JP6352986B2 - Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material - Google Patents

Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material Download PDF

Info

Publication number
JP6352986B2
JP6352986B2 JP2016142997A JP2016142997A JP6352986B2 JP 6352986 B2 JP6352986 B2 JP 6352986B2 JP 2016142997 A JP2016142997 A JP 2016142997A JP 2016142997 A JP2016142997 A JP 2016142997A JP 6352986 B2 JP6352986 B2 JP 6352986B2
Authority
JP
Japan
Prior art keywords
component
dissolved
metal
mass
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016142997A
Other languages
Japanese (ja)
Other versions
JP2018012857A (en
Inventor
北村 和也
和也 北村
圭一 上野
圭一 上野
碧 石和田
碧 石和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2016142997A priority Critical patent/JP6352986B2/en
Priority to CN201780041172.5A priority patent/CN109415834B/en
Priority to PCT/JP2017/022330 priority patent/WO2018016250A1/en
Priority to TW106123793A priority patent/TWI720228B/en
Publication of JP2018012857A publication Critical patent/JP2018012857A/en
Application granted granted Critical
Publication of JP6352986B2 publication Critical patent/JP6352986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Description

本発明は、電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法に関する。 The present invention relates to a metal surface treatment agent for electrolytic treatment, a method for producing a metal surface treatment agent for electrolytic treatment, and a surface treatment method for a metal material .

現在に至るまで、各種金属材料に対し、当該金属材料の性質を向上させる表面処理手法として、様々な手法が提案されている。   To date, various techniques have been proposed for various metal materials as surface treatment techniques for improving the properties of the metal materials.

例えば、ブリキ材料は、鋼板の表面にスズ(錫、Sn)をめっきしたものである。このブリキ材料は、錆びに強く、水分等に対しても耐食性があり、溶接や半田にも適していることから、主に缶(溶接缶や半田缶)の材料や電気部品等として広く使われてきた素材である。ここで、当該ブリキ材料に対する表面処理手法は、典型的には、化成処理(例えば、特許文献1参照)、電解処理(例えば、特許文献2参照)、塗布型処理(例えば、特許文献3)に分類できる。更に、当該ブリキ材料上に形成される皮膜の種類も多岐に亘る(例えば、特許文献1〜3参照)。   For example, the tinplate material is obtained by plating tin (tin, Sn) on the surface of a steel plate. This tinplate material is resistant to rust, has corrosion resistance to moisture, etc., and is suitable for welding and soldering, so it is widely used mainly as a material for cans (welding cans and solder cans) and electrical parts. Material. Here, the surface treatment method for the tinplate material is typically chemical conversion treatment (for example, see Patent Document 1), electrolytic treatment (for example, see Patent Document 2), or coating type treatment (for example, Patent Document 3). Can be classified. Furthermore, there are a wide variety of types of coatings formed on the tinplate material (see, for example, Patent Documents 1 to 3).

特開平1−100281号公報Japanese Patent Laid-Open No. 1-100281 特開2009−280888号公報JP 2009-280888 A 特開2004−307923号公報JP 2004-307923 A

ここで、前述のように、ブリキ材料は、缶の材料として主として用いられる。当該用途での使用を考慮すると、表面処理された当該ブリキ材料には、製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性等の性質が求められる。   Here, as described above, the tinplate material is mainly used as a material for the can. In consideration of the use in this application, the surface-treated tinplate material can be processed into cans, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance (under-coating corrosion resistance) , Retort rust resistance) and sulfur blackening resistance are required.

本発明者らは、これら性質を充足する皮膜種及び処理方法について種々検討したところ、溶解Zr成分と、溶解F成分と、溶解P成分とを含む金属表面処理剤を用いて電解処理にてSn系めっき上にZr−P系皮膜を形成させると、従来のクロメート処理と同等レベルまで前述した性質を実現できることを見出した。   The inventors of the present invention have made various studies on coating types and processing methods that satisfy these properties. As a result, Sn is electrolytically treated using a metal surface treatment agent containing a dissolved Zr component, a dissolved F component, and a dissolved P component. It has been found that when the Zr-P film is formed on the system plating, the above-described properties can be realized to the same level as the conventional chromate treatment.

しかしながら、他方で、本発明者らは、Zr−P系皮膜を電解処理にてSn系めっき上に形成させたサンプルは、他の皮膜種や処理方法にて皮膜をSn系めっき上に形成させたサンプルに比べ、湿潤環境下に長時間経時された際の耐変色性がより劣る場合があるとの知見を得た。   However, on the other hand, the inventors of the present invention have formed a Zr—P-based film on the Sn-based plating by electrolytic treatment and formed a film on the Sn-based plating by other film types and processing methods. It was found that the discoloration resistance when aged for a long time in a humid environment may be inferior to that of the sample.

そこで、本発明は、製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性等のみならず、耐変色性の性質をもSn系めっき材上に付与可能であると共に、短時間でのZr−P系皮膜の析出性(短時間皮膜析出性)、Sn混入による金属表面処理剤の安定性(耐Sn混入性)、金属表面処理剤の経時による安定性(処理剤経時安定性)等、実用上好適な電解処理用金属表面処理剤の提供を課題とする。   Therefore, the present invention is only for can manufacturing process, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance (under-coating corrosion resistance, retort rust resistance), sulfur blackening resistance, etc. In addition, discoloration resistance can be imparted to the Sn-based plated material, and the Zr—P-based film deposition property (short-time film deposition property) in a short time, and the metal surface treatment agent by Sn mixing It is an object of the present invention to provide a metal surface treatment agent for electrolytic treatment that is practically suitable, such as stability (resistance to Sn contamination) and stability of the metal surface treatment agent over time (treatment agent stability over time).

本発明は下記の通りである。
[1]溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(P/Zr)が0.04以上0.5以下の範囲内であり、前記溶解金属M成分の金属元素(Zn元素とMn元素とCu元素との合計)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との質量比(M/Zr)が0.05以上2.5以下の範囲内である、電解処理用金属表面処理剤。
[2]前記溶解F成分のF元素の換算質量(F)と前記溶解Zr成分のZr元素の換算質量(Zr)との質量比(F/Zr)が1.3以上2.5以下の範囲内である、前記[1]の電解処理用金属表面処理剤。
[3]Zr元素濃度が1000mg/L以上1950mg/L以下の範囲内である、前記[1]又は[2]の電解処理用金属表面処理剤。
[4]pHが3.4以上4.8以下の範囲内である、前記[1]〜[3]の電解処理用金属表面処理剤。
[5]さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)及び前記溶解アンモ態N成分のN元素の換算質量(N)の合計質量と、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)、前記溶解アンモ態N成分のN元素の換算質量(N)、前記溶解Na成分のNa元素の換算質量(Na)及び前記溶解K成分のK元素の換算質量(K)の合計質量との質量比CA:{(Zr+M+Sn+Fe+N)/(Zr+M+Sn+Fe+N+Na+K)}が0.9以上である、前記[1]〜[4]の電解処理用金属表面処理剤。
[6]電気伝導率が1.0S/m以上6.0S/m以下の範囲内である、前記[1]〜[5]の電解処理用金属表面処理剤。
[7]処理対象金属がSn系めっきである、前記[1]〜[6]の電解処理用金属表面処理剤。
[8]処理対象金属がSnとFeとの合金めっきである、前記[7]の電解処理用金属表面処理剤。
[9]溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、
前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との質量比(P/Zr)が0.04以上0.5以下の範囲内であり、
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(M/Zr)が0.05以上2.5以下の範囲内である、
電解処理用金属表面処理剤の製造方法であって、
前記溶解Zr成分、前記溶解F成分、前記溶解P成分、前記溶解金属M成分及び前記陰イオンの供給源となる一種以上の原料を液体媒体に添加して混合する工程を含む
ことを特徴とする製造方法。
[10]前記溶解F成分のF元素の換算質量(F)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(F/Zr)が1.3以上2.5以下の範囲内である、前記[9]の電解処理用金属表面処理剤の製造方法。
[11]Zr元素濃度が1000mg/L以上1950mg/L以下の範囲内である、前記[9]又は[10]の電解処理用金属表面処理剤の製造方法。
[12]pHが3.4以上4.8以下の範囲内である、前記[9]〜[11]の電解処理用金属表面処理剤の製造方法。
[13]さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)及び溶解アンモ態N成分のN元素換算質量(N)の合計質量と、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)、前記溶解アンモ態N成分のN元素の換算質量(N)、前記溶解Na成分のNa元素の換算質量(Na)及び前記溶解K成分のK元素の換算質量(K)の合計質量との比CA:{(Zr+M+Sn+Fe+N)/(Zr+M+Sn+Fe+N+Na+K)}が0.9以上である、前記[9]〜[12]の電解処理用金属表面処理剤の製造方法。
[14]電気伝導率が1.0S/m以上6.0S/m以下の範囲内である、前記[9]〜[13]の電解処理用金属表面処理剤の製造方法。
[15]処理対象金属がSn系めっきである、前記[9]〜[14]の電解処理用金属表面処理剤の製造方法。
[16]処理対象金属がSnとFeとの合金めっきである、前記[15]の電解処理用金属表面処理剤の製造方法。
[17]処理対象金属が電解処理用金属処理剤に浸漬された状態にて、当該処理対象金属を陰極側として通電する工程を含む、金属材料の表面処理方法において、
前記電解処理用金属処理剤が、
溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、
前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(P/Zr)が0.04以上0.5以下の範囲内であり、
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(M/Zr)が0.05以上2.5以下の範囲内である
ことを特徴とする表面処理方法。
[18]前記電解処理用金属処理剤における、前記溶解F成分のF元素の換算質量(F)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(F/Zr)が、1.3以上2.5以下の範囲内である、前記[17]の表面処理方法。
[19]前記電解処理用金属処理剤におけるZr元素濃度が、1000mg/L以上1950mg/L以下の範囲内である、前記[17]又は[18]の表面処理方法。
[20]前記電解処理用金属処理剤におけるpHが、3.4以上4.8以下の範囲内である、前記[17]〜[19]の表面処理方法。
[21]前記電解処理用金属処理剤が、さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、前記Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)及び溶解アンモ態N成分のN元素の換算質量(N)の合計質量と、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属の換算質量(M)、前記Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)、前記溶解アンモ態N成分のN元素の換算質量(N)、前記溶解Na成分のNa元素の換算質量(Na)及び前記溶解K成分のK元素の換算質量(K)の合計質量との質量比CA:{(Zr+M+Sn+Fe+N)/(Zr+M+Sn+Fe+N+Na+K)}が0.9以上である、前記[17]〜[20]の表面処理方法。
[22]前記電解処理用金属処理剤の電気伝導率が、1.0S/m以上6.0S/m以下の範囲内である、前記[17]〜[21]の表面処理方法。
[23]処理対象金属がSn系めっきである、前記[17]〜[22]の表面処理方法。
[24]処理対象金属がSnとFeとの合金めっきである、前記[23]の表面処理方法。
The present invention is as follows.
[1] A dissolved Zr component, a dissolved F component, a dissolved P component, one or more dissolved metal M components selected from the group consisting of a dissolved Zn component, a dissolved Mn component, and a dissolved Cu component, nitrate ions, chloride One or more anions selected from the group consisting of product ions and sulfate ions, and the converted mass (P w ) of the P element of the dissolved P component and the converted mass of the Zr element of the dissolved Zr component ( Zr w ) (P w / Zr w ) is in the range of 0.04 to 0.5, and the dissolved metal M component metal elements (total of Zn element, Mn element and Cu element) For the electrolytic treatment, the mass ratio (M w / Zr w ) of the converted mass (M w ) and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is in the range of 0.05 to 2.5. Metal surface treatment agent.
[2] The mass ratio (F w / Zr w ) between the converted mass (F w ) of the F element of the dissolved F component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is 1.3 or more. The metal surface treatment agent for electrolytic treatment according to [1], which is within a range of 5 or less.
[3] The metal surface treatment agent for electrolytic treatment according to [1] or [2], wherein the Zr element concentration is in a range of 1000 mg / L to 1950 mg / L.
[4] The metal surface treatment agent for electrolytic treatment according to the above [1] to [3], wherein the pH is in the range of 3.4 or more and 4.8 or less.
[5] Further, at least one component selected from the group consisting of a dissolved Sn component, a dissolved Fe component, a dissolved ammonia N component, a dissolved Na component and a dissolved K component may be contained. In this case, the dissolved Zr component Reduced mass of Zr element (Zr w ), reduced mass (M w ) of metal element (Zn element, Mn element, Cu element) of the dissolved metal M component, converted mass of Sn element of the dissolved Sn component (Sn w ), the total mass and, in terms of the mass of Zr element in the dissolution Zr components of reduced mass of Fe element of the dissolved Fe component (Fe w) and reduced mass of N elements of the dissolved ammonia state N component (N w) (Zr w), the molten metal M component metal equivalent weight (M w), reduced mass (Sn w of Sn element of the dissolution Sn component), reduced mass of Fe element of the dissolved Fe component (Fe w), the dissolution Ammo N component Reduced mass of N elements (N w), the dissolved Na weight ratio of the total mass of the reduced mass of the components of the Na element (Na w) and reduced mass of K elements of the lysis K component (K w) CA: {( Zr w + M w + Sn w + Fe w + N w) / (Zr w + M w + Sn w + Fe w + N w + Na w + K w)} is 0.9 or more, wherein [1] electrolyzed metal to [4] Surface treatment agent.
[6] The metal surface treatment agent for electrolytic treatment according to the above [1] to [5], wherein the electrical conductivity is in the range of 1.0 S / m to 6.0 S / m.
[7] The metal surface treatment agent for electrolytic treatment according to [1] to [6], wherein the metal to be treated is Sn-based plating.
[8] The metal surface treatment agent for electrolytic treatment according to [7], wherein the metal to be treated is alloy plating of Sn and Fe.
[9] One or more dissolved metal M components selected from the group consisting of dissolved Zr component, dissolved F component, dissolved P component, dissolved Zn component, dissolved Mn component and dissolved Cu component, nitrate ion, chloride One or more anions selected from the group consisting of a product ion and a sulfate ion,
The mass ratio (P w / Zr w ) of the converted mass (P w ) of the P element of the dissolved P component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is 0.04 or more and 0.5 or less. Is in range,
Ratio (M w / Zr w ) of reduced mass (M w ) of metal element (Zn element, Mn element, Cu element) of dissolved metal M component and reduced mass (Zr w ) of Zr element of dissolved Zr component Is in the range of 0.05 to 2.5,
A method for producing a metal surface treatment agent for electrolytic treatment,
It includes a step of adding and mixing one or more raw materials to be a supply source of the dissolved Zr component, the dissolved F component, the dissolved P component, the dissolved metal M component, and the anion to a liquid medium. Production method.
[10] A ratio (F w / Zr w ) of a converted mass (F w ) of the F element of the dissolved F component to a converted mass (Zr w ) of the Zr element of the dissolved Zr component is 1.3 or more and 2.5 [9] The method for producing a metal surface treatment agent for electrolytic treatment according to [9], which is within the following range.
[11] The method for producing a metal surface treatment agent for electrolytic treatment according to [9] or [10], wherein the Zr element concentration is in a range of 1000 mg / L to 1950 mg / L.
[12] The method for producing a metal surface treatment agent for electrolytic treatment according to the above [9] to [11], wherein the pH is in the range of 3.4 to 4.8.
[13] Further, at least one component selected from the group consisting of a dissolved Sn component, a dissolved Fe component, a dissolved ammonia N component, a dissolved Na component, and a dissolved K component may be contained. In this case, the dissolved Zr component Reduced mass of Zr element (Zr w ), reduced mass (M w ) of metal element (Zn element, Mn element, Cu element) of the dissolved metal M component, converted mass of Sn element of the dissolved Sn component (Sn w ), The converted mass of Fe element of the dissolved Fe component (Fe w ) and the total mass of N element converted mass (N w ) of the dissolved ammonia N component, and the converted mass of Zr element of the dissolved Zr component (Zr w ) the molten metal M component metal equivalent weight (M w), reduced mass (Sn w) of tin (Sn) element of the dissolution Sn component, in terms of mass (Fe w) of Fe element of the dissolution Fe component, the dissolved ammonium status N component N Reduced mass of the element (N w), the dissolved mass in terms (Na w) of Na component as Na element and the ratio CA of the total mass of the reduced mass (K w) of K elements of the dissolution K component: {(Zr w + M w + Sn w + Fe w + N w) / (Zr w + M w + Sn w + Fe w + N w + Na w + K w)} is 0.9 or more, the [9] to electrolytic treatment for metal surface treatment [12] Manufacturing method.
[14] The method for producing a metal surface treatment agent for electrolytic treatment according to [9] to [13], wherein the electrical conductivity is in a range of 1.0 S / m to 6.0 S / m.
[15] The method for producing a metal surface treatment agent for electrolytic treatment according to [9] to [14], wherein the metal to be treated is Sn-based plating.
[16] The method for producing a metal surface treatment agent for electrolytic treatment according to [15], wherein the metal to be treated is alloy plating of Sn and Fe.
[17] In a surface treatment method for a metal material, including a step of energizing the metal to be treated as a cathode side in a state where the metal to be treated is immersed in a metal treatment agent for electrolytic treatment,
The metal treatment agent for electrolytic treatment is
One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
The ratio (P / Zr) of the converted mass (P w ) of the P element of the dissolved P component to the converted mass (Zr w ) of the Zr element of the dissolved Zr component is in the range of 0.04 or more and 0.5 or less. Yes,
The ratio (M / Zr) of the converted mass (M w ) of the metal element (Zn element, Mn element, Cu element) of the dissolved metal M component to the converted mass (Zr w ) of the Zr element of the dissolved Zr component is 0. A surface treatment method characterized by being in the range of .05 to 2.5.
[18] Ratio (F w / Zr w ) of the converted mass (F w ) of the F element of the dissolved F component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component in the metal treatment agent for electrolytic treatment ) Is within the range of 1.3 to 2.5, the surface treatment method according to the above [17].
[19] The surface treatment method according to [17] or [18], wherein the Zr element concentration in the metal treatment agent for electrolytic treatment is in a range of 1000 mg / L to 1950 mg / L.
[20] The surface treatment method according to any one of [17] to [19], wherein the pH of the metal treatment agent for electrolytic treatment is in the range of 3.4 to 4.8.
[21] The metal treatment agent for electrolytic treatment may further contain at least one component selected from the group consisting of a dissolved Sn component, a dissolved Fe component, a dissolved ammonia N component, a dissolved Na component, and a dissolved K component. Well, in this case, the converted mass (Zr w ) of the Zr element of the dissolved Zr component, the converted mass (M w ) of the metal element (Zn element, Mn element, Cu element) of the dissolved metal M component, The total mass of the converted mass of Sn element (Sn w ), the converted mass of Fe element of the dissolved Fe component (Fe w ), and the converted mass of N element of the dissolved ammonia N component (N w ), and the dissolved Zr component Equivalent mass of Zr element (Zr w ), Equivalent mass of molten metal M component (M w ), Equivalent mass of Sn element of Sn component (Sn w ), Equivalent mass of Fe element of dissolved Fe component ( Fe w), said Reduced mass of the N elements of solutions ammoxidation state N component (N w), of the total weight of the reduced mass of the reduced mass (Na w) and K elements in the dissolution K component of Na element of the dissolved Na component (K w) mass ratio CA: {(Zr w + M w + Sn w + Fe w + N w) / (Zr w + M w + Sn w + Fe w + N w + Na w + K w)} is 0.9 or more, the [17] - [20 ] The surface treatment method.
[22] The surface treatment method of [17] to [21], wherein the electrical conductivity of the metal treatment agent for electrolytic treatment is in the range of 1.0 S / m to 6.0 S / m.
[23] The surface treatment method of [17] to [22], wherein the metal to be treated is Sn-based plating.
[24] The surface treatment method according to [23], wherein the metal to be treated is alloy plating of Sn and Fe.

本発明によれば、製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性等のみならず、耐変色性の性質をSn系めっき材上に付与可能であると共に、短時間皮膜析出性、耐Sn混入性、処理剤経時安定性等、実用上好適な電解処理用金属表面処理剤を提供することができる。   According to the present invention, can processability, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance (under-coating corrosion resistance, retort rust resistance), sulfur blackening resistance, etc. only In addition, it is possible to impart discoloration-resistant properties to Sn-based plating materials, and practically preferred metal surface treatment agents for electrolytic treatment such as short-time film deposition, resistance to Sn contamination, and stability over time of treatment agents. Can be provided.

以下の順番にて、本発明を具体的に説明する。
1.電解処理用金属表面処理剤
1−1.構成成分
1−2.組成(含有比、含有量)
1−3.液性
2.電解処理用金属表面処理剤の製造方法
2−1.原料
2−2.プロセス
3.電解処理用金属表面処理剤の使用方法
3−1.対象金属
3−2.プロセス
The present invention will be specifically described in the following order.
1. 1. Metal surface treatment agent for electrolytic treatment 1-1. Component 1-2. Composition (content ratio, content)
1-3. Liquid 2 2. Manufacturing method of metal surface treatment agent for electrolytic treatment 2-1. Raw material 2-2. Process 3. 3. Method of using metal surface treatment agent for electrolytic treatment 3-1. Target metal 3-2. process

≪1.電解処理用金属表面処理剤≫
本発明に係る電解処理用金属表面処理剤は、溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(P/Zr)が0.04以上0.5以下の範囲内であり、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(M/Zr)が0.05以上2.5以下の範囲内である。尚、本発明に係る電解処理用金属表面処理剤は、新液(電解処理が行われていない液)及び負荷液(電解処理が行われた後の液)のいずれをも包含する。
<< 1. Metal surface treatment agent for electrolytic treatment >>
The metal surface treatment agent for electrolytic treatment according to the present invention comprises at least one selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component, and a dissolved Cu component. Containing the dissolved metal M component and one or more anions selected from the group consisting of nitrate ion, chloride ion and sulfate ion, and the converted mass (P w ) of the P element of the dissolved P component and the above The ratio (P w / Zr w ) of the dissolved Zr component to the reduced mass (Zr w ) of the Zr element is in the range of 0.04 to 0.5, and the metal element (Zn element, The ratio (M w / Zr w ) of the converted mass (M w ) of Mn element, Cu element) to the converted mass (Zr w ) of Zr element of the dissolved Zr component is in the range of 0.05 to 2.5 It is. In addition, the metal surface treating agent for electrolytic treatment according to the present invention includes both a new liquid (liquid not subjected to electrolytic treatment) and a load liquid (liquid after electrolytic treatment is performed).

<1−1.構成成分>
{1−1−1.溶解Zr成分}
溶解Zr成分は、常温(20℃)及び常圧(1atm=101325Pa)下にて、剤中で溶解状態にあるZr元素を含有する成分を指す。溶解Zr成分は、特に限定されず、例えば、Zrイオン(例えば、Zr4+)の他、Zrと他の成分(例えばF)と結合してなる錯イオン(ZrF 2−、ZrF 、ZrF 、ZrF 2+、ZrF3+)や分子(ZrF)、酸化ジルコニウムイオン(ZrO3+やHZrO )等の形態にて存在する。尚、本発明に係る電解処理用金属表面処理剤中には、好適には、Zrが結合し得る量を超えたFを含有するため、大部分の溶解Zr成分は、ZrF 2−(又は、この一部のFが別の配位子で置換されているもの、当該アニオンにカチオンが電気的に結合したもの)として存在しているものと推定される。
<1-1. Component>
{1-1-1. Dissolved Zr component}
The dissolved Zr component refers to a component containing a Zr element in a dissolved state in the agent under normal temperature (20 ° C.) and normal pressure (1 atm = 101325 Pa). The dissolved Zr component is not particularly limited. For example, in addition to Zr ions (for example, Zr 4+ ), complex ions (ZrF 6 2− , ZrF 5 , ZrF) formed by bonding Zr and other components (for example, F) are used. 3 + , ZrF 2 2+ , ZrF 3+ ), molecules (ZrF 4 ), zirconium oxide ions (ZrO 3+ and HZrO 3 ) and the like. In addition, since the metal surface treatment agent for electrolytic treatment according to the present invention preferably contains F exceeding the amount that Zr can bind to, most of the dissolved Zr component is ZrF 6 2− (or It is presumed that a part of F is substituted with another ligand, and a cation is electrically bonded to the anion).

{1−1−2.溶解F成分}
溶解F成分は、常温(20℃)及び常圧(1atm=101325Pa)下にて、剤中で溶解状態にあるF元素を含有する成分を指す。溶解F成分は、特に限定されず、例えば、Fイオンの他、Fと他の成分(例えばZr、H)と結合してなる錯イオン(ZrF 2−、ZrF 、ZrF 、ZrF 2+、ZrF3+、HF )や分子(HF、ZrF)等の形態にて存在する。尚、本発明に係る電解処理用金属表面処理剤中には、好適には、Zrが結合し得る量を超えたFを含有するため、大部分の溶解F成分は、ZrF 2−(又は、この一部のFが別の配位子で置換されているもの、当該アニオンにカチオンが電気的に結合したもの)として存在しており、残余はFイオン、HF又は他の成分との結合体として存在しているものと推定される。尚、上記にて、「溶解F成分」の一例として「ZrF 2−」を挙げたが、当該成分はZrも含有しているため、当該成分は「溶解Zr成分」にも該当する(他の成分についても同様)。即ち、液中にある成分が溶解状態として存在しており、且つ、当該ある成分が、Zr、F及び金属(M)の2種以上の元素を含有している場合(例えば、「X」及び「Y」)には、当該ある成分は、「溶解X成分」でもあり「溶解Y成分」でもある。
{1-1-2. Dissolved F component}
The dissolved F component refers to a component containing an F element which is in a dissolved state in the agent under normal temperature (20 ° C.) and normal pressure (1 atm = 101325 Pa). The dissolved F component is not particularly limited. For example, in addition to F ions, complex ions (ZrF 6 2− , ZrF 5 , ZrF 3 + , ZrF) formed by bonding F and other components (for example, Zr, H) are combined. 2 2+ , ZrF 3+ , HF 2 ) and molecules (HF, ZrF 4 ). In addition, since the metal surface treatment agent for electrolytic treatment according to the present invention preferably contains F exceeding the amount that Zr can bind to, most of the dissolved F component is ZrF 6 2− (or , A part of F is substituted with another ligand, and a cation is electrically bonded to the anion), and the remainder is bound to F ions, HF or other components Presumed to exist as a body. In the above description, “ZrF 6 2− ” is given as an example of “dissolved F component”. However, since the component also contains Zr, the component also corresponds to “dissolved Zr component” (others) The same applies to the other components). That is, when a component in the liquid exists in a dissolved state, and the certain component contains two or more elements of Zr, F and metal (M) (for example, “X” and In “Y”), the certain component is both “dissolved X component” and “dissolved Y component”.

{1−1−3.溶解P成分}
溶解P成分は、常温(20℃)及び常圧(1atm=101325Pa)下にて、溶解状態にあるP元素を含有する成分を指す。溶解P成分は、特に限定されず、例えば、(1)オルトりん酸態りん、(2)重合りん酸態りん、(3)溶解性有機りん酸態りん等の形態にて存在する。ここで、(1)オルトりん酸態りんは、より具体的な例としては、剤中で溶解状態にあるりん酸根(PO)を含有する成分であり、例えば、オルトりん酸(HPO)、りん酸イオン(HPO 、HPO 2−、PO 3−)など、並びにそれらのイオンと他の成分との結合体を挙げることができる。また、(2)重合りん酸態りんは、より具体的な例としては、剤中に溶解状態にある、ピロりん酸、ポリりん酸、メタりん酸、および、それらのイオンなど、並びにそれらのイオンと他の成分との結合体を挙げることができる。更に、(3)溶解性有機りん酸態りんは、剤中で溶解状態にある有機りん酸を含有する成分であり、例えば、剤中に溶解状態にあるホスホン酸、および、それらのイオン、並びにそれらのイオンと他の成分との結合体を挙げることができる。ここで、有機りん酸とは、炭素元素(C)と水素元素(H)と酸素元素(O)とりん元素(P)を含む構成とするものであって、りんの酸素酸(ホスホン酸)としての性質を有するものである。
{1-1-3. Dissolved P component}
The dissolved P component refers to a component containing a P element in a dissolved state at normal temperature (20 ° C.) and normal pressure (1 atm = 101325 Pa). The dissolved P component is not particularly limited. For example, it exists in the form of (1) orthophosphate phosphorus, (2) polymerized phosphate phosphorus, (3) soluble organophosphate phosphorus, and the like. Here, (1) orthophosphoric phosphorus is a component containing a phosphate radical (PO 4 ) in a dissolved state in the agent, for example, for example, orthophosphoric acid (H 3 PO 4 ), phosphate ions (H 2 PO 4 , HPO 4 2− , PO 4 3− ) and the like, as well as conjugates of these ions with other components. In addition, (2) polymerized phosphorous phosphorus is, as a more specific example, pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid, their ions, etc., which are dissolved in the agent, and their A combination of an ion and another component can be mentioned. Further, (3) soluble organophosphorus phosphorus is a component containing organophosphoric acid dissolved in the agent, for example, phosphonic acid dissolved in the agent, and their ions, and A conjugate of these ions with other components can be mentioned. Here, the organic phosphoric acid is a composition containing carbon element (C), hydrogen element (H), oxygen element (O), and phosphorus element (P), and phosphorus oxygen acid (phosphonic acid). It has the following properties.

{1−1−4.溶解金属M成分}
溶解金属M成分は、常温(20℃)及び常圧(1atm=101325Pa)下にて、剤中で溶解状態にある、Zn成分、Mn成分及びCu成分からなる群から選択される1種以上の金属成分を指す。溶解金属M成分は、特に限定されず、例えば、金属イオン(例えば、Zn2+やZn等、Mn2+やMn4+等、Cu2+やCu等)の他、金属(イオン)と他の成分との結合体(例えば錯体)などでの形態にて存在する。ここで、これら金属成分の内、耐変色性が特に優れているため、マンガン成分が好適である。
{1-1-4. Dissolved metal M component}
The dissolved metal M component is one or more selected from the group consisting of a Zn component, a Mn component, and a Cu component that are in a dissolved state in the agent under normal temperature (20 ° C.) and normal pressure (1 atm = 101325 Pa). Refers to the metal component. The dissolved metal M component is not particularly limited. For example, in addition to metal ions (for example, Zn 2+ and Zn + , Mn 2+ and Mn 4+ , Cu 2+ and Cu +, etc.), metal (ion) and other components In the form of a conjugate (for example, a complex). Here, among these metal components, the manganese component is preferable because of particularly excellent discoloration resistance.

{1−1−5.陰イオン}
本発明に係る電解処理用金属表面処理剤は、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンを更に含む。本処理剤の排水対策として、硝酸性窒素低減(硝酸性窒素フリーを含む)対策を施す場合には、陰イオンとして、硝酸イオンの全部又は一部を塩化物イオン及び/又は硫酸イオンに替えて対策をすることができる。電解処理装置に対する腐食防止対策として、塩化物低減(塩化物フリーを含む)対策を施す場合には、陰イオンとして、塩化物イオンの全部又は一部を硝酸イオン及び/又は硫酸イオンに替えて対策をすることができる。本処理剤の排水対策及び電解処理装置の腐食防止対策を施す場合には、陰イオンとして、硝酸イオン及び塩化物イオンの全部又は一部を硫酸イオンに替えて対策することができる。
{1-1-5. anion}
The metal surface treatment agent for electrolytic treatment according to the present invention further contains one or more anions selected from the group consisting of nitrate ions, chloride ions and sulfate ions. When taking measures to reduce nitrate nitrogen (including nitrate nitrogen free) as wastewater countermeasures for this treatment agent, replace all or part of nitrate ions with chloride ions and / or sulfate ions as anions. Measures can be taken. When taking measures to reduce chloride (including chloride-free) as an anti-corrosion measure for electrolytic treatment equipment, replace all or part of the chloride ions with nitrate ions and / or sulfate ions as anions. Can do. When taking countermeasures for drainage of this treating agent and preventing corrosion of the electrolytic treatment apparatus, it is possible to take countermeasures by replacing all or part of nitrate ions and chloride ions with sulfate ions as anions.

{1−1−6.他の成分}
本発明に係る電解処理用金属表面処理剤は、必要に応じ、当該分野において使用される公知成分を含有していてもよい。例えば、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分(即ち、アンモニウム、アンモニア)、溶解Na成分、溶解K成分を含有していてもよい。ここで、当該他の成分は、新液の調製時に添加された成分であっても、負荷液の段階にて素材(鋼板)等から供給される成分であってもよい。例えば、溶解Sn成分や溶解Fe成分は、限定されるものではないが、典型的には、処理過程で素材(鋼板)から供給される成分である。また、例えば、溶解Na成分や溶解K成分は、限定されるものではないが、典型的には、処理過程で液体媒体として使用される工業用水(井戸水、地下水、水道水)に含まれて供給される、または、処理過程で素材表面に付着して供給される成分である。但し、本発明に係る電解処理用金属表面処理剤は、溶解K成分(典型的にはカリウムイオン)を含有しないか痕跡量程度(K:3mg/L以下)しか含有しないことが望ましい。溶解K成分を含有しないか痕跡量程度しか含有しない場合、特に短時間皮膜析出性が良くなる。また、本発明に係る電解処理用金属表面処理剤は、溶解Na成分(典型的にはナトリウムイオン)を含有しないか痕跡量程度(Na:3mg/L以下)しか含有しないことが望ましい。溶解Na成分を含有しないか痕跡量程度しか含有しない場合、特に皮膜外観性が良くなる。このことから処理剤の液体媒体は脱イオン水を用いるのが好ましい。
{1-1-6. Other ingredients}
The metal surface treatment agent for electrolytic treatment according to the present invention may contain a known component used in the field as necessary. For example, a dissolved Sn component, a dissolved Fe component, a dissolved ammonia N component (that is, ammonium or ammonia), a dissolved Na component, or a dissolved K component may be contained. Here, the other component may be a component added at the time of preparing the new solution, or a component supplied from a material (steel plate) or the like at the stage of the load solution. For example, the dissolved Sn component and the dissolved Fe component are not limited, but are typically components supplied from a material (steel plate) in the course of processing. In addition, for example, dissolved Na component and dissolved K component are not limited, but typically included in industrial water (well water, groundwater, tap water) used as a liquid medium in the treatment process. Or a component that is supplied to the surface of the material while being processed. However, it is desirable that the metal surface treatment agent for electrolytic treatment according to the present invention does not contain a dissolved K component (typically potassium ions) or contains only a trace amount (K w : 3 mg / L or less). When the dissolved K component is not contained or only a trace amount is contained, the film deposition property is improved particularly for a short time. Moreover, it is desirable that the metal surface treatment agent for electrolytic treatment according to the present invention does not contain a dissolved Na component (typically sodium ion) or contains only a trace amount (Na w : 3 mg / L or less). When the dissolved Na component is not contained or only a trace amount is contained, the film appearance is particularly improved. For this reason, it is preferable to use deionized water as the liquid medium of the treatment agent.

{1−1−7.液体媒体}
本発明に係る電解処理用金属表面処理剤における液体媒体は、好適には、水を主体とした液体媒体(例えば、脱イオン水、純水)である。ここで、「主体とする」とは、液体媒体の全質量を基準として水を51質量%以上(好適には60質量%以上、より好適には70質量%以上、更に好適には80質量%以上、特に好適には90質量%以上)を意味する。したがって、上述の各成分(溶解Zr成分、溶解F成分、溶解P成分、溶解金属M成分等)における「溶解」は、水を主体とした液体媒体(好適には水)に溶解した状態であることを意味し、例えば「水溶型」と言い換えることができる。尚、本発明に係る電解処理用金属表面処理剤は、上述した溶解成分や液体媒体のみを含有する形態のみならず、スラッジ、例えば、過剰量のイオン等が不溶化したもの{詳細な形態は不明であるが、例えば、FePO、SnF、SnO(OH)、Sn(OH)等}が共存した形態をも包含する。尚、液体媒体として水以外の他の液体媒体(例えば、水混和性の液体媒体、例えば、エタノール等のアルコール)を含有していてもよいが電解処理を行うためには少ない方が好適である。水以外の他の液体溶剤は、液体媒体の全質量を基準として20質量%以下、好適には10質量%以下、より好適には5質量%以下、更に好適には3質量%以下、特に好適には1質量%以下である。また、本剤は、乾燥形態又は濃縮形態であってもよい。この場合に現場にて水で溶解又は希釈して使用する。
{1-1-7. Liquid medium}
The liquid medium in the metal surface treatment agent for electrolytic treatment according to the present invention is preferably a liquid medium mainly composed of water (for example, deionized water or pure water). Here, “mainly” means 51% by mass or more of water (preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass) based on the total mass of the liquid medium. As mentioned above, it means 90% by mass or more particularly preferably. Therefore, “dissolution” in the above-described components (dissolved Zr component, dissolved F component, dissolved P component, dissolved metal M component, etc.) is a state of being dissolved in a liquid medium (preferably water) mainly composed of water. This means, for example, “water-soluble type”. In addition, the metal surface treatment agent for electrolytic treatment according to the present invention is not only in the form containing only the above-described dissolved component and liquid medium, but also in which sludge, for example, an excessive amount of ions or the like is insolubilized {detailed form is unknown However, for example, a form in which FePO 4 , SnF 4 , SnO (OH) 2 , Sn (OH) 4 and the like} coexist is also included. The liquid medium may contain a liquid medium other than water (for example, a water-miscible liquid medium, for example, an alcohol such as ethanol), but a smaller amount is preferable for performing the electrolytic treatment. . The liquid solvent other than water is 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, particularly preferably based on the total mass of the liquid medium. Is 1% by mass or less. The agent may be in a dry form or a concentrated form. In this case, dissolve or dilute with water on site.

<1−2.組成>
{1−2−1.含有比}
(1−2−1−1.PとZrとの質量比)
本発明に係る電解処理用金属表面処理剤における溶解P成分のP元素の換算質量(P)と溶解Zr成分のZr元素の換算質量(Zr)との比(P/Zr)は、0.04以上0.5以下の範囲内であり、0.06以上0.4以下の範囲内であることが好適であり、0.08以上0.3以下であることがより好適である。本発明に係る電解処理用金属表面処理剤の特定系において、当該比を当該範囲内に設定することで{正確には、当該パラメータに加え、後述するMとZrとの比(M/Zr)を後述する範囲内に設定することで}、製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性等のみならず、耐変色性の性質をSn系めっき材上に付与可能であると共に、短時間皮膜析出性、耐Sn混入性、処理剤経時安定性等、実用上好適な電解処理用金属表面処理剤を提供することができる。特に、P/Zrが0.04未満であると、耐硫化黒変性が悪くなる。また、P/Zrが0.5超であると、フィルム密着性が悪くなる。ここで、剤中のP元素及びZr元素の質量測定は、JIS−K0116:2014規格によるICP発光分光分析装置(ICP−AES)等公知の方法で可能である。
<1-2. Composition>
{1-2-1. Content ratio}
(Mass ratio of 1-2-1-1.P w and Zr w)
The ratio (P w / Zr w ) of the converted mass (P w ) of the P element of the dissolved P component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component in the metal surface treatment agent for electrolytic treatment according to the present invention is , 0.04 or more and 0.5 or less, preferably 0.06 or more and 0.4 or less, and more preferably 0.08 or more and 0.3 or less. . In the specific system of the metal surface treatment agent for electrolytic treatment according to the present invention, by setting the ratio within the range, {exactly, in addition to the parameter, the ratio of M w and Zr w described later (M w / Zr w ) within the range described below}, can processability, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance (under-coating corrosion resistance, retort resistance Rustability), sulfur blackening resistance, etc., as well as discoloration resistance can be imparted to Sn-based plating materials, and practical use such as short-time film deposition, resistance to Sn contamination, and stability over time of processing agents. A metal surface treatment agent for electrolytic treatment that is suitable for the above can be provided. In particular, when P w / Zr w is less than 0.04, the resistance to sulfur blackening deteriorates. Further, when P w / Zr w is 0.5 greater than the film adhesion is deteriorated. Here, mass measurement of the P element and the Zr element in the agent can be performed by a known method such as an ICP emission spectroscopic analyzer (ICP-AES) according to JIS-K0116: 2014 standard.

(1−2−1−2.MとZrとの比)
本発明に係る電解処理用金属表面処理剤における{溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と溶解Zr成分のZr元素の換算質量(Zr)}との比(M/Zr)は、0.05以上2.5以下の範囲内であり、0.1以上2.0以下の範囲内であることが好適であり、0.15以上1.5以下であることがより好適である。尚、当該比は、金属M元素が2種以上存在する場合には、当該2種以上すべての合計質量に基づく比である。このように、本発明に係る電解処理用金属表面処理剤の特定系において、当該比を当該範囲内に設定することで{正確には、当該パラメータに加え、前述したPとZrとの比(P/Zr)を前述した範囲内に設定することで}、製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性、耐Sn混入性等のみならず、耐変色性の性質をSn系めっき材上に付与可能であると共に、短時間皮膜析出性、耐Sn混入性、処理剤経時安定性等、実用上好適な電解処理用金属表面処理剤を提供することができる。特に、M/Zrが0.05未満であると、耐変色性が悪くなる。また、M/Zrが2.5超であると、製缶加工性が悪くなる。ここで、剤中の金属M元素の質量測定は、JIS−K0116:2014規格によるICP発光分光分析装置(ICP−AES)等公知の方法で可能である。
(The ratio of the 1-2-1-2.M w and Zr w)
In the metal surface treatment agent for electrolytic treatment according to the present invention, {converted mass (M w ) of metal element (Zn element, Mn element, Cu element) of dissolved metal M component and converted mass (Zr w of dissolved Zr component) )} (M w / Zr w ) is in the range of 0.05 to 2.5, preferably in the range of 0.1 to 2.0, 0.15 More preferably, it is 1.5 or less. In addition, the said ratio is a ratio based on the total mass of all the said 2 types or more, when 2 or more types of metal M elements exist. Thus, in the specific system of the metal surface treatment agent for electrolytic treatment according to the present invention, by setting the ratio within the range, to be precise, in addition to the parameters, the above-described P w and Zr w By setting the ratio (P w / Zr w ) within the aforementioned range}, can manufacturing process, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance (under coating) In addition to corrosion resistance, retort rust resistance), sulfur blackening resistance, resistance to Sn contamination, etc., it is possible to impart discoloration resistance properties to Sn-based plating materials as well as short-time film deposition and resistance to Sn contamination. In addition, it is possible to provide a metal surface treatment agent for electrolytic treatment that is suitable for practical use, such as treatment agent stability over time. In particular, when M w / Zr w is less than 0.05, discoloration resistance deteriorates. Further, when the M w / Zr w is 2.5 greater than can-workability is deteriorated. Here, the mass measurement of the metal M element in the agent can be performed by a known method such as an ICP emission spectroscopic analyzer (ICP-AES) according to JIS-K0116: 2014 standard.

(1−2−1−3.FとZrとの質量比)
本発明に係る電解処理用金属表面処理剤における{溶解F成分のF元素の換算質量(F)と溶解Zr成分のZr元素の換算質量(Zr)}との比(F/Zr)は、1.3以上2.5以下の範囲内であることが好適であり、1.32以上2.4以下の範囲内であることがより好適であり、1.36以上2.3以下であることが更に好適である。FとZrとの比が前記範囲内であると、前述したような効果をより優れたものとすることが可能となる。特に、F/Zrが1.3以上となると、耐Sn混入性がより良くなる。F/Zrが2.5以下であると、二次塗料密着性がより良くなる。ここで、剤中のF元素の質量測定は、JIS−K0102:2014規格34.1記載のふっ素化合物を蒸留分離した溶液をランタン-アリザリンコンプレキソン吸光光度法に基づき定量分析することにより可能である。
(Mass ratio of 1-2-1-3.F w and Zr w)
Ratio (F w / Zr w ) of {converted mass of F element of dissolved F component (F w ) and converted mass of Zr element of dissolved Zr component (Zr w )} in the metal surface treatment agent for electrolytic treatment according to the present invention. ) Is preferably in the range of 1.3 to 2.5, more preferably in the range of 1.32 to 2.4, and 1.36 to 2.3. It is further preferable that When the ratio of F w to Zr w is within the above range, the above-described effect can be further improved. In particular, when F w / Zr w is 1.3 or more, the resistance to Sn contamination is improved. When F w / Zr w is 2.5 or less, the secondary coating adherence becomes better. Here, mass measurement of F element in the agent can be performed by quantitatively analyzing a solution obtained by distilling and separating a fluorine compound described in JIS-K0102: 2014 standard 34.1 based on a lanthanum-alizarin complexone spectrophotometric method. .

(1−2−1−4.特定成分群同士の質量比)
さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、Zr成分のZr元素の換算質量(Zr)、溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、溶解Sn成分のSn元素の換算質量(Sn)、溶解Fe成分のFe元素の換算質量(Fe)及び溶解アンモ態N成分のN元素の換算質量(N)の合計質量と、溶解Zr成分のZr元素の換算質量(Zr)、溶解金属M成分の金属元素の換算質量(M)、溶解Sn成分のSn元素の換算質量(Sn)、溶解Fe成分のFe元素の換算質量(Fe)、溶解アンモ態N成分のN元素の換算質量(N)、溶解Na成分のNa元素の換算質量(Na)及び溶解K成分のK元素の換算質量(K)の合計質量との比をCAとしたとき、CAは、0.9以上であることが好適であり、0.92以上であることが更に好適である。当該範囲であると皮膜外観が良好となる。ここで、剤中のSn元素及びFe元素の質量測定は、JIS−K0116:2014規格によるICP発光分光分析装置(ICP−AES)等公知の方法で可能である。また、剤中の、溶解アンモ態N成分のN元素、Na元素及びK元素の質量測定は、JIS−K0102:2016規格によるイオンクロマトグラム方法等公知の方法で可能である。
(1-2-1-4. Mass ratio between specific component groups)
Further, it may contain at least one component selected from the group consisting of dissolved Sn component, dissolved Fe component, dissolved ammonia N component, dissolved Na component and dissolved K component. In this case, conversion of Zr element of Zr component Mass (Zr w ), converted mass (M w ) of metal element (Zn element, Mn element, Cu element) of dissolved metal M component, converted mass (Sn w ) of Sn element of dissolved Sn component, Fe of dissolved Fe component Total mass of reduced mass of element (Fe w ) and reduced mass of N element of dissolved ammonia N component (N w ), reduced mass of Zr element of dissolved Zr component (Zr w ), metal element of dissolved metal M component Converted mass (M w ), converted Sn element mass of dissolved Sn component (Sn w ), converted Fe element converted mass of Fe element (Fe w ), dissolved ammonia N component converted mass of N element (N w ), N of dissolved Na component When the ratio of the total mass of the reduced mass (Na w) and reduced mass of K elements dissolution K component elements (K w) was CA, CA is preferably made at least 0.9, 0 More preferably, it is .92 or more. Within this range, the appearance of the film becomes good. Here, the mass measurement of the Sn element and the Fe element in the agent can be performed by a known method such as an ICP emission spectroscopic analyzer (ICP-AES) according to JIS-K0116: 2014 standard. Further, mass measurement of N element, Na element and K element of the dissolved ammonia N component in the agent can be performed by a known method such as an ion chromatogram method according to JIS-K0102: 2016 standard.

{1−2−2.含有量}
(1−2−2−1.Zr元素濃度)
本発明に係る電解処理用金属表面処理剤におけるZr元素濃度は、1000mg/L以上1950mg/L以下の範囲内であることが好適であり、1100mg/L以上1850mg/L以下の範囲内であることがより好適であり、1200mg/L以上1750mg/L以下の範囲内であることが更に好適である。当該範囲内であると、通常の電解条件{例えば、供試材を陰極側とし、一定の電流密度で供試材に通電(例えば、所定の40℃の金属表面処理剤に浸漬すると同時に3.0A/dmの電流密度で1秒間保持)}であっても、前述したような効果を有する金属材料を提供することができる。特に、Zr濃度が1000mg/L以上となると、レトルト耐錆性がより良くなる。Zr元素濃度が1950mg/L以下であると、一次塗料密着性がより良くなる。
{1-2-2. Content}
(1-2-2-1. Zr element concentration)
The Zr element concentration in the metal surface treatment agent for electrolytic treatment according to the present invention is preferably in the range of 1000 mg / L to 1950 mg / L, and in the range of 1100 mg / L to 1850 mg / L. Is more preferable, and it is still more preferable that it is in the range of 1200 mg / L or more and 1750 mg / L or less. Within the range, normal electrolytic conditions {for example, the test material is on the cathode side, and the test material is energized with a constant current density (for example, immersed in a predetermined 40 ° C. metal surface treatment agent at the same time. Even if it is held at a current density of 0 A / dm 2 for 1 second)}, a metal material having the above-described effects can be provided. In particular, when the Zr concentration is 1000 mg / L or more, the retort rust resistance is improved. When the Zr element concentration is 1950 mg / L or less, the primary paint adhesion is improved.

(1−2−2−2.他の成分濃度)
まず、F元素濃度、P元素濃度、金属M元素濃度は、好適には、前述したZr元素濃度と、前述したそれぞれの元素とZr元素との質量比と、に基づき算出された値であることが好適である。また、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンの濃度は、電気伝導率が後述する好適な数値範囲(1.0S/m以上6.0S/m以下)内となるよう適宜決定することが好適である。
(1-2-2-2. Other component concentrations)
First, the F element concentration, the P element concentration, and the metal M element concentration are preferably values calculated based on the aforementioned Zr element concentration and the aforementioned mass ratio of each element to the Zr element. Is preferred. The concentration of one or more anions selected from the group consisting of nitrate ion, chloride ion and sulfate ion is a suitable numerical range (1.0 S / m or more and 6.0 S / m or more) described later. It is preferable to determine appropriately within the following.

<1−3.液性>
{1−3−1.pH}
本発明に係る電解処理用金属表面処理剤におけるpHは、3.4以上4.8以下であることが好適であり、3.5以上4.7以下の範囲内であることがより好適であり、3.6以上4.5以下であることが更に好適である。pHが3.4以上となると、塗膜下耐食性がより良くなる。pHが4.8以下であると、処理剤経時安定性がより良くなる。尚、このpHは、電解処理用金属表面処理剤について、JIS−Z8802:2011で電解温度(典型的には40℃)にて測定された値である。
<1-3. Liquidity>
{1-3-1. pH}
The pH of the metal surface treatment agent for electrolytic treatment according to the present invention is preferably 3.4 or more and 4.8 or less, more preferably 3.5 or more and 4.7 or less. More preferably, it is 3.6 or more and 4.5 or less. When the pH is 3.4 or more, the corrosion resistance under the coating film becomes better. When the pH is 4.8 or less, the treatment agent stability over time is improved. In addition, this pH is the value measured at the electrolysis temperature (typically 40 degreeC) by JIS-Z8802: 2011 about the metal surface treating agent for electrolytic treatment.

{1−3−2.電気伝導率}
本発明に係る電解処理用金属表面処理剤における電気伝導率は、1.0S/m以上6.0S/m以下の範囲内であることが好適であり、1.5以上5.5以下の範囲内であることがより好適であり、2.0以上5.0以下であることが更に好適である。電気伝導率が1.0以上となると、短時間皮膜析出性がより良くなる。電気伝導率が6.0以下であると、電解処理装置に対する腐食がより生じにくい。また、電気伝導率が6.0を超えても短時間皮膜析出性の効果は飽和する。尚、この電気伝導率は、電解処理用金属表面処理剤について、JIS−K0130:2008で電解温度(典型的には40℃)にて測定された値である。
{1-3-2. Electrical conductivity}
The electric conductivity in the metal surface treatment agent for electrolytic treatment according to the present invention is preferably in the range of 1.0 S / m or more and 6.0 S / m or less, and in the range of 1.5 or more and 5.5 or less. It is more preferable that it is in the range of 2.0 to 5.0. When the electric conductivity is 1.0 or more, the film deposition property is improved for a short time. When the electrical conductivity is 6.0 or less, corrosion to the electrolytic treatment apparatus is less likely to occur. Even if the electric conductivity exceeds 6.0, the effect of film deposition for a short time is saturated. In addition, this electrical conductivity is the value measured at the electrolysis temperature (typically 40 degreeC) by JIS-K0130: 2008 about the metal surface treating agent for electrolytic treatment.

≪2.電解処理用金属表面処理剤の製造方法≫
本発明に係る電解処理用金属表面処理剤の製造方法は、前記溶解Zr成分、前記溶解F成分、前記溶解P成分、前記溶解金属M成分及び前記陰イオンの供給源となる一種以上の原料を液体媒体に添加して混合する工程を含む。ここで、一の原料が複数の前記成分(溶解Zr成分、溶解F成分、溶解P成分、溶解金属M成分及び前記陰イオンから選択される任意の複数の成分)の供給源であっても(例えば、一の原料であるフッ化ジルコン酸は、溶解Zr成分の供給源でもあり、溶解F成分の供給源でもある)、複数の原料が一の前記成分(溶解Zr成分、溶解F成分、溶解P成分、溶解金属M成分及び前記陰イオンから選択される任意の一の成分)の供給源であっても(例えば、異なる原料であるフルオロジルコニウム酸及びフッ酸は、いずれも溶解F成分の供給源である)、複数の原料が複数の前記成分(溶解Zr成分、溶解F成分、溶解P成分、溶解金属M成分及び前記陰イオンから選択される任意の複数の成分)の供給源であってもよい(例えば、異なる原料であるりん酸及びフッ酸は、それぞれ異なる成分である溶解P成分及び溶解F成分の供給源である)。以下、各原料とプロセスを詳述する。
≪2. Method for producing metal surface treatment agent for electrolytic treatment >>
The method for producing a metal surface treatment agent for electrolytic treatment according to the present invention comprises one or more raw materials serving as a supply source of the dissolved Zr component, the dissolved F component, the dissolved P component, the dissolved metal M component, and the anion. Adding to the liquid medium and mixing. Here, even if one raw material is a supply source of a plurality of the components (a plurality of components selected from a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved metal M component, and the anion) ( For example, fluorinated zirconic acid, which is one raw material, is also a source of dissolved Zr component and a source of dissolved F component), and a plurality of raw materials are one component (dissolved Zr component, dissolved F component, dissolved) Even if it is a supply source of P component, dissolved metal M component and any one component selected from the anions) (for example, different raw materials such as fluorozirconic acid and hydrofluoric acid supply dissolved F component) A plurality of raw materials are sources of a plurality of the components (a plurality of components selected from a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved metal M component, and the anion) (E.g. different raw materials There phosphoric acid and hydrofluoric acid is a source of soluble P component and dissolving F component are different components, respectively). Hereinafter, each raw material and process will be described in detail.

<2−1.原料>
(2−1−1.溶解Zr成分の供給源)
溶解Zr成分の供給源としては、特に限定されず、例えば、ジルコニウム原子を含んでいる化合物であり、例えば、硫酸ジルコニウム、オキシ硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、フルオロジルコニウム酸、フルオロジルコニウム錯塩等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
<2-1. Raw material>
(2-1-1. Supply Source of Dissolved Zr Component)
The source of the dissolved Zr component is not particularly limited, and is, for example, a compound containing a zirconium atom. For example, zirconium sulfate, zirconium oxysulfate, zirconium ammonium sulfate, zirconium oxynitrate, zirconium ammonium nitrate, fluorozirconic acid , Fluorozirconium complex salts, and the like. These may be used alone or in combination of two or more.

(2−1−2.溶解F成分の供給源)
溶解F成分の供給源としては、特に限定されず、例えば、フッ素原子を含む化合物であり、例えば、フルオロジルコニウム酸、フッ化アンモニウム、フッ化水素アンモニウム、フッ化ゲルマニウム、フッ化鉄、フッ化ナトリウム、フッ化水素ナトリウム等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。尚、前述で例示したような、溶解Zr成分の供給源であるフルオロジルコニウム酸やフルオロジルコニウム錯塩も、溶解F成分の供給源である。
(2-1-2. Source of dissolved F component)
The source of the dissolved F component is not particularly limited, and is, for example, a compound containing a fluorine atom. For example, fluorozirconic acid, ammonium fluoride, ammonium hydrogen fluoride, germanium fluoride, iron fluoride, sodium fluoride. Sodium hydrogen fluoride and the like, and these may be used alone or in combination of two or more. In addition, the fluorozirconic acid and the fluorozirconium complex salt which are the supply sources of the dissolved Zr component as exemplified above are also the supply sources of the dissolved F component.

(2−1−3.溶解P成分の供給源)
溶解P成分の供給源としては、特に限定されない。例えば、(1)オルトりん酸態りんとしては、りん酸(オルトりん酸)及びその塩(オルトりん酸アンモニウムなど)を含む。(2)重合りん酸態りんとしては、鎖状のリン酸縮合物であって、ピロリン酸、トリポリリン酸、テトラポリリン酸等を包含し、その塩(ピロりん酸アンモニウム、トリポリりん酸アンモニウム、テトラポリりん酸アンモニウムなど)も含む。(3)有機りん酸態りんとしては、ニトリロトリスメチレンホスホン酸、ニトリロトリスプロピレンホスホン酸、ニトリロジエチルメチレンホスホン酸、メタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、プロパン−1−ヒドロキシ−1,1−ジホスホン酸、アミノトリメチレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸等及びその塩等を含む。尚、溶解P成分の供給源は、1種であっても2種以上を併用してもよい。
(2-1-3. Source of dissolved P component)
The supply source of the dissolved P component is not particularly limited. For example, (1) orthophosphoric phosphorus includes phosphoric acid (orthophosphoric acid) and salts thereof (such as ammonium orthophosphate). (2) Polymerized phosphoric acid phosphorus is a chain phosphoric acid condensate, including pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid, etc., and salts thereof (ammonium pyrophosphate, ammonium tripolyphosphate, tetrapolyphosphoric acid). Including ammonium phosphate). (3) Examples of organophosphate phosphorus include nitrilotrismethylenephosphonic acid, nitrilotrispropylenephosphonic acid, nitrilodiethylmethylenephosphonic acid, methane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1, 1-diphosphonic acid, propane-1-hydroxy-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid and the like and salts thereof. The supply source of the dissolved P component may be one kind or a combination of two or more kinds.

(2−1−4.溶解金属M成分の供給源)
溶解金属M成分の供給源としては、特に限定されず、例えば、水溶性金属M塩である。例えば、水溶性亜鉛塩としては、硝酸亜鉛(II)、硫酸亜鉛(II)、硫化亜鉛(II)、塩化亜鉛(II)、酢酸亜鉛(II)、シアン化亜鉛(II)、塩化アンモニウム亜鉛(II)、酒石酸亜鉛(II)、過塩素酸亜鉛(II)等を挙げることができ;水溶性マンガン塩としては、硝酸マンガン(II)・6水和物、酢酸マンガン(II)・4水和物、塩化マンガン(II)・4水和物、硫酸マンガン(II)・5水和物、硫酸マンガン(II)アンモニウム・6水和物等を挙げることができ;水溶性銅塩としては、例えば、硫酸銅(II)、硝酸銅(II)、塩化銅(II)、酢酸銅(II)、クエン酸銅(II)、酒石酸銅(II)、グルコン酸銅(II)等を挙げることができる。尚、溶解金属(M)成分の供給源は、1種であっても2種以上を併用してもよい。
(2-1-4. Source of dissolved metal M component)
The supply source of the dissolved metal M component is not particularly limited, and is, for example, a water-soluble metal M salt. Examples of water-soluble zinc salts include zinc nitrate (II), zinc sulfate (II), zinc sulfide (II), zinc chloride (II), zinc acetate (II), zinc cyanide (II), ammonium zinc chloride ( II), zinc tartrate (II), zinc perchlorate (II) and the like; water-soluble manganese salts include manganese nitrate (II) hexahydrate, manganese acetate (II) tetrahydrate , Manganese (II) chloride tetrahydrate, manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate and the like; , Copper sulfate (II), copper nitrate (II), copper chloride (II), copper acetate (II), copper citrate (II), copper tartrate (II), copper gluconate (II) and the like. . In addition, the supply source of a melt | dissolved metal (M) component may be 1 type, or may use 2 or more types together.

(2−1−5.陰イオンの供給源)
陰イオンの供給源としては、特に限定されず、無機酸類、例えば、硝酸、塩酸、硫酸等の無機酸、無機酸の水溶性塩を挙げることができる。尚、陰イオンの供給源は、1種であっても2種以上を併用してもよい。また、上述した他の成分(例えば溶解Zr成分)の供給源として使用した成分が当該陰イオン(即ち、硝酸イオン、塩化物イオン、硫酸イオン)を含有している場合には、当該成分も陰イオンの供給源である。当該陰イオン(即ち、硝酸イオン、塩化物イオン、硫酸イオン)は処理剤の陽イオン(好ましくはアンモニウム)と対(即ち、中性塩)になり、処理剤の電気伝導率を上げる支持電解質として作用する。
(2-1-5. Source of anion)
The anion supply source is not particularly limited, and examples thereof include inorganic acids, for example, inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid, and water-soluble salts of inorganic acids. The anion supply source may be one kind or a combination of two or more kinds. In addition, when a component used as a supply source of the above-described other components (for example, dissolved Zr component) contains the anion (that is, nitrate ion, chloride ion, sulfate ion), the component is also an anion. A source of ions. The anion (ie, nitrate ion, chloride ion, sulfate ion) is paired (ie, neutral salt) with the cation (preferably ammonium) of the treatment agent, and serves as a supporting electrolyte that increases the electrical conductivity of the treatment agent. Works.

<2−2.プロセス>
本発明に係る電解処理用金属表面処理剤は、例えば、前述した各成分の供給源となる原料を、水を主体とする液体媒体(例えば水)に添加し、必要に応じて加熱および冷却しながら撹拌することにより調製できる。pHおよび電気伝導率の調整手順としては、前述した各成分の供給源となる原料を添加した後に、pHを所定の値に調整をする。その次に当該陰イオン(即ち、硝酸イオン、塩化物イオン、硫酸イオン)を中性塩(好ましくはアンモニウム塩)で添加し所定の電気伝導率に調整をする。この電気伝導率を調整するために添加した物質(中性塩)を支持電解質という。その後pHが所定の値から変化した場合は微調整を実施する。尚、pHの調整は、アルカリや酸を用いて行うが、特に制限はない。好適には、アルカリはアンモニア、酸は支持電解質の陰イオンと同成分の酸(無機酸)を用いる。pHの調整にアンモニアを用いることにより、形成した皮膜にアンモニアが取り込まれたとしても、その後の乾燥時にアンモニアがその皮膜から揮発することにより、皮膜に殆ど残らない結果、その皮膜性能は悪影響を受けないで済むからである。また、pHの調整に、支持電解質の陰イオンと同成分の酸(無機酸)を用いることにより、形成した皮膜の皮膜性能への悪影響を最小限にすることができるからである。
<2-2. Process>
In the metal surface treatment agent for electrolytic treatment according to the present invention, for example, the above-mentioned raw material serving as a supply source of each component is added to a liquid medium mainly composed of water (for example, water), and heated and cooled as necessary. It can be prepared by stirring with stirring. As a procedure for adjusting the pH and electrical conductivity, the pH is adjusted to a predetermined value after adding the raw materials serving as the supply sources of the aforementioned components. Next, the anion (ie, nitrate ion, chloride ion, sulfate ion) is added as a neutral salt (preferably an ammonium salt) to adjust to a predetermined electrical conductivity. A substance (neutral salt) added to adjust the electrical conductivity is called a supporting electrolyte. Thereafter, when the pH changes from a predetermined value, fine adjustment is performed. In addition, although adjustment of pH is performed using an alkali and an acid, there is no restriction | limiting in particular. Preferably, the alkali is ammonia, and the acid is an acid (inorganic acid) that is the same component as the anion of the supporting electrolyte. By using ammonia to adjust the pH, even if ammonia is incorporated into the formed film, the ammonia is volatilized from the film during subsequent drying, and as a result, the film performance is adversely affected. It is not necessary. Further, by using an acid (inorganic acid) of the same component as the anion of the supporting electrolyte for adjusting the pH, adverse effects on the film performance of the formed film can be minimized.

≪3.電解処理用金属表面処理剤の使用方法≫
<3−1.対象金属>
本発明に係る電解処理用金属表面処理剤を用いて対象金属に皮膜を形成させた際の最大の特徴は、製缶加工性等の性能を担保しつつ、表面処理された対象金属に対して耐変色性を付与できる点である。この観点から、本発明に係る電解処理用金属表面処理剤の対象金属は、好適には、Sn系めっき{例えば、Snめっき、Snと他の金属とを含有するめっき(例えば、はんだ)}付金属材料(例えばブリキ鋼板)である。ここで、Sn系めっきとは、めっき層中のSnの含有量が、めっき層の全質量を基準として、20質量%以上(好適には50質量%以上、より好適には70%以上、更に好適には90質量%以上)であるめっきのことをいう。また、Sn系めっきにおいて、Sn以外に一種又は複数種の他の金属(例えばFe)が存在してもよく、当該めっき内で合金が形成されていてもよい{例えば、Snを電気でつけた後に加熱処理(リフロー)をした際に形成される、SnとFeとの合金}。更に、Sn系めっきは、めっき対象である金属材料の少なくとも片面に、Snを100〜15000mg/mを含むことが好適である。更に、Sn系めっきは、Znを含まないか、又は、含んでいたとしても、めっき層の全質量を基準として、3質量%以下であることが好適であり、2質量%以下であることがより好適であり、1質量%以下であることが更に好適である。Znをある程度の量含有している場合には、そもそも変色が生じ難いからである。但し、本発明に係る電解処理用金属表面処理剤は、前記のように、製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性等の性質を対象金属に付与することが可能である。したがって、この観点からは、対象金属はSn系めっき付金属材料に限定されず、アルミニウム系金属、鉄系金属、亜鉛系金属、マグネシウム系金属等の金属材料であってもよい。
≪3. How to use metal surface treatment agent for electrolytic treatment >>
<3-1. Target metal>
The greatest feature when a film is formed on a target metal using the metal surface treatment agent for electrolytic treatment according to the present invention is that the surface-treated target metal is secured while ensuring performance such as canning processability. It is a point which can provide discoloration resistance. From this viewpoint, the target metal of the metal surface treatment agent for electrolytic treatment according to the present invention is preferably provided with Sn-based plating {for example, Sn plating, plating containing Sn and other metals (for example, solder)}. It is a metal material (for example, a tin steel plate). Here, the Sn-based plating means that the Sn content in the plating layer is 20% by mass or more (preferably 50% by mass or more, more preferably 70% or more, based on the total mass of the plating layer, The term “plating” is preferably 90% by mass or more. In addition, in Sn-based plating, one or more kinds of other metals (for example, Fe) may be present in addition to Sn, and an alloy may be formed in the plating {for example, Sn is electrically applied An alloy of Sn and Fe formed when heat treatment (reflow) is performed later}. Further, it is preferable that the Sn-based plating contains Sn in an amount of 100 to 15000 mg / m 2 on at least one surface of the metal material to be plated. Furthermore, even if Sn type plating does not contain Zn or contains Zn, it is suitable that it is 3 mass% or less on the basis of the total mass of a plating layer, and it is 2 mass% or less. More preferred is 1% by mass or less. This is because when a certain amount of Zn is contained, discoloration hardly occurs in the first place. However, the metal surface treatment agent for electrolytic treatment according to the present invention, as described above, can be made, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance (under the coating) It is possible to impart properties such as corrosion resistance, retort rust resistance) and resistance to sulfur blackening to the target metal. Therefore, from this viewpoint, the target metal is not limited to the Sn-based plated metal material, and may be a metal material such as an aluminum-based metal, an iron-based metal, a zinc-based metal, or a magnesium-based metal.

<3−2.プロセス>
本発明に係る電解処理用金属表面処理剤は、通常の電解方法にて、金属材料上に製缶加工性、フィルム密着性、塗料密着性(一次塗料密着性、二次塗料密着性)、耐食性(塗膜下耐食性、レトルト耐錆性)、耐硫化黒変性等の性質に優れた皮膜を形成可能である。具体例としては、処理対象の金属材料がSn系めっき金属材料の場合、供試材を陰極側とし、所定温度(典型的には40℃)の電解処理用金属表面処理剤に当該供試材を浸漬すると同時(又は浸漬後)に所定の電流密度(例えば3.0A/dm)で当該供試材に通電し、所定時間(例えば1秒間)保持する方法が挙げられる。電解温度は特に限定されないが10℃以上55℃以下が好ましい。温度が10℃以上となると、温度維持が容易である。温度が55℃以下であると、電解処理装置に対する腐食がより生じにくい。電流密度は特に限定されないが低い電流密度ではより長い電解時間を必要とする。高い電流密度では短い電解時間で対応可能であるが、皮膜析出効率が低下することがある。
<3-2. Process>
The metal surface treatment agent for electrolytic treatment according to the present invention can be processed on a metal material by a normal electrolysis method, film adhesion, paint adhesion (primary paint adhesion, secondary paint adhesion), corrosion resistance. It is possible to form a film excellent in properties such as (under-coating corrosion resistance, retort rust resistance) and sulfur blackening resistance. As a specific example, when the metal material to be processed is a Sn-based plated metal material, the test material is the cathode side, and the test material is applied to the metal surface treatment agent for electrolytic treatment at a predetermined temperature (typically 40 ° C.). A method of energizing the test material at a predetermined current density (for example, 3.0 A / dm 2 ) at the same time (or after the immersion) and holding the sample for a predetermined time (for example, 1 second). Although electrolysis temperature is not specifically limited, 10 degreeC or more and 55 degrees C or less are preferable. When the temperature is 10 ° C. or higher, the temperature can be easily maintained. When the temperature is 55 ° C. or lower, corrosion to the electrolytic treatment apparatus is less likely to occur. The current density is not particularly limited, but a lower current density requires a longer electrolysis time. A high current density can be dealt with in a short electrolysis time, but the film deposition efficiency may decrease.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を越えない限り以下の実施例に限定されるものではない。尚、特記しない限り、「%」は質量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. Unless otherwise specified, “%” means mass%.

<試験材料>
試験材料として、下記の材料を使用した。
(1)電気Sn(錫)めっき鋼板(リフロー処理有り)(ET)
板厚 :0.3mm
Snめっきの目付量: 2.8g/m
(2)電気ニッケルめっき鋼板(NI)
板厚 :0.3mm
Niめっきの目付量: 0.8g/m
<Test material>
The following materials were used as test materials.
(1) Electric Sn (tin) plated steel sheet (with reflow treatment) (ET)
Plate thickness: 0.3mm
Sn plating weight per unit area: 2.8 g / m 2
(2) Electro nickel-plated steel sheet (NI)
Plate thickness: 0.3mm
Ni plating basis weight: 0.8 g / m 2

<電解処理用金属表面処理剤の調製>
水に、溶解Zr成分と溶解F成分の供給源となる原料としてジルコニウムフッ化水素酸、溶解F成分の供給源となる原料としてフッ化水素酸及び溶解P成分の供給源となる原料としてオルトりん酸を添加し、所定のF/Zr、P/Zrとした。ついで、溶解金属(M)成分の供給源となる原料として表1記載の物質種を表1記載の添加量加えた後、十分に混合し、溶解金属(M)成分を肉眼において完全に溶解させた。その後、酸(表1記載の支持電解質を構成するアニオンと同成分の酸)又はアルカリ(アンモニア)を添加してpHを調整した。更に表1記載の支持電解質を添加して電気伝導率を調整した後、必要に応じてpHを微調整した。この際、CAも所定の値になるよう、前記酸、前記アルカリ(アンモニアと水酸化ナトリウム)を添加して調整した。このようにして各金属表面処理薬剤化成処理液を得た。なお、2以上の電解質を混合して使用するときには、2以上の支持電解質を混合して使用するときには、その混合比は質量比とした。
<Preparation of metal surface treatment agent for electrolytic treatment>
Zirconium hydrofluoric acid as a source for supplying dissolved Zr component and dissolved F component in water, orthophosphoric acid as a source for supplying hydrofluoric acid and dissolved P component as a source for supplying dissolved F component An acid was added to obtain predetermined F W / Zr W and P W / Zr W. Next, after adding the substance types listed in Table 1 as raw materials to be the source of the dissolved metal (M) component and adding the amounts listed in Table 1, they are mixed thoroughly to completely dissolve the dissolved metal (M) component with the naked eye. It was. Thereafter, acid (acid of the same component as the anion constituting the supporting electrolyte shown in Table 1) or alkali (ammonia) was added to adjust pH. Furthermore, after adjusting the electrical conductivity by adding the supporting electrolyte shown in Table 1, the pH was finely adjusted as necessary. At this time, the acid and the alkali (ammonia and sodium hydroxide) were added and adjusted so that the CA also had a predetermined value. Thus, each metal surface treatment chemical conversion treatment liquid was obtained. When two or more electrolytes are mixed and used, when two or more supporting electrolytes are mixed and used, the mixing ratio is a mass ratio.

<支持電解質、陰イオンと溶解アンモ態N成分の供給源となる原料>
E1:硝酸アンモニウム
E2:硫酸アンモニウム
E3:塩化アンモニウム
<Supporting electrolyte, raw material to be a source of anion and dissolved ammonium N component>
E1: Ammonium nitrate E2: Ammonium sulfate E3: Ammonium chloride

<溶解金属(M)成分と陰イオンの供給源となる原料>
M1:硝酸亜鉛
M2:硫酸マンガン
M3:硝酸マンガン
M4:塩化マンガン
M5:硝酸銅
M6:硝酸コバルト
<Raw metal (M) component and raw material as anion source>
M1: Zinc nitrate M2: Manganese sulfate M3: Manganese nitrate M4: Manganese chloride M5: Copper nitrate M6: Cobalt nitrate

<前処理>
試験材料の前処理(電解処理前処理)は、アルカリ脱脂剤{ファインクリーナー−E6406(日本パーカライジング株式会社製)、2%建浴、60℃}にて30秒間浸漬脱脂を行った後、水道水による水洗とイオン交換水による水洗を行い、水切りロールにて水分を切り、ドライヤーにて乾燥させることで実施した。
<Pretreatment>
The pretreatment of the test material (electrolytic treatment pretreatment) was performed by degreasing 30 seconds with an alkaline degreasing agent {Fine Cleaner-E6406 (Nihon Parkerizing Co., Ltd.), 2% building bath, 60 ° C}, and then tap water. This was carried out by washing with water and water with ion-exchanged water, removing water with a draining roll, and drying with a dryer.

<電解処理(標準電解処理)>
前処理が実施された試験材料を以下の電解処理(標準電解処理)に供した。当該試験材料を陰極とし、カーボン板を対極として、当該試験材料を所定温度(40℃)とした電解処理用金属表面処理剤に浸漬すると同時に1秒間、3.0A/dmの電流密度にて電解した。その後、電解処理した試験材料を、25℃の市水にて5秒間スプレー水洗することにより当該試験材料の表面を清浄し、ロール絞りを用いて水切りし、当該試験材料の表面到達板温を50℃にて乾燥を行った。
<Electrolytic treatment (standard electrolytic treatment)>
The test material subjected to the pretreatment was subjected to the following electrolytic treatment (standard electrolytic treatment). The test material is used as a cathode, the carbon plate is used as a counter electrode, and the test material is immersed in a metal surface treatment agent for electrolytic treatment at a predetermined temperature (40 ° C.). At the same time, at a current density of 3.0 A / dm 2 for 1 second. Electrolyzed. Thereafter, the surface of the test material is cleaned by spray-washing the electrolyzed test material with 25 ° C. city water for 5 seconds, drained using a roll squeeze, and the surface temperature of the test material reached 50 is reached. Drying was performed at ° C.

<性能評価>
上記の前処理および電解処理(標準電解処理)を行った試験材料及び電解処理用金属表面処理剤そのものについて、以下に示す(A)〜(L)の各項目について、性能評価を行った。表2に試験材料を示し、表3に結果を示す。
<Performance evaluation>
About the test material which performed said pre-processing and electrolytic treatment (standard electrolytic treatment), and the metal surface treating agent for electrolytic treatment itself, performance evaluation was performed about each item of (A)-(L) shown below. Table 2 shows the test materials, and Table 3 shows the results.

(A)製缶加工性
試験材料の両面に厚さ20μmのPETフィルムを200℃でラミネートし、直径:150mmのブランクに打ち抜いた後、絞り比:1.67で絞り成形し、缶径:90mm、缶高さ:約40mmの絞り缶を作製した。次に、前記絞り缶を絞り比:1.36で再絞り成形し、缶径:66mmの再絞り缶を作製した後、この再絞り缶を用いて3段のしごき加工により板厚減少率:50%となるようにしごき成形加工を施して絞り−しごき成形加工を行い、缶径:66mm、缶高さ:約125mmの絞り−しごき缶を作製した。その後、当該絞り−しごき缶体に対して、フィルムの疵、浮き、剥離状況を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:フィルムの疵部、浮き部、剥離部の合計面積率が0%
○:フィルムの疵部、浮き部、剥離部の合計面積率が0%超0.5%以下
○△:フィルムの疵部、浮き部、剥離部の合計面積率が0.5%超5%以下
△:フィルムの疵部、浮き部、剥離部の合計面積率が5%超15%以下
×:フィルムの疵部、浮き部、剥離部の合計面積率が15%超または試験材料が破断し成形加工ができず
(A) Can manufacturing process A PET film having a thickness of 20 μm is laminated on both surfaces of a test material at 200 ° C., punched into a blank having a diameter of 150 mm, and then drawn with a drawing ratio of 1.67, and a can diameter of 90 mm. Can height: A can of about 40 mm was produced. Next, the drawn can was redrawn at a drawing ratio of 1.36 to produce a drawn can with a can diameter of 66 mm, and then the thickness reduction rate was obtained by three-stage ironing using the drawn can. A squeeze forming process was performed by applying a squeeze forming process to 50%, and a squeezed-ironing can having a can diameter of 66 mm and a can height of about 125 mm was produced. Then, the wrinkle, float, and peeling state of the film were evaluated in the following five stages with respect to the drawn and ironed can body. The evaluation above Δ is a practical level.
A: The total area ratio of the ridge part, the floating part, and the peeling part of the film is 0%.
○: The total area ratio of the ridge part, the floating part, and the peeling part of the film is more than 0% and 0.5% or less. △: The total area ratio of the ridge part, the floating part and the peeling part of the film exceeds 5% and 15% or less. X: The total area ratio of the ridge part, the floating part and the peeling part of the film exceeds 15% or the test material breaks. Unable to mold

(B)フィルム密着性
試験材料の両面に厚さ20μmのPETフィルムを200℃でラミネートし、直径:150mmのブランクに打ち抜いた後、絞り比:1.67で絞り成形し、缶径:90mm、缶高さ:約40mmの絞り缶を作製した。その後、当該絞り缶体に対して121℃、30minのレトルト処理を行い、フィルムの剥離状況を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:剥離部の面積率が0%
○:剥離部の面積率が0%超2%以下
○△:剥離部の面積率が2%超5%以下
△:剥離部の面積率が5%超10%以下
×:剥離部の面積率が10%超
(B) Film adhesion A PET film having a thickness of 20 μm was laminated at 200 ° C. on both sides of the test material, punched into a blank having a diameter of 150 mm, and then drawn at a drawing ratio of 1.67, and a can diameter of 90 mm. Can height: A can of about 40 mm was produced. Thereafter, the drawn can body was subjected to a retort treatment at 121 ° C. for 30 minutes, and the peeling state of the film was evaluated in the following five stages. The evaluation above Δ is a practical level.
A: Area ratio of peeled portion is 0%
○: Area ratio of peeled portion is more than 0% and not more than 2% ○ △: Area ratio of peeled portion is more than 2% and not more than 5% Δ: Area ratio of peeled portion is more than 5% and not more than 10% Is over 10%

(C)一次塗料密着性
試験材料にエポキシ−フェノール樹脂を乾燥膜厚6g/mの塗膜となるように塗布し、200℃、10minで焼付けた後、1mm間隔で地鉄に達する深さのゴバン目を入れた。その後、当該試験材料にセロハンテープを貼付した後に当該テープを剥離し、塗膜の剥離状況を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:剥離部の面積率が0%
○:剥離部の面積率が0%超5%以下
○△:剥離部の面積率が5%超15%以下
△:剥離部の面積率が15%超30%以下
×:剥離部の面積率が30%超
(C) Primary paint adhesion Adhesiveness of epoxy-phenolic resin to the test material so as to form a coating film having a dry film thickness of 6 g / m 2 , baking at 200 ° C. for 10 minutes, and depth reaching the base iron at intervals of 1 mm I put my eyes on. Then, after attaching a cellophane tape to the test material, the tape was peeled off, and the peeling state of the coating film was evaluated in the following five stages. The evaluation above Δ is a practical level.
A: Area ratio of peeled portion is 0%
○: Area ratio of peeled portion is more than 0% and not more than 5% ○ △: Area ratio of peeled portion is more than 5% and not more than 15% Δ: Area ratio of peeled portion is more than 15% and not more than 30% ×: Area ratio of peeled portion Is over 30%

(D)二次塗料密着性
試験材料にエポキシ−フェノール樹脂を乾燥膜厚6g/mの塗膜となるように塗布し、200℃、10minで焼付けた後、1mm間隔で地鉄に達する深さのゴバン目を入れた。その後、当該試験材料に対して121℃、30minのレトルト処理を行い、乾燥後、当該試験材料にセロハンテープを貼付した後に当該テープを剥離し、塗膜の剥離状況を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:剥離部の面積率が0%
○:剥離部の面積率が0%超5%以下
○△:剥離部の面積率が5%超15%以下
△:剥離部の面積率が15%超30%以下
×:剥離部の面積率が30%超
(D) Secondary paint adhesion Depth reaching the base iron at intervals of 1 mm after applying an epoxy-phenol resin to the test material to form a coating film with a dry film thickness of 6 g / m 2 and baking at 200 ° C. for 10 min. I put the eyes of that. Thereafter, the test material was subjected to a retort treatment at 121 ° C. for 30 minutes, and after drying, the cellophane tape was applied to the test material, and then the tape was peeled off. . The evaluation above Δ is a practical level.
A: Area ratio of peeled portion is 0%
○: Area ratio of peeled portion is more than 0% and not more than 5% ○ △: Area ratio of peeled portion is more than 5% and not more than 15% Δ: Area ratio of peeled portion is more than 15% and not more than 30% ×: Area ratio of peeled portion Is over 30%

(E)塗膜下耐食性
試験材料にエポキシ−フェノール樹脂を乾燥膜厚6g/mの塗膜となるように塗布し、200℃、10minで焼付けた後、地鉄に達する深さのクロスカットを入れた。その後、当該試験材料を、1.5%クエン酸−1.5%食塩混合液からなる試験液に、45℃、72時間浸漬した。その後、洗浄、乾燥後、当該試験材料にセロハンテープを貼付した後に当該テープを剥離し、クロスカット部の塗膜下腐食部分の腐食幅(mm)と平板部の腐食部分の面積率(%)を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:クロスカット部の塗膜下腐食部分の腐食幅が0.2mm未満かつ平板部の腐食部分の面積率が0%
○:クロスカット部の塗膜下腐食部分の腐食幅が0.3mm未満かつ平板部の腐食部分の面積率が1%以下(ただし、評価が◎の場合を除外する)
○△:クロスカット部の塗膜下腐食部分の腐食幅が0.4mm未満かつ平板部の腐食部分の面積率が3%以下(ただし、評価が◎、○の場合を除外する)
△:クロスカット部の塗膜下腐食部分の腐食幅が0.5mm未満かつ平板部の腐食部分の面積率が5%以下(ただし、評価が◎、○、○△の場合を除外する)
×:クロスカット部の塗膜下腐食部分の腐食幅が0.5mm以上または平板部の腐食部分の面積率が5%超
(E) Corrosion resistance under coating film After applying epoxy-phenol resin to the test material so as to form a coating film with a dry film thickness of 6 g / m 2 and baking at 200 ° C. for 10 minutes, cross-cut with a depth reaching the base iron Put. Thereafter, the test material was immersed in a test solution composed of a 1.5% citric acid-1.5% salt solution at 45 ° C. for 72 hours. Then, after washing and drying, the cellophane tape is applied to the test material, and then the tape is peeled off. The corrosion width (mm) of the corroded portion under the coating film in the crosscut portion and the area ratio (%) of the corroded portion of the flat plate portion Was evaluated according to the following five levels. The evaluation above Δ is a practical level.
A: The corrosion width of the corroded portion under the coating film of the crosscut portion is less than 0.2 mm, and the area ratio of the corroded portion of the flat plate portion is 0%.
○: Corrosion width of the corroded portion under the coating of the cross-cut portion is less than 0.3 mm and the area ratio of the corroded portion of the flat plate portion is 1% or less (except when the evaluation is ◎)
○ △: Corrosion width of the corroded portion under the coating of the cross-cut portion is less than 0.4 mm and the area ratio of the corroded portion of the flat plate portion is 3% or less (excluding cases where the evaluation is ◎, ○)
Δ: Corrosion width of the corroded portion under the coating of the cross-cut portion is less than 0.5 mm and the area ratio of the corroded portion of the flat plate portion is 5% or less (excluding cases where the evaluation is ◎, ○, ○ △)
×: Corrosion width of the corroded portion under the coating of the crosscut portion is 0.5 mm or more, or the area ratio of the corroded portion of the flat plate portion exceeds 5%

(F)レトルト耐錆性
試験材料を121℃、30minのレトルト処理し、錆の発生状況を観察し、錆発生部の面積率(%)から下記の5段階で評価した。△以上の評価が実用レベルである。
◎:錆発生部の面積率が0%
○:錆発生部の面積率が0%超1%以下
○△:錆発生部の面積率が1%超3%以下
△:錆発生部の面積率が3%超5%以下
×:錆発生部の面積率が5%超
(F) Retort Rust Resistance The test material was subjected to retort treatment at 121 ° C. for 30 minutes, the state of occurrence of rust was observed, and the following five stages were evaluated from the area ratio (%) of the rust generation part. The evaluation above Δ is a practical level.
A: The area ratio of the rust generation part is 0%
○: The area ratio of the rust generation part is more than 0% to 1% or less. △: The area ratio of the rust generation part is more than 1% to 3% or less. △: The area ratio of the rust generation part is more than 3% to 5% or less. Part area ratio is over 5%

(G)耐硫化黒変性
試験材料にエポキシ−フェノール樹脂を乾燥膜厚6g/mの塗膜になるように塗布し、200℃、10minで焼付けた。その後、試験液(0.056%システイン塩酸塩、0.4%りん酸2水素カリウム、0.81%りん酸ナトリウム)に121℃、1時間浸漬した後、浸漬前後の色差(ΔE値)を下記の5段階で評価した。△以上の評価が実用レベルである。評価機器:日本電色工業製SD7000(SCI方式:全反射測定)
◎:ΔE値が3.0未満
○:ΔE値が3.0以上5.5未満
○△:ΔE値が5.5以上8.0未満
△:ΔE値が8.0以上10.5未満
×:ΔE値が10.5以上
(G) Antisulfuration blackening resistance An epoxy-phenol resin was applied to the test material so as to form a coating film having a dry film thickness of 6 g / m 2 and baked at 200 ° C. for 10 minutes. Then, after immersing in a test solution (0.056% cysteine hydrochloride, 0.4% potassium dihydrogen phosphate, 0.81% sodium phosphate) at 121 ° C. for 1 hour, the color difference (ΔE value) before and after immersion was determined. Evaluation was made in the following five stages. The evaluation above Δ is a practical level. Evaluation equipment: Nippon Denshoku Industries SD7000 (SCI method: total reflection measurement)
◎: ΔE value is less than 3.0 ○: ΔE value is 3.0 or more and less than 5.5 ○ Δ: ΔE value is 5.5 or more and less than 8.0 Δ: ΔE value is 8.0 or more and less than 10.5 × : ΔE value is 10.5 or more

(H)耐Sn混入性
電解処理用金属表面処理剤100mlに塩化第一錫をSnとして350mg/L添加し、40℃の恒温槽にて24時間静置した。静置後の処理剤の上澄み液における溶解Sn濃度を測定し、Sn溶存率(%)を下記の5段階で評価した。△以上の評価が実用レベルである。評価機器:JIS−K0116:2014規格によるICP発光分光分析装置(ICP−AES)等公知の方法
◎:Sn溶存率が80%以上
○:Sn溶存率が70%以上80%未満
○△:Sn溶存率が60%以上70%未満
△:Sn溶存率が50%以上60%未満
×:Sn溶存率が40%以上50%未満
(H) Sn mixing resistance 350 mg / L of stannous chloride as Sn was added to 100 ml of the metal surface treatment agent for electrolytic treatment, and the plate was allowed to stand in a constant temperature bath at 40 ° C for 24 hours. The dissolved Sn concentration in the supernatant of the treatment agent after standing was measured, and the Sn dissolution rate (%) was evaluated in the following five stages. The evaluation above Δ is a practical level. Evaluation equipment: Known methods such as ICP emission spectroscopic analyzer (ICP-AES) according to JIS-K0116: 2014 standard ◎: Sn dissolution rate is 80% or more ○: Sn dissolution rate is 70% or more and less than 80% ○ △: Sn dissolution Rate is 60% or more and less than 70% Δ: Sn dissolution rate is 50% or more and less than 60% ×: Sn dissolution rate is 40% or more and less than 50%

(I)耐変色性
試験材料を70℃、80%RHの恒温槽にて72時間静置した。試験材料における静置前後の色差(ΔE値)を下記の5段階で評価した。△以上の評価が実用レベルである。評価機器:日本電色工業製SD7000(SCI 方式:全反射測定)
◎:ΔE値が2.0未満
○:ΔE値が2.0以上4.0未満
○△:ΔE値が4.0以上6.0未満
△:ΔE値が6.0以上8.0未満
×:ΔE値が8.0以上
(I) Discoloration resistance The test material was allowed to stand for 72 hours in a thermostat at 70 ° C. and 80% RH. The color difference (ΔE value) before and after standing in the test material was evaluated in the following five stages. The evaluation above Δ is a practical level. Evaluation equipment: SD7000 manufactured by Nippon Denshoku Industries Co., Ltd. (SCI method: total reflection measurement)
◎: ΔE value is less than 2.0 ○: ΔE value is 2.0 or more and less than 4.0 ○ △: ΔE value is 4.0 or more and less than 6.0 Δ: ΔE value is 6.0 or more and less than 8.0 × : ΔE value is 8.0 or more

(J)短時間皮膜析出性
試験材料(当該評価では、標準電解処理を行っていない試験材料、即ち、前処理後の試験材料)を陰極とし、カーボン板を対極として、当該試験材料を所定温度(40℃)とした金属表面処理剤に浸漬すると同時に0.3秒間、10.0A/dmの電流密度にて電解した。その後、電解処理された試験材料を、25℃の市水にて5秒間スプレー水洗することにより当該試験材料の表面を清浄し、ロール絞りを用いて水切りし、当該試験材料の表面到達板温を50℃にて乾燥した。その後、蛍光X線分析装置で当該試験材料のZr付着量を測定して、Zr付着量(mg/m)を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:Zr付着量が6mg/m以上
○:Zr付着量が5mg/m以上6mg/m未満
○△:Zr付着量が4mg/m以上5mg/m未満
△:Zr付着量が3mg/m以上4mg/m未満
×:Zr付着量が3mg/m未満
(J) Short-time film deposition property The test material (in this evaluation, the test material that has not been subjected to standard electrolytic treatment, that is, the pre-treated test material) is the cathode, the carbon plate is the counter electrode, and the test material is at a predetermined temperature. It was immersed in a metal surface treatment agent (40 ° C.) and simultaneously electrolyzed at a current density of 10.0 A / dm 2 for 0.3 seconds. Thereafter, the surface of the test material is cleaned by spray-washing the test material subjected to electrolytic treatment with city water at 25 ° C. for 5 seconds, drained using a roll squeeze, and the surface temperature of the test material reached is reached. Dried at 50 ° C. Thereafter, the Zr adhesion amount of the test material was measured with a fluorescent X-ray analyzer, and the Zr adhesion amount (mg / m 2 ) was evaluated in the following five stages. The evaluation above Δ is a practical level.
A: Zr adhesion amount is 6 mg / m 2 or more ○: Zr adhesion amount is 5 mg / m 2 or more and less than 6 mg / m 2 ○ Δ: Zr adhesion amount is 4 mg / m 2 or more and less than 5 mg / m 2 Δ: Zr adhesion amount is 3 mg / m 2 or more and less than 4 mg / m 2 ×: Zr adhesion amount is less than 3 mg / m 2

(K)処理剤経時安定性
電解処理用金属表面処理剤100mLを40℃の恒温槽にて1月静置した。1月静置後の処理剤の液外観(液性状)及びその処理剤100mLをろ紙(No5C)にてろ過した後のろ紙に残存していた処理剤の残渣物の質量(mg)を下記の5段階で評価した。△以上の評価が実用レベルである。
◎:処理剤に濁りがなく、かつ残渣物の質量が0mg
○:処理剤に濁りがあり、かつ残渣物の質量が0mg
○△:処理剤に濁りがあり、かつ残渣物の質量が0mg超10mg以下
△:処理剤に濁りがあり、かつ残渣物の質量が10mg超20mg未満
×:処理剤に濁りがあり、かつ残渣物の質量が20mg以上
(K) Stability of treatment agent over time 100 mL of a metal surface treatment agent for electrolytic treatment was left in a constant temperature bath at 40 ° C. for one month. The liquid appearance (liquid property) of the treatment agent after standing in January and the mass (mg) of the residue of the treatment agent remaining on the filter paper after filtering 100 mL of the treatment agent with a filter paper (No5C) are as follows. Evaluation was made in 5 stages. The evaluation above Δ is a practical level.
A: The treatment agent is not turbid and the mass of the residue is 0 mg
○: The treatment agent is turbid and the mass of the residue is 0 mg
○: The treatment agent is turbid and the mass of the residue is more than 0 mg to 10 mg or less. Δ: The treatment agent is turbid and the mass of the residue is more than 10 mg and less than 20 mg. X: The treatment agent is turbid and the residue. The mass of the object is 20mg or more

(L)皮膜外観
試験材料(当該評価では、標準電解処理を行っていない試験材料、即ち、前処理後の試験材料)における電解処理(標準電解処理)前後の色差(ΔE値)を下記の5段階で評価した。△以上の評価が実用レベルである。評価機器:日本電色工業製SD7000(SCI 方式:全反射測定)
◎:ΔE値が5.0未満
○:ΔE値が5.0以上7.0未満
○△:ΔE値が7.0以上9.0未満
△:ΔE値が9.0以上11.0未満
×:ΔE値が11.0以上
(L) Film appearance Color difference (ΔE value) before and after electrolytic treatment (standard electrolytic treatment) in a test material (in this evaluation, a test material that has not been subjected to standard electrolytic treatment, that is, a test material after pretreatment) Rated by stage. The evaluation above Δ is a practical level. Evaluation equipment: SD7000 manufactured by Nippon Denshoku Industries Co., Ltd. (SCI method: total reflection measurement)
◎: ΔE value is less than 5.0 ○: ΔE value is 5.0 or more and less than 7.0 ○ Δ: ΔE value is 7.0 or more and less than 9.0 Δ: ΔE value is 9.0 or more and less than 11.0 × : ΔE value is 11.0 or more

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Figure 0006352986
Figure 0006352986

Claims (24)

溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、
前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(P/Zr)が0.04以上0.5以下の範囲内であり、
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(M/Zr)が0.05以上2.5以下の範囲内であ
処理対象金属が、Sn系めっきである、
電解処理用金属表面処理剤。
One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
The ratio (P w / Zr w ) of the converted mass (P w ) of P element of the dissolved P component to the converted mass (Zr w ) of Zr element of the dissolved Zr component is in the range of 0.04 or more and 0.5 or less. Within
Ratio (M w / Zr w ) of reduced mass (M w ) of metal element (Zn element, Mn element, Cu element) of dissolved metal M component and reduced mass (Zr w ) of Zr element of dissolved Zr component There Ri der range of 0.05 to 2.5,
The metal to be treated is Sn-based plating.
Metal surface treatment agent for electrolytic treatment.
前記処理対象金属がSnとFeとの合金めっきである、請求項に記載の電解処理用金属表面処理剤。 The metal surface treatment agent for electrolytic treatment according to claim 1 , wherein the metal to be treated is alloy plating of Sn and Fe. 溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、  One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
前記溶解P成分のP元素の換算質量(P  Reduced mass of P element of the dissolved P component (P w )と前記溶解Zr成分のZr元素の換算質量(Zr) And the converted mass of Zr element of the dissolved Zr component (Zr w )との比(P) (P) w /Zr/ Zr w )が0.04以上0.5以下の範囲内であり、) Is in the range of 0.04 to 0.5,
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M  Converted mass (M of metal element (Zn element, Mn element, Cu element) of the dissolved metal M component w )と前記溶解Zr成分のZr元素の換算質量(Zr) And the converted mass of Zr element of the dissolved Zr component (Zr w )との比(M) And ratio (M w /Zr/ Zr w )が0.05以上2.5以下の範囲内であり、) Is in the range of 0.05 to 2.5,
処理対象金属が、ニッケルめっきである、  The metal to be treated is nickel plating.
電解処理用金属表面処理剤。Metal surface treatment agent for electrolytic treatment.
前記溶解F成分のF元素の換算質量(F)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(F/Zr)が1.3以上2.5以下の範囲内である、請求項1〜3のいずれか一項に記載の電解処理用金属表面処理剤。 The ratio (F w / Zr w ) of the converted mass (F w ) of the F element of the dissolved F component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is 1.3 to 2.5 The metal surface treatment agent for electrolytic treatment according to any one of claims 1 to 3, wherein the metal surface treatment agent is electrolytic. Zr元素濃度が1000mg/L以上1950mg/L以下の範囲内である、請求項1〜4のいずれか一項に記載の電解処理用金属表面処理剤。 The metal surface treatment agent for electrolytic treatment according to any one of claims 1 to 4, wherein the Zr element concentration is in the range of 1000 mg / L to 1950 mg / L. pHが3.4以上4.8以下の範囲内である、請求項1〜のいずれか一項に記載の電解処理用金属表面処理剤。 The metal surface treatment agent for electrolytic treatment according to any one of claims 1 to 5 , wherein the pH is in the range of 3.4 or more and 4.8 or less. さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)及び前記溶解アンモ態N成分のN元素の換算質量(N)の合計質量と、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)、前記溶解アンモ態N成分のN元素の換算質量(N)、前記溶解Na成分のNa元素の換算質量(Na)及び前記溶解K成分のK元素の換算質量(K)の合計質量との比CA:{(Zr+M+Sn+Fe+N)/(Zr+M+Sn+Fe+N+Na+K)}が0.9以上である、請求項1〜のいずれか一項に記載の電解処理用金属表面処理剤。 Furthermore, it may contain at least one component selected from the group consisting of dissolved Sn component, dissolved Fe component, dissolved ammonia N component, dissolved Na component and dissolved K component. In this case, the Zr element of the dissolved Zr component Converted mass (Zr w ), converted mass (M w ) of the metal element (Zn element, Mn element, Cu element) of the dissolved metal M component, converted mass (Sn w ) of the Sn element of the dissolved Sn component, The total mass of the converted Fe element of the dissolved Fe component (Fe w ) and the converted mass of the N element of the dissolved ammonia-type N component (N w ), and the converted mass of the Zr element of the dissolved Zr component (Zr w ), the molten metal M component metal equivalent weight (M w), reduced mass of Sn element of the dissolved Sn component (Sn w), in terms of mass of Fe element of the dissolved Fe component (Fe w), the dissolved ammonia state N N elements of ingredients Conversion Weight (N w), the melting mass in terms of Na component as Na element (Na w) and the ratio CA of the total mass of the reduced mass (K w) of K elements of the dissolution K component: {(Zr w + M w + Sn w + Fe w + N w) / (Zr w + M w + Sn w + Fe w + N w + Na w + K w)} is 0.9 or more, for the electrolytic treatment according to any one of claims 1 to 6 Metal surface treatment agent. 電気伝導率が1.0S/m以上6.0S/m以下の範囲内である、請求項1〜のいずれか一項に記載の電解処理用金属表面処理剤。 The metal surface treatment agent for electrolytic treatment according to any one of claims 1 to 7 , wherein the electric conductivity is in a range of 1.0 S / m or more and 6.0 S / m or less. 溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、
前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(P/Zr)が0.04以上0.5以下の範囲内であり、
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(M/Zr)が0.05以上2.5以下の範囲内であ
処理対象金属が、Sn系めっきである、
電解処理用金属表面処理剤の製造方法であって、
前記溶解Zr成分、前記溶解F成分、前記溶解P成分、前記溶解金属M成分及び前記陰イオンの供給源となる一種以上の原料を液体媒体に添加して混合する工程を含む
ことを特徴とする製造方法。
One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
The ratio (P w / Zr w ) of the converted mass (P w ) of P element of the dissolved P component to the converted mass (Zr w ) of Zr element of the dissolved Zr component is in the range of 0.04 or more and 0.5 or less. Within
Ratio (M w / Zr w ) of reduced mass (M w ) of metal element (Zn element, Mn element, Cu element) of dissolved metal M component and reduced mass (Zr w ) of Zr element of dissolved Zr component There Ri der range of 0.05 to 2.5,
The metal to be treated is Sn-based plating.
A method for producing a metal surface treatment agent for electrolytic treatment,
It includes a step of adding and mixing one or more raw materials to be a supply source of the dissolved Zr component, the dissolved F component, the dissolved P component, the dissolved metal M component, and the anion to a liquid medium. Production method.
前記処理対象金属がSnとFeとの合金めっきである、請求項に記載の電解処理用金属表面処理剤の製造方法。 The method for producing a metal surface treatment agent for electrolytic treatment according to claim 9 , wherein the metal to be treated is alloy plating of Sn and Fe. 溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、  One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
前記溶解P成分のP元素の換算質量(P  Reduced mass of P element of the dissolved P component (P w )と前記溶解Zr成分のZr元素の換算質量(Zr) And the converted mass of Zr element of the dissolved Zr component (Zr w )との比(P) (P) w /Zr/ Zr w )が0.04以上0.5以下の範囲内であり、) Is in the range of 0.04 to 0.5,
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M  Converted mass (M of metal element (Zn element, Mn element, Cu element) of the dissolved metal M component w )と前記溶解Zr成分のZr元素の換算質量(Zr) And the converted mass of Zr element of the dissolved Zr component (Zr w )との比(M) And ratio (M w /Zr/ Zr w )が0.05以上2.5以下の範囲内であり、) Is in the range of 0.05 to 2.5,
処理対象金属が、ニッケルめっきである、  The metal to be treated is nickel plating.
電解処理用金属表面処理剤の製造方法であって、A method for producing a metal surface treatment agent for electrolytic treatment,
前記溶解Zr成分、前記溶解F成分、前記溶解P成分、前記溶解金属M成分及び前記陰イオンの供給源となる一種以上の原料を液体媒体に添加して混合する工程を含む  A step of adding and mixing one or more raw materials serving as a supply source of the dissolved Zr component, the dissolved F component, the dissolved P component, the dissolved metal M component, and the anion to a liquid medium.
ことを特徴とする製造方法。The manufacturing method characterized by the above-mentioned.
前記溶解F成分のF元素の換算質量(F)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(F/Zr)が1.3以上2.5以下の範囲内である、請求項9〜11のいずれか一項に記載の電解処理用金属表面処理剤の製造方法。 The ratio (F w / Zr w ) of the converted mass (F w ) of the F element of the dissolved F component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is 1.3 to 2.5 The manufacturing method of the metal surface treating agent for electrolytic treatment as described in any one of Claims 9-11 which is inside. Zr元素濃度が1000mg/L以上1950mg/L以下の範囲内である、請求項9〜12に記載の電解処理用金属表面処理剤の製造方法。 The method for producing a metal surface treatment agent for electrolytic treatment according to claims 9 to 12 , wherein the Zr element concentration is in the range of 1000 mg / L or more and 1950 mg / L or less. pHが3.4以上4.8以下の範囲内である、請求項9〜1のいずれか一項に記載の電解処理用金属表面処理剤の製造方法。 pH is in the range of 3.4 to 4.8 or less, the production method of electrolytic treatment for metal surface treatment agent according to any one of claims 9-1 3. さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)及び溶解アンモ態N成分のN元素換算質量(N)の合計質量と、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素の換算質量(M)、前記溶解Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)、前記溶解アンモ態N成分のN元素の換算質量(N)、前記溶解Na成分のNa元素の換算質量(Na)及び前記溶解K成分のK元素の換算質量(K)の合計質量との比CA:{(Zr+M+Sn+Fe+N)/(Zr+M+Sn+Fe+N+Na+K)}が0.9以上である、請求項9〜1のいずれか一項に記載の電解処理用金属表面処理剤の製造方法。 Furthermore, it may contain at least one component selected from the group consisting of dissolved Sn component, dissolved Fe component, dissolved ammonia N component, dissolved Na component and dissolved K component. In this case, the Zr element of the dissolved Zr component Converted mass (Zr w ), converted mass (M w ) of the metal element (Zn element, Mn element, Cu element) of the dissolved metal M component, converted mass (Sn w ) of the Sn element of the dissolved Sn component, The total mass of the converted Fe element of the dissolved Fe component (Fe w ) and the converted N element converted mass (N w ) of the dissolved ammonia N component, the converted mass (Zr w ) of the Zr element of the dissolved Zr component, and the dissolution Converted mass (M w ) of metal element of metal M component, converted mass of Sn element of dissolved Sn component (Sn w ), converted mass of Fe element of dissolved Fe component (Fe w ), dissolved dissolved N component N element Reduced mass (N w), the melting mass in terms of Na component as Na element (Na w) and the ratio CA of the total mass of the reduced mass (K w) of K elements of the dissolution K component: {(Zr w + M w + Sn w + Fe w + N w) / (Zr w + M w + Sn w + Fe w + N w + Na w + K w)} is 0.9 or more, for the electrolytic treatment according to any one of claims 9-1 4 A method for producing a metal surface treatment agent. 電気伝導率が1.0S/m以上6.0S/m以下の範囲内である、請求項9〜1のいずれか一項に記載の電解処理用金属表面処理剤の製造方法。 Electrical conductivity in the range of less than 1.0 S / m or more 6.0 s / m, method of manufacturing an electrolytic process for metal surface treatment agent according to any one of claims 9-1 5. 処理対象金属が電解処理用金属処理剤に浸漬された状態にて、当該処理対象金属を陰極側として通電する工程を含む、金属材料の表面処理方法において、
前記電解処理用金属処理剤が、
溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、
前記溶解P成分のP元素の換算質量(P)と前記溶解Zr成分のZr元素の換算質量(Zr)との質量比(P/Zr)が0.04以上0.5以下の範囲内であり、
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(M/Zr)が0.05以上2.5以下の範囲内であり、
前記処理対象金属が、Sn系めっきである、
ことを特徴とする表面処理方法。
In the surface treatment method of a metal material, including a step of energizing the treatment target metal as a cathode side in a state where the treatment target metal is immersed in the metal treatment agent for electrolytic treatment,
The metal treatment agent for electrolytic treatment is
One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
The mass ratio (P w / Zr w ) of the converted mass (P w ) of the P element of the dissolved P component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is 0.04 or more and 0.5 or less. Is in range,
Ratio (M w / Zr w ) of reduced mass (M w ) of metal element (Zn element, Mn element, Cu element) of dissolved metal M component and reduced mass (Zr w ) of Zr element of dissolved Zr component There Ri der range of 0.05 to 2.5,
The metal to be treated is Sn-based plating.
A surface treatment method characterized by the above.
前記処理対象金属がSnとFeとの合金めっきである、請求項17に記載の表面処理方法。 The surface treatment method according to claim 17 , wherein the metal to be treated is alloy plating of Sn and Fe. 処理対象金属が電解処理用金属処理剤に浸漬された状態にて、当該処理対象金属を陰極側として通電する工程を含む、金属材料の表面処理方法において、  In the surface treatment method of a metal material, including a step of energizing the treatment target metal as a cathode side in a state where the treatment target metal is immersed in the metal treatment agent for electrolytic treatment,
前記電解処理用金属処理剤が、  The metal treatment agent for electrolytic treatment is
溶解Zr成分と、溶解F成分と、溶解P成分と、溶解Zn成分、溶解Mn成分及び溶解Cu成分からなる群から選択される1種以上の溶解金属M成分と、硝酸イオン、塩化物イオン及び硫酸イオンからなる群から選択される1種以上の陰イオンと、を含有し、  One or more dissolved metal M components selected from the group consisting of a dissolved Zr component, a dissolved F component, a dissolved P component, a dissolved Zn component, a dissolved Mn component and a dissolved Cu component, nitrate ions, chloride ions and One or more anions selected from the group consisting of sulfate ions,
前記溶解P成分のP元素の換算質量(P  Reduced mass of P element of the dissolved P component (P w )と前記溶解Zr成分のZr元素の換算質量(Zr) And the converted mass of Zr element of the dissolved Zr component (Zr w )との質量比(P) And mass ratio (P w /Zr/ Zr w )が0.04以上0.5以下の範囲内であり、) Is in the range of 0.04 to 0.5,
前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M  Converted mass (M of metal element (Zn element, Mn element, Cu element) of the dissolved metal M component w )と前記溶解Zr成分のZr元素の換算質量(Zr) And the converted mass of Zr element of the dissolved Zr component (Zr w )との比(M) And ratio (M w /Zr/ Zr w )が0.05以上2.5以下の範囲内であり、) Is in the range of 0.05 to 2.5,
前記処理対象金属が、ニッケルめっきである、  The metal to be treated is nickel plating.
ことを特徴とする表面処理方法。A surface treatment method characterized by the above.
前記電解処理用金属処理剤における、前記溶解F成分のF元素の換算質量(F)と前記溶解Zr成分のZr元素の換算質量(Zr)との比(F/Zr)が、1.3以上2.5以下の範囲内である、請求項17〜19のいずれか一項に記載の表面処理方法。 In the metal treatment agent for electrolytic treatment, the ratio (F w / Zr w ) between the converted mass (F w ) of the F element of the dissolved F component and the converted mass (Zr w ) of the Zr element of the dissolved Zr component is The surface treatment method according to any one of claims 17 to 19 , which is within a range of 1.3 or more and 2.5 or less. 前記電解処理用金属処理剤におけるZr元素濃度が、1000mg/L以上1950mg/L以下の範囲内である、請求項17〜20のいずれか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 17 to 20, wherein the Zr element concentration in the metal treatment agent for electrolytic treatment is in a range of 1000 mg / L or more and 1950 mg / L or less. 前記電解処理用金属処理剤におけるpHが、3.4以上4.8以下の範囲内である、請求項17〜21のいずれか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 17 to 21 , wherein a pH of the metal treatment agent for electrolytic treatment is in a range of 3.4 or more and 4.8 or less. 前記電解処理用金属処理剤が、さらに、溶解Sn成分、溶解Fe成分、溶解アンモ態N成分、溶解Na成分及び溶解K成分からなる群から選択される少なくとも1成分を含有してもよく、この場合、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属元素(Zn元素、Mn元素、Cu元素)の換算質量(M)、前記Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)及び溶解アンモ態N成分のN元素の換算質量(N)の合計質量と、前記溶解Zr成分のZr元素の換算質量(Zr)、前記溶解金属M成分の金属の換算質量(M)、前記Sn成分のSn元素の換算質量(Sn)、前記溶解Fe成分のFe元素の換算質量(Fe)、前記溶解アンモ態N成分のN元素の換算質量(N)、前記溶解Na成分のNa元素の換算質量(Na)及び前記溶解K成分のK元素の換算質量(K)の合計質量との質量比CA:{(Zr+M+Sn+Fe+N)/(Zr+M+Sn+Fe+N+Na+K)}が0.9以上である、請求項17〜2のいずれか一項に記載の表面処理方法。 The metal treatment agent for electrolytic treatment may further contain at least one component selected from the group consisting of a dissolved Sn component, a dissolved Fe component, a dissolved ammonia N component, a dissolved Na component, and a dissolved K component. In this case, the converted mass (Zr w ) of the Zr element of the dissolved Zr component, the converted mass (M w ) of the metal element (Zn element, Mn element, Cu element) of the dissolved metal M component, the Sn element of the Sn component The total mass of the converted mass (Sn w ), the converted mass of the Fe element of the dissolved Fe component (Fe w ), and the converted mass (N w ) of the N element of the dissolved ammonia N component, and the Zr element of the dissolved Zr component Conversion mass (Zr w ), conversion mass of metal of the dissolved metal M component (M w ), conversion mass of Sn element of the Sn component (Sn w ), conversion mass of Fe element of the dissolution Fe component (Fe w ) The dissolution ann Weight ratio of the total mass of the reduced mass of the N elements of the state N components (N w), in terms of mass of Na element of the dissolved Na component (Na w) and reduced mass of K elements of the lysis K component (K w) CA: {(Zr w + M w + Sn w + Fe w + N w) / (Zr w + M w + Sn w + Fe w + N w + Na w + K w)} is 0.9 or more, claim 17-2 2 The surface treatment method according to one item. 前記電解処理用金属処理剤の電気伝導率が、1.0S/m以上6.0S/m以下の範囲内である、請求項17〜2のいずれか一項に記載の表面処理方法。 The electrical conductivity of the electrolytic treatment for metal treatment agent is in the range of less than 1.0 S / m or more 6.0 s / m, the surface treatment method according to any one of claims 17 to 2 3.
JP2016142997A 2016-07-21 2016-07-21 Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material Active JP6352986B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016142997A JP6352986B2 (en) 2016-07-21 2016-07-21 Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material
CN201780041172.5A CN109415834B (en) 2016-07-21 2017-06-16 Metal surface treatment agent for electrolytic treatment
PCT/JP2017/022330 WO2018016250A1 (en) 2016-07-21 2017-06-16 Metal surface treatment agent for electrolytic treatment
TW106123793A TWI720228B (en) 2016-07-21 2017-07-17 Metal surface treatment agent for electrolytic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142997A JP6352986B2 (en) 2016-07-21 2016-07-21 Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material

Publications (2)

Publication Number Publication Date
JP2018012857A JP2018012857A (en) 2018-01-25
JP6352986B2 true JP6352986B2 (en) 2018-07-04

Family

ID=60992136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142997A Active JP6352986B2 (en) 2016-07-21 2016-07-21 Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material

Country Status (4)

Country Link
JP (1) JP6352986B2 (en)
CN (1) CN109415834B (en)
TW (1) TWI720228B (en)
WO (1) WO2018016250A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021102413A1 (en) * 2019-11-22 2021-05-27 Ppg Industries Ohio, Inc. Methods for electrolytically depositing pretreatment compositions
WO2021124510A1 (en) * 2019-12-19 2021-06-24 日本製鉄株式会社 Sn-plated steel sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828409B2 (en) * 1994-03-24 1998-11-25 日本パーカライジング株式会社 Surface treatment composition for aluminum-containing metal material and surface treatment method
JP2004307923A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Surface-treated steel plate having excellent corrosion resistance, coatability and workability
JP2005023422A (en) * 2003-06-09 2005-01-27 Nippon Paint Co Ltd Metal surface treatment method and surface-treated metal
WO2007061011A1 (en) * 2005-11-22 2007-05-31 Nihon Parkerizing Co., Ltd. Chemical conversion coated metal plate and method for producing same
JP4972240B2 (en) * 2006-09-07 2012-07-11 Jfeスチール株式会社 Surface-treated steel sheet
US9121105B2 (en) * 2010-04-06 2015-09-01 Nippon Steel & Sumitomo Metal Corporation Process for producing environmentally-friendly steel sheet for container material, environmentally-friendly steel sheet for container material, and laminated and pre-coated steel sheet for container material using the same
TWI449813B (en) * 2010-06-29 2014-08-21 Nippon Steel & Sumitomo Metal Corp Steel sheet for container and manufacturing method thereof
CN102787311A (en) * 2012-07-16 2012-11-21 安徽未来表面技术有限公司 Rare earth-fluorozirconate compounding processing agent technology suitable for catholic electrophoresis pretreatment
CN103805977A (en) * 2012-11-08 2014-05-21 上海丰野表面处理剂有限公司 Chromium-free passivation liquid for treating tin-plated steel plate
JP6382593B2 (en) * 2014-06-24 2018-08-29 株式会社東芝 Welding method
JP6569194B2 (en) * 2014-08-06 2019-09-04 Jfeスチール株式会社 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Also Published As

Publication number Publication date
CN109415834A (en) 2019-03-01
TWI720228B (en) 2021-03-01
JP2018012857A (en) 2018-01-25
WO2018016250A1 (en) 2018-01-25
CN109415834B (en) 2021-05-18
TW201829850A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
CN107735511B (en) Method for nickel-free phosphating of metal surfaces
JP5837885B2 (en) Multi-step method for anti-corrosion pretreatment of metal parts
CN103108988B (en) Steel plate for container and manufacture method thereof
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
KR20120125547A (en) Steel sheet for container and method for producing same
JP6352986B2 (en) Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material
WO2010005042A1 (en) Tin-plated steel plate and process for producing the tin-plated steel plate
WO2018042980A1 (en) Surface-treated steel sheet, organic resin-coated steel sheet, and container using same
US10577705B2 (en) Steel sheet for container and method for producing steel sheet for container
JPH0436498A (en) Surface treatment of steel wire
JP6352987B2 (en) Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material
JP7279019B2 (en) Improved method for nickel-free phosphating of metal surfaces
JP5337760B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
US10563311B2 (en) Steel sheet for container and method for producing steel sheet for container
JP5458198B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JP2018095907A (en) Oxide film removal agent, oxide film removal method, surface treatment method, and method for producing metallic material with oxide film removed
BR112018070593B1 (en) METHOD FOR PHOSPHATIZING A METALLIC SURFACE, NICKEL-FREE, ACID AND AQUEOUS PHOSPHATIZATION COMPOSITION AND CONCENTRATE
MXPA01008807A (en) Nonsludging zinc phosphating composition and process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250