4 A / dm 2 at a liquid temperature of 40 ° C. This was carried out in the same manner as in Example 11 except that the surface adjustment step by cathodic electrolysis was performed twice.

《実施例13》
被膜形成工程におけるサイクル数を12回とした以外は、実施例10と同様に実施した。
Example 13
It implemented similarly to Example 10 except having made the cycle number in a film formation process into 12 times.

《実施例14》
被膜形成工程におけるサイクル数を12回とした以外は、実施例11と同様に実施した。
Example 14
It implemented similarly to Example 11 except having made the cycle number in a film formation process into 12 times.

《実施例15》
表面調整工程において、pH5.6の0.1mol/lの硝酸カルシウム水溶液を表面調整用水溶液とし、液温40℃、電流密度4A/dm、サイクル数2回の陰極電解処理を実施した以外は、実施例13と同様に実施した。
Example 15
In the surface adjustment step, a 0.1 mol / l calcium nitrate aqueous solution with a pH of 5.6 was used as the surface adjustment aqueous solution, and the cathode temperature was 40 ° C., the current density was 4 A / dm 2 , and the number of cycles was twice. This was carried out in the same manner as in Example 13.

《比較例1》
表面調整工程を実施しなかった以外は、実施例1と同様に実施した。
<< Comparative Example 1 >>
It implemented like Example 1 except not having implemented the surface adjustment process.

《比較例2》
表面調整工程を実施しなかった以外は、実施例2と同様に実施した。
<< Comparative Example 2 >>
It implemented similarly to Example 2 except not having implemented the surface adjustment process.

《比較例3》
表面調整工程を実施しなかった以外は、実施例5と同様に実施した。
<< Comparative Example 3 >>
It implemented like Example 5 except not having implemented the surface adjustment process.

《比較例4》
表面調整工程を実施しなかった以外は、実施例9と同様に実施した。
<< Comparative Example 4 >>
It implemented like Example 9 except not having implemented the surface adjustment process.

《比較例5》
表面調整工程を実施しなかった以外は、実施例13と同様に実施した。
<< Comparative Example 5 >>
It implemented like Example 13 except not having implemented the surface adjustment process.

Figure 2015117402
Figure 2015117402

(考察)
表1から明らかなように、実施例1〜15において被膜中のZr量を12〜182mg/mとし、表面調整工程において、2族元素を含有する水溶液での処理を行うことによって、前記被膜中のF量が0.4〜19.8mg/mの板を作製した。表面調整工程を実施していない比較例1〜3においては、F溶出耐性は満足するが、クロスカット耐食性や密着性の点で劣っており、Zr量が増えるにつれて、これらの性能は改善していくが、逆にF溶出耐性に劣った材料となった。実施例1〜15における表面調整工程を実施した材料から作成した有機樹脂被覆金属板は、クロスカット耐食性に優れているとともに、金属缶の内面密着性、F溶出耐性にも優れており、有機樹脂層の密着性が高く、成形加工およびレトルト処理が施された後に有機樹脂層に亀裂が入った場合においても、有機樹脂層の密着を保持し、内容物の品質維持に優れた容器であることが確認された。
また、実施例1〜15において、F減少率は被膜中のZr量が大きいほど小さく、特にZr量100mg/m以上では30%以下のF減少率を示した。即ち、F減少率が小さくても、耐食性、密着性、F溶出耐性に優れた材料の作成が可能であることがわかった。
更に表1から明らかなように、実施例1〜15のAE量は7.7〜141mg/mであったのに対し、比較例では1.4〜5.1mg/mの値を示した。比較例は表面調整工程を通っておらず、被膜形成工程中の水溶液や水洗水には、意図的な2族元素の添加を行っておらず、これらは、被膜形成工程中の水溶液や水洗水に不可避的不純物として含まれていたCaやMgに由来するものと考えられる。表1におけるAE/Zr比を見ると、良好な性能を示した実施例1〜15の材料は何れも0.2以上を示し、性能を満足しない比較例1〜5は0.2未満であった。したがって、AE/Zr比を用いることで、不可避的不純物として含まれるCaやMgを区別することが可能である。
(Discussion)
As is clear from Table 1, in Examples 1 to 15, the amount of Zr in the coating was 12 to 182 mg / m 2, and in the surface adjustment step, the coating was performed with an aqueous solution containing a Group 2 element. Plates having an F content of 0.4 to 19.8 mg / m 2 were prepared. In Comparative Examples 1 to 3 in which the surface adjustment step is not performed, F elution resistance is satisfied, but it is inferior in terms of cross-cut corrosion resistance and adhesion, and these performances improve as the Zr amount increases. On the contrary, it became a material inferior to F elution resistance. The organic resin-coated metal plate prepared from the material subjected to the surface adjustment process in Examples 1 to 15 is excellent in cross-cut corrosion resistance, and is also excellent in inner surface adhesion of metal cans and F elution resistance. The layer has high adhesion, and even when the organic resin layer is cracked after being subjected to molding and retort treatment, the container should maintain the adhesion of the organic resin layer and maintain the quality of the contents. Was confirmed.
Moreover, in Examples 1-15, F reduction rate was so small that Zr amount in a film was large, and 30% or less F reduction rate was shown especially in Zr amount 100 mg / m < 2 > or more. That is, it was found that even if the F decrease rate is small, it is possible to create a material excellent in corrosion resistance, adhesion, and F elution resistance.
Further, as apparent from Table 1, the AE amount in Examples 1 to 15 was 7.7 to 141 mg / m 2 , while the comparative example showed a value of 1.4 to 5.1 mg / m 2. It was. The comparative example does not pass through the surface conditioning process, and no intentional group 2 element is added to the aqueous solution and washing water in the film forming process. These are the aqueous solution and washing water in the film forming process. It is considered that it is derived from Ca and Mg which are contained as inevitable impurities. Looking at the AE / Zr ratio in Table 1, all the materials of Examples 1 to 15 showing good performance showed 0.2 or more, and Comparative Examples 1 to 5 not satisfying the performance were less than 0.2. It was. Therefore, it is possible to distinguish Ca and Mg contained as inevitable impurities by using the AE / Zr ratio.

Claims (9)

鋼板の少なくとも片面上に、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を有する表面処理鋼板であって、前記表面処理層の表面側に、2族元素を含有することを特徴とする表面処理鋼板。   A surface-treated steel sheet having a surface treatment layer mainly containing zirconium and oxygen on at least one surface of the steel sheet, wherein the surface treatment layer contains a group 2 element. Surface treated steel sheet. 前記2族元素がフッ素化合物として存在する請求項1に記載の表面処理鋼板。   The surface-treated steel sheet according to claim 1, wherein the group 2 element is present as a fluorine compound. 前記2族元素が、カルシウム又はマグネシウムの少なくとも一つである請求項1又は2に記載の表面処理鋼板。   The surface-treated steel sheet according to claim 1 or 2, wherein the group 2 element is at least one of calcium and magnesium. 前記表面処理層中の2族元素(AE)とジルコムニウム(Zr)とのモル比AE/Zrが0.2以上であることを特徴とする請求項1〜3の何れかに記載の表面処理鋼板。   The surface-treated steel sheet according to any one of claims 1 to 3, wherein a molar ratio AE / Zr between the group 2 element (AE) and the zirconium (Zr) in the surface treatment layer is 0.2 or more. . 前記ジルコニウムの重量膜厚が、100〜200mg/mである請求項1〜4の何れかに記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1, wherein the zirconium has a weight film thickness of 100 to 200 mg / m 2 . 請求項1〜5の何れかに記載の表面処理鋼板に有機樹脂被覆を形成してなる有機樹脂被覆表面処理鋼板から成ることを特徴とする有機樹脂被覆金属容器。   An organic resin-coated metal container comprising an organic resin-coated surface-treated steel sheet obtained by forming an organic resin coating on the surface-treated steel sheet according to any one of claims 1 to 5. 鋼板の少なくとも片面上に、フッ素を含有し、ジルコニウムと酸素を主体とする表面処理層を有する表面処理鋼板の製造方法であって、Zrイオン、Fイオンを含む水溶液中で鋼板を陰極電解することによる被膜形成工程と、それに続いて、2族元素を含有する表面調整用水溶液を用いて、浸漬処理、スプレー処理、陰極電解処理のいずれか一つ以上の処理を行うことによる表面調整工程、とを有することを特徴とする表面処理鋼板の製造方法。   A method for producing a surface-treated steel sheet having a surface treatment layer containing fluorine and mainly composed of zirconium and oxygen on at least one surface of the steel sheet, and cathodically electrolyzing the steel sheet in an aqueous solution containing Zr ions and F ions A film forming step by the step, and subsequently a surface adjustment step by performing any one or more of a dipping treatment, a spray treatment, and a cathodic electrolysis treatment using the aqueous solution for surface adjustment containing a group 2 element; and A method for producing a surface-treated steel sheet, comprising: 前記2族元素がカルシウム又はマグネシウムの少なくとも一つであることを特徴とする請求項7に記載の表面処理鋼板の製造方法。   The method for producing a surface-treated steel sheet according to claim 7, wherein the Group 2 element is at least one of calcium and magnesium. 前記表面調整工程において、被膜形成工程からのフッ素の減少率が30%以下である請求項7又は8記載の表面処理鋼板の製造方法。   The method for producing a surface-treated steel sheet according to claim 7 or 8, wherein, in the surface adjustment step, the rate of fluorine reduction from the film formation step is 30% or less.
JP2013260930A 2013-12-18 2013-12-18 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet Active JP6530885B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013260930A JP6530885B2 (en) 2013-12-18 2013-12-18 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet
US15/035,940 US20160289843A1 (en) 2013-12-18 2014-12-05 Surface-treated steel sheet, organic resin-coated metal container and process for producing surface-treated steel sheet
PCT/JP2014/082239 WO2015093318A1 (en) 2013-12-18 2014-12-05 Surface-treated steel sheet, organic-resin-coated metal container, and method for producing surface-treated steel sheet
CN201480069019.XA CN105874107B (en) 2013-12-18 2014-12-05 The manufacturing method of surface treated steel plate, the canister of organic resin covering and surface treated steel plate
EP14872878.5A EP3085816B1 (en) 2013-12-18 2014-12-05 Surface-treated steel sheet, organic-resin-coated metal container, and method for producing surface-treated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260930A JP6530885B2 (en) 2013-12-18 2013-12-18 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet

Publications (2)

Publication Number Publication Date
JP2015117402A true JP2015117402A (en) 2015-06-25
JP6530885B2 JP6530885B2 (en) 2019-06-12

Family

ID=53402667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260930A Active JP6530885B2 (en) 2013-12-18 2013-12-18 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet

Country Status (5)

Country Link
US (1) US20160289843A1 (en)
EP (1) EP3085816B1 (en)
JP (1) JP6530885B2 (en)
CN (1) CN105874107B (en)
WO (1) WO2015093318A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886919B1 (en) * 2014-09-12 2016-03-16 東洋製罐株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated surface-treated steel sheet
JP6119931B2 (en) 2015-04-16 2017-04-26 新日鐵住金株式会社 Steel plate for container and method for producing steel plate for container
TWI605155B (en) 2015-04-16 2017-11-11 新日鐵住金股份有限公司 Steel sheet for container and method of manufacturing the same
CN110117793A (en) * 2018-02-05 2019-08-13 嘉瑞科技(惠州)有限公司 A kind of light-alloy organic coating layer preparation method, membrane equipment and environment-friendly type organic coating
US20190390065A1 (en) * 2018-06-22 2019-12-26 Covestro Llc Waterborne compositions containing organic ion-exchangers to improve corrosion resistance
CN115449712B (en) * 2022-09-14 2023-06-09 浙江东南新材科技有限公司 High-strength pickled plate and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097712A (en) * 2002-11-25 2005-04-14 Toyo Seikan Kaisha Ltd Surface-treated metallic material, method of surface treating therefor and resin-coated metallic material, metal can and can lid
JP2008088553A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP4920800B2 (en) * 2010-03-23 2012-04-18 新日本製鐵株式会社 Manufacturing method of steel plate for containers
JP5196035B2 (en) * 2010-06-29 2013-05-15 新日鐵住金株式会社 Steel plate for container and method for producing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942105B2 (en) 1993-06-24 1999-08-30 東洋鋼鈑株式会社 Manufacturing method of tin-coated steel sheet with excellent paint adhesion over time under wet conditions
US5380374A (en) * 1993-10-15 1995-01-10 Circle-Prosco, Inc. Conversion coatings for metal surfaces
AU763754B2 (en) * 2000-04-21 2003-07-31 Jfe Steel Corporation Surface treated steel plate and method for production thereof
TWI268965B (en) 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
US7749582B2 (en) * 2002-11-25 2010-07-06 Toyo Seikan Kaisha, Ltd. Surface-treated metallic material, method of surface treating therefor and resin coated metallic material, metal can and can lid
JP4205939B2 (en) 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method
JP2005023422A (en) * 2003-06-09 2005-01-27 Nippon Paint Co Ltd Metal surface treatment method and surface-treated metal
US20080057336A1 (en) * 2004-06-22 2008-03-06 Toyo Seikan Kaisha, Ltd Surface-Treated Metal Materials, Method of Treating the Surfaces Thereof, Resin-Coated Metal Materials, Cans and Can Lids
JP4805613B2 (en) 2005-06-17 2011-11-02 東洋製罐株式会社 Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid
MX2009002467A (en) * 2006-09-08 2009-12-01 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material.
JP5077651B2 (en) * 2007-05-31 2012-11-21 東洋製罐株式会社 Resin-coated metal plate and molded body using the same
DE102008014465B4 (en) * 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method
JP5980677B2 (en) * 2010-05-28 2016-08-31 東洋製罐株式会社 Surface treatment bath, method for producing surface-treated steel plate using this surface treatment bath, and surface-treated steel plate comprising this production method
CN103097576B (en) * 2010-06-30 2015-11-25 日新制钢株式会社 The coated steel sheet of erosion resistance and alkali resistance excellence
JP5845563B2 (en) * 2010-09-15 2016-01-20 Jfeスチール株式会社 Manufacturing method of steel plate for containers
JP5754099B2 (en) 2010-09-15 2015-07-22 Jfeスチール株式会社 Manufacturing method of steel plate for containers
JP5861249B2 (en) * 2010-09-15 2016-02-16 Jfeスチール株式会社 Manufacturing method of steel plate for containers
WO2012036202A1 (en) * 2010-09-15 2012-03-22 Jfeスチール株式会社 Steel plate for containers and manufacturing method for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097712A (en) * 2002-11-25 2005-04-14 Toyo Seikan Kaisha Ltd Surface-treated metallic material, method of surface treating therefor and resin-coated metallic material, metal can and can lid
JP2008088553A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP4920800B2 (en) * 2010-03-23 2012-04-18 新日本製鐵株式会社 Manufacturing method of steel plate for containers
JP5196035B2 (en) * 2010-06-29 2013-05-15 新日鐵住金株式会社 Steel plate for container and method for producing the same

Also Published As

Publication number Publication date
WO2015093318A1 (en) 2015-06-25
CN105874107B (en) 2018-11-16
EP3085816B1 (en) 2020-06-10
EP3085816A4 (en) 2017-08-23
US20160289843A1 (en) 2016-10-06
EP3085816A1 (en) 2016-10-26
CN105874107A (en) 2016-08-17
JP6530885B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
WO2015093318A1 (en) Surface-treated steel sheet, organic-resin-coated metal container, and method for producing surface-treated steel sheet
JP5978576B2 (en) Steel plate for container and method for producing the same
KR101430216B1 (en) Process for production of steel sheet for container material which has reduced load on environments, steel sheet for container material which has reduced load on environments, and laminate steel sheet for container material and coated precoat steel sheet for container material which are produced using the steel sheet
JP5786296B2 (en) Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
JP5729230B2 (en) Steel plate for container and method for producing the same
JP5986343B1 (en) Surface-treated steel sheet, metal container, and method for producing surface-treated steel sheet
JP5873609B2 (en) Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet
JP5886919B1 (en) Surface-treated steel sheet, method for producing the same, and resin-coated surface-treated steel sheet
JP6220226B2 (en) Method for producing surface-treated steel sheet, surface-treated steel sheet, and organic resin-coated metal container
JP2015180782A (en) Coated steel sheet, method for producing the same, and resin-coated steel sheet obtained using the same
WO2021261155A1 (en) Surface-treated steel sheet, metal container, and method for manufacturing surface-treated steel sheet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6530885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250