JP2005023422A - Metal surface treatment method and surface-treated metal - Google Patents

Metal surface treatment method and surface-treated metal Download PDF

Info

Publication number
JP2005023422A
JP2005023422A JP2004143688A JP2004143688A JP2005023422A JP 2005023422 A JP2005023422 A JP 2005023422A JP 2004143688 A JP2004143688 A JP 2004143688A JP 2004143688 A JP2004143688 A JP 2004143688A JP 2005023422 A JP2005023422 A JP 2005023422A
Authority
JP
Japan
Prior art keywords
treatment
chemical conversion
metal
zirconium
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143688A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yasuda
光宏 安田
Toshio Inbe
俊雄 印部
Tokujun Matsui
徳純 松井
Katsuyoshi Yamazoe
勝芳 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2004143688A priority Critical patent/JP2005023422A/en
Priority to CNA200410046519XA priority patent/CN1572912A/en
Priority to US10/863,482 priority patent/US20040244875A1/en
Priority to CA002470445A priority patent/CA2470445A1/en
Priority to EP04013487A priority patent/EP1486585B1/en
Priority to KR1020040041813A priority patent/KR20040105617A/en
Priority to AU2004202524A priority patent/AU2004202524A1/en
Priority to DE602004002519T priority patent/DE602004002519T2/en
Publication of JP2005023422A publication Critical patent/JP2005023422A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/12Electrolytic coating other than with metals with inorganic materials by cathodic processes on light metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal surface treatment method capable of imparting excellent corrosion resistance and capable of forming an excellently corrosion-resistant film on a metallic substrate such as iron, zinc, aluminum, or magnesium and to provide a surface-treated metal treated thereby. <P>SOLUTION: The metal surface treatment method comprises the step of forming a chemically converted film on the surface of a metallic substrate by a chemical conversion treatment with a chemical converting agent containing a zirconium-containing compound and a fluorine-containing compound. The chemical conversion treatment is performed by cathodic electrolysis treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属表面処理方法及び表面処理金属に関する。 The present invention relates to a metal surface treatment method and a surface-treated metal.

金属材料表面には、通常、耐食性等の性質を向上させる目的で、表面処理が施されている。このような表面処理の一種として、ジルコニウム化合物を含有する化成処理剤による表面処理が知られている。このような表面処理法は、無電解反応によって行うものであり、処理液によって被処理物金属が溶出する反応と、溶出金属イオンがフッ素イオンと反応することによるフッ化物の生成と、水素イオンの還元による水素の発生と、ジルコン錯イオンの加水分解によりフッ素イオンが水酸化物イオンによって置換されて、被処理物表面近傍でのpHの上昇と、によってジルコニウムの水酸化物/フッ化物そして被処理金属のフッ化物からなる不溶性のジルコニウム塩、被処理物の金属塩が金属表面に析出する。 The surface of the metal material is usually subjected to a surface treatment for the purpose of improving properties such as corrosion resistance. As one type of such surface treatment, a surface treatment with a chemical conversion treatment agent containing a zirconium compound is known. Such a surface treatment method is performed by an electroless reaction. The treatment metal elutes by the treatment liquid, fluoride is produced by the reaction of the eluting metal ions with fluorine ions, and the hydrogen ions. Zirconium hydroxide / fluoride and treatment by generation of hydrogen by reduction, and fluoride ions are replaced by hydroxide ions by hydrolysis of zircon complex ions, and the pH increases near the surface of the treatment object. An insoluble zirconium salt made of metal fluoride and a metal salt of the object to be treated are deposited on the metal surface.

このようなジルコニウム化成処理剤の無電解反応においては、被処理物全面で均一な反応を生じさせることが極めて困難であることから充分に緻密で均一な被膜を形成させることが困難であり、また、素材のエッチングによる酸化物、フッ化物を多く含んだ皮膜となり、耐食性が悪化する。また、無電解反応では、同一表面でアノードとカソード反応が行われるため、化成皮膜が形成すると、反応性が低くなるから、素材金属や、アルカリ金属等の粗雑な薄い化成皮膜しか得られないため、均一で緻密な保護皮膜は得られにくい。 In such an electroless reaction of the zirconium chemical conversion treatment agent, it is extremely difficult to generate a uniform reaction on the entire surface of the object to be treated, and thus it is difficult to form a sufficiently dense and uniform film. , It becomes a film containing a lot of oxides and fluorides by etching the material, and the corrosion resistance deteriorates. In addition, in the electroless reaction, since the anode and cathode reactions are performed on the same surface, if a chemical conversion film is formed, the reactivity becomes low, so only a rough thin chemical conversion film such as a material metal or an alkali metal can be obtained. It is difficult to obtain a uniform and dense protective film.

このように、ジルコニウム化成処理剤を用いた無電解反応によって得られた化成処理被膜は、特に化成処理剤との反応性が低い鉄系基材、亜鉛系基材等の被処理物に対して充分な防錆性を付与することは困難であった。また、アルミニウム系基材、マグネシウム系基材の表面処理においても、更に良好な性質を有する化成被膜を形成することによって、より高いレベルでの耐食性を達成することが要求されている。このため、より均一で緻密な化成処理皮膜を形成することができる金属表面処理方法が求められている。 In this way, the chemical conversion coating obtained by the electroless reaction using the zirconium chemical conversion treatment agent is particularly suitable for an object to be treated such as an iron-based substrate or a zinc-based substrate that has low reactivity with the chemical conversion treatment agent. It was difficult to provide sufficient rust prevention. Moreover, also in the surface treatment of an aluminum-type base material and a magnesium-type base material, it is requested | required to achieve the corrosion resistance in a higher level by forming the chemical conversion film which has a further favorable property. For this reason, the metal surface treatment method which can form a more uniform and precise chemical conversion treatment film is calculated | required.

また、金属表面処理方法として、電解反応による表面処理方法が知られている。(例えば、特許文献1、2参照。)。しかし、これらは、リン酸塩化合物やチタン系の処理方法に関するものであり、均一で緻密なジルコニウム化成処理皮膜を形成するためのものではない。特に、リン酸塩化合物を使用する化成処理方法では、富栄養化による環境に対して負荷を与えるという問題がある。また、リン酸塩処理浴中の金属イオンと反応してスラッジを発生する。更に、チタン系化合物による化成処理では、充分に高いレベルでの耐食性を達成することができない。 As a metal surface treatment method, a surface treatment method by an electrolytic reaction is known. (For example, refer to Patent Documents 1 and 2.) However, these relate to a phosphate compound or a titanium-based treatment method, and are not for forming a uniform and dense zirconium chemical conversion treatment film. In particular, the chemical conversion treatment method using a phosphate compound has a problem of giving a load to the environment due to eutrophication. Moreover, it reacts with metal ions in the phosphating bath to generate sludge. Furthermore, the chemical conversion treatment with a titanium compound cannot achieve a sufficiently high level of corrosion resistance.

更に、特許文献3には、(A)Ti、Zr、Hf及びSiの少なくとも1種を含む化合物、(B)HFの供給源としてのフッ素含有化合物を含有し、成分(A)の化合物中のTi、Zr、Hf及びSiの金属元素の合計モル重量Aと、成分(B)のフッ素含有化合物中の全フッ素原子をHFに換算したときのモル重量Bとの比K=A/Bが0.06≦K≦0.18の範囲内である表面処理用組成物、これと金属表面を接触させる金属の表面処理方法が開示されている。 Further, Patent Document 3 contains (A) a compound containing at least one of Ti, Zr, Hf and Si, (B) a fluorine-containing compound as a supply source of HF, The ratio K = A / B of the total molar weight A of the metal elements Ti, Zr, Hf and Si to the molar weight B when all fluorine atoms in the fluorine-containing compound of the component (B) are converted to HF is 0. A surface treatment composition in the range of 0.06 ≦ K ≦ 0.18 and a metal surface treatment method for contacting the metal surface with the composition are disclosed.

しかし、ここでは、フッ素及びジルコニウムを含有する化合物を溶解した表面処理用組成物を用いた電解処理によって化成処理を行った場合、溶液中に多量で過剰なフッ素及びアルカリ金属が存在するため、被処理素材に対して電解電圧を印加しても、カソード保護効果が得られにくく、比較的多い量のフッ化物及びアルカリ金属化合物が含まれる化成皮膜が形成されるため、耐食性が充分満足できない。また、多量なフッ素による設備の腐食問題も発生する。 However, here, when chemical conversion treatment is performed by electrolytic treatment using a composition for surface treatment in which a compound containing fluorine and zirconium is dissolved, a large amount of excess fluorine and alkali metals exist in the solution. Even if an electrolytic voltage is applied to the treatment material, the cathode protection effect is difficult to obtain, and a chemical conversion film containing a relatively large amount of fluoride and alkali metal compound is formed, so that the corrosion resistance cannot be sufficiently satisfied. Moreover, the corrosion problem of the equipment by a large amount of fluorine also occurs.

特開2000−234200号公報JP 2000-234200 A 特開2002−194589号公報JP 2002-194589 A 国際公開第02/103080号パンフレットInternational Publication No. 02/103080 Pamphlet

本発明は、上記に鑑み、耐食性に優れ、かつ、鉄、亜鉛、アルミニウム、マグネシウム等の金属基材に対して耐食性に優れた皮膜を形成できる金属表面処理方法及びそれにより処理された表面処理金属を提供することを目的とするものである。 In view of the above, the present invention is a metal surface treatment method that can form a film having excellent corrosion resistance and excellent corrosion resistance on a metal substrate such as iron, zinc, aluminum, and magnesium, and a surface-treated metal treated thereby. Is intended to provide.

本発明は、ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤による化成処理反応によって金属被処理物表面に化成皮膜を形成させる工程からなる金属表面処理方法であって、上記化成処理反応は、カソード電解処理によって行うことを特徴とする金属表面処理方法である。 The present invention is a metal surface treatment method comprising a step of forming a chemical conversion film on the surface of a metal workpiece by a chemical conversion treatment reaction with a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound. It is a metal surface treatment method characterized by performing by electrolytic treatment.

上記カソード電解処理は、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で10〜100000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が0.2〜1.0、pHが1〜6に調整されて行われるものであることが好ましい。 In the cathode electrolytic treatment, the concentration of the zirconium-containing compound in the chemical conversion treatment agent is 10 to 100000 ppm in terms of zirconium metal, and the ratio of the mass of all zirconium metal to the mass of total fluorine (zirconium content / fluorine content) is 0.2. It is preferable that the pH is adjusted to 1 to 6 and adjusted to 1 to 1.0.

上記カソード電解処理は、電圧0.1〜40V、電流密度0.1〜30A/dmの条件下で行われることが好ましい。
上記金属被処理物は、アルミニウム系基材、亜鉛系基材、鉄系基材及びマグネシウム系基材からなる群より選択される少なくとも1種であることが好ましい。
The cathode electrolytic treatment, the voltage 0.1~40V, is preferably carried out under conditions of a current density 0.1~30A / dm 2.
The metal workpiece is preferably at least one selected from the group consisting of an aluminum-based substrate, a zinc-based substrate, an iron-based substrate, and a magnesium-based substrate.

本発明はまた、上記金属表面処理方法によって得られた化成処理皮膜を有することを特徴とする表面処理金属でもある。
以下、本発明を詳細に説明する。
The present invention is also a surface-treated metal having a chemical conversion coating obtained by the above-described metal surface treatment method.
Hereinafter, the present invention will be described in detail.

本発明の金属表面処理方法は、ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤によって金属表面をカソード電解処理することによって化成皮膜を形成するものである。カソード電解処理によって反応させると、無電解処理による化成処理皮膜に比べて緻密で均一性に優れた皮膜となるものである。このため、形成される皮膜量が無電解処理による化成処理皮膜と同一であっても、耐食性に優れる化成処理皮膜が形成されるものである。 In the metal surface treatment method of the present invention, a chemical conversion film is formed by cathodic electrolytic treatment of a metal surface with a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound. When reacted by cathodic electrolysis, the film becomes denser and more uniform than the chemical conversion film by electroless treatment. For this reason, even if the amount of the formed film is the same as the chemical conversion treatment film by electroless treatment, a chemical conversion treatment film excellent in corrosion resistance is formed.

ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤によって電解反応を行うと、極めて優れた耐食性を有する防食性の化成皮膜が得られ、チタン系やリン酸塩系の化成処理剤の電解反応によって得られる化成皮膜よりも優れた耐食性が得られる。このため、広範な範囲での使用が期待され、好ましいものである。 When an electrolytic reaction is performed with a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound, an anticorrosive chemical conversion film having extremely excellent corrosion resistance is obtained, and obtained by an electrolytic reaction of a titanium-based or phosphate-based chemical conversion treatment agent. Corrosion resistance superior to that of the obtained chemical conversion film can be obtained. For this reason, use in a wide range is expected and preferable.

ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤を使用し、無電解処理によってアルミニウム系基材に化成皮膜を形成しようとする場合には、先ず下記反応式(1)、(2)に示すような素材のエッチングが起こり、続いて、主に下記反応式(3)〜(5)に示すようなフルオロジルコニウムの加水分解が起こることによってジルコニウム系化成皮膜が形成される。 When a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound is used and a chemical conversion film is to be formed on an aluminum-based substrate by electroless treatment, first, as shown in the following reaction formulas (1) and (2) Etching of a raw material occurs, and subsequently, a zirconium-based chemical conversion film is formed mainly by hydrolysis of fluorozirconium as shown in the following reaction formulas (3) to (5).

Figure 2005023422
Figure 2005023422

つまり、無電解処理によって皮膜を形成する場合には、上記反応式(1)〜(5)が起こることによって化成皮膜が形成されるため、フッ素を比較的多く含むジルコニウム系化成皮膜が形成されることになり、耐食性に劣る皮膜が形成されてしまう。これに対し、ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤をカソード電解処理する場合には、金属表面では主に水素発生反応が起こり、素材金属はカソード防食されるため、エッチングされず、被処理金属のフッ化物の発生はない。従って、金属表面近傍ではジルコニウム錯イオンの加水分解により、比較的安定な酸化ジルコニウムを含む皮膜の析出が起き、フッ素含有率の少ない緻密で安定な保護皮膜が形成される。また、上記化成処理剤を使用し、カソード電解処理によって鉄系、亜鉛系基材に化成被膜を形成する場合にも、フッ素量を減少させた皮膜を形成することができるため、耐食性を向上させることができるものと推察される。 That is, in the case of forming a film by electroless treatment, a chemical conversion film is formed by the occurrence of the reaction formulas (1) to (5), so that a zirconium-based chemical conversion film containing a relatively large amount of fluorine is formed. As a result, a film having poor corrosion resistance is formed. On the other hand, when a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound is subjected to cathode electrolytic treatment, a hydrogen generation reaction mainly occurs on the metal surface, and the material metal is cathodic protected, so that it is not etched and covered. There is no generation of fluoride in the treated metal. Accordingly, in the vicinity of the metal surface, deposition of a relatively stable zirconium oxide film occurs due to hydrolysis of zirconium complex ions, and a dense and stable protective film having a low fluorine content is formed. In addition, when the chemical conversion treatment agent is used and a chemical conversion coating is formed on an iron-based or zinc-based substrate by cathodic electrolysis, a coating with a reduced amount of fluorine can be formed, thereby improving the corrosion resistance. It is assumed that it can be done.

また、アルミニウム系基材を表面処理する場合、通常、平衡浴組成ではアルミニウムイオンが蓄積される。この場合、無電解処理では、500ppm以上アルミニウムが蓄積すると、化成反応性を阻害するため、給水・廃棄等の処置が必要とされる。一方、カソード電解処理ではアルミニウムイオンエッチング量が比較的少ない状態で、皮膜化し(皮膜変換効率が良い)、また、蓄積したアルミニウムイオンに対して影響が少ないため、無駄な給水・廃棄が不要となる。 Moreover, when surface-treating an aluminum-based substrate, aluminum ions are usually accumulated in the equilibrium bath composition. In this case, in the electroless treatment, if 500 ppm or more of aluminum is accumulated, the chemical conversion reactivity is hindered, and thus treatment such as water supply and disposal is required. On the other hand, cathodic electrolytic treatment forms a film with a relatively small amount of aluminum ion etching (the film conversion efficiency is good), and has little influence on the accumulated aluminum ions, so that unnecessary water supply and disposal are not required. .

上記ジルコニウム含有化合物としては、ジルコニウムを含有する化合物であれば特に限定されず、例えば、フルオロジルコニウム酸又はそのリチウム、ナトリウム、カリウム、アンモニウム塩、フッ化ジルコニウム、酸化ジルコニウム等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The zirconium-containing compound is not particularly limited as long as it is a compound containing zirconium, and examples thereof include fluorozirconic acid or its lithium, sodium, potassium, ammonium salt, zirconium fluoride, and zirconium oxide. These may be used alone or in combination of two or more.

上記フッ素含有化合物としては、フッ素を含有する化合物であれば特に限定されず、上記フッ化ジルコニウム等の他に、フッ化水素酸、フッ化アンモニウム、フッ化水素酸アンモニウム、フッ化ナトリウム、フッ化水素酸ナトリウム等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The fluorine-containing compound is not particularly limited as long as it is a fluorine-containing compound. Besides the above-mentioned zirconium fluoride, etc., hydrofluoric acid, ammonium fluoride, ammonium hydrofluoride, sodium fluoride, fluoride A sodium hydrate etc. can be mentioned. These may be used alone or in combination of two or more.

本発明の金属表面処理方法において、上記カソード電解処理は、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で下限10ppm、上限100000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が下限0.2、上限1.0、pHが下限1、上限6となるように調整されて行われるものであることが好ましい。このように調整してカソード電解処理を行うことによって、フッ素含有量の比較的少ない化成皮膜を形成することができるため、耐食性をより向上させることができる。 In the metal surface treatment method of the present invention, the cathode electrolytic treatment is carried out in such a manner that the concentration of the zirconium-containing compound in the chemical conversion treatment agent is 10 ppm as the lower limit in terms of zirconium metal, 100000 ppm as the upper limit. It is preferable that (zirconium content / fluorine content) be adjusted so that the lower limit is 0.2, the upper limit is 1.0, and the pH is lower limit 1 and the upper limit is 6. By performing the cathode electrolytic treatment with such adjustment, a chemical conversion film having a relatively small fluorine content can be formed, so that the corrosion resistance can be further improved.

上記カソード電解処理において、上記ジルコニウム含有化合物の濃度及び上記ジルコニウム量/フッ素量を上記規定範囲に調整する方法としては、例えば、化成処理剤中の全ジルコニウム濃度は原子吸光分析装置を、全フッ素濃度はイオンクロマトグラフを使用して測定しながら、上記ジルコニウム含有化合物、上記フッ素含有化合物を処理浴中に補給することによって調整することができる。また、上記pHを上記規定範囲に調整する方法としては、例えば、pHメーターを使用して測定しながら、硝酸又は水酸化アンモニウムを処理浴中に補給することによって調整することができる。 In the cathode electrolytic treatment, as a method for adjusting the concentration of the zirconium-containing compound and the amount of zirconium / fluorine to the specified range, for example, the total zirconium concentration in the chemical conversion treatment agent is determined by using an atomic absorption analyzer. Can be adjusted by supplying the zirconium-containing compound and the fluorine-containing compound into the treatment bath while measuring using an ion chromatograph. Moreover, as a method of adjusting the said pH to the said regulation range, it can adjust, for example by supplying nitric acid or ammonium hydroxide in a processing bath, measuring using a pH meter.

本発明におけるカソード電解処理において、処理浴中の化成処理剤は、上記ジルコニウム含有化合物の濃度が、ジルコニウム金属換算で、下限10ppm、上限100000ppmの範囲内に調整されることが好ましい。10ppm未満であると、ジルコニウム化合物が充分に金属表面上に析出しないため、耐食性が向上しないおそれがある。また、100000ppmを超えて配合すると、それ以上の効果は望めず不経済である。上記下限は、30ppmであることがより好ましく、上記上限は、5000ppmであることがより好ましい。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is preferably adjusted such that the concentration of the zirconium-containing compound is within a range of a lower limit of 10 ppm and an upper limit of 100,000 ppm in terms of zirconium metal. If it is less than 10 ppm, the zirconium compound does not sufficiently precipitate on the metal surface, and thus the corrosion resistance may not be improved. Moreover, when it mixes exceeding 100,000 ppm, the effect beyond it cannot be expected and it is uneconomical. The lower limit is more preferably 30 ppm, and the upper limit is more preferably 5000 ppm.

本発明におけるカソード電解処理において、処理浴中の上記化成処理剤は、全ジルコニウム金属としての質量(化成処理剤中に含まれるジルコニウム金属としての全ジルコニウムの合計質量)と全フッ素の質量(化成処理剤中に含まれる全フッ素の合計質量)との比(ジルコニウム量/フッ素量)が、下限0.2、上限1.0に調整されることが好ましい。0.2未満であると、フッ素量が過剰になり、カソード電解処理による化成皮膜の形成が妨げられるおそれがある。また、比較的フッ素量が多い化成皮膜が形成されるため、耐食性に劣るおそれがある。1.0を超えると、全フッ素量が不充分になり、金属塩の沈殿が発生するおそれがある。上記下限は、0.25であることがより好ましく、上記上限は、0.8であることがより好ましい。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is composed of the mass as total zirconium metal (total mass of all zirconium as zirconium metal contained in the chemical conversion treatment agent) and the mass of total fluorine (chemical conversion treatment). The ratio (zirconium amount / fluorine amount) to the total mass of all fluorine contained in the agent is preferably adjusted to a lower limit of 0.2 and an upper limit of 1.0. If it is less than 0.2, the amount of fluorine becomes excessive, and the formation of a chemical conversion film by the cathode electrolytic treatment may be hindered. Moreover, since a chemical conversion film having a relatively large amount of fluorine is formed, the corrosion resistance may be inferior. If it exceeds 1.0, the amount of total fluorine becomes insufficient, and precipitation of the metal salt may occur. The lower limit is more preferably 0.25, and the upper limit is more preferably 0.8.

本発明におけるカソード電解処理において、処理浴中の上記化成処理剤は、pHが下限1、上限6の範囲内に調整されることが好ましい。pHが1未満であると、ジルコニウム化合物が析出しにくくなるため、充分な皮膜量が得られなくなり、耐食性が低下する場合がある。pHが6を超えると、充分な皮膜量が得られないため好ましくない。上記下限は、2であることが好ましく、上記上限は、5であることがより好ましい。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is preferably adjusted to have a pH within a range of a lower limit of 1 and an upper limit of 6. If the pH is less than 1, the zirconium compound is difficult to precipitate, so that a sufficient amount of film cannot be obtained, and the corrosion resistance may be lowered. A pH exceeding 6 is not preferable because a sufficient amount of film cannot be obtained. The lower limit is preferably 2, and the upper limit is more preferably 5.

上記化成処理剤は、上記成分の他に、チタン、マンガン、ケイ素、亜鉛、セリウム、鉄、モリブデン、バナジウム、3価クロム、マグネシウム等の金属イオン;タンニン酸、イミダゾール類、トリアジン類、トリアゾール類、グアニン類、ヒドラジン類、ビグアニド、フェノール樹脂、シランカップリング剤、コロイダルシリカ、アミン類、リン酸等の他の防錆剤;界面活性剤;キレート剤;樹脂等を含有するものであってもよい。 In addition to the above components, the chemical conversion treatment agent includes metal ions such as titanium, manganese, silicon, zinc, cerium, iron, molybdenum, vanadium, trivalent chromium, and magnesium; tannic acid, imidazoles, triazines, triazoles, Other rust inhibitors such as guanines, hydrazines, biguanides, phenol resins, silane coupling agents, colloidal silica, amines, phosphoric acid; surfactants; chelating agents; may contain resins, etc. .

本発明の金属表面処理方法において、上記カソード電解処理は、陰極として被処理物を使用することによって電解処理するものである。 In the metal surface treatment method of the present invention, the cathode electrolytic treatment is an electrolytic treatment using an object to be treated as a cathode.

上記カソード電解処理は、電圧が、下限0.1V、上限40Vであることが好ましい。0.1V未満であると、皮膜量が少なくなり、耐食性が低下するおそれがある。40Vを超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となるおそれがある。上記下限は、1Vであることがより好ましく、上記上限は、30Vであることがより好ましい。 The cathode electrolysis treatment preferably has a voltage of a lower limit of 0.1V and an upper limit of 40V. If it is less than 0.1 V, the amount of the coating is reduced and the corrosion resistance may be reduced. If it exceeds 40 V, the effect of increasing the coating amount is saturated, which may be disadvantageous in terms of energy. The lower limit is more preferably 1V, and the upper limit is more preferably 30V.

上記カソード電解処理は、電流が、下限0.1A/dm、上限30A/dmであることが好ましい。0.1A/dm未満であると、皮膜量が少なくなり、耐食性が低下するおそれがある。30A/dmを超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となるおそれがある。上記下限は、0.2A/dmであることがより好ましく、上記上限は、10A/dmであることがより好ましい。 The cathode electrolytic treatment preferably has a current of a lower limit of 0.1 A / dm 2 and an upper limit of 30 A / dm 2 . If it is less than 0.1 A / dm 2 , the amount of the coating is reduced and the corrosion resistance may be reduced. If it exceeds 30 A / dm 2 , the effect of increasing the coating amount is saturated, which may be disadvantageous in terms of energy. The lower limit is more preferably 0.2 A / dm 2 and the upper limit is more preferably 10 A / dm 2 .

上記カソード電解処理の処理時間は、下限3秒間、上限180秒間であることが好ましい。3秒間未満であると、皮膜の生成が少なく耐食性が悪くなる。180秒間を超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となるおそれがある。 The treatment time of the cathode electrolytic treatment is preferably a lower limit of 3 seconds and an upper limit of 180 seconds. If it is less than 3 seconds, the formation of a film is small and the corrosion resistance is deteriorated. If it exceeds 180 seconds, the effect of increasing the coating amount is saturated, which may be disadvantageous in terms of energy.

上記カソード電解処理の処理温度は、下限10℃、上限70℃であることが好ましい。10℃未満であると、皮膜の生成が少なく耐食性が悪くなる。70℃を超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となるおそれがある。なお、処理温度の下限は、特に制御せず、常温で処理することができる。 The cathode electrolysis treatment temperature is preferably a lower limit of 10 ° C. and an upper limit of 70 ° C. When it is less than 10 ° C., the formation of a film is small and the corrosion resistance is deteriorated. If it exceeds 70 ° C., the effect of increasing the coating amount is saturated, which may be disadvantageous in terms of energy. The lower limit of the treatment temperature is not particularly controlled, and the treatment can be performed at room temperature.

上記カソード電解処理において、対極として使用する電極は、上記化成処理剤に溶解しない電極であれば特に限定されず、例えば、ステンレス、白金メッキチタン、ニオブメッキチタン、カーボン、鉄、ニッケル、亜鉛等を挙げることができる。 In the cathode electrolytic treatment, the electrode used as a counter electrode is not particularly limited as long as it is an electrode that does not dissolve in the chemical conversion treatment agent. For example, stainless steel, platinum-plated titanium, niobium-plated titanium, carbon, iron, nickel, zinc, etc. Can be mentioned.

本発明の金属表面処理方法を適用することができる被処理物は、鉄系基材、アルミニウム系基材、亜鉛系基材、及び、マグネシウム系基材等を挙げることができる。鉄、アルミニウム、亜鉛系基材、マグネシウム系基材とは、基材が鉄及び/又はその合金からなる鉄系基材、基材がアルミニウム及び/又はその合金からなるアルミニウム系基材、基材が亜鉛及び/又はその合金からなる亜鉛系基材、基材がマグネシウム及び/又はその合金からなるマグネシウム系基材を意味する。特に、従来、ジルコニウム系の化成処理剤では充分な耐食性を得ることができないため、リン酸塩系の化成処理剤が一般的に使用されてきた鉄系基剤や亜鉛系基剤に対しても充分な耐食性を有する化成処理皮膜を形成することができる。このため、鉄系基剤や亜鉛系基剤の化成処理剤の脱リン酸化という目的にも適用することができる。本発明の金属表面処理方法は、鉄系基材、アルミニウム系基材、亜鉛系基材、及び、マグネシウム系基材のうちの複数の金属基材からなる被処理物の化成処理に対して適用することにより、それぞれの被処理物に対して優れた耐食性を付与することもできる。 Examples of the workpiece to which the metal surface treatment method of the present invention can be applied include iron-based substrates, aluminum-based substrates, zinc-based substrates, and magnesium-based substrates. Iron, aluminum, zinc-based substrate, magnesium-based substrate is an iron-based substrate whose substrate is made of iron and / or an alloy thereof, an aluminum-based substrate whose substrate is made of aluminum and / or an alloy thereof, and a substrate Means a zinc-based substrate made of zinc and / or an alloy thereof, and a magnesium-based substrate made of magnesium and / or an alloy thereof. In particular, since zirconium-based chemical conversion treatment agents cannot provide sufficient corrosion resistance, phosphate-based chemical conversion treatment agents have been generally used for iron-based and zinc-based bases. A chemical conversion film having sufficient corrosion resistance can be formed. For this reason, it is applicable also to the objective of dephosphorylating the chemical conversion treatment agent of an iron base and a zinc base. The metal surface treatment method of the present invention is applied to a chemical conversion treatment of an object to be processed consisting of a plurality of metal substrates among an iron-based substrate, an aluminum-based substrate, a zinc-based substrate, and a magnesium-based substrate. Thus, excellent corrosion resistance can be imparted to each workpiece.

上記鉄系基材としては特に限定されず、例えば、冷延鋼板、熱延鋼板等を挙げることができる。上記アルミニウム系基材としては特に限定されず、例えば、5000番系アルミニウム合金、6000番系アルミニウム合金等を挙げることができる。 It does not specifically limit as said iron-type base material, For example, a cold-rolled steel plate, a hot-rolled steel plate, etc. can be mentioned. It does not specifically limit as said aluminum-type base material, For example, 5000 series aluminum alloy, 6000 series aluminum alloy, etc. can be mentioned.

上記亜鉛系基材としては特に限定されず、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板等の亜鉛系の電気めっき、溶融めっき、蒸着めっき鋼板等の亜鉛又は亜鉛系合金めっき鋼板等を挙げることができる。 The zinc-based substrate is not particularly limited. For example, galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc-aluminum plated steel sheet, zinc-titanium plated steel sheet, zinc- Examples thereof include zinc-based electroplating such as magnesium-plated steel sheet and zinc-manganese-plated steel sheet, zinc such as hot-dip plating and vapor-deposited steel sheet, or zinc-based alloy-plated steel sheet.

上記マグネシウム系基材としては特に限定されず、例えば、圧延、ダイキャスト法やチクソモールディング法等により作製されるマグネシウム金属、マグネシウム合金を挙げることができる。上記マグネシウム合金としては特に限定されず、例えば、AZ31、AZ91、AZ91D、AM60、AM50、AZ31B等を挙げることができる。上記金属表面処理方法を用いることにより、鉄、アルミニウム、亜鉛及びマグネシウム系基材を同時に化成処理することができる。 It does not specifically limit as said magnesium-type base material, For example, the magnesium metal and magnesium alloy which are produced by rolling, die-casting method, thixo molding method, etc. can be mentioned. It does not specifically limit as said magnesium alloy, For example, AZ31, AZ91, AZ91D, AM60, AM50, AZ31B etc. can be mentioned. By using the metal surface treatment method, it is possible to simultaneously subject the iron, aluminum, zinc and magnesium base materials to chemical conversion treatment.

上記金属表面処理方法によって形成される化成皮膜中のジルコニウム量は、下限10mg/m、上限300mg/mであることが好ましい。これにより、優れた耐食性を付与することができる。10mg/m未満であると、耐食性が充分でないおそれがある。300mg/mを超えても、効果の向上は見られず、経済的でないおそれがある。上記下限は、20mg/mであることがより好ましく、上記上限は、150mg/mであることがより好ましい。 The amount of zirconium in the chemical conversion film formed by the metal surface treatment method is preferably a lower limit of 10 mg / m 2 and an upper limit of 300 mg / m 2 . Thereby, the outstanding corrosion resistance can be provided. If it is less than 10 mg / m 2 , the corrosion resistance may not be sufficient. Even if it exceeds 300 mg / m < 2 >, the improvement of an effect is not seen but there exists a possibility that it may not be economical. The lower limit is more preferably 20 mg / m 2 , and the upper limit is more preferably 150 mg / m 2 .

上記金属基材の表面は、上記化成処理剤によってカソード電解処理する前に脱脂処理、脱脂後水洗処理、酸洗処理、酸洗後水洗処理等を行うことが好ましい。 The surface of the metal substrate is preferably subjected to degreasing treatment, post-degreasing water washing treatment, pickling treatment, pickling water washing treatment, and the like before the cathode electrolytic treatment with the chemical conversion treatment agent.

上記脱脂処理は、基材表面に付着している油分や汚れを除去するために行われるものであり、無リン・無窒素脱脂洗浄液等の脱脂剤により、通常30〜55℃において数分間程度の浸漬処理がなされる。所望により、脱脂処理の前に、予備脱脂処理を行うことも可能である。 The degreasing treatment is performed to remove oil and dirt adhering to the surface of the base material, and usually with a degreasing agent such as phosphorus-free and nitrogen-free degreasing cleaning liquid at about 30 to 55 ° C. for about several minutes. Immersion treatment is performed. If desired, a preliminary degreasing process can be performed before the degreasing process.

上記脱脂後水洗処理は、脱脂処理後の脱脂剤を水洗するために、大量の水洗水によって1回又はそれ以上スプレー処理を行うことにより行われるものである。 The post-degreasing rinsing treatment is performed by spraying once or more with a large amount of rinsing water in order to wash the degreasing agent after the degreasing treatment.

上記酸洗処理として、例えば酸化剤を含んだ硫酸又は硫酸と硝酸の混合酸洗溶液等の酸洗剤により、通常30〜60℃において数分間程度の浸漬処理がされる。上記酸洗後水洗処理は、従来公知の方法により行うことができる。また、カソード電解処理後に、水洗処理を行ってもよい。 As the pickling treatment, an immersion treatment is usually performed at a temperature of 30 to 60 ° C. for several minutes with an acid detergent such as sulfuric acid containing an oxidizing agent or a mixed pickling solution of sulfuric acid and nitric acid. The water washing treatment after the pickling can be performed by a conventionally known method. Moreover, you may perform a water washing process after a cathode electrolytic process.

本発明は、上記金属表面処理方法によって得られた化成処理皮膜を有する表面処理金属でもある。本発明の表面処理金属は、更にカチオン電着塗装、粉体塗装、熱硬化性樹脂等の耐食プライマー塗装を上記化成皮膜上に形成した際に、耐食性に優れるものである。本発明の表面処理金属に対して行うことができる塗装としては特に限定されず、カチオン電着塗装、粉体塗装、ロールコーティング等を挙げることができる。上記カチオン電着塗装としては特に限定されず、アミノ化エポキシ樹脂、アミノ化アクリル樹脂、スルホニウム化エポキシ樹脂等からなる従来公知のカチオン電着塗料を塗布することができる。 This invention is also a surface treatment metal which has a chemical conversion treatment film obtained by the said metal surface treatment method. The surface-treated metal of the present invention is excellent in corrosion resistance when a corrosion-resistant primer coating such as cationic electrodeposition coating, powder coating, and thermosetting resin is further formed on the chemical conversion film. The coating that can be performed on the surface-treated metal of the present invention is not particularly limited, and examples thereof include cationic electrodeposition coating, powder coating, and roll coating. The cationic electrodeposition coating is not particularly limited, and a conventionally known cationic electrodeposition coating made of an aminated epoxy resin, an aminated acrylic resin, a sulfoniumated epoxy resin, or the like can be applied.

本発明の金属表面処理方法は、ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤をカソード電解処理することによって化成皮膜を形成する方法であるため、優れた耐食性を有する処理材を得ることができる。また、鉄、亜鉛、アルミニウム、マグネシウム系基材のすべてに対して優れた耐食性を付与することができるものであり、6価クロム等の金属を使用するものでないため、環境面で好ましい方法でもある。 Since the metal surface treatment method of the present invention is a method of forming a chemical conversion film by subjecting a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound to cathode electrolytic treatment, a treatment material having excellent corrosion resistance can be obtained. . In addition, it can impart excellent corrosion resistance to all of iron, zinc, aluminum, and magnesium-based substrates, and is not a method that uses metals such as hexavalent chromium. .

特に、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で10〜100000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が0.2〜1.0、pHが1〜6に調整されてカソード電解処理が行われる場合には、フッ素含有量が比較的少ない化成皮膜が形成されるため、耐食性をより向上させることができる。 In particular, the concentration of the zirconium-containing compound in the chemical conversion treatment agent is 10 to 100000 ppm in terms of zirconium metal, and the ratio of the mass of all zirconium metal to the mass of total fluorine (zirconium content / fluorine content) is 0.2 to 1.0. When the pH is adjusted to 1 to 6 and the cathode electrolytic treatment is performed, a chemical conversion film having a relatively small fluorine content is formed, so that the corrosion resistance can be further improved.

本発明で使用する化成処理剤は、リン酸イオンを含まなくても優れた耐食性を付与することができるものであるため、富栄養化等の環境問題を生じることがなく、スラッジの量を抑制することもできる方法である。 The chemical conversion treatment agent used in the present invention can provide excellent corrosion resistance even without containing phosphate ions, and therefore does not cause environmental problems such as eutrophication and suppresses the amount of sludge. It is also a method that can be done.

本発明の金属表面処理方法は、上述した構成よりなるものであるため、無電解処理を行う場合や、チタン系やリン酸系の処理剤を使用して電解処理を行う場合に比べて、耐食性を向上させることができる。また、鉄系基材、アルミニウム系基材、亜鉛系基材又はマグネシウム系基材のすべての素材に対して優れた耐食性を付与することができる方法であるため、自動車車体や部品等のように、鉄系基材、アルミニウム系基材、亜鉛基材、及び、マグネシウム系基材等の複数の基材からなる被処理物に対して好適に使用することができる。また、環境に対する負荷が少なく、スラッジの発生も抑制された方法である。 Since the metal surface treatment method of the present invention has the above-described configuration, it is more resistant to corrosion than when performing electroless treatment or performing electrolytic treatment using a titanium-based or phosphoric acid-based treatment agent. Can be improved. In addition, because it is a method that can give excellent corrosion resistance to all materials of iron-based substrate, aluminum-based substrate, zinc-based substrate or magnesium-based substrate, such as automobile bodies and parts , An iron-based substrate, an aluminum-based substrate, a zinc-based substrate, and a magnesium-based substrate. In addition, the load on the environment is small and the generation of sludge is suppressed.

以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。また実施例中、「部」、「%」は特に断りのない限り「質量部」、「質量%」を意味する。 EXAMPLES Hereinafter, although an Example is hung up and demonstrated in more detail, this invention is not limited only to these Examples. In the examples, “parts” and “%” mean “parts by mass” and “% by mass” unless otherwise specified.

実施例1〜13、比較例1〜7
化成処理剤の調製
ジルコニウム含有化合物、フッ素含有化合物として、ジルコンフッ酸、ジルコンフッ化アンモニウム、フッ化チタン酸、フィチン酸、硝酸アルミニウム、フッ化水素酸、リン酸、水溶性フェノール、タンニン酸を配合し、イオン交換水を加えて、表1に示すような化成処理剤を調製した。
Examples 1-13, Comparative Examples 1-7
Preparation of chemical conversion treatment agent Zirconic hydrofluoric acid, zircon ammonium fluoride, fluorinated titanic acid, phytic acid, aluminum nitrate, hydrofluoric acid, phosphoric acid, water-soluble phenol, tannic acid Then, ion exchange water was added to prepare a chemical conversion treatment agent as shown in Table 1.

試験板の作成
70mm×150mm×0.8mmのA1100(日本テストパネル製)をアルカリ脱脂剤(サーフクリーナー322N8、日本ペイント製)3%水溶液を用いて、70℃で30秒間浸漬処理して脱脂した。水道水で30秒間スプレー処理を行って水洗した後、酸洗処理剤(NPコンディションナー2000、日本ペイント製)25%水溶液を用いて、70℃で30秒間浸漬処理して酸洗した。水道水で30秒スプレー処理を行って水洗した。次いで、調製した化成処理剤を表1に示した条件で、対極にSUS304を使用し、カソード電解処理した。なお、皮膜中のジルコニウム量(mg/m)及び皮膜中のF/Zr質量比は、「XRF1700」(島津製作所製蛍光X線分析装置)を用いて分析した。
Preparation of test plate 70 mm × 150 mm × 0.8 mm A1100 (manufactured by Nippon Test Panel) was degreased by immersion for 30 seconds at 70 ° C. using a 3% aqueous solution of an alkaline degreasing agent (Surf Cleaner 322N8, Nippon Paint). . After spraying with tap water for 30 seconds and washing with water, a pickling treatment agent (NP Conditioner 2000, Nippon Paint) 25% aqueous solution was used for immersion at 70 ° C. for 30 seconds for pickling. It was washed with tap water for 30 seconds. Next, the prepared chemical conversion treatment agent was subjected to cathode electrolytic treatment under the conditions shown in Table 1 using SUS304 as a counter electrode. The amount of zirconium in the coating (mg / m 2 ) and the mass ratio of F / Zr in the coating were analyzed using “XRF1700” (Shimadzu X-ray fluorescence analyzer).

なお、カソード電解処理において、以下のようにして、処理浴中の化成処理剤のジルコニウム金属としての濃度、ジルコニウム/フッ素の質量比、pHが表1に示したような値となるように調整した。
処理浴中の化成処理剤における全ジルコニウム濃度は理学製原子吸光分析装置NOVAA330を、全フッ素濃度は日本ダイオネクス株式会社製イオンクロマトグラフDX−120を使用して測定しながら、フッ化ジルコニウムアンモニウム、フッ酸を処理浴中に補給することによって調整した。また、処理浴中の化成処理剤のpHは堀場製作所製pHメーターD−24を使用して測定しながら、硝酸又は水酸化アンモニウムを処理浴中に補給することによって調整した。
In the cathode electrolytic treatment, the concentration of the chemical conversion treatment agent in the treatment bath as zirconium metal, the mass ratio of zirconium / fluorine, and the pH were adjusted to the values shown in Table 1 as follows. .
The total zirconium concentration in the chemical conversion treatment agent in the treatment bath was measured using an atomic absorption spectrometer NOVAA330 manufactured by Rigaku, and the total fluorine concentration was measured using an ion chromatograph DX-120 manufactured by Nippon Dionex Co., Ltd. The acid was adjusted by replenishing the treatment bath. Moreover, the pH of the chemical conversion treatment agent in the treatment bath was adjusted by supplying nitric acid or ammonium hydroxide to the treatment bath while measuring using a pH meter D-24 manufactured by Horiba.

試験板の物性評価
上記試験板について、以下に示した評価方法によって耐食性を評価した。
<耐食性>
JIS Z 2371に基づき、5%塩水噴霧試験(2000時間)を行い、試験後に処理板の錆発生率を調べた。処理板表面の錆発生面積を下記の評価基準で目視で評価した。
10:白錆発生なし
9:白錆発生面積が10%未満
8:同20%未満
7:同30%未満
6:同40%未満
5:同50%未満
4:同60%未満
3:同70%未満
2:同80%未満
1:同90%未満
Evaluation of physical properties of test plate The corrosion resistance of the test plate was evaluated by the following evaluation method.
<Corrosion resistance>
Based on JIS Z 2371, a 5% salt spray test (2000 hours) was conducted, and the rust generation rate of the treated plate was examined after the test. The rust generation area on the surface of the treated plate was visually evaluated according to the following evaluation criteria.
10: No white rust generation 9: White rust generation area less than 10% 8: Less than 20% 7: Less than 30% 6: Less than 40% 5: Less than 50% 4: Less than 60% 3: 3: 70 Less than% 2: Less than 80% 1: Less than 90%

Figure 2005023422
Figure 2005023422

表1から、無電解処理で得られたもの(比較例1〜5)は、カソード電解処理で得られたもの(実施例)に比べて、耐食性に劣るものであった。これにより、カソード電解処理を行って皮膜を形成することで耐食性を向上させることができることが明らかとなった。また、フッ化チタン酸を使用した場合(比較例6)は、ジルコニウムを含有する化成処理剤を使用する場合に比べて、耐食性に劣るものであった。 From Table 1, those obtained by electroless treatment (Comparative Examples 1 to 5) were inferior in corrosion resistance compared to those obtained by cathode electrolysis treatment (Examples). As a result, it has been clarified that the corrosion resistance can be improved by performing a cathode electrolytic treatment to form a film. Further, when fluorinated titanic acid was used (Comparative Example 6), the corrosion resistance was inferior compared to when a chemical conversion treating agent containing zirconium was used.

実施例14〜21、比較例8〜11
化成処理剤の調製
ジルコニウム含有化合物、フッ素含有化合物として、ジルコンフッ酸、他の金属含有化合物として、硝酸塩を配合し、イオン交換水を加えて、表2に示すような化成処理剤を調製した。
Examples 14-21, Comparative Examples 8-11
Preparation of chemical conversion treatment agent Zircon hydrofluoric acid as the zirconium-containing compound and fluorine-containing compound, nitrate as the other metal-containing compound, and ion-exchanged water were added to obtain a chemical conversion treatment agent as shown in Table 2. Prepared.

試験板の作成
70mm×150mm×0.8mmのSPCC−SD(日本テストパネル社製)、70mm×150mm×0.8mmの亜鉛メッキ鋼板(GA鋼板、日本テストパネル社製)、70mm×150mm×0.8mmの5182系アルミニウム(日本テストパネル社製)をアルカリ脱脂剤(サーフクリーナー53、日本ペイント製)2%水溶液を用いて、40℃で2分間スプレー処理して脱脂した。水道水で30秒間スプレー処理を行って水洗した後、調製した化成処理剤を表2に示した条件で、対極にSUS304を使用し、カソード電解処理した。次いで、水道水で30秒間スプレー処理を行って水洗した後、純水で30秒間スプレー処理を行って水洗した。次に、電着パワーニックス110(日本ペイント社製電着塗料)を用いて乾燥膜厚20μmになるように電着塗装し、水洗後、170℃で20分間加熱して焼き付け、試験板を作成した。
Preparation of test plate 70 mm × 150 mm × 0.8 mm SPCC-SD (manufactured by Nippon Test Panel), 70 mm × 150 mm × 0.8 mm galvanized steel sheet (GA steel sheet, manufactured by Nippon Test Panel), 70 mm × 150 mm × 0 .8 mm 5182 series aluminum (manufactured by Nippon Test Panel) was degreased by spraying at 40 ° C. for 2 minutes using a 2% aqueous solution of an alkaline degreasing agent (Surf Cleaner 53, Nippon Paint). After spraying with tap water for 30 seconds and washing with water, the prepared chemical conversion agent was subjected to cathodic electrolysis under the conditions shown in Table 2 using SUS304 as the counter electrode. Subsequently, after spraying with tap water for 30 seconds and washing with water, spraying with pure water for 30 seconds and washing with water. Next, using electrodeposition Powernix 110 (Nippon Paint's electrodeposition paint), electrodeposition is applied to a dry film thickness of 20 μm, and after washing with water, baking is performed by heating at 170 ° C. for 20 minutes to prepare a test plate. did.

処理浴中の化成処理剤における全ジルコニウム濃度は理学製原子吸光分析装置NOVAA330を、全フッ素濃度は日本ダイオネクス株式会社製イオンクロマトグラフDX−120を使用して測定しながら、フッ化ジルコニウムアンモニウム、フッ酸を処理浴中に補給することによって、表2に示した値となるように調整した。また、処理浴中の化成処理剤のpHは堀場製作所製pHメーターD−24を使用して測定しながら、硝酸又は水酸化アンモニウムを処理浴中に補給することによって、表2に示した値となるように調整した。 The total zirconium concentration in the chemical conversion treatment agent in the treatment bath was measured using an atomic absorption spectrometer NOVAA330 manufactured by Rigaku, and the total fluorine concentration was measured using an ion chromatograph DX-120 manufactured by Nippon Dionex Co., Ltd. By adjusting the acid to the treatment bath, the values shown in Table 2 were adjusted. In addition, the pH of the chemical conversion treatment agent in the treatment bath was measured by using a pH meter D-24 manufactured by Horiba, Ltd., and nitric acid or ammonium hydroxide was replenished in the treatment bath. It adjusted so that it might become.

比較例12
試験板の作成
70mm×150mm×0.8mmのSPCC−SDをアルカリ脱脂剤(サーフクリーナー53、日本ペイント製)2%水溶液を用いて、40℃で2分間スプレー処理して脱脂した。水道水で30秒間スプレー処理を行って水洗した後、サーフファイン5N−8M(日本ペイント社製表面調整剤)を用いて常温で30秒間表面調整し、サーフダインSD6350(日本ペイント社製リン酸亜鉛処理剤)を表2で示した条件で、対極にSUS304を使用し、カソード電解処理した。次いで、水道水で30秒間スプレー処理を行って水洗した後、純水で30秒間スプレー処理を行って水洗した。次に、電着パワーニックス110(日本ペイント社製電着塗料)を用いて乾燥膜厚20μmになるように電着塗装し、水洗後、170℃で20分間加熱して焼き付け、試験板を作成した。
Comparative Example 12
Preparation of test plate SPCC-SD of 70 mm × 150 mm × 0.8 mm was degreased by spray treatment at 40 ° C. for 2 minutes using a 2% aqueous solution of an alkaline degreasing agent (Surf Cleaner 53, manufactured by Nippon Paint). After spraying with tap water for 30 seconds and washing with water, the surface is adjusted for 30 seconds at normal temperature using Surffine 5N-8M (surface adjuster manufactured by Nippon Paint Co., Ltd.), SurfDyne SD6350 (Zinc Phosphate manufactured by Nippon Paint Co., Ltd.) The treatment agent was subjected to cathode electrolytic treatment under the conditions shown in Table 2 using SUS304 as a counter electrode. Subsequently, after spraying with tap water for 30 seconds and washing with water, spraying with pure water for 30 seconds and washing with water. Next, using electrodeposition Powernix 110 (Nippon Paint's electrodeposition paint), electrodeposition is applied to a dry film thickness of 20 μm, and after washing with water, baking is performed by heating at 170 ° C. for 20 minutes to prepare a test plate. did.

比較例13
カソード電解処理をする代わりに、無電解処理をした以外は、比較例12と同様にして試験板を作成した。
Comparative Example 13
A test plate was prepared in the same manner as in Comparative Example 12 except that the electroless treatment was performed instead of the cathode electrolytic treatment.

試験板の物性評価
上記試験板について、以下に示した評価方法によって二次密着性を評価した。
<二次密着性試験(SDT)>
得られた試験板に、素地まで達する縦平行カットを2本入れた後、5%NaCl水溶液中において50℃で480時間浸漬した。その後、カット部をテープ剥離し、塗料の剥離を観察した。評価結果を表2に示した。
〇:剥離幅3mm未満
×:剥離幅3mm以上
Evaluation of physical properties of test plate The secondary adhesion of the test plate was evaluated by the following evaluation method.
<Secondary adhesion test (SDT)>
Two vertical and parallel cuts reaching the substrate were put in the obtained test plate, and then immersed in a 5% NaCl aqueous solution at 50 ° C. for 480 hours. Thereafter, the cut part was peeled off with tape, and the peeling of the paint was observed. The evaluation results are shown in Table 2.
○: Peel width less than 3 mm ×: Peel width of 3 mm or more

<スラッジ>
化成処理剤1L当り1mの冷間圧延鋼板(SPCC−SD)、亜鉛メッキ鋼板、5182系アルミニウムを処理した後、化成処理剤中の濁りを目視観察した。
〇:濁りなし
×:濁りあり
<Sludge>
After treating 1 m 2 of cold rolled steel sheet (SPCC-SD), galvanized steel sheet and 5182 series aluminum per liter of chemical conversion treatment agent, the turbidity in the chemical conversion treatment agent was visually observed.
○: No turbidity ×: Turbidity

Figure 2005023422
Figure 2005023422

表2から、無電解処理で得られたもの(比較例8〜13)は、カソード電解処理で得られたもの(実施例14〜21)に比べて、二次密着性が低下していた。これにより、カソード電解処理を行って皮膜を形成することで二次密着性を向上させることができることが明らかとなった。また、実施例14〜18は、リン酸亜鉛処理剤で電解処理する場合(比較例12)及び無電解処理する場合(比較例13)に比べて、スラッジの発生が抑制された。 From Table 2, those obtained by electroless treatment (Comparative Examples 8 to 13) had lower secondary adhesion than those obtained by cathode electrolytic treatment (Examples 14 to 21). As a result, it has been clarified that the secondary adhesion can be improved by performing a cathode electrolytic treatment to form a film. Moreover, in Examples 14 to 18, the generation of sludge was suppressed as compared with the case where the electrolytic treatment was performed with the zinc phosphate treating agent (Comparative Example 12) and the case where the electroless treatment was performed (Comparative Example 13).

実施例22〜23
化成処理剤の調製
ジルコニウム含有化合物、フッ素含有化合物として、ジルコンフッ酸、ジルコンフッ化アンモニウム、γ−アミノプロビルトリエトキシシランを配合し、イオン交換水を加えて、表3に示すような化成処理剤を調製した。
Examples 22-23
Preparation of chemical conversion treatment agent Zirconic hydrofluoric acid, ammonium zircon fluoride, and γ-aminopropyl triethoxysilane were added as the zirconium-containing compound and fluorine-containing compound, and ion-exchanged water was added, as shown in Table 3. A chemical conversion treatment agent was prepared.

試験板の作成
70mm×150mm×2.0mmのチクソモールディング製マグネシウム合金AZ91Dをアルカリ脱脂剤(サーフマグダインSF120クリーナー、日本ペイント製)1%水溶液を用いて、50℃で2分間スプレー処理して脱脂した。水道水で30秒間スプレー処理を行って水洗した後、酸洗処理剤(サーフマグダインSF400、日本ペイント製)1%水溶液を用いて、50℃で2分間スプレー処理して酸洗した。水道水で30秒間スプレー処理を行って水洗した後、脱スマット処理剤(サーフマグダインSF300、日本ペイント製)10%水溶液を用いて、60℃で5分間スプレー処理して酸洗した。水道水で30秒間スプレー処理を行って水洗した後、調製した化成処理剤を表3に示した条件で、対極にSUS304を使用し、カソード電解処理した。次いで、水道水で30秒間スプレー処理を行って水洗した後、純水で30秒間スプレー処理を行って水洗した。
Preparation of test plate 70 mm x 150 mm x 2.0 mm thixomolding magnesium alloy AZ91D using a 1% aqueous solution of alkaline degreasing agent (Surf Magine SF120 Cleaner, Nippon Paint) for 2 minutes at 50 ° C for degreasing did. After spraying with tap water for 30 seconds and washing with water, the pickling agent (Surf Magdyne SF400, manufactured by Nippon Paint) 1% aqueous solution was used for spraying at 50 ° C. for 2 minutes for pickling. After spraying with tap water for 30 seconds and washing with water, the desmutting agent (Surf Magine SF300, manufactured by Nippon Paint) 10% aqueous solution was used for spraying at 60 ° C. for 5 minutes for pickling. After spraying with tap water for 30 seconds and washing with water, the prepared chemical conversion treatment agent was subjected to cathodic electrolysis using SUS304 as a counter electrode under the conditions shown in Table 3. Subsequently, after spraying with tap water for 30 seconds and washing with water, spraying with pure water for 30 seconds and washing with water.

処理浴中の化成処理剤における全ジルコニウム濃度は理学製原子吸光分析装置NOVAA330を、全フッ素濃度は日本ダイオネクス株式会社製イオンクロマトグラフDX−120を使用して測定しながら、フッ化ジルコニウムアンモニウム、フッ酸を処理浴中に補給することによって、表3に示した値となるように調整した。また、処理浴中の化成処理剤のpHは堀場製作所製pHメーターD−24を使用して測定しながら、硝酸又は水酸化アンモニウムを処理浴中に補給することによって、表3に示した値となるように調整した。 The total zirconium concentration in the chemical conversion treatment agent in the treatment bath was measured using an atomic absorption spectrometer NOVAA330 manufactured by Rigaku, and the total fluorine concentration was measured using an ion chromatograph DX-120 manufactured by Nippon Dionex Co., Ltd. By adjusting the acid to the treatment bath, the values shown in Table 3 were adjusted. Further, the pH of the chemical conversion treatment agent in the treatment bath was measured using a pH meter D-24 manufactured by HORIBA, Ltd., and nitric acid or ammonium hydroxide was replenished in the treatment bath to obtain the values shown in Table 3. It adjusted so that it might become.

比較例14
カソード電解処理による化成処理の代わりに、市販のリン酸マンガン処理剤SF572(日本ペイント社製)の5%水溶液を使用して、50℃2分間浸漬処理した以外は、実施例22と同様にして試験板を作成した。
Comparative Example 14
Instead of chemical conversion treatment by cathodic electrolytic treatment, a commercially available manganese phosphate treating agent SF572 (manufactured by Nippon Paint Co., Ltd.) was used in the same manner as in Example 22 except that the immersion treatment was performed at 50 ° C. for 2 minutes. A test plate was prepared.

比較例15
カソード電解処理による化成処理の代わりに、市販のリン酸ジルコニウム処理剤アルサーフ440(日本ペイント社製)の5%水溶液を使用して、50℃2分間浸漬処理した以外は、実施例22と同様にして試験板を作成した。
Comparative Example 15
Instead of chemical conversion treatment by cathodic electrolytic treatment, a commercial 5% aqueous solution of zirconium phosphate treatment agent Alsurf 440 (manufactured by Nippon Paint Co., Ltd.) was used, and the immersion treatment was carried out at 50 ° C. for 2 minutes, as in Example 22. A test plate was prepared.

実施例22〜23、比較例14〜15により得られた試験板を以下のようにして耐食性を評価した。
実施例1における評価において、<耐食性>の評価時間が2000時間である代わりに、48時間で行った以外は実施例1の評価と同様に耐食性を評価した。
The test plates obtained in Examples 22 to 23 and Comparative Examples 14 to 15 were evaluated for corrosion resistance as follows.
In the evaluation in Example 1, the corrosion resistance was evaluated in the same manner as the evaluation in Example 1 except that the evaluation time of <corrosion resistance> was 2000 hours instead of 2000 hours.

Figure 2005023422
Figure 2005023422

表3から、比較例14、15に比べて、実施例22〜23で得られた試験板は、耐食性に優れていた。 From Table 3, as compared with Comparative Examples 14 and 15, the test plates obtained in Examples 22 to 23 were excellent in corrosion resistance.

本発明の金属表面処理方法は、鉄系基材、亜鉛系基材、アルミニウム系基材、マグネシウム系基材等の被処理物に対して好適に適用することができる。 The metal surface treatment method of the present invention can be suitably applied to objects to be treated such as iron-based substrates, zinc-based substrates, aluminum-based substrates, and magnesium-based substrates.

Claims (5)

ジルコニウム含有化合物及びフッ素含有化合物を含む化成処理剤による化成処理反応によって金属被処理物表面に化成皮膜を形成させる工程からなる金属表面処理方法であって、
前記化成処理反応は、カソード電解処理によって行うことを特徴とする金属表面処理方法。
A metal surface treatment method comprising a step of forming a chemical conversion film on the surface of a metal object by a chemical conversion treatment with a chemical conversion treatment agent containing a zirconium-containing compound and a fluorine-containing compound,
The chemical conversion treatment reaction is performed by cathode electrolytic treatment.
カソード電解処理は、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で10〜100000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が0.2〜1.0、pHが1〜6に調整されて行われるものである請求項1記載の金属表面処理方法。 In the cathode electrolysis treatment, the concentration of the zirconium-containing compound in the chemical conversion treatment agent is 10 to 100,000 ppm in terms of zirconium metal, and the ratio of the mass of all zirconium metal to the mass of total fluorine (zirconium amount / fluorine amount) is 0.2 to 0.2. The metal surface treatment method according to claim 1, wherein the method is performed by adjusting the pH to 1.0 to 1-6. カソード電解処理は、電圧0.1〜40V、電流密度0.1〜30A/dmの条件下で行われるものである請求項1又は2記載の金属表面処理方法。 The cathode electrolytic treatment, the voltage 0.1~40V, current density 0.1~30A / dm those in which claim 1 or 2 metal surface treatment method according performed under the conditions of 2. 金属被処理物は、アルミニウム系基材、亜鉛系基材、鉄系基材及びマグネシウム系基材からなる群より選択される少なくとも1種である請求項1、2又は3記載の金属表面処理方法。 The metal surface treatment method according to claim 1, 2 or 3, wherein the metal workpiece is at least one selected from the group consisting of an aluminum base, a zinc base, an iron base and a magnesium base. . 請求項1、2、3又は4記載の金属表面処理方法によって得られた化成処理皮膜を有することを特徴とする表面処理金属。 A surface-treated metal comprising a chemical conversion treatment film obtained by the metal surface treatment method according to claim 1, 2, 3 or 4.
JP2004143688A 2003-06-09 2004-05-13 Metal surface treatment method and surface-treated metal Pending JP2005023422A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004143688A JP2005023422A (en) 2003-06-09 2004-05-13 Metal surface treatment method and surface-treated metal
CNA200410046519XA CN1572912A (en) 2003-06-09 2004-06-08 Method of treating metal surface and metal surface treated thereby
US10/863,482 US20040244875A1 (en) 2003-06-09 2004-06-08 Method of surface treating metal and metal surface treated thereby
CA002470445A CA2470445A1 (en) 2003-06-09 2004-06-08 Method of surface treating metal and metal surface treated thereby
EP04013487A EP1486585B1 (en) 2003-06-09 2004-06-08 Method of treating metal surfaces
KR1020040041813A KR20040105617A (en) 2003-06-09 2004-06-08 Method of surface treating metal and metal surface treated thereby
AU2004202524A AU2004202524A1 (en) 2003-06-09 2004-06-08 Method of surface treating metal and metal surface treated thereby
DE602004002519T DE602004002519T2 (en) 2003-06-09 2004-06-08 Process for the surface treatment of metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003164274 2003-06-09
JP2004143688A JP2005023422A (en) 2003-06-09 2004-05-13 Metal surface treatment method and surface-treated metal

Publications (1)

Publication Number Publication Date
JP2005023422A true JP2005023422A (en) 2005-01-27

Family

ID=33302280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143688A Pending JP2005023422A (en) 2003-06-09 2004-05-13 Metal surface treatment method and surface-treated metal

Country Status (8)

Country Link
US (1) US20040244875A1 (en)
EP (1) EP1486585B1 (en)
JP (1) JP2005023422A (en)
KR (1) KR20040105617A (en)
CN (1) CN1572912A (en)
AU (1) AU2004202524A1 (en)
CA (1) CA2470445A1 (en)
DE (1) DE602004002519T2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538383A (en) * 2005-04-07 2008-10-23 日本ペイント株式会社 Multi-layer coating formation method
JP2009001852A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel
JP2009001853A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel, and method for producing the same
JP2009001854A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel
JP2009001851A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel, and method for producing the same
JP2010053424A (en) * 2008-08-29 2010-03-11 Nippon Steel Corp Surface-treated metal plate having superior adhesiveness to coating, and method for producing the same
WO2011118588A1 (en) 2010-03-23 2011-09-29 新日本製鐵株式会社 Steel sheet for container and method for producing same
JP2011208202A (en) * 2010-03-29 2011-10-20 Chemicoat & Co Ltd Solution composition of metal surface-treating agent essentially comprising titania and silicic acid compound, and surface treatment method
US8133594B2 (en) 2010-06-04 2012-03-13 Nippon Steel Corporation Steel sheet for container use
US8702954B2 (en) 2007-12-21 2014-04-22 Kansai Paint Co., Ltd. Manufacturing method for surface-treated metallic substrate and surface-treated metallic substrate obtained by said manufacturing method, and metallic substrate treatment method and metallic substrate treated by said method
JP6098763B2 (en) * 2015-02-06 2017-03-22 新日鐵住金株式会社 Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof
KR20170116079A (en) 2015-04-16 2017-10-18 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20170121281A (en) 2015-04-16 2017-11-01 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20180016527A (en) 2015-06-23 2018-02-14 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20180019188A (en) 2015-06-23 2018-02-23 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118919A1 (en) * 2004-11-05 2005-12-15 Nihon Parkerizing Co., Ltd. Method of electrolytic ceramic coating for metal, electrolyte for use in electrolytic ceramic coating for metal and metal material
US20100032060A1 (en) * 2005-02-15 2010-02-11 The U.S. Of America As Represented By The Secretary Of The Navy Process for preparing chromium conversion coatings for magnesium alloys
EP1997934B1 (en) * 2006-03-01 2014-07-30 Chemetall GmbH Composition for metal surface treatment, metal surface treatment method, and metal material
ZA200807989B (en) 2006-03-01 2009-12-30 Chemetall Gmbh Composition for metal surface treatment, metal surface treatment method, and metal material
US8139364B2 (en) * 2007-01-31 2012-03-20 Robert Bosch Gmbh Electronic control module assembly
US8673091B2 (en) * 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
US8003013B2 (en) * 2007-09-18 2011-08-23 Martinrea Industries, Inc. Waterborne corrosion-resistant coating
WO2009041616A1 (en) * 2007-09-27 2009-04-02 Nippon Paint Co., Ltd. Method for producing surface-treated metal material and method for producing metal coated article
US9574093B2 (en) * 2007-09-28 2017-02-21 Ppg Industries Ohio, Inc. Methods for coating a metal substrate and related coated metal substrates
US8282801B2 (en) * 2008-12-18 2012-10-09 Ppg Industries Ohio, Inc. Methods for passivating a metal substrate and related coated metal substrates
DE102009029334A1 (en) * 2009-09-10 2011-03-24 Henkel Ag & Co. Kgaa Two-stage process for the corrosion-protective treatment of metal surfaces
KR101067744B1 (en) * 2009-11-23 2011-09-28 한국생산기술연구원 Method for conversion coating of surface to magnesium or magnesium alloy
JP5786296B2 (en) * 2010-03-25 2015-09-30 Jfeスチール株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
US9347134B2 (en) 2010-06-04 2016-05-24 Prc-Desoto International, Inc. Corrosion resistant metallate compositions
KR101457852B1 (en) * 2011-11-30 2014-11-04 니혼 파커라이징 가부시키가이샤 Supplement and method for producing surface-treated steel sheet
WO2013160567A1 (en) * 2012-04-25 2013-10-31 Arcelormittal Investigacion Y Desarrollo, S.L. Method for producing a pre-lacquered metal sheet having zn-al-mg coatings, and corresponding metal sheet
CN102634832B (en) * 2012-05-10 2015-04-22 中国兵器工业第五九研究所 Method for preparing aluminum alloy element surface coating and system thereof
CN104718312B (en) 2012-08-29 2017-03-15 Ppg工业俄亥俄公司 Zirconium pretreatment compositions containing molybdenum, for processing the metal base of the correlation technique of metal base and the coating of correlation
KR20150046303A (en) 2012-08-29 2015-04-29 피피지 인더스트리즈 오하이오 인코포레이티드 Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
CN102899702B (en) * 2012-08-31 2015-10-28 华南理工大学 Magnesium alloy surface composite treatment method
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
EP3051006B1 (en) 2013-09-25 2019-06-19 Toyo Kohan Co., Ltd. Method for producing surface-treated steel sheet
JP6530885B2 (en) * 2013-12-18 2019-06-12 東洋製罐株式会社 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet
KR101596804B1 (en) 2014-10-06 2016-02-24 한국생산기술연구원 Metal Treatment Method Using DED
JP6352986B2 (en) * 2016-07-21 2018-07-04 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material
EP3504356A1 (en) 2016-08-24 2019-07-03 PPG Industries Ohio, Inc. Alkaline composition for treating metal substrates
JP6837332B2 (en) 2016-12-28 2021-03-03 日本パーカライジング株式会社 Chemical conversion agent, manufacturing method of chemical conversion film, metal material with chemical conversion film, and coated metal material
CN106694871B (en) * 2017-02-28 2018-06-19 四川理工学院 Improve the oppressive method of powder containing manganese steel
US20190390065A1 (en) * 2018-06-22 2019-12-26 Covestro Llc Waterborne compositions containing organic ion-exchangers to improve corrosion resistance
KR102172817B1 (en) 2019-04-05 2020-11-02 한국해양대학교 산학협력단 Metal surface treatment method of die steel materials using post-deposition heat treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794575A (en) * 1980-12-05 1982-06-12 Rasa Kogyo Kk Surface treating method for aluminum or its alloy
JP3105322B2 (en) * 1991-12-27 2000-10-30 日産自動車株式会社 Method for forming colorless chromate film on glittering aluminum wheels
DE19508126A1 (en) * 1995-03-08 1996-09-12 Henkel Kgaa Chrome-free process for improving paint adhesion after thin-layer anodization
JP3302684B2 (en) * 2000-10-16 2002-07-15 日新製鋼株式会社 Chemical treated steel sheet with excellent corrosion resistance
JP4019723B2 (en) * 2001-02-23 2007-12-12 株式会社デンソー Electrolytic phosphate chemical treatment method
TWI268965B (en) * 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538383A (en) * 2005-04-07 2008-10-23 日本ペイント株式会社 Multi-layer coating formation method
JP2009001852A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel
JP2009001853A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel, and method for producing the same
JP2009001854A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel
JP2009001851A (en) * 2007-06-20 2009-01-08 Nippon Steel Corp Steel sheet for vessel, and method for producing the same
US8702954B2 (en) 2007-12-21 2014-04-22 Kansai Paint Co., Ltd. Manufacturing method for surface-treated metallic substrate and surface-treated metallic substrate obtained by said manufacturing method, and metallic substrate treatment method and metallic substrate treated by said method
JP2010053424A (en) * 2008-08-29 2010-03-11 Nippon Steel Corp Surface-treated metal plate having superior adhesiveness to coating, and method for producing the same
WO2011118588A1 (en) 2010-03-23 2011-09-29 新日本製鐵株式会社 Steel sheet for container and method for producing same
JP2011208202A (en) * 2010-03-29 2011-10-20 Chemicoat & Co Ltd Solution composition of metal surface-treating agent essentially comprising titania and silicic acid compound, and surface treatment method
US8133594B2 (en) 2010-06-04 2012-03-13 Nippon Steel Corporation Steel sheet for container use
JP6098763B2 (en) * 2015-02-06 2017-03-22 新日鐵住金株式会社 Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof
JPWO2016125911A1 (en) * 2015-02-06 2017-04-27 新日鐵住金株式会社 Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof
KR20170095383A (en) 2015-02-06 2017-08-22 신닛테츠스미킨 카부시키카이샤 Tin-plated steel sheet, chemical conversion treated steel sheet and manufacturing method therefor
US10533260B2 (en) 2015-02-06 2020-01-14 Nippon Steel Corporation Sn plating steel sheet, chemical treatment steel sheet, and method of manufacturing the same
KR20170116079A (en) 2015-04-16 2017-10-18 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20170121281A (en) 2015-04-16 2017-11-01 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
US10563311B2 (en) 2015-04-16 2020-02-18 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
US10577705B2 (en) 2015-04-16 2020-03-03 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
KR20180016527A (en) 2015-06-23 2018-02-14 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR20180019188A (en) 2015-06-23 2018-02-23 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
US10465309B2 (en) 2015-06-23 2019-11-05 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
US10851467B2 (en) 2015-06-23 2020-12-01 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers

Also Published As

Publication number Publication date
AU2004202524A1 (en) 2004-12-23
CN1572912A (en) 2005-02-02
EP1486585A1 (en) 2004-12-15
US20040244875A1 (en) 2004-12-09
DE602004002519D1 (en) 2006-11-09
CA2470445A1 (en) 2004-12-09
DE602004002519T2 (en) 2007-05-31
KR20040105617A (en) 2004-12-16
EP1486585B1 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP2005023422A (en) Metal surface treatment method and surface-treated metal
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
CN101487115B (en) Treating fluid for surface treatment of metal and method for surface treatment
EP2154266B1 (en) Surface treatment liquid for zinc-based metal material and method for surface-treating zinc-based metal material
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
JP4276530B2 (en) Chemical conversion treatment agent and surface treatment metal
JP4187162B2 (en) Chemical conversion treatment agent and surface treatment metal
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
EP1859930B1 (en) Surface-treated metallic material
JP2005325402A (en) Surface treatment method for tin or tin based alloy plated steel
JP4067103B2 (en) Degreasing and chemical conversion treatment agent and surface-treated metal
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
US9284657B2 (en) Replenisher and method for producing surface-treated steel sheet
JP3088623B2 (en) Method for forming zinc phosphate film on metal surface
JP2005325403A (en) Surface treatment method for aluminum die-cast material
JP2004043913A (en) Metal chemical conversion method
JP3369552B1 (en) Surface treatment liquid and surface treatment method of aluminum or aluminum alloy
JPH06173026A (en) Treatment for phosphating metallic surface
JP2007314888A (en) Multilayer coating film structure
JPH06340998A (en) Surface treatment of metal with resin and chromate by cathode electrolysis
MX2007011230A (en) Surface-treated metallic material.