JP4805613B2 - Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid - Google Patents

Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid Download PDF

Info

Publication number
JP4805613B2
JP4805613B2 JP2005177834A JP2005177834A JP4805613B2 JP 4805613 B2 JP4805613 B2 JP 4805613B2 JP 2005177834 A JP2005177834 A JP 2005177834A JP 2005177834 A JP2005177834 A JP 2005177834A JP 4805613 B2 JP4805613 B2 JP 4805613B2
Authority
JP
Japan
Prior art keywords
metal plate
surface treatment
layer
resin
treatment layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005177834A
Other languages
Japanese (ja)
Other versions
JP2006348360A (en
Inventor
亙 黒川
光英 粟飯原
成也 高橋
宏 松林
政信 松原
正説 石田
知正 毎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Kohan Co Ltd
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd, Toyo Seikan Kaisha Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005177834A priority Critical patent/JP4805613B2/en
Publication of JP2006348360A publication Critical patent/JP2006348360A/en
Application granted granted Critical
Publication of JP4805613B2 publication Critical patent/JP4805613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、表面処理金属板及びその表面処理方法に関し、より詳細には、ノンクロムで環境性に優れていると共に、有機樹脂被膜との密着性、接着性、耐食性、耐デント性、耐磨耗性等に優れた表面処理金属板、及びこのような表面処理金属板の表面処理方法、並びにかかる表面処理金属板に樹脂被覆して成る樹脂被覆金属板及びこれから成る金属缶及び缶蓋に関する。   The present invention relates to a surface-treated metal plate and a surface treatment method thereof, and more specifically, it is non-chromium and has excellent environmental properties, and adhesion to an organic resin film, adhesion, corrosion resistance, dent resistance, and wear resistance. The present invention relates to a surface-treated metal plate excellent in properties, a surface treatment method for such a surface-treated metal plate, a resin-coated metal plate obtained by resin-coating such a surface-treated metal plate, a metal can and a can lid comprising the same.

鋼板、亜鉛系めっき鋼板、アルミニウム系めっき鋼板、亜鉛合金板、錫系めっき鋼板、アルミニウム箔、アルミニウム合金板、マグネシウム合金板等の金属材料と有機膜との密着性を向上させる処理として、また、接着剤を用いて金属材料を同種又は異種の金属材料と接合するための処理として、クロメート処理、リン酸塩処理、シランカップリング剤による処理、陽極酸化処理などが従来から知られている。
これらの処理を利用した金属材料は、家電製品や建材、車両、航空機、容器などの用途に広く利用されており、中でも、クロメート処理はその優れた耐食性と密着性から最も広く利用されてきた。
クロメート処理を処理方法から大別すると、化成型(反応型・塗布型)と電解型に分類でき、形成被膜から大別すると、自己修復効果をより大きく利用するために最終製品中に微量の6価クロムが残存するタイプと最終製品中に6価クロムが残存しないタイプに分類できる。
As a treatment for improving the adhesion between a metal material such as a steel plate, a zinc-based plated steel plate, an aluminum-based plated steel plate, a zinc alloy plate, a tin-based plated steel plate, an aluminum foil, an aluminum alloy plate, and a magnesium alloy plate, and an organic film, As treatments for joining a metal material to the same or different metal materials using an adhesive, a chromate treatment, a phosphate treatment, a treatment with a silane coupling agent, an anodizing treatment, and the like are conventionally known.
Metal materials using these treatments are widely used for home appliances, building materials, vehicles, aircraft, containers, and the like, and among them, chromate treatment has been most widely used due to its excellent corrosion resistance and adhesion.
Chromate treatment can be broadly classified into treatment methods, and it can be classified into chemical molding (reaction type / coating type) and electrolytic type. It can be classified into a type in which hexavalent chromium remains and a type in which hexavalent chromium does not remain in the final product.

最終製品中に微量の6価クロムが残存するタイプについては、廃棄時に土壌等の環境に溶出する可能性が指摘されており、ヨーロッパを中心にクロメート処理の使用を撤廃する方向に進んでいる。また、何れのタイプのクロメート処理でも処理液中には有害物質である6価クロムを含んでいることから、環境上の種々の問題を有している。すなわち、6価クロム含有処理液の排水及び排気処理等を完全に行い、外部に排出させないことが必須であり、排水及び排気処理設備、廃棄処理費用等に多額の費用が必要になる。更に排水処理スラッジの移動や排気等についても規制が強くなっていることから、従来のクロメート処理に匹敵するノンクロム系の表面処理の開発が望まれている。   As for the type in which a small amount of hexavalent chromium remains in the final product, it has been pointed out that it may elute into the environment such as soil at the time of disposal, and the use of chromate treatment is proceeding mainly in Europe. In addition, any type of chromate treatment has various environmental problems because the treatment liquid contains hexavalent chromium which is a harmful substance. That is, it is indispensable to completely drain and exhaust the hexavalent chromium-containing treatment liquid and not to discharge it to the outside, and a large amount of cost is required for drainage and exhaust treatment facilities, disposal costs, and the like. Furthermore, since restrictions on the movement and exhaust of wastewater treatment sludge are becoming stronger, the development of a non-chromium surface treatment comparable to the conventional chromate treatment is desired.

金属容器用の金属板では、当然、最終製品には6価クロムが残存しないタイプのクロメート処理が利用されており、更にその上に有機樹脂等のコーティングが行われている。例えば、錫めっき鋼板を重クロム酸ソーダの水溶液中で陰極電解したり、鋼板をフッ化物含有無水クロム酸水溶液中で陰極電解処理したり、アルミニウム合金をリン酸クロメート処理し、その上に有機樹脂がコーティングされたものが用いられている。   As a matter of course, a metal plate for a metal container uses a chromate treatment of a type in which hexavalent chromium does not remain in the final product, and is further coated with an organic resin or the like. For example, cathodic electrolysis of a tin-plated steel plate in an aqueous solution of sodium dichromate, cathodic electrolysis treatment of a steel plate in a fluoride-containing chromic anhydride aqueous solution, or treatment of an aluminum alloy with phosphoric acid chromate and an organic resin thereon The one coated with is used.

アルミニウム合金系金属板のノンクロム表面処理としては、ジルコニウム、チタン、またはこれらの化合物と、リン酸塩及びフッ化物を含有し、約pH1.0〜4.0の酸性処理液を用いて、表面上にジルコニウム及び/又はチタンの酸化物を主成分とする化成被膜を形成したものが実際に利用されており、有機樹脂との相性によっては化成被膜自体を無くしたものも実用されている(例えば特許文献1参照)。   As the non-chromium surface treatment of the aluminum alloy metal plate, an acidic treatment solution containing zirconium, titanium, or a compound thereof, phosphate and fluoride and having a pH of about 1.0 to 4.0 is used. In fact, a film formed with a chemical conversion film mainly composed of an oxide of zirconium and / or titanium is actually used, and depending on the compatibility with an organic resin, a film without the chemical conversion film itself has been put into practical use (for example, patents). Reference 1).

近年、金属容器の衛生性や内容品のフレーバー保持性の観点から、ポリエステル樹脂を被覆したプレコート材料が広く利用されている。しかしながら、ポリエステル樹脂を利用した場合、従来広く用いられてきたエポキシフェノール系塗料やアクリルエポキシ系塗料に比較して透水性が高く、このことがプレコートであることと相俟って、クロメート処理を利用しなければ密着性や耐食性の点で内容品に制限を受ける場合があった。また、このようなポリエステル樹脂をアルミニウムに被覆したものをアルミニウム蓋材として用いた場合には、クロメート処理であっても、密着性が十分でないという問題があった。   In recent years, a precoat material coated with a polyester resin has been widely used from the viewpoint of hygiene of metal containers and flavor retention of contents. However, when polyester resin is used, it has higher water permeability compared to epoxy phenolic paints and acrylic epoxy paints that have been widely used in the past. Otherwise, the contents may be restricted in terms of adhesion and corrosion resistance. Further, when such a polyester resin coated with aluminum is used as an aluminum lid member, there is a problem that the adhesion is not sufficient even in the chromate treatment.

すなわち、プレコート材料の加工製品の例である、ポリエステル樹脂を被覆した缶や缶蓋では、プレコート金属板を出発材料として利用できるという利点があるが、缶胴部や缶蓋スコア部などの高加工部でのポリエステル樹脂の密着性低下や缶落下などの衝撃によって生じるポリエステル樹脂からのクラック部分からの腐食、またレトルト殺菌時における密着性の低下、更にはポリエステル被膜自体に欠陥がなくても内容品の成分によっては透過イオンによる腐食の誘発等といった、缶成形後に表面処理及び塗料をポストコートしていた従来の製法とは異なる問題点を有している。   In other words, cans and can lids coated with polyester resin, which are examples of processed products of precoat materials, have the advantage that a precoated metal plate can be used as a starting material, but can be highly processed such as can bodies and can lid score parts. Corrosion from the cracked portion of the polyester resin caused by impact such as dropping of the polyester resin at the part or dropping of the can, deterioration of adhesion during retort sterilization, and even if the polyester coating itself is not defective Depending on the component, there are problems different from the conventional manufacturing method in which surface treatment and post-coating of paint are performed after can molding, such as induction of corrosion by permeated ions.

このような観点から、更に、アルミニウム合金系金属板のノンクロム表面処理として、カーボンを主成分とする有機化合物とリン化合物とジルコニウムあるいはチタニウム化合物を含む有機−無機複合被膜を形成する方法(特許文献2)や、アルミニウム基体の表面に無機物を主体とする表面処理層、その上に水性フェノール樹脂を主体とする有機表面処理層を形成する方法(特許文献3)、主に蓋材としての観点から陽極酸化処理
(特許文献4,5,6及び7)などが提案されており、他にもポリアクリル酸−ジルコニウム化合物による処理(特許文献8及び非特許文献1)などが提案されている。
From such a viewpoint, a method of forming an organic-inorganic composite coating containing an organic compound containing carbon as a main component, a phosphorus compound, and a zirconium or titanium compound as a non-chromium surface treatment of an aluminum alloy metal plate (Patent Document 2). ), A method of forming a surface treatment layer mainly composed of an inorganic substance on the surface of an aluminum substrate, and an organic surface treatment layer mainly composed of an aqueous phenol resin thereon (Patent Document 3), and an anode mainly from the viewpoint of a lid material Oxidation treatment
(Patent Documents 4, 5, 6 and 7) are proposed, and other treatments such as a polyacrylic acid-zirconium compound (Patent Document 8 and Non-Patent Document 1) are also proposed.

一方、鋼板のノンクロム表面処理の多くは、自動車用鋼板及び家電用鋼板を中心に提案されており、バナジン酸塩被膜、タングステン酸塩被膜、ジルコニウム酸塩被膜、タンニン酸塩被膜、珪酸塩被膜等の検討(非特許文献2,3及び4)が行われている。容器用鋼板のノンクロム処理として提案されているものは、錫めっき鋼板を下地としているものがほとんどである。例えば、錫めっき後にシランカップリング剤塗布層を設けた鋼板及び樹脂被覆鋼板(特許文献9,10,11及び12)、錫めっき後にTi,Mo,Vの何れか1種と、リン酸及び/またはリン酸塩に由来する物質を主体とする被膜(特許文献13)、ぶりき基材をタングステン酸ソーダ溶液中で陰陽周期的電解を行い、タングステンと錫の複合酸化膜を形成させる方法(非特許文献5)等が提案されている。他に、アルミニウム板にも鋼板にも適用でき、容器用としても利用できるノンクロム処理としてZr,O,Fを主成分とし、リン酸イオンを含有しないことを特徴とする表面処理金属板(特許文献14)が提案されている。   On the other hand, most of the non-chromium surface treatment of steel sheets has been proposed mainly for automobile steel sheets and steel sheets for household appliances, such as vanadate coating, tungstate coating, zirconate coating, tannate coating, silicate coating, etc. (Non-Patent Documents 2, 3 and 4) have been studied. Most of the proposals for the non-chromium treatment of steel plates for containers are based on tin-plated steel plates. For example, a steel plate and a resin-coated steel plate provided with a silane coupling agent coating layer after tin plating (Patent Documents 9, 10, 11 and 12), any one of Ti, Mo, V after tin plating, phosphoric acid and / or Alternatively, a film mainly composed of a phosphate-derived substance (Patent Document 13), and a method of forming a composite oxide film of tungsten and tin by subjecting a tinting base material to negative and positive periodic electrolysis in a sodium tungstate solution (non- Patent document 5) etc. are proposed. In addition, it can be applied to both aluminum plates and steel plates, and is a surface-treated metal plate characterized by containing Zr, O, F as a main component and containing no phosphate ions as a non-chromic treatment that can be used for containers (Patent Documents) 14) has been proposed.

特開昭52−131937号公報JP 52-131937 A 特開平11−229156号公報JP-A-11-229156 特開2001−121648号公報JP 2001-121648 A 特開平11−91034号公報JP-A-11-91034 特開2002−266099号公報JP 2002-266099 A 特開2005−059471号公報JP 2005-059471 A 特開2005−059472号公報JP 2005-059472 A 特開平06−322552号公報Japanese Unexamined Patent Publication No. 06-322552 特開2002−113809号公報JP 2002-113809 A 特開2002−285354号公報JP 2002-285354 A 特開2003−231989号公報JP 2003-231989 特開2004−345214号公報JP 2004-345214 A 特開2001−73185JP 2001-73185 A 特開2005−97712号公報JP-A-2005-97712 「軽金属」(1990)p298−p304"Light Metal" (1990) p298-p304 「Material Stage」 (2004)VOL.4,No.7 p4-p9“Material Stage” (2004) VOL.4, No.7 p4-p9 「Material Stage」 (2004)VOL.4,No.7 p10-p16“Material Stage” (2004) VOL.4, No.7 p10-p16 「Material Stage」 (2004)VOL.4,No.7 p30-p38“Material Stage” (2004) VOL.4, No.7 p30-p38 Thin Solid Films、72、2、(1980) 237〜246頁Thin Solid Films, 72, 2, (1980) 237-246

しかしながら、カーボンを主成分とする有機化合物とリン化合物とジルコニウムあるいはチタニウム化合物を含む有機−無機複合被膜を形成する方法では、ある程度密着性は向上するが、耐食性が十分でなく、またアルミニウム基体の表面に無機物を主体とする表面処理層、その上に水性フェノール樹脂を主体とする有機表面処理層を形成する方法では、密着性、耐食性ともにある程度向上するが、工程数が増えるとともに、薬液使用後の廃液処理が煩雑化するという問題があった。
また、陽極酸化処理を利用した方法では、一次密着性は良好であるが、内容物充填後のレトルト殺菌処理により密着性が低下するという傾向にある他、処理液の冷却用熱交換設備や大容量電源などにもコストがかかる上、ランニング時にも処理に大電力を必要とするためコスト高となる問題があった。
更に、アルミニウム箔のような基材自身の厚みが薄い場合には、陽極酸化処理時の基材の溶解や加工性の乏しい陽極酸化膜の占める割合が高くなり、箔の柔軟性を低下させるという問題があった。
However, in the method of forming an organic-inorganic composite film containing an organic compound mainly composed of carbon, a phosphorus compound, and zirconium or a titanium compound, the adhesion is improved to some extent, but the corrosion resistance is not sufficient, and the surface of the aluminum substrate In the method of forming a surface treatment layer mainly composed of an inorganic substance and an organic surface treatment layer mainly composed of a water-based phenol resin on the surface treatment layer, adhesion and corrosion resistance are improved to some extent. There has been a problem that the waste liquid treatment becomes complicated.
In the method using anodizing treatment, the primary adhesion is good, but the adhesiveness tends to decrease due to the retort sterilization treatment after filling the contents. In addition to the cost of the capacity power source and the like, there is a problem of high cost because a large amount of power is required for processing even during running.
Furthermore, when the thickness of the base material itself, such as an aluminum foil, is thin, the proportion of the anodized film having poor processability and dissolution of the base material during anodization increases, and the flexibility of the foil is reduced. There was a problem.

ポリアクリル酸−ジルコニウム化合物によるアルミニウム材の処理では、形成される被膜は有機−無機複合被膜であり、処理方法も基本的に塗布型処理であるため、高速処理時の金属材料基体との濡れ性や密着性の点で問題がある。
更に、上記従来技術の多くは、用いる金属板がアルミニウム合金に限定されるものであり、金属材料全体の課題を解決できるものではない。
多様な材料に処理が可能という意味では、AlやZrOなどをPVDやCVDなどによって、金属材料の表面に形成するという公知の方法が考えられる。しかしながら、上記の方法は真空を要するために、設備にコストがかかる上、高速処理が困難であり、結果的に更にコスト高となる。また、金属板と処理膜との密着性や加工後の耐食性を確保することが難しい。同様に、湿式法により有機ジルコニウム化合物などを塗布後加熱乾燥して酸化膜を得る方法においても、金属板と処理膜との密着性や加工後の耐食性を確保することが難しい。
Zr,O,Fを主成分とし、リン酸イオンを含有しないことを特徴とする表面処理は、アルミニウム板にも鋼板にも利用できるが、錫めっき鋼板に処理した場合に、錫酸化膜が成長しやすく、処理後の経時や加熱による変色が起こりやすいといった問題点があった。
In the treatment of an aluminum material with a polyacrylic acid-zirconium compound, the coating film to be formed is an organic-inorganic composite coating, and the treatment method is basically a coating type treatment. There is a problem in terms of adhesion.
Furthermore, in many of the above prior arts, the metal plate to be used is limited to an aluminum alloy, and cannot solve the problems of the entire metal material.
In the sense that various materials can be processed, a known method of forming Al 2 O 3 , ZrO 2 or the like on the surface of the metal material by PVD, CVD, or the like can be considered. However, since the above method requires a vacuum, equipment is expensive and high-speed processing is difficult, resulting in a further increase in cost. In addition, it is difficult to ensure adhesion between the metal plate and the treatment film and corrosion resistance after processing. Similarly, in the method of obtaining an oxide film by applying an organic zirconium compound or the like by a wet method and then drying by heating, it is difficult to ensure the adhesion between the metal plate and the treated film and the corrosion resistance after processing.
The surface treatment characterized by containing Zr, O, F as a main component and not containing phosphate ions can be used for both aluminum plates and steel plates, but tin oxide films grow when treated on tin-plated steel plates. There is a problem that the color is likely to change due to aging after treatment and heating.

従って本発明の目的は、ノンクロムの表面処理で環境性に優れ、様々な材料に適用でき、錫めっき鋼板に用いても耐変色性に優れると共に、有機樹脂被膜との密着性、接着性、耐食性、耐デント性等の諸特性に優れた表面処理金属板、及びこのような表面処理金属板の表面処理方法を提供することである。
また本発明の他の目的は、水溶液からの高速処理により製造が容易で低コストの表面処理方法を提供することである。
本発明の更に他の目的は、上記表面処理金属板に有機樹脂、中でも特にポリエステル樹脂を被覆して成る樹脂被覆金属板から成る密着性、耐食性、耐デント性等に優れた金属缶及び缶蓋を提供することである。
また、本発明の他の目的は、処理被膜の主成分がAlとOであり、且つ、構造材料として多く利用されている金属である鉄にもアルミにも利用できる、質の面でも量の面でも環境に優しい処理方法を提供することである。
Therefore, the object of the present invention is a non-chromium surface treatment that is excellent in environmental properties, can be applied to various materials, has excellent discoloration resistance even when used for a tin-plated steel sheet, and has adhesion, adhesion, and corrosion resistance with an organic resin coating. Another object of the present invention is to provide a surface-treated metal plate excellent in various properties such as dent resistance and a surface treatment method for such a surface-treated metal plate.
Another object of the present invention is to provide a low-cost surface treatment method that is easy to manufacture by high-speed treatment from an aqueous solution.
Still another object of the present invention is to provide a metal can and a lid having excellent adhesion, corrosion resistance, dent resistance, and the like comprising a resin-coated metal plate obtained by coating the surface-treated metal plate with an organic resin, particularly a polyester resin. Is to provide.
Another object of the present invention is that the main components of the treatment film are Al and O, and can be used for both iron and aluminum, which are metals that are widely used as structural materials. It is to provide an environmentally friendly treatment method.

本発明によれば、金属基体(Alを除く)の表面に、水溶液からの陰極電解処理により析出して形成された無機表面処理層を有する表面処理金属板から成る金属缶であって、前記無機表面処理層が、Al及びOを主体とするアルミニウムの水酸化物又はオキシ水酸化物、及びZr,Tiのうち少なくとも1種、から成る表面処理金属板の少なくとも片面上に有機樹脂が被覆されて成る樹脂被覆金属板から成ることを特徴とする金属缶が提供される。 According to the present invention, there is provided a metal can comprising a surface-treated metal plate having an inorganic surface treatment layer formed by being deposited on the surface of a metal substrate (excluding Al) by cathodic electrolysis from an aqueous solution, The surface treatment layer is coated with an organic resin on at least one surface of a surface treatment metal plate made of aluminum hydroxide or oxyhydroxide mainly composed of Al and O , and at least one of Zr and Ti. A metal can characterized by comprising a resin-coated metal plate is provided.

本発明によればまた、金属基体(Alを除く)の表面に、水溶液からの陰極電解処理により析出して形成された無機表面処理層を有する表面処理金属板から成る缶蓋であって、前記無機表面処理層が、Al及びOを主体とするアルミニウムの水酸化物又はオキシ水酸化物、及びZr,Tiのうち少なくとも1種、から成る表面処理金属板の少なくとも片面上に有機樹脂が被覆されて成る樹脂被覆金属板から成ることを特徴とする缶蓋が提供される。According to the present invention, there is also provided a can lid comprising a surface-treated metal plate having an inorganic surface treatment layer formed by being deposited by cathodic electrolysis from an aqueous solution on the surface of a metal substrate (excluding Al), The inorganic surface treatment layer is coated with an organic resin on at least one surface of a surface-treated metal plate made of aluminum hydroxide or oxyhydroxide mainly composed of Al and O, and at least one of Zr and Ti. A can lid comprising a resin-coated metal plate is provided.

本発明の金属缶及び缶蓋においては、In the metal can and can lid of the present invention,
1.無機表面処理層の最表面に含有されるOとM(但し、MはAl、またはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、1<O/M<5.5であること、1. The atomic ratio of O and M contained in the outermost surface of the inorganic surface treatment layer (where M is Al or at least one of Al and Ti, Zr) is 1 <O / M <5.5. There is,
2.無機表面処理層の最表層に含有される(P+S)とM(但し、MはAl、またはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、(P+S)/M<0.25であること、2. The atomic ratio of (P + S) and M (wherein M is Al or at least one of Ti and Zr) contained in the outermost surface layer of the inorganic surface treatment layer is (P + S) / M <0. 25,
3.無機表面処理層の膜厚が、Alの重量膜厚で、5〜100mg/m3. The film thickness of the inorganic surface treatment layer is 5 to 100 mg / m2 by weight of Al. 2 であること、Being
4.金属基体が、錫、ニッケル、亜鉛、鉄の1種以上を含むめっき層を有している表面処理鋼板であること4). The metal substrate is a surface-treated steel sheet having a plating layer containing one or more of tin, nickel, zinc, and iron.
5.金属基体の主元素の表面露出率が5%未満であること、5. The surface exposure rate of the main element of the metal substrate is less than 5%,
6.無機表面処理層の上に、Si量として0.8〜30mg/m6). On the inorganic surface treatment layer, 0.8 to 30 mg / m as Si amount 2 のシランカップリング剤を主体とする有機表面処理層が形成されていること、An organic surface treatment layer mainly composed of a silane coupling agent of
7.無機表面処理層の上に、フェノール系水溶性有機化合物を主体とする有機表面処理層が形成されていること、7). An organic surface treatment layer mainly composed of a phenol-based water-soluble organic compound is formed on the inorganic surface treatment layer.
8.有機表面処理層の最表層がNを含有すること、8). The outermost layer of the organic surface treatment layer contains N,
が好適である。Is preferred.
尚、本発明において、Alはアルミニウム、Oは酸素、Fはフッ素、Zrはジルコニウム、Tiはチタン、Pはリン、Sは硫黄、をそれぞれ表す。In the present invention, Al represents aluminum, O represents oxygen, F represents fluorine, Zr represents zirconium, Ti represents titanium, P represents phosphorus, and S represents sulfur.

本発明によれば、金属基体(Alを除く)の表面に、水溶液からの陰極電解処理により析出して形成された無機表面処理層を有する表面処理金属板から成る金属缶であって、前記無機表面処理層が、Al及びOを主体とするアルミニウムの水酸化物又はオキシ水酸化物、及びZr,Tiのうち少なくとも1種から成ることにより、高速生産性、環境保全性、耐傷性、接着性、加工性、密着性に優れた表面処理金属板を低コストで提供することが可能であり、この表面処理金属板に有機樹脂、中でも特にポリエステル樹脂被覆を行った金属板から金属缶を形成することにより、高度の加工部においても、優れた密着性と耐食性とが得られ、また、この表面処理金属板に有機樹脂、中でも特にポリエステル樹脂被覆を行った金属板から缶蓋を形成することにより、加熱殺菌後においても優れた開口性が得られる。 According to the present invention, there is provided a metal can comprising a surface-treated metal plate having an inorganic surface treatment layer formed by being deposited on the surface of a metal substrate (excluding Al) by cathodic electrolysis from an aqueous solution, The surface treatment layer is made of at least one of aluminum hydroxide or oxyhydroxide mainly composed of Al and O , and Zr, Ti, so that high-speed productivity, environmental conservation, scratch resistance, adhesion It is possible to provide a surface-treated metal plate excellent in workability and adhesion at low cost, and a metal can is formed from a metal plate coated with an organic resin, particularly a polyester resin, on the surface-treated metal plate. In this way, excellent adhesion and corrosion resistance can be obtained even in highly processed parts, and a can lid is formed from a metal plate coated with organic resin, especially polyester resin, on this surface-treated metal plate. The Rukoto excellent openability even after heat sterilization can be obtained.

また本発明においては、アルミニウム板や鋼板の他、錫めっき鋼板や亜鉛めっき鋼板といった表面処理鋼板にも適用することができ、例えば、亜鉛めっき鋼板や錫めっき鋼板に適用することによって、亜鉛や錫の防食性と、ノンクロム表面処理の密着性や耐食性との相乗効果を得ることができ、多様な基材に処理できることで、より広い用途に適用可能な表面処理鋼板を提供することが可能となる。またZr,O,Fを主成分とし、リン酸を含有しない無機表面処理層のように、錫めっき鋼板に処理しても、錫酸化膜が成長してしまうことや、処理後の経時や加熱による変色がなく、上記の性質をも備えた金属板及び金属缶を得ることができ、もちろん缶蓋としても利用できる。
更に、表面処理を同じにすることによって、アルミとスチールといった、異種金属板を組み合わせて使用する場合(例えば金属缶における、アルミ蓋とスチール缶胴の組み合わせ)にしばしば報告される、ガルバニック腐食といった問題も回避できることができる。
本発明の表面処理金属板及び樹脂被覆金属板においては、特に金属缶及び缶蓋に有効に使用できるが、これ以外にも自動車、家電製品、建材等の用途にも有効に使用することができる。
Moreover, in this invention, it can apply also to surface treatment steel plates, such as a tin plating steel plate and a galvanization steel plate, in addition to an aluminum plate and a steel plate, for example, zinc and tin by applying to a galvanization steel plate and a tin plating steel plate. It is possible to provide a surface-treated steel sheet that can be applied to a wider range of applications by being able to obtain a synergistic effect between the anti-corrosion property and the adhesion and corrosion resistance of non-chromium surface treatment, and by being able to treat various substrates. . Moreover, even if it treats a tin plating steel plate like the inorganic surface treatment layer which has Zr, O, and F as a main component and does not contain phosphoric acid, a tin oxide film grows, and time and heat after the treatment Therefore, it is possible to obtain a metal plate and a metal can that have the above-mentioned properties and can be used as a can lid.
In addition, by using the same surface treatment, problems such as galvanic corrosion often reported when using a combination of dissimilar metal plates such as aluminum and steel (for example, a combination of an aluminum lid and a steel can body in a metal can). Can also be avoided.
In the surface-treated metal plate and the resin-coated metal plate of the present invention, it can be effectively used particularly for metal cans and can lids, but can also be used effectively for applications such as automobiles, home appliances, and building materials. .

本発明の表面処理金属板においては、金属板(アルミニウムを除く)の表面に形成された無機表面処理層が、少なくともAl及びOを含有するものであることが重要な特徴である。
また金属基体の表面に、水溶液からの陰極電解処理により析出して形成された表面処理層を有する表面処理金属板であって、該無機表面処理層がAl,O及びFを含有し、無機表面処理層の最表面に含有されるFとM(但し、MはAl、またはAlと、Ti,Zrのうち少なくとも1種以上を含む)の原子比が、0.1<F/Mであることが重要な特徴である。
これにより上述したように、種々の金属材料に表面処理を施すことが可能となる。
また本発明の表面処理金属板においては、無機表面処理層が、Al及びOに加えてFを含有することにより、高温多湿環境下においても処理層の最表面の状態を保持して安定な表面を維持することが可能であり、結果として耐食性の保持、及び樹脂被膜の密着性または接着性の低下を抑制することが可能となるのである。これに加えて、製造工程においては、適量のFの存在は、均一な無機被膜の生成に有効であり、結果として、0.1<F/MのFが被膜成分に含まれることになる。特にアルミニウム基体においては、局部的に被膜が形成され易い為、無機被膜中に0.1<F/MのFを含むことが重要である。
In the surface-treated metal plate of the present invention, it is an important feature that the inorganic surface-treated layer formed on the surface of the metal plate (excluding aluminum) contains at least Al and O.
A surface-treated metal plate having a surface-treated layer formed by cathodic electrolysis from an aqueous solution on the surface of a metal substrate, the inorganic surface-treated layer containing Al, O and F, and having an inorganic surface The atomic ratio of F and M contained in the outermost surface of the treatment layer (where M is Al or Al and at least one of Ti and Zr) is 0.1 <F / M Is an important feature.
As a result, as described above, various metal materials can be subjected to surface treatment.
In the surface-treated metal plate of the present invention, the inorganic surface-treated layer contains F in addition to Al and O, so that the surface of the treated layer is maintained in a stable state even in a high-temperature and high-humidity environment. As a result, it is possible to maintain the corrosion resistance and suppress the decrease in the adhesion or adhesiveness of the resin film. In addition, in the manufacturing process, the presence of an appropriate amount of F is effective for producing a uniform inorganic coating, and as a result, 0.1 <F / M of F is included in the coating component. In particular, in the case of an aluminum substrate, since a film is easily formed locally, it is important that the inorganic film contains F of 0.1 <F / M.

すなわち、無機表面処理層が、Al,Oを主構成成分とし、Fを含まない場合には、処理膜の構造は、AlO(OH)のような構造になっていると予想される。
しかし、水酸基は、高温多湿環境下において、水和して処理層の構造変化を誘起し諸特性に悪影響を及ぼす可能性がある。適量のFを含むことによって、水酸基の少なくとも一部をFで置換して、AlO(OH)Y−Zのような安定化構造をとることにより、高温多湿環境下での処理層の構造変化を抑制し、より一層安定な表面を保持することが可能となるのである。
That is, when the inorganic surface treatment layer contains Al and O as main components and does not contain F, the structure of the treatment film is expected to be a structure such as AlO X (OH) Y.
However, the hydroxyl group may be hydrated in a high-temperature and high-humidity environment to induce structural changes in the treatment layer and adversely affect various properties. By including an appropriate amount of F, at least a part of the hydroxyl group is substituted with F, and a stabilizing structure such as AlO X (OH) YZ F Z is formed , so that the treatment layer in a high temperature and high humidity environment can be obtained. It is possible to suppress structural changes and maintain a more stable surface.

また本発明においては、無機表面処理層単独で使用する場合には、無機表面処理層のアニオン量、特にリン酸イオン、硫酸イオンを制御することが重要である。これにより、レトルト殺菌や高温多湿条件下での経時保管などに付された場合にも、処理被膜中からのアニオンの溶出が有効に抑制され、樹脂被膜の密着性又は接着性が低下することが有効に防止されているのである。
従来の金属板の表面処理方法である、化成処理や陽極酸化処理では、被膜形成機構上、硫酸イオンやリン酸イオンが膜中に含まれやすく、化成処理では構成成分となっている。これら膜中のアニオン、特にリン酸イオンのように、イオン半径の大きいアニオンは、レトルト殺菌処理などの高温多湿下で溶出しやすいことがわかっており、処理被膜からこのようなアニオンが溶出すると、表面処理金属板上に設けられた樹脂被膜の密着性や接着性が低下することになる。
In the present invention, when the inorganic surface treatment layer is used alone, it is important to control the amount of anions of the inorganic surface treatment layer, particularly phosphate ions and sulfate ions. As a result, even when subjected to retort sterilization or storage over time under high-temperature and high-humidity conditions, elution of anions from the treated film is effectively suppressed, and the adhesion or adhesiveness of the resin film may be reduced. It is effectively prevented.
In the chemical conversion treatment and anodizing treatment, which are conventional metal plate surface treatment methods, sulfate ions and phosphate ions are easily contained in the film due to the film formation mechanism, and the chemical conversion treatment is a constituent component. It is known that anions with large ionic radii such as anions in these membranes, particularly phosphate ions, are likely to elute under high temperature and high humidity such as retort sterilization treatment. Adhesiveness and adhesiveness of the resin film provided on the surface-treated metal plate are lowered.

本発明において、後述するX線光電子分光法(XPS)により、無機表面処理層の最表面を分析するとN1sやF1s,S1s,P1sなどのピークが検出されることがある。このことは、硝酸、フッ素、硫酸、リン酸などのアニオン成分の存在を意味している。分析結果からは、リン酸イオンや硫酸イオンは被膜成分に取り込まれやすく、特にリン酸は大量に存在しやすいことがわかっている。したがって、処理浴作成にあたっては、リン酸系薬剤の割合を少なくして他の薬剤と混合するなどの注意をする事が望ましい。このようにして、本発明においては、イオン半径の大きいアニオンである、リン酸イオンや硫酸イオンを制御することにより、レトルト殺菌や高温多湿条件下での経時保管などに付された場合にも、処理被膜中からのアニオンの溶出が有効に抑制されているため、樹脂被膜の密着性又は接着性が低下を有効に防止されているのである。   In the present invention, when the outermost surface of the inorganic surface treatment layer is analyzed by X-ray photoelectron spectroscopy (XPS) described later, peaks such as N1s, F1s, S1s, P1s may be detected. This means the presence of anionic components such as nitric acid, fluorine, sulfuric acid and phosphoric acid. From the analysis results, it is known that phosphate ions and sulfate ions are easily taken into the film components, and in particular, phosphoric acid is likely to be present in large quantities. Therefore, when preparing the treatment bath, it is desirable to take care such as reducing the proportion of phosphate chemicals and mixing with other chemicals. Thus, in the present invention, by controlling phosphate ions and sulfate ions, which are anions with a large ionic radius, even when subjected to retort sterilization or storage over time under high temperature and high humidity conditions, Since the elution of anions from the treated film is effectively suppressed, the adhesion or adhesiveness of the resin film is effectively prevented from decreasing.

また本発明の表面処理金属板においては、前記無機表面処理層の上に、フェノール系水溶性有機化合物を主体とする有機表面処理層、或いはSi量が0.8〜30mg/mであるシランカップリング剤処理層が形成されていることも重要である。
上述した無機表面処理層が主として金属板の耐食性に寄与するものであるのに対し、有機表面処理層は、主としてポリエステル樹脂等の有機被覆との密着性に寄与するものであるが、これらはこの順序で積層されることにより、高度の加工に付された場合にも、有機樹脂被覆との優れた加工密着性及び耐食性をも発現することが可能となるのである。
In the surface-treated metal plate of the present invention, an organic surface treatment layer mainly composed of a phenol-based water-soluble organic compound or a silane having an Si amount of 0.8 to 30 mg / m 2 on the inorganic surface treatment layer. It is also important that a coupling agent treatment layer is formed.
While the inorganic surface treatment layer described above mainly contributes to the corrosion resistance of the metal plate, the organic surface treatment layer mainly contributes to adhesion with an organic coating such as a polyester resin. By laminating in order, even when subjected to high-level processing, it is possible to exhibit excellent processing adhesion and corrosion resistance with the organic resin coating.

特に本発明の表面処理金属板及びこの表面処理金属板に有機樹脂、中でも特にポリエステル樹脂を被覆して成る樹脂被覆金属板から作成した金属缶又は缶蓋においては、加工密着性及び耐食性に優れた上記樹脂被覆金属板を利用していることから、高加工部でのポリエステル樹脂被膜の加工密着性や、衝撃によって生じるポリエステル樹脂被膜のクラック部分からの耐食性(耐デント性)、更にレトルト殺菌時での密着性を改善することが可能になると共に、透過イオン量による腐食が抑制され、イージーオープン缶蓋の開口性等も改善することが可能となる。   Particularly in metal cans or can lids prepared from the surface-treated metal plate of the present invention and a resin-coated metal plate obtained by coating the surface-treated metal plate with an organic resin, in particular, a polyester resin, excellent work adhesion and corrosion resistance were obtained. Since the resin-coated metal plate is used, the processing adhesion of the polyester resin film at the high-processed part, the corrosion resistance (dent resistance) from the cracked part of the polyester resin film caused by impact, and the retort sterilization It is possible to improve the adhesiveness of the open lid, and the corrosion due to the amount of permeated ions is suppressed, and the openability of the easy open can lid can be improved.

金属板表面に形成されたシランカップリング剤層やフェノール系有機表面処理層の上にポリエステル被膜を形成した樹脂被覆金属板を成形して容器とすることによる、最も顕著な効果は、成形後のヒートセット工程において、シランカップリング剤層やフェノール系有機表面処理層が改めてポリエステルと相溶することによる再接着効果が得られることである。すなわち、成形加工によってポリエステル−金属界面の密着力が低下するが、ヒートセット工程において、ポリエステルの融点以上にまで加熱することなく、シランカップリング剤層やフェノール系有機表面処理層がポリエステルと相溶することで、密着力の回復が起こる。これらの有機表面処理層は、無機表面処理層と共に存在することが重要であり、もし、無機表面処理層が存在しなければ、レトルト時の金属基材表面変化を抑制するのが困難であり、密着性のみならず耐食性の面からも好ましくない。
以上のように、フェノール系水溶性有機化合物を主体とする有機表面処理層、或いはシランカップリング剤処理層が形成されている場合には、有機表面処理層による、ポリエステル樹脂等の有機被覆との密着効果と加工後のヒートセットによる密着力回復効果から、高温多湿下においてイオン半径の大きいアニオンの溶出があっても使用は可能となる。しかし、勿論のことではあるが、無機表面処理層中に硫酸イオンやリン酸イオンなどのイオン半径の大きいアニオンを含まないことが最も望ましい使用形態である。
The most remarkable effect of molding a resin-coated metal plate with a polyester film on the silane coupling agent layer or phenolic organic surface treatment layer formed on the metal plate surface is In the heat setting step, a re-adhesion effect is obtained by the silane coupling agent layer and the phenolic organic surface treatment layer being reconstituted with polyester. That is, although the adhesion at the polyester-metal interface is reduced by molding, the silane coupling agent layer and the phenolic organic surface treatment layer are compatible with the polyester without heating to the melting point of the polyester or higher in the heat setting process. This will restore the adhesion. It is important that these organic surface treatment layers exist together with the inorganic surface treatment layer, and if there is no inorganic surface treatment layer, it is difficult to suppress the metal substrate surface change during retort, It is not preferable from the viewpoint of not only adhesion but also corrosion resistance.
As described above, when an organic surface treatment layer mainly composed of a phenol-based water-soluble organic compound or a silane coupling agent treatment layer is formed, the organic surface treatment layer is coated with an organic coating such as a polyester resin. Due to the adhesion effect and the effect of recovery of adhesion by heat setting after processing, it is possible to use anion having a large ionic radius under high temperature and high humidity. However, as a matter of course, it is the most desirable usage form that the inorganic surface treatment layer does not contain anions having a large ion radius such as sulfate ions and phosphate ions.

更に、本発明の金属板の表面処理方法においては、Alイオン濃度が0.001〜0.05モル/リットルの範囲にある水溶液中で陰極電解処理を行い、より好ましくは水溶液中にFイオンを含むことが重要な特徴である。
陰極電解処理によれば、反応型の化成処理被膜と比較して、膜厚の形成速度が速く、膜厚の制御範囲を大幅に広げることができ、用途に応じた被膜生成が可能となるのである。
一方、従来の化成処理においては、処理液組成による化学反応に依存していることから被膜形成速度が限定されており、このため高速処理では膜厚が制限されるのに対して、陰極電解処理では、電解反応を利用するため、被膜形成の高速処理が可能になるのである。
また化成処理や陽極酸化処理では、被膜形成機構上、硫酸イオンやリン酸イオンが膜中に含まれやすく、化成処理では構成成分になってしまうため、上述したようなアニオン量の制御が困難である。
Furthermore, in the surface treatment method for a metal plate of the present invention, cathodic electrolysis is performed in an aqueous solution having an Al ion concentration in the range of 0.001 to 0.05 mol / liter, and more preferably F ions are contained in the aqueous solution. It is an important feature to include.
According to cathodic electrolysis, the film formation rate is faster than the reactive chemical conversion coating, the film thickness control range can be greatly expanded, and the coating can be generated according to the application. is there.
On the other hand, in the conventional chemical conversion treatment, the film formation rate is limited because it depends on the chemical reaction depending on the composition of the treatment solution. For this reason, the film thickness is limited in the high-speed treatment, whereas the cathode electrolytic treatment. Then, since an electrolytic reaction is utilized, high-speed processing of film formation becomes possible.
In addition, in the chemical conversion treatment and anodizing treatment, sulfate ions and phosphate ions are easily contained in the film due to the film formation mechanism, and the chemical conversion treatment becomes a constituent component, so it is difficult to control the amount of anion as described above. is there.

これに対して、陰極電解処理によれば、様々な水溶液を選択することが可能で、フッ化物や硝酸塩の水溶液を用いることもできるため、硫酸イオンやリン酸イオンのように、大きいイオン半径を持つアニオンの量を制御した被膜を形成することが可能になるのである。
また化成処理や陽極酸化処理では、被膜形成機構上、被処理材である基材金属元素が膜中に含まれやすく、反応型の化成処理では構成成分になってしまうため、基材毎に液組成を検討し、場合によっては大幅に変更する必要がある。これに対して、陰極電解処理によれば、浴組成の変更は最小限にとどめることができ、電解条件によって調整できる範囲が広いため、多様な基材への処理が可能となるのである。
On the other hand, according to the cathodic electrolytic treatment, various aqueous solutions can be selected, and an aqueous solution of fluoride or nitrate can be used. Therefore, a large ionic radius such as sulfate ion or phosphate ion can be obtained. It is possible to form a film in which the amount of anion is controlled.
In addition, in the chemical conversion treatment and the anodizing treatment, the base metal element that is the material to be treated is easily contained in the film due to the film formation mechanism, and in the reactive chemical conversion treatment, it becomes a constituent component. The composition needs to be examined and in some cases drastically changed. On the other hand, according to the cathodic electrolysis treatment, the change of the bath composition can be kept to a minimum, and since the range that can be adjusted according to the electrolysis conditions is wide, it is possible to treat various substrates.

本発明の金属板の表面処理方法においては、浴の攪拌、特に20〜300ml/min・cmで酸素を含む気泡を陰極表面に吹きながら電解することで、膜厚の均一性が向上し、陰極面全体にムラのない析出状態を得ることができる。すなわち、酸素を含む気泡を陰極表面に吹きながら電解することで、局部的な濃度分極を抑制すると同時に、酸素を含む気泡により表面処理層のO/Al比をコントロールして高品質で均一な処理が可能となる。   In the surface treatment method for a metal plate of the present invention, the uniformity of the film thickness is improved by electrolyzing while stirring a bath, in particular, air bubbles containing oxygen at 20 to 300 ml / min · cm on the cathode surface. A uniform precipitation state can be obtained over the entire surface. That is, by performing electrolysis while blowing bubbles containing oxygen on the cathode surface, local concentration polarization is suppressed, and at the same time, the O / Al ratio of the surface treatment layer is controlled by the bubbles containing oxygen to achieve high quality and uniform treatment. Is possible.

(表面処理金属板)
〈無機表面処理層〉
本発明の表面処理金属板においては、上述した通り、表面処理金属板の無機表面処理層が、少なくともAl及びOを含有し、より好適には更にFを含有することが一つの重要な特徴である。
図1に示す本発明による陰極電解によるAl及びOを含む無機表面処理1において、X線光電子分光装置(以下、XPSという)により、O1sのピーク11,Al2pのピーク12及びF1sのピーク13を測定した例を示した。ここでは、無機表面処理層の成分として、Al及びOの他にFを含む場合について示した。
(Surface-treated metal plate)
<Inorganic surface treatment layer>
In the surface-treated metal sheet of the present invention, as described above, one important characteristic is that the inorganic surface-treated layer of the surface-treated metal sheet contains at least Al and O, and more preferably further contains F. is there.
In the inorganic surface treatment 1 containing Al and O by cathodic electrolysis according to the present invention shown in FIG. 1, an O1s peak 11, an Al2p peak 12 and an F1s peak 13 are measured by an X-ray photoelectron spectrometer (hereinafter referred to as XPS). An example was given. Here, the case where F is included as a component of the inorganic surface treatment layer in addition to Al and O is shown.

また本発明の表面処理金属板においては、アルミニウムの水酸化物またはオキシ水酸化物を含有することが、もう一つの重要な特徴である。
以下に、本発明による無機表面処理層がアルミニウムの水酸化物またはオキシ水酸化物を含有することについて、例を挙げて説明する。まず、無機表面処理層の最表面をXPSにより、O1s,Al2p,試料の汚染によるC1sを測定し、図1に示すように、O1s及びAl2pの束縛エネルギー位置111及び112を求める。次に、O1s及びAl2pの束縛エネルギー位置111及び121を、試料の汚染によるC1sの束縛エネルギー位置が、比較する試料の間で一定となるように補正し、正規の束縛エネルギー位置を求める。ここで束縛エネルギーの絶対値は、装置により異なるので、同一装置での試料のエネルギー位置を比較することが重要である。
Further, in the surface-treated metal plate of the present invention, it is another important feature that it contains aluminum hydroxide or oxyhydroxide.
Hereinafter, the inorganic surface treatment layer according to the present invention contains aluminum hydroxide or oxyhydroxide with examples. First, O1s, Al2p, and C1s due to contamination of the sample are measured by XPS on the outermost surface of the inorganic surface treatment layer, and binding energy positions 111 and 112 of O1s and Al2p are obtained as shown in FIG. Next, the binding energy positions 111 and 121 of O1s and Al2p are corrected so that the binding energy position of C1s due to the contamination of the sample is constant among the samples to be compared, and the normal binding energy position is obtained. Here, since the absolute value of the binding energy differs depending on the apparatus, it is important to compare the energy positions of the samples in the same apparatus.

以上の方法により、鋼板に錫を1.3g/mめっき後リフロー処理し、表面に無機表面処理層をAlの重量膜厚で30,40,及び80mg/m形成したサンプルと、比較材として、アルミナ焼結体及びアルミ圧延板のサンプルについて、O1s及びAl2pの束縛エネルギー位置を求めた。このうち、Al40mg/mのサンプルは硝酸アルミ浴を用い、他は硫酸アルミ浴を用いて陰極電解した。比較材であるアルミナ焼結体はAlであり、また、アルミ圧延板の表面も、アルミ酸化物になっていると考えられるが、吸着水の影響を避ける目的で、予め300℃で1時間加熱処理後測定に供した。結果を表1に示した。ここで、束縛エネルギー位置は、試料の汚染によるC1sピークを用いて補正済みである。表1に示したように、本発明材は、比較材に比べて、O1sは0.1〜0.8eV高く、Al2pは0.4〜1.0eV高エネルギー側にシフトしており、本発明材は、酸化物ではなく水酸化物、または、オキシ水酸化物を含有していることがわかる。 According to the above method, a sample in which tin was plated on a steel sheet after 1.3 g / m 2 plating, and an inorganic surface treatment layer was formed on the surface with an Al weight film thickness of 30, 40, and 80 mg / m 2 , and a comparative material As described above, the binding energy positions of O1s and Al2p were determined for the samples of the alumina sintered body and the aluminum rolled sheet. Of these, Al 40 mg / m 2 samples were cathodic electrolyzed using an aluminum nitrate bath and the others using an aluminum sulfate bath. The alumina sintered body as a comparative material is Al 2 O 3 and the surface of the aluminum rolled plate is also considered to be aluminum oxide. It used for the measurement after heat processing for 1 hour. The results are shown in Table 1. Here, the binding energy position has been corrected using the C1s peak due to contamination of the sample. As shown in Table 1, the material of the present invention is higher in O1s by 0.1 to 0.8 eV and Al2p by 0.4 to 1.0 eV in comparison with the comparative material. It can be seen that the material contains hydroxide or oxyhydroxide instead of oxide.

更に、本発明の表面処理金属板において、前記無機表面処理層の最表面に含有されるOとM(但し、MはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、1<O/M<5.5、より好ましくは、1<O/M<3.5であることが重要な特徴である。上記範囲より小さく、O/Mが1以下の無機表面処理膜を形成することは困難である。
イオン半径の大きいアニオン成分をほとんど含まない場合には、O/MのOは1<O/M<2.5の範囲となる。また、2.5≦O/M<3.5の範囲となる場合には、被膜中にイオン半径の大きいリン酸や硫酸などのアニオン成分を僅かに含み、3.5≦O/M<5.5の範囲となる場合には、アニオン成分が相当量含まれていると考えられる。したがって、3.5≦O/M<5.5の範囲の場合に、レトルト後の密着性を確保するには、カップリング剤処理層などの有機表面処理層を無機表面処理層の上に設けることが望ましい。更に、上記範囲を超え、5.5<O/Mである場合には、上記Mに含まれる元素以外の基材成分も酸化していると考えられる。すなわち、ぶりき表面の錫層などが酸化し、結果的にO/Mを上昇させる原因となっている。この場合には、錫表面自身が酸化している為、凝集力が弱く、たとえ有機表面処理層を設けても、十分な密着性を得ることができない。
Further, the surface-treated metal sheet of the present invention, the inorganic O and M contained in the outermost surface of the surface treatment layer (where, M is a A l, Ti, among the at least one or more kinds of Zr) atomic ratio of It is an important feature that 1 <O / M <5.5, more preferably 1 <O / M <3.5. It is difficult to form an inorganic surface treatment film smaller than the above range and having an O / M of 1 or less.
In the case where an anion component having a large ionic radius is hardly contained, O of O / M is in the range of 1 <O / M <2.5. In the case of 2.5 ≦ O / M <3.5, the coating contains a slight amount of anionic components such as phosphoric acid and sulfuric acid having a large ionic radius, and 3.5 ≦ O / M <5. .5, it is considered that a considerable amount of anion component is contained. Therefore, in the case of 3.5 ≦ O / M <5.5, an organic surface treatment layer such as a coupling agent treatment layer is provided on the inorganic surface treatment layer in order to ensure adhesion after retorting. It is desirable. Furthermore, when it exceeds the said range and it is 5.5 <O / M, it is thought that base-material components other than the element contained in said M are also oxidizing. In other words, the tin layer on the surface of the tinplate is oxidized, resulting in an increase in O / M. In this case, since the tin surface itself is oxidized, the cohesive force is weak, and even if an organic surface treatment layer is provided, sufficient adhesion cannot be obtained.

更に、本発明の表面処理金属板においては、表面処理金属板の無機表面処理層の最表面に含有されるFとM(但し、MはAl、またはAlと、Ti,Zrのうち少なくとも1種以上を含む)の原子比が、2.5未満、特に2.0以下であることが望ましい。
F/Mが2.5以上であると、Fはイオン半径が小さいとはいえ、Mに対するアニオン量が過多となり、密着性が低下する原因となる。
Furthermore, in the surface-treated metal plate of the present invention, F and M contained in the outermost surface of the inorganic surface-treated layer of the surface-treated metal plate (where M is Al or at least one of Al, Ti and Zr). Is preferably less than 2.5, particularly 2.0 or less.
When F / M is 2.5 or more, although F has a small ionic radius, the amount of anions with respect to M becomes excessive, causing a decrease in adhesion.

O/M,F/Mの原子比の測定方法としては、XPSにより、C1s,O1s,F1s,Al2p,Ti3d,Zr3dなど表面に存在するピークをそれぞれ測定し、解析ソフトにより原子濃度を求めた値から求めることができる。
測定に用いる表面処理金属板の状態としては、清浄な状態であれば、そのまま表面を解析する。有機樹脂が接着や融着された後であれば煮沸した過酸化水素水などに数分間浸漬してまず有機樹脂層を除去する必要がある。
清浄でないサンプルや前述の有機樹脂被覆層を除去後のサンプルは、C,O,F,Al,Zr,Ti,基材金属元素などの表面構成主要元素の和を100%とした時に対して、C1sの原子濃度が10%以下となるまでArスパッタリングにより汚染層を軽く除去し、この時点でのO/M,F/Mの原子比を求めることができる。また、定法により、O,F及びAl,Zr,Tiの各元素についてバックグランド除去後のピーク面積を求めてから、測定装置の相対感度係数を用いて各元素の原子濃度を求め、O/M及びF/M比を計算により求めてもよい。
図2にAl2pピーク2の例を示す。バックグランドの基準線21とピーク22に囲まれる範囲がピーク面積23となる。尚、当然ではあるが、バックグランドの引き方によって、原子比が変動するので、バックグランドの引き方には注意が必要である。
For measuring the atomic ratio of O / M and F / M, the peak present on the surface such as C1s, O1s, F1s, Al2p, Ti3d, Zr3d is measured by XPS, and the atomic concentration is obtained by analysis software. Can be obtained from
If the surface-treated metal plate used for measurement is in a clean state, the surface is analyzed as it is. After the organic resin is bonded or fused, it is necessary to first remove the organic resin layer by immersing it in a boiled hydrogen peroxide solution for several minutes.
Samples that are not clean and samples after removal of the organic resin coating layer described above, when the sum of the main constituent elements of the surface such as C, O, F, Al, Zr, Ti, and base metal elements is 100%, The contaminated layer is lightly removed by Ar sputtering until the atomic concentration of C1s becomes 10% or less, and the atomic ratios of O / M and F / M at this point can be obtained. Further, after obtaining the peak area after background removal for each element of O, F and Al, Zr, and Ti by an ordinary method, the atomic concentration of each element is obtained using the relative sensitivity coefficient of the measuring device, and O / M And the F / M ratio may be obtained by calculation.
FIG. 2 shows an example of the Al2p peak 2. A range surrounded by the reference line 21 and the peak 22 of the background is a peak area 23. Needless to say, since the atomic ratio varies depending on how the background is drawn, attention should be paid to how the background is drawn.

また、本発明における、無機表面処理層の最も望ましい形態としては、前述したように、被膜中にリン酸や硫酸などのイオン半径の大きいアニオン成分を含まないことである。無機表面処理層の最表層に含有される(P+S)とM(但し、MはAl、またはAlと、Ti,Zrのうち少なくとも1種以上を含む)の原子比は、(P+S)/M<0.25、より好ましくは(P+S)/M<0.05に制御されることが本発明の一つの特徴である。
図3は、XPSにより、硫酸による陽極酸化アルマイトの最表面のS1sピーク31と、本発明による無機表面処理層の最表面のS1sピーク32を比較したものである。同様にして、P2pピークや表面に存在するC1s,O1s,F1s,Al2p,Ti3d,Zr3dなど表面に存在するピークをそれぞれ測定し、解析ソフトにより原子濃度を求めた値から(P+S)/Mを求めることができる。図3の例に用いたサンプルでは、(P+S)/Mの値は、本発明で0.0であるのに対して、陽極酸化アルマイトでは、0.1であった。
In the present invention, the most desirable form of the inorganic surface treatment layer is that the coating does not contain an anion component having a large ionic radius such as phosphoric acid or sulfuric acid, as described above. The atomic ratio of (P + S) and M (where M is Al or Al and at least one of Ti and Zr) contained in the outermost layer of the inorganic surface treatment layer is (P + S) / M < It is a feature of the present invention that 0.25, more preferably (P + S) / M <0.05.
FIG. 3 compares the S1s peak 31 on the outermost surface of the anodized alumite with sulfuric acid and the S1s peak 32 on the outermost surface of the inorganic surface treatment layer according to the present invention by XPS. Similarly, the P2p peak and the peak existing on the surface such as C1s, O1s, F1s, Al2p, Ti3d, Zr3d existing on the surface are respectively measured, and (P + S) / M is obtained from the value obtained by the analysis software. be able to. In the sample used in the example of FIG. 3, the value of (P + S) / M was 0.0 in the present invention, whereas it was 0.1 in the anodized alumite.

また、膜厚としては、Alの重量膜厚で、5〜100mg/mの間にあることが好ましい。5mg/m未満では被膜の均一な生成が困難であり被覆率が充分でなく、100mg/mを越えると、加工により密着性が低下するので好ましくない。
重量膜厚の測定方法としては、基板金属の主成分がAl以外からなる場合には、市販の蛍光X線分析装置によって膜厚を定量することができる。この場合、予めAl重量膜厚既知の複数のサンプルからAl重量膜厚とAlのX線強度の関係を示す検量線を作成しておき、ついで、未知試料を用いて測定したAlのX線強度を、検量線に基づき重量膜厚に換算する。
基板金属の主成分がAlから成る場合には、基材金属を酸などにより溶解し、無機表面処理層を抽出して、透過形電子顕微鏡付属のエネルギー分散型X線分析装置により、X線強度と標準試料を用いて作成した検量線の関係から、重量膜厚を求める方法により測定する。
無機表面処理層がAlの他に,Zr,Tiの少なくとも1種を含む場合には、それぞれの元素の密度が異なる為、Al,Zr,Tiのトータルの重量膜厚として5〜300mg/mの間にあることが好ましい。
Moreover, as a film thickness, it is preferable that it is between 5-100 mg / m < 2 > by the weight film thickness of Al. If it is less than 5 mg / m 2, it is difficult to produce a uniform film, and the coverage is not sufficient. If it exceeds 100 mg / m 2 , the adhesiveness is lowered by processing, which is not preferable.
As a measuring method of the weight film thickness, when the main component of the substrate metal is other than Al, the film thickness can be quantified by a commercially available fluorescent X-ray analyzer. In this case, a calibration curve showing the relationship between the Al weight film thickness and the Al X-ray intensity is prepared in advance from a plurality of samples with known Al weight film thickness, and then the X-ray intensity of Al measured using an unknown sample. Is converted into a weight film thickness based on a calibration curve.
When the main component of the substrate metal is Al, the base metal is dissolved with an acid or the like, the inorganic surface treatment layer is extracted, and the X-ray intensity is measured by the energy dispersive X-ray analyzer attached to the transmission electron microscope. Measured by a method for obtaining a weight film thickness from a relationship between a calibration curve prepared using a standard sample.
When the inorganic surface treatment layer contains at least one of Zr and Ti in addition to Al, the density of each element is different, so that the total weight film thickness of Al, Zr and Ti is 5 to 300 mg / m 2. It is preferable to be between.

また、本発明において、めっき層を有する金属基体に表面処理する場合、金属基体の主元素の表面露出率が5%未満、好ましくは3%未満であることが好ましい。
金属基体主元素の露出率がこれ以上であると、耐食性や密着性において、満足な性能が得られない。特に、ぶりきや薄錫めっき鋼板、極薄錫めっき鋼板など、金属錫が存在する表面に処理する場合には、錫の表面露出率が5%以上あると、耐食性や密着性の他に耐硫性や経時変色の問題も生じ、外観の点でも劣ったものとなる。表面露出率は、XPSにより、C1s,P2p,O1s,F1s,S1s,Al2p,Ti3d,Zr3d,Sn3d5,Fe2pなど表面に存在する主要元素のピークをそれぞれ測定し、解析ソフトにより原子濃度を求めた値から求めることができる。ただし、Fe2pのピークは、Snのピークと重なることがあるので、この場合には、ピーク分離を行う必要がある。
In the present invention, when a surface treatment is performed on a metal substrate having a plating layer, the surface exposure rate of the main element of the metal substrate is preferably less than 5%, and preferably less than 3%.
If the exposure rate of the metal base main element is more than this, satisfactory performance cannot be obtained in corrosion resistance and adhesion. In particular, when processing on the surface where metallic tin is present, such as tinplate, thin tin-plated steel sheet, and ultrathin tin-plated steel sheet, if the tin surface exposure rate is 5% or more, in addition to corrosion resistance and adhesion, Problems of sulfurity and discoloration over time also occur, and the appearance is inferior. The surface exposure rate is a value obtained by measuring the peak of major elements existing on the surface such as C1s, P2p, O1s, F1s, S1s, Al2p, Ti3d, Zr3d, Sn3d5, Fe2p by XPS, and obtaining the atomic concentration by analysis software. Can be obtained from However, since the Fe2p peak may overlap with the Sn peak, in this case, it is necessary to perform peak separation.

〈シランカップリング剤処理層〉
本発明の表面処理金属板においては、前記無機表面処理層の上にSi量が0.8〜30mg/mであるシランカップリング剤処理層が更に形成されていることが特に好適である。
シランカップリング剤処理層を形成するシランカップリング剤は、熱可塑性ポリエステル樹脂と化学結合する反応基と無機表面処理層と化学結合する反応基を有するものであり、アミノ基、エポキシ基、メタクリロキシ基、メルカプト基等の反応基と、メトキシ基、エトキシ基等の加水分解性アルコキシ基を含むオルガノシランから成るものや、メチル基、フェニル基、エポキシ基、メルカプト基等の有機置換基と加水分解性アルコキシ基を含有するシランを使用することができる。
<Silane coupling agent treatment layer>
In the surface-treated metal plate of the present invention, it is particularly preferable that a silane coupling agent-treated layer having an Si amount of 0.8 to 30 mg / m 2 is further formed on the inorganic surface-treated layer.
The silane coupling agent that forms the silane coupling agent treatment layer has a reactive group that chemically bonds to the thermoplastic polyester resin and a reactive group that chemically bonds to the inorganic surface treatment layer, and includes an amino group, an epoxy group, and a methacryloxy group. , Which are composed of organosilanes containing a reactive group such as a mercapto group and a hydrolyzable alkoxy group such as a methoxy group or an ethoxy group, or a hydrolyzable organic substituent such as a methyl group, a phenyl group, an epoxy group or a mercapto group Silanes containing alkoxy groups can be used.

本発明において、好適に用いることができるシランカップリング剤の具体例としては、γ-APS(γ-アミノプロピルトリメトキシシラン)、γ−GPS(γ−グリシドキシプロピルトリメトキシシラン)、BTSPA(ビストリメトキシシリルプロピルアミノシラン)、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン等を挙げることができる。
シランカップリング剤処理層は、Si量が0.8〜30mg/m、特に3〜15mg/mとなるように形成されていることが好ましい。上記範囲よりもSi量が少ないと有機表面処理層の効果、すなわち、耐食性向上や密着性向上の効果に乏しく、また上記範囲よりもSi量が多いと、未反応のシランカップリング剤が自己縮合するため満足し得る加工密着性、耐食性を得ることができない。
また、シランカップリング剤処理層は、SiO粒子を含有している無機表面処理層の上に形成することもできる。
Specific examples of silane coupling agents that can be suitably used in the present invention include γ-APS (γ-aminopropyltrimethoxysilane), γ-GPS (γ-glycidoxypropyltrimethoxysilane), BTSPA ( Bistrimethoxysilylpropylaminosilane), N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and the like.
The silane coupling agent-treated layer is preferably formed so that the Si amount is 0.8 to 30 mg / m 2 , particularly 3 to 15 mg / m 2 . If the amount of Si is less than the above range, the effect of the organic surface treatment layer, that is, the effect of improving corrosion resistance and adhesion is poor, and if the amount of Si is more than the above range, the unreacted silane coupling agent is self-condensing. Therefore, satisfactory work adhesion and corrosion resistance cannot be obtained.
The silane coupling agent treatment layer can also be formed on an inorganic surface treatment layer containing SiO 2 particles.

(フェノール系水溶性有機化合物を主体とする層)
本発明の表面処理金属板においては、前記無機表面処理層の上にフェノール系水溶性有機化合物を主体とする層が存在していることが特に好適である。
フェノール系水溶性有機化合物としては、下記式(1)
OH

− φ −CH− ・・・(1)


式中、φはベンゼン環を表し、Xは水素原子又は下記式(2)
Z= −CH−N−R ・・・(2)


式中、R及びRの各々は炭素数10以下のアルキル基又は炭素数10以下のアルキル基又は炭素数10以下のヒドロキシアルキル基である、で表されるZを表し、基Zの導入率はベンゼン環1個当たり0.2〜1.0であるものとする、
で表される反復単位から成るフェノール樹脂であることが好適である。
(Layer mainly composed of phenolic water-soluble organic compounds)
In the surface-treated metal sheet of the present invention, it is particularly preferable that a layer mainly composed of a phenol-based water-soluble organic compound exists on the inorganic surface-treated layer.
As a phenol type water-soluble organic compound, following formula (1)
OH

− Φ −CH 2 − (1)

X
In the formula, φ represents a benzene ring, X represents a hydrogen atom or the following formula (2)
Z = —CH 2 —N—R 1 (2)

R 2
In the formula, each of R 1 and R 2 represents Z represented by: an alkyl group having 10 or less carbon atoms, an alkyl group having 10 or less carbon atoms, or a hydroxyalkyl group having 10 or less carbon atoms; The rate shall be 0.2-1.0 per benzene ring,
It is preferable that it is a phenol resin which consists of a repeating unit represented by these.

またフェノール系水溶性有機化合物の他の例としては、タンニンを挙げることができる。タンニンは、タンニン酸ともいい、フェノール性ヒドロキシル基を有する複雑な構造の芳香族化合物の総称である。
タンニンとしては、ハマメリタンニン、カキタンニン、チャタンニン、五倍子タンニン、没食子タンニン、ミロバランタンニン、ジビジビタンニン、アルガロビラタンニン、バロニアタンニン、カテキンタンニン等を挙げることができる。タンニンは、数平均分子量が200以上であることが好ましい。
上記フェノール系水溶性有機化合物を主体とする有機表面処理層においては、かかる有機表面処理層中に炭素原子換算で3〜75mg/m、特に6〜30mg/mの範囲の含有量でフェノール系水溶性有機化合物を含有していることが望ましい。上記範囲よりも少ない場合には、有機表面処理被膜の密着性に劣り、一方上記範囲よりも多い場合には有機表面処理被膜の膜厚が必要以上に大きくなり密着性及び耐食性が低下する。 また、上記フェノール系水溶性有機化合物を主体とする有機表面処理層は、カーボンを主成分とする有機化合物と、リン化合物とジルコニウムあるいはチタン化合物を含む表面処理剤を用いて形成された有機-無機複合層であっても良い。
Another example of the phenolic water-soluble organic compound is tannin. Tannin, also called tannic acid, is a general term for aromatic compounds having a complex structure having a phenolic hydroxyl group.
Examples of tannins include hameli tannins, oyster tannins, chatannins, pentaploid tannins, gallic tannins, milovalan tannins, dibidi tannins, argarovira tannins, valonia tannins, catechin tannins and the like. Tannin preferably has a number average molecular weight of 200 or more.
In the organic surface treatment layer mainly composed of the above-mentioned phenol-based water-soluble organic compound, the organic surface treatment layer has a phenol content of 3 to 75 mg / m 2 , particularly 6 to 30 mg / m 2 in terms of carbon atoms. It is desirable to contain a water-soluble organic compound. When the amount is less than the above range, the adhesion of the organic surface treatment film is inferior. On the other hand, when the amount is more than the above range, the film thickness of the organic surface treatment film becomes larger than necessary and the adhesion and corrosion resistance are lowered. The organic surface treatment layer mainly composed of the phenol-based water-soluble organic compound is an organic-inorganic formed by using an organic compound mainly composed of carbon and a surface treatment agent containing a phosphorus compound and zirconium or a titanium compound. It may be a composite layer.

更に、本発明の有機表面処理層が形成されている表面処理金属板においては、最表層がNを含むことが好ましい。
図4に、表面にシランカップリング剤層を設けた表面処理金属板の最表層について、XPSによりN1sピーク41を測定した結果を示す。図4に示すとおり、Nが検出されており、フェノール系水溶性有機化合物においても同様にNが検出される。
Furthermore, in the surface-treated metal plate on which the organic surface treatment layer of the present invention is formed, it is preferable that the outermost layer contains N.
FIG. 4 shows the results of measuring the N1s peak 41 by XPS for the outermost layer of the surface-treated metal plate having a silane coupling agent layer on the surface. As shown in FIG. 4, N is detected, and N is also detected in the phenolic water-soluble organic compound.

図5乃至図7は、本発明の表面処理金属板の一例をそれぞれ示す断面図である。図5に示す表面処理金属板5は、金属板基体51、基体表面に設けられた、Al,Oを主構成成分とする無機表面処理層52を有している。また図6の例では、図5の無機表面処理層52の上に有機成分を主体とする有機表面処理層53が形成されている。
図7に示す表面処理金属板5は、Al,Oを主構成成分とする無機表面処理層52を有している点は図5と同じであるが、金属板基体51が金属板51aと金属メッキ層51bにより構成されている。基体51の大部分を占める金属板51aに被覆される金属メッキ層51bは、後述するように、金属板51aの耐食性を高める役割を持つものが使用される。
FIG. 5 thru | or FIG. 7 is sectional drawing which shows an example of the surface treatment metal plate of this invention, respectively. The surface-treated metal plate 5 shown in FIG. 5 has a metal plate substrate 51 and an inorganic surface treatment layer 52 provided on the surface of the substrate and mainly composed of Al and O. In the example of FIG. 6, an organic surface treatment layer 53 mainly composed of an organic component is formed on the inorganic surface treatment layer 52 of FIG.
The surface-treated metal plate 5 shown in FIG. 7 is the same as that in FIG. 5 in that it has an inorganic surface-treated layer 52 containing Al and O as main components, but the metal plate base 51 is made of a metal plate 51a and a metal. It is constituted by a plating layer 51b. As the metal plating layer 51b covered with the metal plate 51a occupying most of the base 51, a layer having a role of enhancing the corrosion resistance of the metal plate 51a is used as will be described later.

(金属板基体)
本発明に用いる金属板基体としては、各種表面処理鋼板やアルミニウム等の軽金属板などが使用される。表面処理鋼板としては、冷圧延鋼板を焼鈍した後二次冷間圧延し、亜鉛めっき、錫めっき、ニッケルめっき、アルミニウムめっき等の表面処理の一種または二種以上行なったものを用いることができ、他にアルミニウムクラッド鋼板なども用いることができる。
また、前記めっき層は、錫、ニッケル、亜鉛、鉄、アルミニウムの1種以上を含む金属層のみからなっていても良いし、前記めっき層が、錫、ニッケル、亜鉛、鉄、アルミニウムの1種以上を含む金属層と錫、ニッケル、亜鉛、アルミニウム、鉄の2種以上を含む合金層とからなっていても良いし、あるいはまた、前記めっき層が、錫、ニッケル、亜鉛、鉄、アルミニウムの2種以上を含む合金層のみからなっていても良い。
(Metal plate base)
As the metal plate substrate used in the present invention, various surface-treated steel plates and light metal plates such as aluminum are used. As the surface-treated steel sheet, a cold-rolled steel sheet is annealed and then secondary cold-rolled, and galvanized, tin-plated, nickel-plated, aluminum-plated, or the like can be used as a surface-treated steel sheet. In addition, an aluminum clad steel plate or the like can also be used.
Moreover, the said plating layer may consist only of the metal layer containing 1 or more types of tin, nickel, zinc, iron, and aluminum, and the said plating layer is 1 type of tin, nickel, zinc, iron, and aluminum. It may consist of a metal layer containing the above and an alloy layer containing two or more of tin, nickel, zinc, aluminum and iron, or the plating layer is made of tin, nickel, zinc, iron or aluminum. You may consist only of the alloy layer containing 2 or more types.

金属板基体の表面側にめっきまたはクラッドなどにより形成される金属は、中心側に位置する金属の耐食性や耐摩耗性、通電性などの様々な性質を改善する目的で付けられているが、一般的には、耐食性を改善する目的で付与されている場合がほとんどである。また、 軽金属板としては、いわゆる純アルミニウムの他にアルミニウム合金が使用される。金属板の元厚は、特に限定はなく、金属の種類、容器の用途或いはサイズによっても相違するが、金属板としては一般に0.10乃至0.50mmの厚みを有するのがよく、この中でも表面処理鋼板の場合には0.10乃至0.30mmの厚み、軽金属板の場合は0.15乃至0.40mmの厚みを有するのがよい。   The metal formed by plating or cladding on the surface side of the metal plate base is attached for the purpose of improving various properties such as the corrosion resistance, wear resistance, and electrical conductivity of the metal located on the center side. Specifically, it is almost always given for the purpose of improving the corrosion resistance. In addition to so-called pure aluminum, an aluminum alloy is used as the light metal plate. The original thickness of the metal plate is not particularly limited, and varies depending on the type of metal and the use or size of the container. However, the metal plate generally has a thickness of 0.10 to 0.50 mm. In the case of a treated steel plate, the thickness may be 0.10 to 0.30 mm, and in the case of a light metal plate, the thickness may be 0.15 to 0.40 mm.

(表面処理方法)
本発明の金属板の表面処理方法においては、Alイオン濃度が0.001〜0.05モル/リットルの範囲にある水溶液中で陰極電解処理することが重要な特徴である。陰極電解処理では、局所的な電解集中を生じると不均一な被膜となる為、均一な電位分布となるように注意が必要である。特に、表面に緻密な酸化膜が形成されている金属板への処理や酸性領域で溶解しやすい金属板への処理は、局所的な電解集中が生じ易く、均一な被膜形成が困難である。この為、例えばアルミニウム板へ処理する場合には、ジンケート処理などの特殊な前処理が必要とされることが多い。
本発明においては、特殊な前処理を行なうことなく、できるだけ均一な表面処理膜を生成するために、低濃度の浴で電解処理を行なうこととしている。すなわち、上記範囲よりも浴濃度が高いと、濃度分極を生じやすく、分極抵抗の低い部分に電解が優先的に集中するため、結果的に不均一な被膜が形成され好ましくない。一方、上記範囲よりも浴濃度が低い場合には、浴の電気伝導度が低く、処理に要する電力上昇を招くので好ましくない。
(Surface treatment method)
In the metal plate surface treatment method of the present invention, it is an important feature that the cathode electrolytic treatment is performed in an aqueous solution having an Al ion concentration in the range of 0.001 to 0.05 mol / liter. In the cathodic electrolysis treatment, if a local electrolytic concentration occurs, a non-uniform film is formed, so care must be taken to ensure a uniform potential distribution. In particular, the treatment on a metal plate having a dense oxide film formed on the surface or the treatment on a metal plate that is easily dissolved in an acidic region is likely to cause local electrolytic concentration, and it is difficult to form a uniform film. For this reason, for example, when processing an aluminum plate, a special pretreatment such as a zincate treatment is often required.
In the present invention, electrolytic treatment is performed in a low-concentration bath in order to produce a surface treatment film that is as uniform as possible without performing a special pretreatment. That is, if the bath concentration is higher than the above range, concentration polarization is likely to occur, and electrolysis concentrates preferentially in a portion having low polarization resistance, resulting in an undesirable formation of a non-uniform film. On the other hand, when the bath concentration is lower than the above range, the electrical conductivity of the bath is low, which causes an increase in power required for the treatment, which is not preferable.

また、本発明の表面処理方法においては、Alイオンの他に、水溶液中に更にFイオンを含むことが好ましい。
図8は、Fイオンを含まない浴とFイオンを0.024モル/リットル含む浴とを用いて、錫めっき鋼板を陰極として同一条件で電解し、Alの析出膜厚を比較したものである。横軸は通電と停止のサイクルを複数回繰り返す断続電解を行なった時の通電時間と停止時間の総和であるトータル電解時間を示している。図から明らかなように、Fイオンを含む場合のほうが、Al膜厚の形成速度が速いことが理解される。
In the surface treatment method of the present invention, it is preferable that F ions are further contained in the aqueous solution in addition to the Al ions.
FIG. 8 shows a comparison of the deposited film thickness of Al by electrolysis under the same conditions using a bath containing no F ions and a bath containing 0.024 mol / liter of F ions using a tin-plated steel sheet as a cathode. . The horizontal axis indicates the total electrolysis time which is the sum of the energization time and the stop time when intermittent electrolysis is performed by repeating the energization and stop cycles a plurality of times. As is apparent from the figure, it is understood that the formation rate of the Al film is faster when F ions are included.

また、本発明の表面処理方法においては、浴濃度や浴組成、基材の材質にも左右されるので明確な電流密度範囲を限定することはできないが、一般に、約5A/dm以上の高い電流密度では、断続的に陰極電解処理実施すること、すなわち電解途中に停止時間を設けて、攪拌した水溶液中で通電と停止のサイクルを複数回繰り返して電解を行なう断続電解を行なうことが好ましい。連続的に電解していると陰極表面上にO/Al比の大きいルーズな膜がゲル状に析出し、濃度分極を生じ良質な膜の形成を阻害する。これに対し、断続的に電解することにより、電解停止の間に攪拌効果により、陰極近傍へAl,O,OH,Fなどのイオンが供給されると共に、陰極に生成したルーズな膜、すなわち、O/Al比の大きい膜が攪拌により除去され、結果としてAl重量膜厚の形成速度が速く、かつ、より高品質な膜を提供することになる。 Further, in the surface treatment method of the present invention, since it depends on the bath concentration, the bath composition, and the material of the base material, it is not possible to limit the clear current density range, but in general, it is as high as about 5 A / dm 2 or more. In terms of current density, it is preferable to perform cathodic electrolysis intermittently, that is, to perform intermittent electrolysis in which a stop time is provided during electrolysis and electrolysis is performed by repeating a cycle of energization and stop in the stirred aqueous solution a plurality of times. When electrolysis is performed continuously, a loose film having a large O / Al ratio is deposited in a gel form on the cathode surface, resulting in concentration polarization and inhibiting the formation of a good quality film. On the other hand, by intermittently electrolyzing, ions such as Al, O, OH, and F are supplied to the vicinity of the cathode due to the stirring effect during the electrolysis stop, and a loose film generated at the cathode, that is, A film having a large O / Al ratio is removed by stirring, and as a result, a film having a higher Al weight film thickness is formed and a higher quality film is provided.

通電と停止のサイクルは、これに限定されるものではないが、通電時間が0.1乃至0.8秒、停止時間が0.3乃至1.5秒の範囲で、2乃至30サイクル行なうことが好ましい。
一方、低電流密度、例えば、約0.5A/dm程度の低電流密度で電解した場合には、連続電解でも断続電解でも析出効率に差がないか、あるいは、連続電解の方が効率よく析出する。低電流密度の場合には、析出速度が遅く、濃度分極は生じにくい為、連続電解と断続電解とは差が生じないか、逆に、連続電解の方が高い析出効率となる。
The energization and stop cycle is not limited to this, but the energization time is 0.1 to 0.8 seconds and the stop time is 0.3 to 1.5 seconds. Is preferred.
On the other hand, when electrolysis is performed at a low current density, for example, about 0.5 A / dm 2 , there is no difference in deposition efficiency between continuous electrolysis and intermittent electrolysis, or continuous electrolysis is more efficient. Precipitate. In the case of a low current density, since the deposition rate is slow and concentration polarization is less likely to occur, there is no difference between continuous electrolysis and intermittent electrolysis, or conversely, continuous electrolysis has a higher deposition efficiency.

表面処理に用いる水溶液は、pH2.0〜7.0、より好ましくはpH2.3〜6.0の水溶液であることが好ましく、処理液に用いるAl薬剤としては、硝酸アルミニウムAl(NO・9HOの他、硫酸アルミニウムカリウムAlK(SO・12HO、硫酸アルミニウムAl(SO・13HO、リン酸二水素アルミニウム液Al(HPO、リン酸2水素アルミニウムAlPO、 乳酸アルミニウム〔CHCH(OH)COO〕Alなどを用いることができる。
また、Alと共にZrやTiを使用する場合、Zr薬剤としてはフッ化ジルコニウムカリウムKZrFやフッ化ジルコニウムアンモニウム(NHZrF、炭酸ジルコニウムアンモニウム溶液(NHZrO(CO、オキシ硝酸ジルコニウムZrO(NO、オキシ酢酸ジルコニウムZrO(CHCOO)などを用いることができ、Ti薬剤としては、チタンフッ化カリウムKTiF、チタンフッ化アンモニウム(NHTiF、チタンフッ化ソーダNaTiF
、シュウ酸チタンカリウム2水和物KTiO(C・2HO、塩化チタン(III)溶液TiCl、塩化チタン(IV)溶液TiClなどを用いることができる。
The aqueous solution used for the surface treatment is preferably an aqueous solution having a pH of 2.0 to 7.0, more preferably a pH of 2.3 to 6.0. As an Al agent used for the treatment liquid, aluminum nitrate Al (NO 3 ) 3・ In addition to 9H 2 O, aluminum potassium sulfate AlK (SO 4 ) 2 · 12H 2 O, aluminum sulfate Al 2 (SO 4 ) 3 · 13H 2 O, aluminum dihydrogen phosphate Al (H 2 PO 4 ) 3 , Aluminum dihydrogen phosphate AlPO 4 , aluminum lactate [CH 3 CH (OH) COO] 3 Al, and the like can be used.
Also, when using a Zr or Ti with Al, zirconium fluoride potassium KZrF 6 and fluoride ammonium zirconium as Zr drug (NH 4) 2 ZrF 6, zirconium ammonium carbonate solution (NH 4) 2 ZrO (CO 3) 2 , Zirconium oxynitrate ZrO (NO 3 ) 2 , zirconium oxyacetate ZrO (CH 3 COO) 2, and the like can be used. As the Ti agent, potassium titanium fluoride K 2 TiF 6 , ammonium titanium fluoride (NH 4 ) 2 TiF 6 , Titanium fluoride sodium Na 2 TiF 6
Further, potassium potassium oxalate dihydrate K 2 TiO (C 2 O 4 ) 2 · 2H 2 O, titanium chloride (III) solution TiCl 3 , titanium chloride (IV) solution TiCl 4 and the like can be used.

フッ素イオンの薬剤としては、フッ化ナトリウムNaF、フッ化カリウムKF、フッ化アンモニウムNHFなどを用いることができる。
ZrやTi薬剤を含まずにAl薬剤を使用する場合であっても、水溶液中にFを含むことが析出効率の点から好ましいが、特に、ZrやTi薬剤をAlと共に使用する場合には、水溶液中にFとして、0.03モル/リットル〜0.35モル/リットルの範囲でFを含むことが好ましい。上記範囲よりもフッ素イオン濃度が低いと、析出効率が低い他に、特性面でも高温多湿環境下で経時的に不安定な表面となるので好ましくなく、上記範囲よりもフッ素イオン濃度が高いと析出効率を阻害する傾向があると共に、浴中に沈殿物を生じやすいので好ましくない。
As the fluoride ion agent, sodium fluoride NaF, potassium fluoride KF, ammonium fluoride NH 4 F, or the like can be used.
Even in the case of using Al agent without containing Zr or Ti agent, it is preferable from the viewpoint of the precipitation efficiency that F is contained in the aqueous solution, but particularly when Zr or Ti agent is used together with Al, It is preferable that F is contained in the aqueous solution in the range of 0.03 mol / liter to 0.35 mol / liter. If the fluorine ion concentration is lower than the above range, the deposition efficiency is low and, in addition, the surface becomes unstable over time in a high temperature and high humidity environment. This is not preferable because it tends to inhibit efficiency and tends to cause precipitation in the bath.

更に、表面処理に用いる水溶液には必要に応じて、硝酸イオン、過酸化物、及び錯化剤を添加してもよい。
硝酸イオンは、長期にわたって電解する際に、析出状態の安定性を保つ効果があり、硝酸、硝酸ナトリウム、硝酸カリウム、硝酸アンモニウムなどをイオン源として用いることができる。過酸化物は、水溶液中で酸素を発生し、陰極表面近傍の濃度分極を抑制する効果があり、浴の攪拌が乏しい時に特に有用である。過酸化物としては、例えば、過酸化水素、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソホウ酸ナトリウム、ペルオキソ炭酸ナトリウム、ペルオキソ二硫酸ナトリウムなどを用いることができる。さらに、錯化剤は、浴中に沈殿物が生成するのを抑える働きがあり、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、クエン酸、クエン酸ナトリウム、ホウ酸、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、シクロヘキサンジアミン四酢酸、グリシンなどを用いることができる。硝酸イオン、過酸化物、及び錯化剤の添加濃度は、高濃度すぎると析出効率を阻害する傾向があり、硝酸イオン、過酸化物、錯化剤のそれぞれの濃度は0.2モル/リットル以下であることが好ましい。
Furthermore, nitrate ions, peroxides, and complexing agents may be added to the aqueous solution used for the surface treatment, if necessary.
Nitrate ions have the effect of maintaining the stability of the deposited state during electrolysis over a long period of time, and nitric acid, sodium nitrate, potassium nitrate, ammonium nitrate, and the like can be used as an ion source. The peroxide has an effect of generating oxygen in an aqueous solution and suppressing concentration polarization near the cathode surface, and is particularly useful when the bath is poorly stirred. As the peroxide, for example, hydrogen peroxide, ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxoborate, sodium peroxocarbonate, sodium peroxodisulfate and the like can be used. Furthermore, the complexing agent has a function of suppressing the formation of precipitates in the bath, such as ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, citric acid, sodium citrate, boric acid, nitrilotriacetic acid, nitrilotriacetic acid sodium, Cyclohexanediaminetetraacetic acid, glycine, or the like can be used. If the concentration of nitrate ion, peroxide, and complexing agent is too high, the precipitation efficiency tends to be inhibited. The concentration of nitrate ion, peroxide, and complexing agent is 0.2 mol / liter. The following is preferable.

金属板基体の前処理としては、定法により、脱脂、水洗、必要に応じて、酸洗、水洗を行い、表面を清浄化した後、上記水溶液を10〜65℃の温度において、攪拌しながら、電流密度が約5〜50A/dmでは通電と停止のサイクルを繰り返す断続電解方式により、または、電流密度が約0.1〜5A/dmでは連続電解方式により、トータル電解時間が0.3〜60秒間陰極電解し、最後に水洗することにより、好適な表面構造を得ることができる。上記電流密度範囲は、濃度分極の起こしやすさにより左右される為、限定的な値ではない。すなわち、断続電解が好ましいか連続電解が好ましいかの電流密度範囲は、浴濃度や浴組成及び基材の材質などによって異なるが、一般に、浴濃度が高い場合には水素発生が支配的にならない範囲内での高電流密度で断続電解を、浴濃度が低い場合には、低電流密度で連続電解を行うのが好ましい。
陽極側に相当する対極板には、酸化イリジウム被覆したチタン板が好適に用いられる。対極板の条件としては、電解中に対極材料が処理液中に溶解せず、酸素過電圧の小さい不溶性陽極であることが望ましい。
As a pretreatment of the metal plate substrate, degreasing, washing with water, if necessary, pickling, washing with water, cleaning the surface, and stirring the aqueous solution at a temperature of 10 to 65 ° C., When the current density is about 5 to 50 A / dm 2 , the total electrolysis time is 0.3 by the intermittent electrolysis method in which the cycle of energization and stop is repeated, or when the current density is about 0.1 to 5 A / dm 2 by the continuous electrolysis method. A suitable surface structure can be obtained by cathodic electrolysis for ˜60 seconds and finally washing with water. The current density range is not limited because it depends on the ease of concentration polarization. That is, the current density range of whether intermittent electrolysis is preferable or continuous electrolysis is different depending on the bath concentration, the bath composition, the material of the base material, and the like. It is preferable to perform intermittent electrolysis at a high current density and continuous electrolysis at a low current density when the bath concentration is low.
As the counter electrode plate corresponding to the anode side, a titanium plate coated with iridium oxide is preferably used. As a condition of the counter electrode plate, it is desirable that the counter electrode material is an insoluble anode having a small oxygen overvoltage without being dissolved in the treatment liquid during electrolysis.

本発明の表面処理方法においては、上記無機被膜を形成した後に、フェノール系水溶性有機化合物又はシランカップリング剤を塗布し、これを乾燥させることにより有機被膜を形成させることが特に好適である。
有機被膜を無機表面処理層上に形成するには、上述したフェノール系水溶性有機化合物又はシランカップリング剤溶液を無機表面処理層上に塗布、若しくはフェノール系水溶性有機化合物又はシランカップリング剤溶液中に無機表面処理層を形成した表面処理金属板を浸漬し、その後絞りロールで過剰な溶液を除去した後、80〜180℃の温度条件下で加熱乾燥することによりすることにより形成することができる。
In the surface treatment method of the present invention, it is particularly preferable to form an organic coating by applying a phenol-based water-soluble organic compound or a silane coupling agent after forming the inorganic coating and drying it.
In order to form the organic coating on the inorganic surface treatment layer, the above-described phenol-based water-soluble organic compound or silane coupling agent solution is applied on the inorganic surface treatment layer, or the phenol-based water-soluble organic compound or silane coupling agent solution. It can be formed by immersing the surface-treated metal plate on which the inorganic surface-treated layer is formed, removing the excess solution with a squeeze roll, and then drying by heating under a temperature condition of 80 to 180 ° C. it can.

(樹脂被覆金属板)
本発明の樹脂被覆金属板は、上記表面処理金属板の少なくとも片面に有機樹脂、中でも特にポリエステル樹脂から成る層を被覆して成るものであり、上述した表面処理金属板を用いることから、樹脂被覆の密着性及び接着性に優れており、このため優れた耐食性、耐デント性を有している。
本発明の樹脂被覆金属板の一例の断面図を示す図9において、この樹脂被覆金属板5は、容器としたときの内面側(図において右側)で見て、金属板基体51、基体表面に設けられた、Al,Oを主構成成分とする無機表面処理層52、無機表面処理層52の上に設けられた有機表面処理層53、及びその上に設けられたポリエステル樹脂被覆層54の多層構造を有している。図9の例では、容器としたときの外面側(図において左側)において、前記無機表面処理層52を介して外面樹脂保護層55を備えているが、外面樹脂保護層55は、前記ポリエステル樹脂被覆層54と同一のポリエステル樹脂であっても、或いはこれと異なるポリエステル樹脂からなっていてもよく、また異なる樹脂からなっていてもよい。
(Resin coated metal plate)
The resin-coated metal plate of the present invention is formed by coating a layer made of an organic resin, particularly a polyester resin, on at least one surface of the surface-treated metal plate. Therefore, it has excellent corrosion resistance and dent resistance.
In FIG. 9 showing a cross-sectional view of an example of the resin-coated metal plate of the present invention, this resin-coated metal plate 5 is formed on the metal plate substrate 51 and the substrate surface when viewed from the inner surface side (right side in the figure) when used as a container. A multilayer of an inorganic surface treatment layer 52 having Al and O as main components, an organic surface treatment layer 53 provided on the inorganic surface treatment layer 52, and a polyester resin coating layer 54 provided thereon. It has a structure. In the example of FIG. 9, an outer surface resin protective layer 55 is provided on the outer surface side (left side in the figure) of the container via the inorganic surface treatment layer 52, and the outer surface resin protective layer 55 is formed of the polyester resin. Even if it is the same polyester resin as the coating layer 54, it may consist of a different polyester resin, and may consist of a different resin.

また、樹脂被覆金属板の他の例を示す図10において、この樹脂被覆金属板5は、Al、Oを主構成成分とする表面処理層52、基体51の容器内面となる側に施された有機表面処理層53、ポリエステル樹脂層54及び外面となる側に施された外面樹脂保護層55を備えている点では、図9のものと同様であるが、基体51が金属板51aと金属メッキ層51bにより構成されており、更に、ポリエステル樹脂層54がポリエステル樹脂表層54aとポリエステル樹脂下層54bとの積層構造となっている。基体51の大部分を占める金属板51aに被覆される金属メッキ層51bは、金属板51aの耐食性を高める役割を持つものが使用されることは既に述べたとおりである。また、ポリエステル樹脂下層54bとしては金属基体との接着性に優れたものが使用され、一方ポリエステル樹脂表層54aとしては耐内容物性に優れたものが使用されることは既に述べたとおりである。   Further, in FIG. 10 showing another example of the resin-coated metal plate, the resin-coated metal plate 5 was applied to the surface of the surface treatment layer 52 containing Al and O as main components and the inner surface of the base 51. Although the organic surface treatment layer 53, the polyester resin layer 54, and the outer surface resin protective layer 55 provided on the outer surface side are the same as those in FIG. 9, the base 51 is formed of a metal plate 51a and a metal plate. The polyester resin layer 54 has a laminated structure of a polyester resin surface layer 54a and a polyester resin lower layer 54b. As described above, the metal plating layer 51b covered with the metal plate 51a occupying most of the base 51 is used to increase the corrosion resistance of the metal plate 51a. As described above, the polyester resin lower layer 54b is excellent in adhesion to a metal substrate, while the polyester resin surface layer 54a is excellent in content resistance.

(有機樹脂被覆層)
本発明の樹脂被覆金属板において、金属板上に設ける有機樹脂としては、特に限定はなく、各種熱可塑性樹脂や熱硬化性乃至熱可塑性樹脂を挙げることができる。
有機樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリルエステル共重合体、アイオノンマー等のオレフィン系樹脂フィルム、またはポリブチレンテレフタレート等のポリエステルフィルム、もしくはナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミドフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム等の熱可塑性樹脂フィルムの未延伸または二軸延伸したものであってもよい。積層の際に接着剤を用いる場合は、ウレタン系接着剤、エポキシ系接着剤、酸変性オレフィン樹脂系接着剤、コポリアミド系接着剤、コポリエステル系接着剤(厚さ:0.1〜5.0μm)等が好ましく用いられる。さらに熱硬化性塗料を、厚み0.05〜2μmの範囲で表面処理金属板側、あるいはフィルム側に塗布し、これを接着剤としてもよい。
(Organic resin coating layer)
In the resin-coated metal plate of the present invention, the organic resin provided on the metal plate is not particularly limited, and examples thereof include various thermoplastic resins and thermosetting or thermoplastic resins.
As the organic resin, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, olefin resin film such as ionomer, or polyester film such as polybutylene terephthalate, or A non-stretched or biaxially stretched thermoplastic resin film such as a nylon film such as nylon 6, nylon 6, 6, nylon 11 or nylon 12, a polyvinyl chloride film or a polyvinylidene chloride film may be used. When an adhesive is used in the lamination, a urethane adhesive, an epoxy adhesive, an acid-modified olefin resin adhesive, a copolyamide adhesive, a copolyester adhesive (thickness: 0.1 to 5. 0 μm) is preferably used. Further, a thermosetting paint may be applied to the surface-treated metal plate side or film side in a thickness range of 0.05 to 2 μm, and this may be used as an adhesive.

さらに有機樹脂としては、フェノールエポキシ、アミノ−エポキシ等の変性エポキシ塗料、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体けん化物、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、エポキシ変性−、エポキシアミノ変性−、エポキシフェノール変性−ビニル塗料または変性ビニル塗料、アクリル塗料、スチレン−ブタジェン系共重合体等の合成ゴム系塗料等の熱可塑性または熱硬化性塗料の単独または2種以上の組合わせであってもよい。
これらの中でも、容器用素材としてポリエステル樹脂が最も好適に用いられる。ポリエステル樹脂としては、エチレングリコールやブチレングリコールを主体とするアルコール成分と、芳香族二塩基酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の酸成分とから誘導される熱可塑性ポリエステルが挙げられる。
ポリエステルとしては、ポリエチレンテレフタレートそのものも勿論使用可能であるが、フィルムの到達し得る最高結晶化度を下げることが耐衝撃性や加工性の点で望ましく、この目的のためにポリエステル中にエチレンテレフタレート以外の共重合エステル単位を導入するのがよい。エチレンテレフタレート単位或いはブチレンテレフタレート単位を主体とし、他のエステル単位の少量を含む融点が210乃至252℃の共重合ポリエステルを用いることが特に好ましい。尚、ホモポリエチレンテレフタレートの融点は一般に255〜265℃である。
Further, as organic resins, modified epoxy paints such as phenol epoxy and amino-epoxy, vinyl chloride-vinyl acetate copolymer, saponified vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer , Epoxy-modified-, epoxy-amino-modified, epoxy-phenol-modified-vinyl paint or modified vinyl paint, acrylic paint, thermoplastic or thermosetting paint such as synthetic rubber paint such as styrene-butadiene copolymer alone or 2 It may be a combination of more than one species.
Among these, a polyester resin is most preferably used as a container material. Examples of the polyester resin include thermoplastic polyesters derived from an alcohol component mainly composed of ethylene glycol or butylene glycol and an acid component such as an aromatic dibasic acid such as terephthalic acid, isophthalic acid, or naphthalenedicarboxylic acid.
Of course, polyethylene terephthalate itself can be used as the polyester, but lowering the maximum crystallinity that the film can reach is desirable in terms of impact resistance and processability. It is preferable to introduce the copolymerized ester unit. It is particularly preferable to use a copolyester having a melting point of 210 to 252 ° C. mainly composed of ethylene terephthalate units or butylene terephthalate units and containing a small amount of other ester units. The melting point of homopolyethylene terephthalate is generally 255 to 265 ° C.

一般に共重合ポリエステル中の二塩基酸成分の70モル%以上、特に75モル%以上がテレフタル酸成分から成り、ジオール成分の70モル%以上、特に75モル%以上がエチレングリコールまたはブチレングリコールから成り、二塩基酸成分の1乃至30モル%、特に5乃至25モル%がテレフタル酸以外の二塩基酸成分から成ることが好ましい。
テレフタル酸以外の二塩基酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸:シクロヘキサンジカルボン酸等の脂環族ジカルボン酸:コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸:の1種又は2種以上の組合せが挙げられ、エチレングリコールまたはブチレングリコール以外のジオール成分としては、プロピレングリコール、ジエチレングリコール、1,6−ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。勿論、これらのコモノマーの組合せは、共重合ポリエステルの融点を前記範囲とするのが好ましい。
In general, 70 mol% or more, particularly 75 mol% or more of the dibasic acid component in the copolyester is composed of a terephthalic acid component, and 70 mol% or more, particularly 75 mol% or more of the diol component is composed of ethylene glycol or butylene glycol, It is preferable that 1 to 30 mol%, particularly 5 to 25 mol% of the dibasic acid component is composed of a dibasic acid component other than terephthalic acid.
Dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid: alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid: succinic acid, adipic acid, sebacic acid, dodecanedioic acid, etc. Or a combination of two or more of the aliphatic dicarboxylic acids: As the diol component other than ethylene glycol or butylene glycol, propylene glycol, diethylene glycol, 1,6-hexylene glycol, cyclohexane dimethanol, bisphenol A 1 type, or 2 or more types, such as an ethylene oxide adduct. Of course, the combination of these comonomers is preferably such that the melting point of the copolyester falls within the above range.

また、このポリエステルは、成形時の溶融流動特性を改善するために、三官能以上の多塩基酸及び多価アルコールから成る群より選択された少なくとも1種の分岐乃至架橋成分を含有することができる。これらの分岐乃至架橋成分は、3.0モル%以下、好適には0.05乃至3.0モル%の範囲にあるのがよい。
三官能以上の多塩基酸及び多価アルコールとしては、トリメリット酸、ピロメリット酸、ヘミメリット酸、1,1,2,2−エタンテトラカルボン酸、1,1,2−エタントリカルボン酸、1,3,5−ペンタントリカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、ビフェニル−3,4,3’,4’−テトラカルボン酸等の多塩基酸や、ペンタエリスリトール、グリセロール、トリメチロールプロパン、1,2,6−ヘキサントリオール、ソルビトール、1,1,4,4−テトラキス(ヒドロキシメチル)シクロヘキサン等の多価アルコールが挙げられる。
Further, the polyester may contain at least one branching or crosslinking component selected from the group consisting of a tribasic or higher polybasic acid and a polyhydric alcohol in order to improve the melt flow characteristics during molding. . These branching or crosslinking components should be in the range of 3.0 mol% or less, preferably 0.05 to 3.0 mol%.
Examples of the trifunctional or higher polybasic acid and polyhydric alcohol include trimellitic acid, pyromellitic acid, hemimellitic acid, 1,1,2,2-ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid, 1 , 3,5-pentanetricarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, polybasic acids such as biphenyl-3,4,3 ′, 4′-tetracarboxylic acid, pentaerythritol, glycerol, Examples include polyhydric alcohols such as trimethylolpropane, 1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl) cyclohexane.

本発明の樹脂被覆金属板において、製缶用または製蓋用素材に利用できる特に好適なポリエステル樹脂として、イソフタル酸成分を5乃至25モル%含有するポリエチレンテレフタレート/イソフタレート、シクロヘキサンジメタノール成分を1乃至10モル%含有するポリエチレン/シクロへキシレンジメチレンテレフタレート等が挙げられる。
ホモポリエステル或いは共重合ポリエステルは、フィルム形成範囲の分子量を有するべきであり、溶媒として、フェノール/テトラクロロエタン混合溶媒を用いて測定した固有粘度〔η〕は0.5乃至1.5、特に0.6乃至1.5の範囲にあるのがよい。
In the resin-coated metal plate of the present invention, as a particularly suitable polyester resin that can be used for a can-making or lid-making material, polyethylene terephthalate / isophthalate containing 5 to 25 mol% of isophthalic acid component, 1 cyclohexanedimethanol component Examples thereof include polyethylene / cyclohexylene dimethylene terephthalate containing 10 to 10 mol%.
The homopolyester or copolyester should have a molecular weight in the film forming range, and the intrinsic viscosity [η] measured using a phenol / tetrachloroethane mixed solvent as the solvent is 0.5 to 1.5, especially 0. It may be in the range of 6 to 1.5.

本発明に用いるポリエステル樹脂層は、上述したポリエステル或いはコポリエステル単独から形成されていても、或いはポリエステル或いはコポリエステルの2種以上のブレンド物、或いはポリエステル或いはコポリエステルと他の熱可塑性樹脂とのブレンド物から形成されていてもよい。ポリエステル或いはコポリエステルの2種以上のブレンド物としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリエチレン/シクロへキシレンジメチレンテレフタレートの2種以上の組合せなどが挙げられるが、勿論この例に限定されない。   The polyester resin layer used in the present invention may be formed from the above-described polyester or copolyester alone, or a blend of two or more of polyester or copolyester, or a blend of polyester or copolyester and another thermoplastic resin. It may be formed from an object. Examples of blends of two or more of polyester or copolyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, and combinations of two or more of polyethylene / cyclohexylene dimethylene terephthalate. It is not limited to.

ポリエステル中に配合できる他の熱可塑性樹脂としては、エチレン系重合体、熱可塑性エラストマー、ポリアリレート、ポリカーボネート等を挙げることができる。これらの改質樹脂成分の少なくとも1種を更に含有させ、耐高温湿熱性や耐衝撃性を更に向上させることができる。この改質樹脂成分は、一般にポリエステル100重量部当たり50重量部迄の量、特に好適には5乃至35重量部の量で用いるのが望ましい。
エチレン系重合体として、例えば低−、中−或いは高−密度のポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)、エチレン−アクリル酸エステル共重合体等が挙げられる。これらの内でも、アイオノマーが好適なものであり、アイオノマーのベースポリマーとしては、エチレン−(メタ)アクリル酸共重合体やエチレン−(メタ)アクリル酸エステル−(メタ)アクリル酸共重合体、イオン種としては、Na、K、Zn等のものが使用される。熱可塑性エラストマーとしては、例えばスチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、水素化スチレン−ブタジエン−スチレンブロック共重合体、水素化スチレン−イソプレン−スチレンブロック共重合体等が使用される。
Examples of other thermoplastic resins that can be blended in the polyester include ethylene polymers, thermoplastic elastomers, polyarylate, and polycarbonate. At least one of these modified resin components can be further contained to further improve high-temperature wet heat resistance and impact resistance. This modified resin component is generally used in an amount of up to 50 parts by weight, particularly preferably 5 to 35 parts by weight, per 100 parts by weight of polyester.
Examples of the ethylene polymer include low-, medium- or high-density polyethylene, linear low density polyethylene, linear ultra-low density polyethylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene- Examples include propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, ion-crosslinked olefin copolymer (ionomer), and ethylene-acrylic acid ester copolymer. Among these, ionomers are preferable, and as the base polymer of ionomer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester- (meth) acrylic acid copolymer, ion As the seed, Na, K, Zn or the like is used. Examples of the thermoplastic elastomer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated styrene-butadiene-styrene block copolymer, and a hydrogenated styrene-isoprene-styrene block copolymer. Etc. are used.

ポリアリレートは、二価フェノールと二塩基酸とから誘導されたポリエステルとして定義され、二価フェノールとしては、ビスフェノール類として、2,2’−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2’−ビス(4−ヒドロキシフェニル)ブタン(ビスフェノールB)、1,1’−ビス(4−ヒドロキシフェニル)エタン、ビス(4−ヒドロキシフェニル)メタン(ビスフェノールF)、4−ヒドロキシフェニルエーテル、p−(4−ヒドロキシ)フェノール等が使用されるが、ビスフェノールA及びビスフェノールBが好適である。二塩基酸としては、テレフタル酸、イソフタル酸、2,2−(4−カルボキシフェニル)プロパン、4, 4’−ジカルボキシジフェニルエーテル、4, 4’−ジカルボキシベンゾフェノン等が使用される。ポリアリレートは、上記単量体成分から誘導されたホモ重合体でもよく、また共重合体でもよい。
また、その本質を損なわない範囲で、脂肪族グリコールと二塩基酸とから誘導されたエステル単位との共重合体であってもよい。これらのポリアリレートは、ユニチカ社のUポリマーのUシリーズ或いはAXシリーズ、UCC社のArdelD−100、Bayer社のAPE、Hoechst社のDurel、DuPont社のArylon、鐘淵化学社のNAP樹脂等として入手できる。
Polyarylate is defined as a polyester derived from a dihydric phenol and a dibasic acid. As the dihydric phenol, 2,2′-bis (4-hydroxyphenyl) propane (bisphenol A), 2 , 2′-bis (4-hydroxyphenyl) butane (bisphenol B), 1,1′-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane (bisphenol F), 4-hydroxyphenyl ether, p- (4-hydroxy) phenol or the like is used, and bisphenol A and bisphenol B are preferred. As the dibasic acid, terephthalic acid, isophthalic acid, 2,2- (4-carboxyphenyl) propane, 4,4′-dicarboxydiphenyl ether, 4,4′-dicarboxybenzophenone, or the like is used. The polyarylate may be a homopolymer derived from the monomer component or a copolymer.
Further, it may be a copolymer of ester units derived from an aliphatic glycol and a dibasic acid as long as the essence is not impaired. These polyarylates are available as Unitika U polymer U series or AX series, UCC Ardel D-100, Bayer APE, Hoechst Durel, DuPont Arylon, Kaneka Chemical NAP resin, etc. it can.

ポリカーボネートは、二環二価フェノール類とホスゲンとから誘導される炭酸エステル樹脂であり、高いガラス転移点と耐熱性とを有することが特徴である。ポリカーボネートとしては、ビスフェノール類、例えば、2,2’−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2’−ビス(4−ヒドロキシフェニル)ブタン(ビスフェノールB)、1,1’−ビス(4−ヒドロキシフェニル)エタン、ビス(4−ヒドロキシフェニル)メタン(ビスフェノールF)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,2−ビス(4−ヒドロキシフェニル)エタン等から誘導されたポリカーボネートが好適である。   Polycarbonate is a carbonate resin derived from bicyclic dihydric phenols and phosgene, and is characterized by having a high glass transition point and heat resistance. Examples of the polycarbonate include bisphenols such as 2,2′-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2′-bis (4-hydroxyphenyl) butane (bisphenol B), 1,1′- Bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane (bisphenol F), 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, , 1-bis (4-hydroxyphenyl) -1-phenylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,2-bis (4-hydroxyphenyl) ethane, etc. Polycarbonate is preferred.

本発明に用いるポリエステル樹脂層は、単層の樹脂層であってもよく、また同時押出などによる多層の樹脂層であってもよい。多層のポリエステル樹脂層を用いると、下地層、即ち表面処理金属板側に接着性に優れた組成のポリエステル樹脂を選択し、表層に耐内容物性、即ち耐抽出性やフレーバー成分の非吸着性に優れた組成のポリエステル樹脂を選択できるので有利である。
多層ポリエステル樹脂層の例を示すと、表層/下層として表示して、ポリエチレンテレフタレート/ポリエチレンテレフタレート・イソフタレート、ポリエチレンテレフタレート/ポリエチレン・シクロへキシレンジメチレン・テレフタレート、イソフタレート含有量の少ないポリエチレンテレフタレート・イソフタレート/イソフタレート含有量の多いポリエチレンテレフタレート・イソフタレート、ポリエチレンテレフタレート・イソフタレート/[ポリエチレンテレフタレート・イソフタレートとポリブチレンテレフタレート・アジペートとのブレンド物]等であるが、勿論上記の例に限定されない。表層:下層の厚み比は、5:95乃至95:5の範囲にあるのが望ましい。
The polyester resin layer used in the present invention may be a single resin layer or a multilayer resin layer formed by coextrusion or the like. When a multilayer polyester resin layer is used, a polyester resin having an excellent adhesive property is selected for the base layer, that is, the surface-treated metal plate side, and the surface layer is resistant to contents, that is, extraction resistance and non-adsorption of flavor components. This is advantageous because a polyester resin having an excellent composition can be selected.
Examples of multilayer polyester resin layers are shown as surface layer / lower layer, polyethylene terephthalate / polyethylene terephthalate / isophthalate, polyethylene terephthalate / polyethylene / cyclohexylene dimethylene / terephthalate, polyethylene terephthalate / isolated with low isophthalate content. Polyethylene terephthalate / isophthalate having a high phthalate / isophthalate content, polyethylene terephthalate / isophthalate / [blend of polyethylene terephthalate / isophthalate and polybutylene terephthalate / adipate] and the like are of course not limited thereto. The surface layer: lower layer thickness ratio is preferably in the range of 5:95 to 95: 5.

上記ポリエステル樹脂層には、それ自体公知の樹脂用配合剤、例えば非晶質シリカ等のアンチブロッキング剤、無機フィラー、各種帯電防止剤、滑剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することができる。
中でも、トコフェロール(ビタミンE)を用いることが好ましい。トコフェロールは、従来より酸化防止剤としてポリエステル樹脂の熱処理時における減成による分子量低下を防止して耐デント性を向上させるものであることが知られているが、特にポリエステル樹脂に前述したエチレン系重合体を改質樹脂成分として配合したポリエステル組成物にこのトコフェロールを配合すると、耐デント性のみならず、レトルト殺菌やホットベンダー等の過酷な条件に付され被膜にクラックが生じたような場合でも、クラックから腐食が進むことが防止され、耐食性が著しく向上するという効果を得ることができる。
トコフェロールは、0.05乃至3重量%、特に0.1乃至2重量%の量で配合することが好ましい。
In the polyester resin layer, known compounding agents for resins, for example, antiblocking agents such as amorphous silica, inorganic fillers, various antistatic agents, lubricants, antioxidants, ultraviolet absorbers, etc., according to known formulations Can be blended.
Of these, tocopherol (vitamin E) is preferably used. Tocopherol is conventionally known as an antioxidant that prevents molecular weight reduction due to degradation during heat treatment of a polyester resin and improves dent resistance. When this tocopherol is blended with a polyester composition blended as a modified resin component, not only the dent resistance, but also when the film is cracked due to severe conditions such as retort sterilization and hot bender, It is possible to prevent the corrosion from proceeding from the cracks and to obtain the effect that the corrosion resistance is remarkably improved.
Tocopherol is preferably blended in an amount of 0.05 to 3% by weight, particularly 0.1 to 2% by weight.

本発明において、有機樹脂層の厚みは、一般に3乃至50μm、特に5乃至40μmの範囲にあることが望ましい。即ち、厚みが上記範囲を下回ると、耐腐食性が不十分となり、厚みが上記範囲を上回ると加工性の点で問題を生じやすい。   In the present invention, the thickness of the organic resin layer is generally in the range of 3 to 50 μm, particularly 5 to 40 μm. That is, when the thickness is less than the above range, the corrosion resistance becomes insufficient, and when the thickness exceeds the above range, a problem is likely to occur in terms of workability.

(樹脂被覆金属板の製造)
本発明において、表面処理金属板へのポリエステル被覆層の形成は任意の手段で行うことができ、例えば、押出コート法、キャストフィルム熱接着法、二軸延伸フィルム熱接着法等により行うことができる。押出コート法の場合、表面処理金属板の上にポリエステル樹脂を溶融状態で押出コートして、熱接着させることにより製造することができる。即ち、ポリエステル樹脂を押出機で溶融混練した後、T−ダイから薄膜状に押し出し、押し出された溶融樹脂膜を表面処理金属板と共に一対のラミネートロール間に通して冷却下に押圧一体化させ、次いで急冷する。多層のポリエステル樹脂層を押出コートする場合には、表層樹脂用の押出機及び下層樹脂用の押出機を使用し、各押出機からの樹脂流を多重多層ダイ内で合流させ、以後は単層樹脂の場合と同様に押出コートを行えばよい。また、一対のラミネートロール間に垂直に表面処理金属板を通し、その両側に溶融樹脂ウエッブを供給することにより、前記基体両面にポリエステル樹脂の被覆層を形成させることができる。
(Manufacture of resin-coated metal plates)
In the present invention, the polyester coating layer can be formed on the surface-treated metal plate by any means, for example, extrusion coating, cast film thermal bonding, biaxially stretched film thermal bonding, or the like. . In the case of the extrusion coating method, it can be produced by extrusion coating a polyester resin in a molten state on a surface-treated metal plate and thermally bonding it. That is, after melt-kneading the polyester resin with an extruder, it is extruded from a T-die into a thin film, and the extruded molten resin film is passed through a pair of laminating rolls together with a surface-treated metal plate to be pressed and integrated under cooling, Then quench rapidly. When extrusion coating a multilayer polyester resin layer, an extruder for surface layer resin and an extruder for lower layer resin are used, and the resin flow from each extruder is merged in a multiple multilayer die, and thereafter a single layer Extrusion coating may be performed as in the case of resin. Further, by passing a surface-treated metal plate vertically between a pair of laminate rolls and supplying a molten resin web on both sides thereof, a polyester resin coating layer can be formed on both sides of the substrate.

樹脂被覆金属板の押出コート法による製造は具体的には次のように行われる。表面処理金属板(以下単に金属板とも呼ぶことがある)を必要により加熱装置により予備加熱し、一対のラミネートロール間のニップ位置に供給する。一方、ポリエステル樹脂は、押出機のダイヘッドを通して薄膜の形に押し出し、ラミネートロールと金属板との間に供給され、ラミネートロールにより金属板に圧着される。ラミネートロールは、一定の温度に保持されており、金属板にポリエステル等の熱可塑性樹脂から成る薄膜を圧着して両者を熱接着させると共に両側から冷却して樹脂被覆金属板を得る。一般に、形成される樹脂被覆金属板を更に冷却用水槽等に導いて、熱結晶化を防止するため、急冷を行う。   The production of the resin-coated metal plate by the extrusion coating method is specifically performed as follows. A surface-treated metal plate (hereinafter also referred to simply as a metal plate) is preheated by a heating device as necessary, and is supplied to a nip position between a pair of laminate rolls. On the other hand, the polyester resin is extruded into the form of a thin film through a die head of an extruder, supplied between the laminate roll and the metal plate, and pressed onto the metal plate by the laminate roll. The laminating roll is maintained at a constant temperature, and a thin film made of a thermoplastic resin such as polyester is pressure-bonded to the metal plate to thermally bond them together, and cooled from both sides to obtain a resin-coated metal plate. In general, the formed resin-coated metal plate is further led to a cooling water tank or the like to perform rapid cooling in order to prevent thermal crystallization.

この押出コート法では、樹脂組成の選択とロールや冷却槽による急冷とにより、ポリエステル樹脂層は、結晶化度が低いレベル、非晶密度との差が0.05g/cm3以下に抑制されているため、ついで行う製缶加工や蓋加工等に対する十分な加工性が保証される。勿論、急冷操作は上記例に限定されるものではなく、形成される樹脂被覆金属板に冷却水を噴霧して、ラミネート板を急冷することもできる。   In this extrusion coating method, the polyester resin layer has a low crystallinity level and the difference from the amorphous density is suppressed to 0.05 g / cm 3 or less by selection of the resin composition and rapid cooling by a roll or a cooling bath. Therefore, sufficient workability with respect to can manufacturing, lid processing, etc. performed next is guaranteed. Of course, the rapid cooling operation is not limited to the above example, and the laminate plate can be rapidly cooled by spraying cooling water onto the resin-coated metal plate to be formed.

金属板に対するポリエステル樹脂の熱接着は、溶融樹脂層が有する熱量と、金属板が有する熱量とにより行われる。金属板の加熱温度(T1)は、一般に90℃乃至290℃、特に100℃乃至280℃の温度が適当であり、一方ラミネートロールの温度は10℃乃至150℃の範囲が適当である。
また、本発明の樹脂被覆金属板は、T−ダイ法やインフレーション製膜法で予め製膜されたポリエステル樹脂フィルムを金属板に熱接着させることによっても製造することができる。フィルムとしては、押し出したフィルムを急冷した、キャスト成形法による未延伸フィルムを用いることもでき、また、このフィルムを延伸温度で、逐次或いは同時二軸延伸し、延伸後のフィルムを熱固定することにより製造された二軸延伸フィルムを用いることもできる。
The thermal adhesion of the polyester resin to the metal plate is performed by the amount of heat that the molten resin layer has and the amount of heat that the metal plate has. The heating temperature (T1) of the metal plate is generally 90 ° C. to 290 ° C., particularly 100 ° C. to 280 ° C., while the laminating roll temperature is suitably 10 ° C. to 150 ° C.
The resin-coated metal plate of the present invention can also be produced by thermally bonding a polyester resin film previously formed by a T-die method or an inflation film forming method to the metal plate. As the film, an unstretched film obtained by a cast molding method in which the extruded film is rapidly cooled can be used, and this film is sequentially or simultaneously biaxially stretched at a stretching temperature to heat-fix the stretched film. It is also possible to use a biaxially stretched film produced by the above method.

本発明においては、上記層構成以外にも種々の構成を採用することができ、有機表面処理層を形成する場合は特に必要ないが、表面処理金属板とポリエステル層の間に、従来公知の接着用プライマーを設けることも勿論可能である。この接着プライマーは、金属素材とフィルムとの両方に優れた接着性を示すものである。密着性と耐腐食性とに優れたプライマー塗料としては、種々のフェノールとホルムアルデヒドから誘導されるレゾール型フェノールアルデヒド樹脂と、ビスフェノール型エポキシ樹脂とから成るフェノールエポキシ系塗料であり、特にフェノール樹脂とエポキシ樹脂を50:50乃至1:99の重量比、特に40:60乃至5:95の重量比で含有する塗料である。接着プライマー層は一般に0.01乃至10μmの厚みに設けるのがよい。接着プライマー層は予め金属素材上に設けてもよく、或いはポリエステルフィルムに設けてもよい。   In the present invention, various configurations other than the above-described layer configuration can be adopted, and in the case of forming an organic surface treatment layer, it is not particularly necessary. It is of course possible to provide a primer. This adhesion primer exhibits excellent adhesion to both the metal material and the film. Primer paints with excellent adhesion and corrosion resistance are phenol epoxy paints composed of resol type phenol aldehyde resins derived from various phenols and formaldehyde and bisphenol type epoxy resins, especially phenol resins and epoxy. It is a paint containing a resin in a weight ratio of 50:50 to 1:99, in particular 40:60 to 5:95. The adhesive primer layer is generally preferably provided with a thickness of 0.01 to 10 μm. The adhesion primer layer may be provided in advance on a metal material, or may be provided on a polyester film.

(金属缶及びその製法)
本発明の金属缶は、前述した樹脂被覆金属板から形成されている限り、任意の製缶法によるものでよい。この金属缶は、側面継ぎ目を有するスリーピース缶であることもできるが、一般にシームレス缶(ツーピース缶)であることが好ましい。このシームレス缶は、表面処理金属板のポリエステル樹脂の被覆面が缶内面側となるように、絞り・再しぼり加工、絞り・再絞りによる曲げ伸ばし加工(ストレッチ加工)、絞り・再絞りによる曲げ伸ばし・しごき加工或いは絞り・しごき加工等の従来公知の手段に付すことによって製造される。また、このシームレス缶は、ネック成形後蓋を巻き締めて使用するツーピース缶であっても良いし、多段ネック加工・ネジ加工後、キャッピングを行って使用するボトルタイプの缶であっても良い。また、ボトルタイプの缶の場合には、底部にシェル蓋が巻き締められ、缶上部にキャッピングが行われているスリーピースタイプの缶であっても良い。
(Metal can and its manufacturing method)
As long as the metal can of this invention is formed from the resin-coated metal plate mentioned above, it may be based on arbitrary can manufacturing methods. The metal can can be a three-piece can having a side seam, but is generally preferably a seamless can (two-piece can). This seamless can is drawn and re-squeezed, bent and stretched by drawing and re-drawing (stretching), and bent and drawn by drawing and re-drawing so that the polyester resin coating surface of the surface-treated metal plate is on the inside of the can. -It is manufactured by attaching to a conventionally known means such as ironing or drawing / ironing. Further, the seamless can may be a two-piece can used by tightening the lid after neck formation, or a bottle-type can used by capping after multi-stage neck processing and screw processing. In the case of a bottle-type can, a three-piece type can in which a shell lid is wound around the bottom and capping is performed on the top of the can.

本発明の金属缶の一例であるシームレス缶を示す図11において、このシームレス缶111は、前述した樹脂被覆金属板の絞り・しごき成形で形成されており、底部112と胴部113とを備えている。底部112と胴部113とは継ぎ目なしに接続されている。底部112は、その中心部において、用いた樹脂被覆金属板と実質上同一の厚み構成を有しているが、胴部113の少なくとも一部は元板厚の30%〜70%まで薄肉化加工されている。胴部113の上部には、一段或いは多段のネック部114を介して、缶蓋との巻締用のフランジ部115が形成されている。   In FIG. 11 which shows the seamless can which is an example of the metal can of this invention, this seamless can 111 is formed by the drawing and ironing of the resin-coated metal plate described above, and includes a bottom portion 112 and a body portion 113. Yes. The bottom part 112 and the trunk | drum 113 are connected seamlessly. The bottom 112 has substantially the same thickness configuration as the resin-coated metal plate used at the center, but at least a part of the body 113 is thinned to 30% to 70% of the original plate thickness. Has been. A flange portion 115 for winding with a can lid is formed on the upper portion of the body portion 113 via a neck portion 114 having one or more stages.

このシームレス缶の製造は、既に述べたとおり、絞り加工としごき加工とにより行われるが、この方法としては、絞り加工としごき加工とは、ワンストロークで同時に行ってもよいし、また別のストロークで別に行ってもよい。
例えば、シームレス缶の好適な製造法では、樹脂被覆金属板を円形にせん断し、これを絞りダイスと絞りポンチの組み合わせを用いて、絞り加工により浅絞りカップを作り、ついで同一金型中で絞りながらしごきを行う同時絞りしごき加工を複数回繰り返して径が小さくハイトの大きいカップに成形する。この成形法では、薄肉化のための変形が、缶軸方向(高さ方向)の荷重による変形(曲げ伸ばし)と缶厚み方向の荷重による変形(しごき)との組み合わせでしかもこの順序に行われ、これにより、缶軸方向への分子配向が有効に付与されるという利点がある。その後、ドーミング成形、加工により生じる被覆樹脂の残留歪みの除去を目的とした熱処理、続いて開口端部のトリミング加工、曲面印刷、ネックイン加工、フランジ加工を行って缶を作成する。
勿論、本発明の金属缶の製造には、公知の製缶法を適用することができ、例えば特開平4−231120号公報に記載された絞り・しごき成形法や、特開平9−253772号公報に記載された同時絞り・しごき成形法を適用することができる。
As described above, the manufacture of this seamless can is performed by drawing and ironing. However, as this method, the drawing and ironing may be performed simultaneously with one stroke or another stroke. You can do it separately.
For example, in a preferred method for manufacturing a seamless can, a resin-coated metal plate is sheared into a circle, and a shallow drawing cup is formed by drawing using a combination of a drawing die and a drawing punch, and then drawn in the same mold. Simultaneously squeezing and ironing while repeating ironing is repeated several times to form a cup with a small diameter and a large height. In this molding method, deformation for thinning is performed in this order by a combination of deformation due to a load in the can axis direction (height direction) (bending and stretching) and deformation due to a load in the can thickness direction (squeezing). This has the advantage that the molecular orientation in the can axis direction is effectively imparted. After that, a can is produced by performing doming molding, heat treatment for the purpose of removing residual distortion of the coating resin generated by processing, and subsequently performing trimming processing of the end of the opening, curved surface printing, neck-in processing, and flange processing.
Of course, a known can-making method can be applied to the production of the metal can of the present invention. For example, the drawing and ironing method described in JP-A-4-231120, or JP-A-9-253772. It is possible to apply the simultaneous drawing and ironing method described in the above.

(缶蓋及びその製法)
本発明の缶蓋は、上述した樹脂被覆金属板から形成されている限り、従来公知の任意の製蓋法によるものでよい。一般には、ステイ・オン・タブタイプのイージーオープン缶蓋やフルオープンタイプのイージーオープン缶蓋に適用することができる。
本発明のイージーオープン缶蓋の上面を示す図12及び断面を拡大して示す図13において、この蓋60は、前述した樹脂被覆金属板から形成されており、缶胴側面内面に嵌合されるべき環状リム部(カウンターシンク)61を介して外周側に密封用溝62を備えており、この環状リム部61の内側には開口すべき部分63を区画する全周にわたり形成されたスコア64が設けられている。この開口すべき部分63の内部には、大略中央部を押入して形成した略半円状の凹部パネル65と凹部パネル65の周囲に蓋材を突出させて形成したディンプル66と蓋材を缶蓋外面側に突出させて形成したリベット67とが形成され、開口用タブ68がこのリベット67のリベット打ちにより固定されている。開口用タブ68は、一端に押し裂きによる開口用先端69及び他端に保持用リング70を有している。リベット67の近傍において、スコア64と反対側には、スコア64とは不連続に並設された破断開始用スコア71が形成されている。
(Can lid and its manufacturing method)
The can lid of the present invention may be formed by any conventionally known lid-making method as long as it is formed from the resin-coated metal plate described above. In general, the present invention can be applied to a stay-on-tab type easy open can lid and a full open type easy open can lid.
In FIG. 12 showing the upper surface of the easy open can lid of the present invention and FIG. 13 showing an enlarged cross section, the lid 60 is formed of the resin-coated metal plate described above and is fitted to the inner surface of the can body side surface. A sealing groove 62 is provided on the outer peripheral side via a power annular rim portion (counter sink) 61, and a score 64 formed over the entire circumference defining a portion 63 to be opened is provided inside the annular rim portion 61. Is provided. Inside the portion 63 to be opened, there is a substantially semicircular recess panel 65 formed by pushing a substantially central portion, a dimple 66 formed by protruding a cover material around the recess panel 65 and the cover material. A rivet 67 formed so as to protrude toward the outer surface of the lid is formed, and an opening tab 68 is fixed by riveting the rivet 67. The opening tab 68 has an opening tip 69 by pushing and tearing at one end and a holding ring 70 at the other end. In the vicinity of the rivet 67, on the opposite side of the score 64, a breaking start score 71 is formed in parallel with the score 64.

開口に際しては、開口用タブ68のリング70を保持して、これを上方に持上げる。これにより破断開始用スコア71が破断されて、開口用タブ68の開口用先端69が比較的大きく下方に押込まれ、スコア64の一部が剪断開始される。
次いで、リング70を上方に引張ることにより、スコア64の残留部が全周にわたり破断されて開口が容易に行われる。
上記具体例の蓋は、いわゆるフルオープンタイプであるが、勿論、ステイ・オン・タブタイプのイージーオープン蓋にも適用可能である。
イージーオープン缶蓋の好適な製造方法では、樹脂被覆金属板をプレス成形工程で円形に打抜くと共に蓋の形にし、密封用溝へのコンパウンドのライニング及び乾燥によるライニング工程を経て、スコア刻設工程で蓋の外面側から金属素材の途中に達するようにスコアの刻設を行い、ついでリベット形成、リベットにタブを取付け後、リベットを鋲打することによるタブ取付けを行い、イージーオープン缶蓋を作成する。イージーオープン缶蓋の適当な例は、例えば特開2000−128168号公報に記載されている。
When opening, the ring 70 of the opening tab 68 is held and lifted upward. As a result, the breaking start score 71 is broken, the opening tip 69 of the opening tab 68 is pushed relatively large downward, and a part of the score 64 starts to be sheared.
Next, by pulling the ring 70 upward, the remaining portion of the score 64 is broken over the entire circumference, and opening is easily performed.
The lid of the above specific example is a so-called full open type, but it can of course be applied to a stay-on-tab type easy open lid.
In a suitable manufacturing method of an easy open can lid, a resin-coated metal plate is punched into a circular shape by a press molding process and formed into a lid shape. Create an easy open can lid by engraving the score so that it reaches the middle of the metal material from the outer surface side of the lid, then forming the rivet, attaching the tab to the rivet, then attaching the tab by hitting the rivet To do. A suitable example of an easy open can lid is described in, for example, Japanese Patent Application Laid-Open No. 2000-128168.

次に実施例と比較例とを示して本発明を具体的に説明し、効果を明らかにする。
金属容器は、表面処理金属材料又は樹脂被覆金属材料の加工性、耐食性の点で最も厳しい環境下におかれているので、実施例は金属缶及び缶蓋で示すが、もちろん、本発明はこれらの実施例のみに限定されるものではない。
Next, an Example and a comparative example are shown, this invention is demonstrated concretely, and an effect is clarified.
Since the metal container is placed in the most severe environment in terms of workability and corrosion resistance of the surface-treated metal material or resin-coated metal material, the examples are shown by metal cans and can lids. However, the present invention is not limited to the examples.

アルミニウムイオン,チタンイオン、ジルコニウムイオン及びフッ素イオンの濃度がそれぞれ、Al、Ti、Zr及びFとして表2に示すモル濃度の水溶液となるよう調整し、処理浴とした。但し、アルミニウム薬剤として処理浴A,B,C,D,E,F,J,K,L,M,N,Oには硝酸アルミニウムAl(NO・9HOを、処理浴Gには硫酸アルミニウムAl(SO・13HOを、処理浴Hにはリン酸二水素アルミニウム液Al(HPOを用い、処理浴Iでは、モル比で、リン酸二水素アルミニウム液Al(HPOが2に対して、硝酸アルミニウムリン酸二水素アルミニウム液Al(HPOAl(NO・9HOを8の割合で混合した薬剤を用いた。また、ジルコニウム薬剤として、処理浴J,Lにはフッ化ジルコニウムアンモニウム(NHZrF、チタン薬剤として処理浴K,Lにはチタンフッ化アンモニウム(NHTiF、を用いた。他に、フッ素源として、処理浴B,D,F,I,Mについては、フッ化ナトリウムNaFを、処理浴E,Oについてはフッ化アンモニウムNHFを用い、処理浴B,Dには、緩衝剤として、ホウ酸HBOを用いた。 The concentration of aluminum ion, titanium ion, zirconium ion and fluorine ion was adjusted to be an aqueous solution having a molar concentration shown in Table 2 as Al, Ti, Zr and F, respectively. However, aluminum nitrate Al (NO 3 ) 3 · 9H 2 O is used for the treatment baths A, B, C, D, E, F, J, K, L, M, N, and O as the aluminum chemicals, and the treatment bath G is used. Uses aluminum sulfate Al 2 (SO 4 ) 3 · 13H 2 O, treatment bath H uses aluminum dihydrogen phosphate solution Al (H 2 PO 4 ) 3 , and treatment bath I uses a molar ratio of diphosphate 2 to hydrogen aluminum solution Al (H 2 PO 4) 3 is 2, were mixed at a ratio of aluminum nitrate aluminum dihydrogenphosphate solution Al (H 2 PO 4) 3 Al (NO 3) 3 · 9H 2 O 8 Drugs were used. Further, zirconium zirconium fluoride (NH 4 ) 2 ZrF 6 was used for the treatment baths J and L as the zirconium agent, and ammonium titanium fluoride (NH 4 ) 2 TiF 6 was used for the treatment baths K and L as the titanium agent. In addition, as the fluorine source, sodium fluoride NaF is used for the treatment baths B, D, F, I, and M, ammonium fluoride NH 4 F is used for the treatment baths E and O, and the treatment baths B and D are used for the treatment baths B and D. As a buffer, boric acid H 3 BO 3 was used.

[ポリエステルフィルムの作製]
2台の押出機から2層Tダイを介して表3に示す組成のポリエステル樹脂を溶融押出し後、冷却ロールにて冷却して得られたフィルムを巻き取り、表4に示す構成のキャストフィルム(イ),(ロ),(ハ),(ニ),(ホ),(ヘ),(ト)を得た。
[Production of polyester film]
A polyester film having a composition shown in Table 3 is melt-extruded from two extruders via a two-layer T die, and then cooled with a cooling roll, and a film obtained by cooling the film is shown in Table 4. B), (b), (c), (d), (e), (f), (g).

[表面原子比及び表面露出率の測定]
表面処理後の金属材料をX線光電子分光装置(XPS)により下記条件で、C1s,O1s,F1s,Al2p,Ti3d,Zr3など表面に存在する主要元素のピークをそれぞれ測定し、解析ソフトにより求めた原子濃度からO/M,F/M,(P+S)/Mの原子比(但し、MはAl、またはAlと、Ti,Zrのうち少なくとも1種以上を含む)を求めた。但し、原子比を算出する際には、C1sの原子濃度が10%以下となるまでArスパッタリングにより汚染層を軽く除去した時の原子濃度を利用した。また、表面露出率については、例えば基板金属が錫めっき鋼板である場合には、C1s,P2p,O1s,F1s,S1s,Al2p,Ti3d,Zr3d,Sn3d5,Fe2pなど表面に存在する主要元素のピークをそれぞれ測定し、解析ソフトにより求めた錫の原子濃度を表面露出率とした。
装 置 PHI社製 Quantum 2000
励起X線源 Alモノクロメーター75W−17kV
測定径 φ100μm
光電子取り出し角 90°(試料の法線に対し0°)
解析ソフト;MultiPak
[Measurement of surface atomic ratio and surface exposure rate]
The surface of the metal material after the surface treatment was measured with an X-ray photoelectron spectrometer (XPS) under the following conditions, and the peaks of major elements existing on the surface such as C1s, O1s, F1s, Al2p, Ti3d, Zr3 were measured and obtained by analysis software. The atomic ratio of O / M, F / M, (P + S) / M (where M includes Al, or Al and at least one of Ti and Zr) was determined from the atomic concentration. However, when calculating the atomic ratio, the atomic concentration when the contaminated layer was lightly removed by Ar sputtering until the atomic concentration of C1s became 10% or less was used. As for the surface exposure rate, for example, when the substrate metal is a tin-plated steel plate, the peak of main elements existing on the surface such as C1s, P2p, O1s, F1s, S1s, Al2p, Ti3d, Zr3d, Sn3d5, Fe2p, etc. Each surface was measured and the atomic concentration of tin determined by analysis software was defined as the surface exposure rate.
Equipment PHI Quantum 2000
Excitation X-ray source Al monochromator 75W-17kV
Measurement diameter φ100μm
Photoelectron extraction angle 90 ° (0 ° with respect to sample normal)
Analysis software; MultiPak

<スチール材の評価>
[接着性評価]
表面処理金属材料を5mm幅で80mm長さに短冊状に切断し、表4の(ト)に示すキャストフィルムを5mm幅で80mm長さに短冊状に切段した。得られた2枚の表面処理短冊切片間に上記ポリエステルフィルム切片を挟み、2.0kg/cmの圧力下で220℃3秒間加熱してTピール試験片とした。その後、110℃60分間のレトルト処理を行い、終了後すぐに水中に浸漬し、引張試験機による測定直前に水中から引き上げて、引張速度10mm/分で接着強度を測定した。
<Evaluation of steel>
[Adhesion evaluation]
The surface-treated metal material was cut into a strip shape having a width of 5 mm and a length of 80 mm, and the cast film shown in Table 4 (g) was cut into a strip shape having a width of 5 mm and a length of 80 mm. The polyester film section was sandwiched between the obtained two surface-treated strip sections and heated at 220 ° C. for 3 seconds under a pressure of 2.0 kg / cm 2 to obtain a T peel test piece. Thereafter, a retort treatment was performed at 110 ° C. for 60 minutes, and the film was immersed in water immediately after the completion, pulled up from the water just before measurement by a tensile tester, and measured for adhesive strength at a tensile speed of 10 mm / min.

[耐食性評価]
表面処理金属材料を70mm幅で150mm長さに短冊状に切断後、切断部3mm幅をテープで保護し、35℃5%NaCl水溶液を6時間噴霧した後の鉄さびの発生状態を観察した。
[Evaluation of corrosion resistance]
After the surface-treated metal material was cut into a strip shape having a width of 70 mm and a length of 150 mm, the cut portion of 3 mm width was protected with a tape, and the state of occurrence of iron rust after spraying with an aqueous 35% NaCl solution for 6 hours was observed.

[耐硫性評価]
表面処理金属材料を70mm角に切断後、エリクセン試験機により3mmの張り出し加工を行った。次いで、切断部3mm幅をテープで保護し、4.5g/リットルのリン酸二水素カリウムKHPOと12g/リットルのリン酸水素ナトリウムNaHPO・12H
及び2g/リットルの L-システイン塩酸塩1水和物の混合液から成るモデル液中に入れ、密封容器中で115℃60分のレトルト処理を行った。
[Sulfur resistance evaluation]
The surface-treated metal material was cut into 70 mm square, and then 3 mm overhang processing was performed with an Erichsen tester. Next, the 3 mm width of the cut portion was protected with a tape, and 4.5 g / liter of potassium dihydrogen phosphate KH 2 PO 4 and 12 g / liter of sodium hydrogen phosphate Na 2 HPO 4 · 12H 2 O
And a retort treatment at 115 ° C. for 60 minutes in a sealed container.

[変色性評価]
表面処理金属材料を70mm角に切断後、200℃で1時間加熱し、加熱後の変色の程度を比較した。
[Discoloration evaluation]
The surface-treated metal material was cut into 70 mm square and heated at 200 ° C. for 1 hour, and the degree of discoloration after heating was compared.

(実施例1)
1.表面処理金属板の作成
金属板として厚み0.195mm、調質度T3の冷延鋼板を、電解脱脂、酸洗、水洗、純水洗し、前処理を行ない、片面あたり錫を1.3g/mにめっきした後、リフロー処理を行い、ついで、浴温45℃の表2のAの処理浴中で攪拌を行いながら、極間距離17mmの位置に配置した酸化イリジウム被覆チタン板を陽極として、電流密度2A/dmとし12秒間陰極電解し、その後すぐに、流水による水洗、純水洗、乾燥の後処理を行なった。
(Example 1)
1. Preparation of surface-treated metal plate Cold-rolled steel sheet having a thickness of 0.195 mm and a tempering degree T3 as a metal plate is subjected to electrolytic degreasing, acid washing, water washing, pure water washing, pretreatment, and 1.3 g / m tin per side. After plating to 2 , reflow treatment is performed, and then the iridium oxide-coated titanium plate disposed at a distance of 17 mm between the electrodes is used as an anode while stirring in the treatment bath of A in Table 2 at a bath temperature of 45 ° C. Cathodic electrolysis was performed at a current density of 2 A / dm 2 for 12 seconds, and immediately thereafter, washing with running water, washing with pure water, and drying were performed.

2.表面処理金属板の評価
得られた表面処理金属板の一部は、Al,Ti,Zrなどの重量膜厚測定、表面原子比測定、表面露出率測定、耐食性評価、接着性評価に供した。結果を表5に示した。
表中、接着性の評価は、引張試験機により試験片を10mm以上剥離した後の最大引張強度が、0.6kg/5mm以上のものを◎、0.3kg/5mm以上0.6kg/5mm未満のものを○、0.2kg/5mm以上0.3kg/5mm未満のものを△、0.2kg/5mm未満のものを×とした。
また、耐食性の評価は、ほとんど錆が発生していない場合を◎、錆がわずかに認められるものを○、錆が表面積の10%以上20%未満のものを△、錆が表面積の20%以上存在するものを×として評価した。
更に、耐硫性の評価は、加工部に変色のないものを◎、加工部の変色が面積率で25%未満のものを○、それ以上のものを×とした。
また、変色性の評価は、目視により評価した。変色のほとんどしていないもの、及び変色部が面積率で20%未満のものを○、20%以上が変色しているものを×とした。
2. Evaluation of surface-treated metal plate A part of the obtained surface-treated metal plate was subjected to weight film thickness measurement such as Al, Ti, Zr, surface atomic ratio measurement, surface exposure rate measurement, corrosion resistance evaluation, and adhesion evaluation. The results are shown in Table 5.
In the table, the evaluation of adhesiveness is that the maximum tensile strength after peeling the test piece by 10 mm or more with a tensile testing machine is 0.6 kg / 5 mm or more, ◎, 0.3 kg / 5 mm or more and less than 0.6 kg / 5 mm ◯, 0.2 kg / 5 mm or more and less than 0.3 kg / 5 mm, △, and less than 0.2 kg / 5 mm.
In addition, the evaluation of corrosion resistance is ◎ when rust is hardly generated, ◯ when rust is slightly recognized, △ when rust is 10% or more and less than 20% of surface area, rust is 20% or more of surface area Those present were evaluated as x.
Further, in the evaluation of the sulfur resistance, the case where the processed part was not discolored was evaluated as ◎, the case where the discolored part of the processed part was less than 25% in the area ratio was evaluated as ◯, and the case where the discoloration was higher was evaluated as ×.
Further, the evaluation of discoloration was evaluated visually. A sample having almost no discoloration and a discoloration portion having an area ratio of less than 20% were evaluated as ◯, and a discoloration of 20% or more was evaluated as ×.

(実施例2)
錫めっき量を5.6g/mとし、表2のBの処理浴中で電流密度2A/dmとして、0.6秒通電−0.4秒停止を8回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 2)
Cathodic electrolysis is intermittently performed by repeating 0.6 sec energization-0.4 sec stop eight times with a tin plating amount of 5.6 g / m 2 and a current density of 2 A / dm 2 in the treatment bath of Table 2B. Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained.

(実施例3)
表2のCの処理浴中で電流密度1A/dmで24秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 3)
Evaluation was performed in the same manner as in Example 1 except that the surface treatment metal plate was obtained by performing cathodic electrolysis for 24 seconds at a current density of 1 A / dm 2 in the treatment bath of Table 2C.

(実施例4)
錫めっき量を0.4g/mとし、リフローにより合金層を形成して、表面にフリー錫がない状態とした以外は、実施例3と同様に無機表面処理層を形成し、実施例1と同様に評価を行った。
(Example 4)
An inorganic surface treatment layer was formed in the same manner as in Example 3 except that the amount of tin plating was 0.4 g / m 2 and an alloy layer was formed by reflowing so that there was no free tin on the surface. Evaluation was performed in the same manner as above.

(実施例5)
表2のBの処理浴中で電流密度1A/dmで12秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 5)
Evaluation was performed in the same manner as in Example 1 except that the surface treatment metal plate was obtained by performing cathodic electrolysis at a current density of 1 A / dm 2 for 12 seconds in the treatment bath of Table 2B.

(実施例6)
錫めっき量を0.4g/mとし、リフローにより合金層を形成して、表面にフリー錫がない状態とし、表2のBの処理浴中で電流密度1A/dmで4秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 6)
The amount of tin plating is 0.4 g / m 2 , an alloy layer is formed by reflow, free tin is present on the surface, and cathodic electrolysis is carried out for 4 seconds at a current density of 1 A / dm 2 in the treatment bath of B in Table 2. Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained.

(実施例7)
錫めっき量を2.8g/mとし、表2のBの処理浴中で電流密度1.2A/dmとして、0.6秒通電−0.4秒停止を16回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 7)
The tin plating amount was set to 2.8 g / m 2 , the current density was set to 1.2 A / dm 2 in the treatment bath of Table 2B, and 0.6 seconds energization—0.4 seconds stop was repeated 16 times intermittently. Evaluation was performed in the same manner as in Example 1 except that the surface-treated metal plate was obtained by performing cathodic electrolysis.

(実施例8)
実施例1と同様の錫めっき量でリフロー処理を行わずに、表2のDの処理浴中で電流密度1A/dmで4秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 8)
Except that the surface treatment metal plate was obtained by performing cathodic electrolysis at a current density of 1 A / dm 2 for 4 seconds in the treatment bath of D in Table 2 without performing reflow treatment with the same tin plating amount as in Example 1. Evaluation was performed in the same manner as in Example 1.

(実施例9)
錫めっき量を0.9g/mとし、表2のEの処理浴中で電流密度1A/dmとして、0.6秒通電−0.4秒停止を6回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
Example 9
Cathodic electrolysis is performed intermittently by repeating 0.6 sec energization-0.4 sec stop 6 times with a tin plating amount of 0.9 g / m 2 and a current density of 1 A / dm 2 in the treatment bath E in Table 2 Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained.

(実施例10)
表2のFの処理浴中で電流密度1A/dmで8秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 10)
Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained by performing cathodic electrolysis at a current density of 1 A / dm 2 for 8 seconds in the treatment bath F shown in Table 2.

(実施例11)
表2のGの処理浴中で電流密度2A/dmとして、0.6秒通電−0.4秒停止を8回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 11)
Except that the current density was 2 A / dm 2 in the treatment bath G in Table 2 and the surface-treated metal plate was obtained by repeating cathodic electrolysis intermittently by repeating 0.6 second energization-0.4 second stop eight times. Evaluation was performed in the same manner as in Example 1.

(実施例12)
表2のHの処理浴中で電流密度2A/dmで24秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
Example 12
Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained by performing cathodic electrolysis in a H treatment bath of Table 2 at a current density of 2 A / dm 2 for 24 seconds.

(実施例13)
表2のIの処理浴中で電流密度1A/dmで8秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 13)
Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained by performing cathodic electrolysis for 8 seconds at a current density of 1 A / dm 2 in the treatment bath I in Table 2.

(実施例14)
錫めっき量を0.7g/mとし、表2のJの処理浴中で電流密度1A/dmとして、0.6秒通電−0.4秒停止を8回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 14)
Cathodic electrolysis is intermittently conducted by repeating 0.6 sec energization-0.4 sec stop eight times with a tin plating amount of 0.7 g / m 2 and a current density of 1 A / dm 2 in the treatment bath J in Table 2. Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained.

(実施例15)
錫めっき量を2.8g/mとし、リフロー処理を行わずに、表2のKの処理浴中で電流密度2A/dmで8秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 15)
The amount of tin plating was set to 2.8 g / m 2, and a surface-treated metal plate was obtained by performing cathodic electrolysis for 8 seconds at a current density of 2 A / dm 2 in the treatment bath of K in Table 2 without performing reflow treatment. Were evaluated in the same manner as in Example 1.

(実施例16)
表2のLの処理浴中で電流密度2A/dmとして、0.6秒通電−0.4秒停止を16回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 16)
Except for obtaining a surface-treated metal plate by intermittently performing cathodic electrolysis by repeating 16 times energization of 0.6 seconds-stop of 0.4 seconds as a current density of 2 A / dm 2 in the treatment bath of L in Table 2. Evaluation was performed in the same manner as in Example 1.

(実施例17)
表2のMの処理浴中で電流密度2A/dmで8秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 17)
Evaluation was performed in the same manner as in Example 1 except that the surface-treated metal plate was obtained by performing cathodic electrolysis for 8 seconds at a current density of 2 A / dm 2 in the M treatment bath of Table 2.

(実施例18)
錫めっき量を11.2g/mとし、表2のEの処理浴中で電流密度1A/dmとして、0.6秒通電−0.4秒停止を4回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Example 18)
Cathodic electrolysis is performed intermittently by repeating 0.6 sec energization-0.4 sec stop four times with a tin plating amount of 11.2 g / m 2 and a current density of 1 A / dm 2 in the treatment bath E in Table 2 Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained.

(比較例1)
表2のFの処理浴中で電流密度1A/dmで16秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Comparative Example 1)
Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained by performing cathodic electrolysis for 16 seconds at a current density of 1 A / dm 2 in the treatment bath F shown in Table 2.

(比較例2)
錫めっき量を0.4g/mとし、リフローにより合金層を形成して、表面にフリー錫がない状態とし、表2のHの処理浴中で電流密度2A/dmとして、0.6秒通電−0.4秒停止を4回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Comparative Example 2)
The tin plating amount is 0.4 g / m 2, to form an alloy layer by reflowing, and the absence free tin on the surface, as a current density of 2A / dm 2 in the processing bath H of Table 2, 0.6 Evaluation was performed in the same manner as in Example 1 except that the surface treatment metal plate was obtained by intermittently performing cathodic electrolysis by repeating the second energization-stop for 0.4 seconds four times.

(比較例3)
表2のHの処理浴中で電流密度2A/dmで4秒間陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Comparative Example 3)
Evaluation was performed in the same manner as in Example 1 except that a surface-treated metal plate was obtained by performing cathodic electrolysis for 4 seconds at a current density of 2 A / dm 2 in the H treatment bath of Table 2.

(比較例4)
錫めっき量を0.4g/mとし、リフローにより合金層を形成して、表面にフリー錫がない状態とし、表2のOの処理浴中で電流密度2A/dmとして、0.6秒通電−0.4秒停止を4回繰り返して断続的に陰極電解を行なって表面処理金属板を得た以外は、実施例1と同様に評価を行った。
(Comparative Example 4)
The amount of tin plating is 0.4 g / m 2 , an alloy layer is formed by reflow, and there is no free tin on the surface. The current density is 2 A / dm 2 in the O treatment bath of Table 2, and 0.6 Evaluation was performed in the same manner as in Example 1 except that the surface treatment metal plate was obtained by intermittently performing cathodic electrolysis by repeating the second energization-stop for 0.4 seconds four times.

(比較例5)
錫めっき量を2.8g/mとし、重クロム酸ソーダ水溶液中で陰極電解処理を行い、定法により、オキサイドクロム量3mg/mのクロム系表面処理による表面処理金属板を得た以外は、実施例1にしたがって、性能評価を行った。
(Comparative Example 5)
Except that the amount of tin plating was 2.8 g / m 2 , cathode electrolysis treatment was performed in a sodium dichromate aqueous solution, and a surface-treated metal plate was obtained by chromium-based surface treatment with an oxide chromium amount of 3 mg / m 2 by a conventional method. According to Example 1, performance evaluation was performed.

(比較例6)
無水クロム酸と硫酸の水溶液中で陰極電解処理を行い、定法により、金属クロム量7mg/m、オキサイドクロム量12mg/mのクロム系表面処理による表面処理金属板を得た以外は、実施例1にしたがって、性能評価を行った。
(Comparative Example 6)
Except that a cathodic electrolytic treatment was carried out in an aqueous solution of chromic anhydride and sulfuric acid, and a surface-treated metal plate was obtained by a chromium-based surface treatment with a metal chromium content of 7 mg / m 2 and an oxide chromium content of 12 mg / m 2 according to a conventional method. Performance evaluation was performed according to Example 1.

(比較例7)
実施例1と同様に、錫めっき及びリフロー処理までを行い、フッ化ジルコニウムアンモニウム0.025mol/リットルと硝酸カリウム0.005mol/リットルからなる水溶液中で、電流密度7.5A/dmとして、0.6秒通電−0.4秒停止を4回繰り返して断続的に陰極電解を行なって表面処理金属板を得た。経時後の変色が激しかったため、変色性以外の評価は行わなかった。
(Comparative Example 7)
In the same manner as in Example 1, tin plating and reflow treatment were performed, and the current density was set to 0.7 A / dm 2 in an aqueous solution composed of 0.025 mol / liter of zirconium zirconium fluoride and 0.005 mol / liter of potassium nitrate. The surface-treated metal plate was obtained by repeating cathodic electrolysis intermittently by repeating energization for 6 seconds and stopping for 0.4 seconds four times. Since the discoloration after aging was severe, no evaluation other than discoloration was performed.

(実施例19)
1.フェノール系水溶性有機化合物を主体とする表面処理剤の作成
フェノール系水溶性有機化合物を主体とする表面処理剤として以下のものを用いた。
フッ化水素酸(HF)
0.01g/リットル
75%リン酸(HPO
0.20g/リットル
20%ジルコニウムフッ化水素酸(HZrF) 1.30g/リットル
下記式(I)の水溶性重合体固形分
0.40g/リットル
以下に水溶性重合体の一例として用いた下記式(I)を示す。
(Example 19)
1. Preparation of surface treatment agent mainly composed of phenolic water-soluble organic compound The following was used as a surface treatment agent mainly composed of a phenolic water-soluble organic compound.
Hydrofluoric acid (HF)
0.01 g / liter 75% phosphoric acid (H 3 PO 4 )
0.20 g / liter 20% zirconium hydrofluoric acid (H 2 ZrF 6 ) 1.30 g / liter Water-soluble polymer solid content of the following formula (I)
The following formula (I) used as an example of a water-soluble polymer is shown below at 0.40 g / liter.

OH

−φ−CH− (I)


式中、Xは、水素原子または下記式(II)に示すZ基であり、Z基がベンゼン環1個あたり0.3の割合で導入された反復単位からなる水性フェノール樹脂
Z=−CH−N−CHCHOH

CHCHOH (II)
で表される反復単位から成る水溶性重合体。
OH

-Φ-CH 2- (I)

X
In the formula, X is a hydrogen atom or a Z group represented by the following formula (II), and an aqueous phenol resin consisting of repeating units in which the Z group is introduced at a ratio of 0.3 per benzene ring Z = —CH 2 -N-CH 2 CH 2 OH

CH 2 CH 2 OH (II)
The water-soluble polymer which consists of a repeating unit represented by these.

2.表面処理金属板の作成と評価
実施例1で作成した無機表面処理層の上に、上記1で作成したフェノール系水溶性有機化合物を主体とする表面処理剤を40℃で20秒間スプレーした後水洗、純水洗し、無機表面処理層の上に有機表面処理層が存在する表面処理金属板を得た。その後、実施例1と同様にして、接着性、耐食性、耐硫性評価を行ない、結果を表6に示した。
2. Preparation and evaluation of surface-treated metal plate On the inorganic surface-treated layer prepared in Example 1, the surface treatment agent mainly composed of the phenol-based water-soluble organic compound prepared in 1 above was sprayed at 40 ° C. for 20 seconds and then washed with water. Then, it was washed with pure water to obtain a surface-treated metal plate having an organic surface treatment layer on the inorganic surface treatment layer. Thereafter, evaluation of adhesiveness, corrosion resistance and sulfur resistance was performed in the same manner as in Example 1, and the results are shown in Table 6.

(実施例20)
実施例2で作成した無機表面処理層の上に、フェノール系水溶性有機化合物層を形成した以外は、実施例19と同様に処理及び評価を行った。また、有機表面処理前後の表面のXPS分析を行ったところ、有機様面処理前にはなかったN1sピークが確認できた。
(Example 20)
Treatment and evaluation were performed in the same manner as in Example 19 except that a phenol-based water-soluble organic compound layer was formed on the inorganic surface treatment layer created in Example 2. Further, when XPS analysis of the surface before and after the organic surface treatment was performed, the N1s peak that was not present before the organic surface treatment was confirmed.

(実施例21)
実施例9で作成した無機表面処理層の上に、フェノール系水溶性有機化合物層を形成した以外は、実施例19と同様に処理及び評価を行った。
(Example 21)
The treatment and evaluation were carried out in the same manner as in Example 19 except that a phenol-based water-soluble organic compound layer was formed on the inorganic surface treatment layer created in Example 9.

(実施例22)
実施例1で作成した無機表面処理層の上に、γ-アミノプロピルトリメトキシシラン(製品名KBM903、信越化学工業社製)の3%水溶液にディップしロール絞り後120℃で1分間乾燥して、無機処理層の上にSi換算で5mg/mの膜厚に相当するシランカップリング剤層を有する表面処理金属板を得た。その後、実施例19と同様に評価を行った。
(Example 22)
On the inorganic surface-treated layer prepared in Example 1, it was dipped in a 3% aqueous solution of γ-aminopropyltrimethoxysilane (product name KBM903, manufactured by Shin-Etsu Chemical Co., Ltd.), squeezed and dried at 120 ° C. for 1 minute. A surface-treated metal plate having a silane coupling agent layer corresponding to a film thickness of 5 mg / m 2 in terms of Si on the inorganic treatment layer was obtained. Thereafter, evaluation was performed in the same manner as in Example 19.

(実施例23)
実施例2で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。また、有機表面処理前後の表面のXPS分析を行ったところ、有機様面処理前にはなかったN1sピークが確認できた。
(Example 23)
The treatment and evaluation were carried out in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer created in Example 2. Further, when XPS analysis of the surface before and after the organic surface treatment was performed, the N1s peak that was not present before the organic surface treatment was confirmed.

(実施例24)
実施例6で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。
(Example 24)
The treatment and evaluation were carried out in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer created in Example 6.

(実施例25)
実施例11で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。また、有機表面処理前後の表面のXPS分析を行ったところ、有機様面処理前にはなかったN1sピークが確認できた。
(Example 25)
The treatment and evaluation were performed in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer created in Example 11. Further, when XPS analysis of the surface before and after the organic surface treatment was performed, the N1s peak that was not present before the organic surface treatment was confirmed.

(実施例26)
実施例12で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。
(Example 26)
The treatment and evaluation were carried out in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer created in Example 12.

(実施例27)
比較例1で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。
(Example 27)
Treatment and evaluation were performed in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer prepared in Comparative Example 1.

(実施例28)
比較例2で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。
(Example 28)
Treatment and evaluation were performed in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer created in Comparative Example 2.

(実施例29)
比較例3で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。
(Example 29)
Treatment and evaluation were performed in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer prepared in Comparative Example 3.

(実施例30)
比較例4で作成した無機表面処理層の上に、シランカップリング剤層を形成した以外は、実施例22と同様に処理及び評価を行った。
(Example 30)
Treatment and evaluation were performed in the same manner as in Example 22 except that a silane coupling agent layer was formed on the inorganic surface treatment layer created in Comparative Example 4.

(比較例8)
実施例1で作成した無機表面処理層の上に、γ-アミノプロピルトリメトキシシラン(製品名KBM903、信越化学工業社製)の30%水溶液にディップしロール絞り後120℃で1分間乾燥して、無機処理層の上にSi換算で50mg/mの膜厚に相当するシランカップリング剤層を有する表面処理金属板を得た。その後、実施例19と同様に評価を行った。
(Comparative Example 8)
On the inorganic surface-treated layer prepared in Example 1, it was dipped in a 30% aqueous solution of γ-aminopropyltrimethoxysilane (product name KBM903, manufactured by Shin-Etsu Chemical Co., Ltd.), squeezed and dried at 120 ° C. for 1 minute. A surface-treated metal plate having a silane coupling agent layer corresponding to a film thickness of 50 mg / m 2 in terms of Si on the inorganic treatment layer was obtained. Thereafter, evaluation was performed in the same manner as in Example 19.

<アルミニウム材の評価>
(実施例31)
1.表面処理金属板の作成
金属板として厚み0.25mmのJIS5021H18アルミ合金板を用い、脱脂剤322N8(日本ペイント社製)を用いて、定法により、70℃の浴中で10秒間処理し、水洗後、40℃の1%硫酸中に5秒間浸漬し、水洗、純水洗し、前処理を行った。ついで、表2のFに示す処理浴中で、電流密度7A/dmで、0.4秒通電−0.6秒停止を4回繰り返して断続的に陰極電解を行った以外は実施例1と同様に処理を行い、表面処理アルミニウム板を得た。
<Evaluation of aluminum material>
(Example 31)
1. Preparation of surface-treated metal plate JIS5021H18 aluminum alloy plate with a thickness of 0.25 mm was used as the metal plate, and the degreasing agent 322N8 (manufactured by Nippon Paint Co., Ltd.) was used for 10 seconds in a 70 ° C. bath by a conventional method. The sample was immersed in 1% sulfuric acid at 40 ° C. for 5 seconds, washed with water and washed with pure water, and pretreated. Next, Example 1 was carried out in the treatment bath shown in F of Table 2 except that cathodic electrolysis was conducted intermittently by repeating 0.4 sec energization-0.6 sec stop four times at a current density of 7 A / dm 2. The surface treatment aluminum plate was obtained in the same manner as described above.

2.樹脂被覆金属板の作成
得られた表面処理金属板を用いて、以下の方法で製蓋用の樹脂被覆金属板を作成した。まず、予め板温度250℃に加熱しておいた表面処理金属板の片面上に、表4の(イ)のキャストフィルムの下層側が接するようにラミネートロールを介して熱圧着後、直ちに水冷することにより、片面にフィルムをコーティングした。次に、蓋外面側となる、金属板のもう一方の片面にエポキシアクリル系塗料をロールコートにより塗装し、185℃10分間加熱の焼付け処理を行った。
2. Production of Resin-Coated Metal Plate Using the obtained surface-treated metal plate, a resin-coated metal plate for making a lid was produced by the following method. First, water-cooling immediately after thermocompression bonding through a laminating roll so that the lower layer side of the cast film in Table 4 (a) is in contact with one surface of a surface-treated metal plate heated to a plate temperature of 250 ° C. in advance. Thus, a film was coated on one side. Next, an epoxy acrylic paint was applied on the other side of the metal plate, which is the outer surface side of the lid, by roll coating, and baked at 185 ° C. for 10 minutes.

3.表面処理金属板の評価
得られた無機表面処理金属板の一部は、重量膜厚測定、表面原子比測定、接着性評価に供した。結果を表7に示した。ここで、接着試験片は、表4の(ロ)に示すフィルムを250℃で圧着してTピール試験片とし、接着性の評価において、引張試験機により試験片を10mm以上剥離した後の最大引張強度が、0.6kg/5mm以上のものを◎、0.3kg/5mm以上0.6kg/5mm未満のものを○、0.3kg/5mm未満のものを×とした以外は、実施例1と同様に作成した。
3. Evaluation of surface-treated metal plate A part of the obtained inorganic surface-treated metal plate was subjected to weight film thickness measurement, surface atomic ratio measurement, and adhesion evaluation. The results are shown in Table 7. Here, the adhesion test piece is a T peel test piece obtained by pressure-bonding the film shown in Table 4 (b) at 250 ° C., and in the evaluation of adhesion, the maximum after peeling the test piece by 10 mm or more with a tensile tester. Example 1 except that the tensile strength is 0.6 kg / 5 mm or more, ◎, 0.3 kg / 5 mm or more and less than 0.6 kg / 5 mm is ○, and less than 0.3 kg / 5 mm is x. Created in the same way.

4.缶蓋の開口性評価
得られた樹脂被覆金属板を用いて、定法により301径のフルオープン缶蓋を作製後、缶胴に水を充填した缶胴に巻締めた後、110℃60分のレトルト殺菌処理を行い、冷却後直ちに開口してスコア部周辺開口部の樹脂剥離状態を観察し、缶蓋の開口性評価を行った。結果を表7に示した。表中、缶蓋の開口性評価は、開口部周辺のフェザリングを観察し、フェザリングが全く認められないものを◎、0.5mm未満で樹脂の剥離がないものを○、フェザリングが0.5mm以上のものを×とした。
4). Evaluation of opening of can lid Using the obtained resin-coated metal plate, a full-open can lid having a diameter of 301 was prepared by a conventional method, and then wound on a can body filled with water in a can body, and then 110 ° C for 60 minutes. A retort sterilization treatment was performed, and the resin was peeled off at the periphery of the score portion after opening immediately after cooling, and the openability of the can lid was evaluated. The results are shown in Table 7. In the table, the evaluation of the openability of the can lid is based on the observation of feathering around the opening, ◎ if no feathering is observed, ○ if there is no resin peeling less than 0.5 mm, and feathering is 0 . × 5 mm or more.

(実施例32)
1.表面処理金属板の作成
金属板として厚み0.26mmのJIS3004H19アルミ合金板を用いた以外は、実施例31と同様に表面処理を行った。
(Example 32)
1. Preparation of surface-treated metal plate Surface treatment was performed in the same manner as in Example 31 except that a JIS 3004H19 aluminum alloy plate having a thickness of 0.26 mm was used as the metal plate.

2.樹脂被覆金属板の作成
得られた表面処理金属板を、予め板温度250℃に加熱しておき、金属板の片面上に表4の(イ)のキャストフィルムの下層側が、缶外面側となるもう一方の片面上に表4の(ヘ)のキャストフィルムが、接して被覆されるように、ラミネートロールを介して熱圧着後、直ちに水冷することにより、樹脂被覆金属板を得た。
2. Preparation of resin-coated metal plate The obtained surface-treated metal plate is heated in advance to a plate temperature of 250 ° C., and the lower layer side of the cast film of (a) in Table 4 becomes the outer surface side of the can on one side of the metal plate. A resin film-coated metal plate was obtained by immediately water-cooling after thermocompression bonding through a laminating roll so that the cast film of (F) in Table 4 was in contact with and coated on the other surface.

3.金属缶の作成
得られた樹脂被覆金属板の両面に、パラフィンワックスを両面に静電塗油後、直径154mmの円形に打抜き、定法に従い浅絞りカップを作成した。ついでこの絞りカップを同時絞りしごき加工を2回繰り返して径が小さくハイトの大きいカップに成形した。この様にして得られたカップの諸特性は以下の通りであった。
カップ径 66mm、
カップ高さ 128mm、
元板厚に対する缶壁部の厚み −60%
このカップはドーミング成形後、樹脂フィルムの歪みをとるために220℃で60秒間熱処理を行い、続いて開口端端部のトリミング加工、曲面印刷、206径へネックイン加工、フランジ加工、リフランジ加工を行って350gシームレス缶を作成した。
3. Preparation of Metal Can After both sides of the obtained resin-coated metal plate were electrostatically oiled with paraffin wax, they were punched into a circle with a diameter of 154 mm, and a shallow drawn cup was prepared according to a conventional method. Subsequently, the drawn cup was simultaneously drawn and ironed twice to form a cup having a small diameter and a large height. Various characteristics of the cup thus obtained were as follows.
Cup diameter 66mm,
Cup height 128mm,
-60% of can wall thickness relative to original plate thickness
This cup is heat-treated at 220 ° C. for 60 seconds after doming to remove the distortion of the resin film. A 350 g seamless can was made.

4.表面処理金属板の評価
得られた無機表面処理金属板の一部は、実施例1と同様に、重量膜厚測定、表面原子比測定の測定に供し、結果を表7に示した。
4). Evaluation of surface-treated metal plate A part of the obtained inorganic surface-treated metal plate was subjected to measurement of weight film thickness measurement and surface atomic ratio measurement in the same manner as in Example 1, and the results are shown in Table 7.

5.金属缶のレトルト密着性評価
フランジ加工後の缶の開口端より5mm下部に缶内面側の全周に亘って素地に達する傷を入れ、空缶の状態で125℃の熱水蒸気中に30分間保持し、缶内面側傷周辺部の被覆樹脂の剥離程度を観察し、レトルト密着性を評価した。結果を表7に示した。表中、金属缶のレトルト密着性評価は、20缶中一部でも剥離した缶が全くない時を○、20缶中一部でも剥離した金属缶がある場合を×とした。
5). Evaluation of retort adhesion of metal cans Scratches reaching the substrate over the entire circumference of the inner surface of the can 5mm below the open end of the can after flange processing and kept in hot steam at 125 ° C for 30 minutes Then, the degree of peeling of the coating resin around the inner surface of the can inner surface was observed, and the retort adhesion was evaluated. The results are shown in Table 7. In the table, the retort adhesion evaluation of the metal can was evaluated as ◯ when there was no peeled can even in a part of 20 cans, and x when there was a peeled metal can even in a part of 20 cans.

6.金属缶の耐食性評価
25℃での缶内圧が3.5kg/cmとなるように炭酸水をパックした金属缶を37℃で1週間貯蔵後、缶温を5℃に下げた後、金属缶を正立の状態から、水平方向に対し15°傾斜した厚さ10mmの鋼板上に、50cmの高さから落下させボトムラジアス部を変形させた。その後、ボトムラジアス部を含む缶底部を円周方向に切り出し、0.1%塩化ナトリウム水溶液に50℃で2週間経時後のボトムラジアス変形部周辺の腐食状態を観察し、耐食性を評価した。結果を表7に示した。表中、金属缶の耐食性評価は、ボトムラジアスの変形部周辺を実体顕微鏡観察し、腐食が認められない場合を○、少しでも腐食している場合を×とした。
6). Corrosion resistance evaluation of metal cans After storing a metal can packed with carbonated water so that the internal pressure at 25 ° C is 3.5 kg / cm 2 at 37 ° C for one week, the can temperature is lowered to 5 ° C, then the metal can From an upright state, the bottom radius portion was deformed by dropping from a height of 50 cm onto a steel plate having a thickness of 10 mm inclined 15 ° with respect to the horizontal direction. Thereafter, the bottom of the can including the bottom radius portion was cut in the circumferential direction, and the corrosion state around the bottom radius deformed portion after aging for 2 weeks at 50 ° C. in a 0.1% sodium chloride aqueous solution was observed to evaluate the corrosion resistance. The results are shown in Table 7. In the table, the corrosion resistance of metal cans was evaluated by observing the periphery of the deformed portion of the bottom radius with a stereomicroscope, and ◯ when no corrosion was observed and x when slightly corroded.

(実施例33)
実施例31と同様に金属板を処理し、無機表面処理層を形成した後、実施例22と同様にして、無機処理層の上にSi換算で5mg/mの膜厚に相当するシランカップリング剤層を形成し表面処理金属板とした以外は、実施例31と同様に、樹脂被覆、製蓋及び評価を行なった。
(Example 33)
After the metal plate was treated in the same manner as in Example 31 to form an inorganic surface treatment layer, a silane cup corresponding to a film thickness of 5 mg / m 2 in terms of Si was formed on the inorganic treatment layer in the same manner as in Example 22. Resin coating, lid making, and evaluation were performed in the same manner as in Example 31 except that a ring agent layer was formed to form a surface-treated metal plate.

(実施例34)
実施例32と同様に金属板を処理し、無機表面処理層を形成した後、実施例22と同様にして、無機処理層の上にSi換算で5mg/mの膜厚に相当するシランカップリング剤層を形成し表面処理金属板とした以外は、実施例32と同様に、樹脂被覆、製缶及び評価を行なった。
(Example 34)
After the metal plate was treated and the inorganic surface treatment layer was formed in the same manner as in Example 32, a silane cup corresponding to a film thickness of 5 mg / m 2 in terms of Si was formed on the inorganic treatment layer in the same manner as in Example 22. Resin coating, canning, and evaluation were performed in the same manner as in Example 32 except that a ring agent layer was formed to form a surface-treated metal plate.

(比較例9)
実施例31と同様にして、厚み0.25mmのJIS5021H18アルミ合金板の前処理を行なった後、無機表面処理を行わずに、実施例19と同様にフェノール系有機表面処理を行ない、実施例31と同様に、樹脂被覆、製蓋及び評価を行なった。このとき形成された有機表面処理の重量膜厚は、C量で13mg/m、Zr量で5mg/mであった。
(Comparative Example 9)
In the same manner as in Example 31, a JIS 5021H18 aluminum alloy plate having a thickness of 0.25 mm was pretreated, and then an inorganic surface treatment was not performed, and a phenol-based organic surface treatment was performed in the same manner as in Example 19; In the same manner as above, resin coating, lid formation and evaluation were performed. Weight film thickness of the organic surface treatment formed at this time was 5 mg / m 2 at 13 mg / m 2, Zr amount in C content.

(比較例10)
実施例31と同様にして、厚み0.25mmのJIS5021H18アルミ合金板の前処理を行なった後、市販のジルコニウム系化成処理液(アロジン404、日本パーカライジング社製)を用いて定法により浴を作製し、液温40℃で15秒間スプレー処理し、その後すぐに、水洗、純水洗、乾燥の後処理を行い、実施例31と同様に、樹脂被覆、製蓋及び評価を行なった。
(Comparative Example 10)
In the same manner as in Example 31, a JIS 5021H18 aluminum alloy plate having a thickness of 0.25 mm was pretreated, and then a bath was prepared by a conventional method using a commercially available zirconium-based chemical conversion treatment solution (Allodin 404, manufactured by Nihon Parkerizing Co., Ltd.). Then, spray treatment was performed at a liquid temperature of 40 ° C. for 15 seconds, and immediately after that, washing with water, washing with pure water, and post-drying treatment were performed.

(比較例11)
実施例32と同様にして、厚み0.26mmのJIS3004H19アルミ合金板の前処理を行なった後、実施例19と同様にフェノール系有機表面処理を行ない、実施例32と同様に、樹脂被覆、製缶及び評価を行なった。但し、表面処理金属板の評価は、フェノール系有機表面処理形成後の金属板を評価した。
(Comparative Example 11)
In the same manner as in Example 32, a JIS3004H19 aluminum alloy plate having a thickness of 0.26 mm was pretreated, and then a phenolic organic surface treatment was performed in the same manner as in Example 19. Cans and evaluations were made. However, evaluation of the surface treatment metal plate evaluated the metal plate after phenol type organic surface treatment formation.

(比較例12)
実施例32と同様にして、厚み0.26mmのJIS3004H19アルミ合金板の前処理を行なった後、比較例10と同様に無機表面処理を行い、実施例32と同様に、樹脂被覆、製缶及び評価を行なった。
(Comparative Example 12)
In the same manner as in Example 32, after pretreatment of a JIS3004H19 aluminum alloy plate having a thickness of 0.26 mm, inorganic surface treatment was performed in the same manner as in Comparative Example 10, and in the same manner as in Example 32, resin coating, canning and Evaluation was performed.

(比較例13)
表2のNの処理浴中で電流密度2A/dmで9秒間陰極電解を行なって表面処理金属板を得た以外は、実施例31と同様に、樹脂被覆、製蓋及び評価を行なった。
(Comparative Example 13)
Resin coating, lid making, and evaluation were performed in the same manner as in Example 31 except that a surface-treated metal plate was obtained by performing cathodic electrolysis at a current density of 2 A / dm 2 in a N treatment bath of Table 2 for 9 seconds. .

(比較例14)
表2のNの処理浴中で電流密度2A/dmで9秒間陰極電解を行なって表面処理金属板を得た以外は、実施例32と同様に、樹脂被覆、製缶及び評価を行なった。
(Comparative Example 14)
Resin coating, canning, and evaluation were performed in the same manner as in Example 32 except that a surface-treated metal plate was obtained by performing cathodic electrolysis at a current density of 2 A / dm 2 in a N treatment bath of Table 2 for 9 seconds. .

(比較例15)
実施例31と同様に金属板を処理し、無機表面処理層を形成した後、比較例8と同様にして、無機処理層の上にSi換算で50mg/mの膜厚に相当するシランカップリング剤層を形成し表面処理金属板とした以外は、実施例31と同様に、樹脂被覆、製蓋及び評価を行なった。
(Comparative Example 15)
After the metal plate was treated in the same manner as in Example 31 to form an inorganic surface treatment layer, a silane cup corresponding to a film thickness of 50 mg / m 2 in terms of Si was formed on the inorganic treatment layer in the same manner as in Comparative Example 8. Resin coating, lid making, and evaluation were performed in the same manner as in Example 31 except that a ring agent layer was formed to form a surface-treated metal plate.

(比較例16)
実施例32と同様に金属板を処理し、無機表面処理層を形成した後、比較例8と同様にして、無機処理層の上にSi換算で50mg/mの膜厚に相当するシランカップリング剤層を形成し表面処理金属板とした以外は、実施例32と同様に、樹脂被覆、製缶及び評価を行なった。
(Comparative Example 16)
After the metal plate was processed in the same manner as in Example 32 to form an inorganic surface treatment layer, a silane cup corresponding to a film thickness of 50 mg / m 2 in terms of Si was formed on the inorganic treatment layer in the same manner as in Comparative Example 8. Resin coating, canning, and evaluation were performed in the same manner as in Example 32 except that a ring agent layer was formed to form a surface-treated metal plate.

(比較例17)
重量%で15%の硫酸水溶液を作成し、対極をアルミニウム板として、液温40℃で15V15秒間の陽極酸化処理を行った後すぐに、水洗、純水洗、乾燥の後処理を行った以外は、実施例31と同様に、樹脂被覆、製蓋及び評価を行なった。
(Comparative Example 17)
A 15% sulfuric acid aqueous solution was prepared by weight%, the counter electrode was an aluminum plate, and anodization was performed at a liquid temperature of 40 ° C. for 15 V for 15 seconds. In the same manner as in Example 31, resin coating, lid making, and evaluation were performed.

(比較例18)
比較例17と同様に陽極酸化処理を行なった以外は、実施例32と同様に、樹脂被覆、製缶及び評価を行なった。
(Comparative Example 18)
Resin coating, can making, and evaluation were performed in the same manner as in Example 32 except that the anodizing treatment was performed in the same manner as in Comparative Example 17.

<実缶評価>
(実施例35)
1.表面処理金属板の作成
金属板として厚み0.22mm、調質度DR8の冷延鋼板を電解脱脂、酸洗、水洗、純水洗し、前処理を行った。ついで、表2のDの処理浴中で電流密度1A/dmとし0.6秒通電−0.4秒停止を12回繰り返して陰極電解した以外は、実施例1と同様に処理を行った。続いてさらに、γ-アミノプロピルトリメトキシシラン(製品名KBM903、信越化学工業社製)の3%水溶液にディップしロール絞り後120℃で1分間乾燥して、無機処理層の上にSi換算で5mg/mの膜厚に相当するシランカップリング剤層を有する表面処理金属板を得た。
<Evaluation of actual cans>
(Example 35)
1. Preparation of surface-treated metal plate A cold-rolled steel plate having a thickness of 0.22 mm and a tempering degree DR8 was subjected to electrolytic degreasing, pickling, washing with water, and washing with pure water as a metal plate, followed by pretreatment. Subsequently, the treatment was performed in the same manner as in Example 1 except that the current density was 1 A / dm 2 in the treatment bath of D in Table 2 and the cathodic electrolysis was repeated 12 times of 0.6 second energization-0.4 second stop. . Subsequently, dip in a 3% aqueous solution of γ-aminopropyltrimethoxysilane (product name KBM903, manufactured by Shin-Etsu Chemical Co., Ltd.), roll squeeze and dry at 120 ° C. for 1 minute. A surface-treated metal plate having a silane coupling agent layer corresponding to a film thickness of 5 mg / m 2 was obtained.

2.樹脂被覆金属板の作成
得られた表面処理金属板を予め板温度250℃に加熱しておき、片面上に表4の(イ)のキャストフィルムの下層側が接して被覆され、外面側となるもう一方の片面上に表4の(ハ)のキャストフィルムが被覆されるように、ラミネートロールを介して熱圧着後、直ちに水冷することにより、樹脂被覆金属板を得た。
2. Preparation of resin-coated metal plate The obtained surface-treated metal plate was heated in advance to a plate temperature of 250 ° C., and the lower layer side of the cast film of (a) in Table 4 was in contact with and coated on one side to become the outer surface side. A resin-coated metal plate was obtained by water-cooling immediately after thermocompression bonding via a laminating roll so that the cast film of (4) in Table 4 was coated on one side.

3.缶胴及び缶蓋の作成
得られた樹脂被覆金属板に加工用潤滑剤を塗油後、再絞り加工(絞り比2.5)を行い、内径65.3mmの缶胴を作成した。続いて、樹脂フィルムの歪みをとるために220℃で60秒間熱処理を行い、開口端端部のトリミング加工、フランジ加工を行って、高さ101.1mm深絞り缶を作成した。一方、得られた樹脂被覆金属板の一部を用いて、定法により、211径のフルオープン蓋に成形した。
3. Preparation of can body and can lid After applying a processing lubricant to the obtained resin-coated metal plate, redrawing (drawing ratio 2.5) was performed to prepare a can body having an inner diameter of 65.3 mm. Subsequently, in order to remove the distortion of the resin film, heat treatment was performed at 220 ° C. for 60 seconds, and the edge of the opening end was trimmed and flanged to produce a deep drawn can with a height of 101.1 mm. On the other hand, a part of the obtained resin-coated metal plate was molded into a 211-diameter full-open lid by a conventional method.

4.内容品充填試験
このようにして作成した缶胴及び缶蓋を用いて、缶胴にミートソースを充填後、フルオープン蓋を2重巻締めし、120℃30分のレトルト殺菌処理を行った。
4). Content Product Filling Test Using the can body and can lid prepared in this manner, after filling the can body with meat sauce, the full open lid was double-wrapped and subjected to retort sterilization treatment at 120 ° C. for 30 minutes.

5.表面処理金属板の評価
得られた有機表面処理前の無機表面処理金属板の一部は、実施例1と同様に、重量膜厚測定、表面原子比の測定に供し、結果を表8に示した。
5. Evaluation of surface-treated metal plate A portion of the obtained inorganic surface-treated metal plate before organic surface treatment was subjected to weight film thickness measurement and surface atomic ratio measurement in the same manner as in Example 1, and the results are shown in Table 8. It was.

6.容器評価
容器成形後の有機被膜の状態を調べ、剥離、穴あき等の異常がないかを観察した。また、内容物充填後、37℃で6ヶ月貯蔵後開缶し、容器内面側の腐食や有機被膜の浮きなどが発生していないかを調べ、結果を表8に示した。
6). Container evaluation The state of the organic coating after container molding was examined and observed for abnormalities such as peeling and perforation. Further, after filling the contents, the container was opened for 6 months after storage at 37 ° C., and it was examined whether corrosion on the inner surface side of the container or floating of the organic coating occurred. Table 8 shows the results.

(実施例36)
1.表面処理金属板の作成
金属板として厚み0.17mm、調質度DR8の冷延鋼板を、電解脱脂、酸洗、水洗、純水洗し、前処理を行い、片面あたりニッケルを0.3g/mにめっきした後、片面あたり錫を0.6g/mにめっきし、リフロー処理を行って、ニッケル−錫−鉄の合金層を形成した。続いて、実施例35と同様に、表2のDの処理浴中で陰極電解及びシランカップリング剤処理を行って、表面処理金属板を得た。
(Example 36)
1. Preparation of surface-treated metal plate Cold-rolled steel sheet having a thickness of 0.17 mm and a tempering degree of DR8 as a metal plate is subjected to electrolytic degreasing, pickling, rinsing, pure water washing, pretreatment, and 0.3 g / m of nickel per side. After plating to 2 , tin was plated to 0.6 g / m 2 on one side and subjected to reflow treatment to form a nickel-tin-iron alloy layer. Subsequently, in the same manner as in Example 35, cathodic electrolysis and silane coupling agent treatment were performed in the treatment bath D of Table 2 to obtain a surface-treated metal plate.

2.樹脂被覆金属板の作成
得られた表面処理金属板を、エポキシアクリル系水性塗料を用い、焼付け後の塗膜厚みが10μmになるように両面にロールコートし、200℃10分間の焼付け処理を行うことにより、樹脂被覆金属板を得た。
2. Preparation of resin-coated metal plate The obtained surface-treated metal plate is roll-coated on both sides using an epoxy acrylic water-based paint so that the coating thickness after baking is 10 μm and subjected to baking treatment at 200 ° C. for 10 minutes. Thus, a resin-coated metal plate was obtained.

3.缶胴及び缶蓋の作成
得られた樹脂被覆金属板に加工用潤滑剤を塗油後、絞り加工(絞り比1.3)を行い、内径83.3mmの缶胴を作成した。続いて、開口端端部のトリミング加工、フランジ加工を行って、高さ45.5mmの絞り缶を作成した。一方、得られた樹脂被覆金属板の一部を用いて、定法により、307径のフルオープン蓋に成形した。
3. Preparation of can body and can lid After applying a processing lubricant to the obtained resin-coated metal plate, it was subjected to drawing (drawing ratio 1.3) to prepare a can body having an inner diameter of 83.3 mm. Subsequently, trimming processing and flange processing of the end portion of the opening were performed, and a drawn can having a height of 45.5 mm was created. On the other hand, a part of the obtained resin-coated metal plate was molded into a 307-diameter full-open lid by a conventional method.

4.内容品充填試験
このようにして作成した缶胴及び缶蓋を用いて、缶胴にツナ油漬けを充填後、フルオープン蓋を2重巻締めし、115℃60分のレトルト殺菌処理を行った。
5.表面処理金属板の評価
実施例35と同様に、無機表面処理層の重量膜厚測定、表面原子比の測定を実施した。
6.容器評価
開缶後硫化変色の有無を調べた以外は、実施例35と同様に容器評価を実施した。
4). Contents filling test Using the can body and can lid prepared in this manner, the can body was filled with tuna oil, and then the full open lid was wound twice and subjected to retort sterilization at 115 ° C for 60 minutes. .
5. Evaluation of surface-treated metal plate In the same manner as in Example 35, the weight film thickness measurement and the surface atomic ratio measurement of the inorganic surface treatment layer were performed.
6). Container evaluation Container evaluation was carried out in the same manner as in Example 35 except that the presence or absence of sulfur discoloration was examined after opening the can.

(実施例37)
1.表面処理金属板の作成
金属板として厚み0.22mm、調質度T4の冷延鋼板を、電解脱脂、酸洗、水洗、純水洗し、前処理を行い、片面あたり錫を2.0g/mにめっき後、リフロー処理を行い、続いて、表2のAの処理浴中で電流密度0.6A/dmとし0.6秒通電−0.4秒停止を16回繰り返して陰極電解した以外は、実施例1と同様に陰極電解処理を行って、缶胴用表面処理金属板を得た。
一方、0.21mmの調質度T4の冷延鋼板についても、上記と同様に処理し、缶蓋用表面処理金属板を得た。
(Example 37)
1. Preparation of surface-treated metal plate A cold-rolled steel plate having a thickness of 0.22 mm and a tempering degree T4 as a metal plate is subjected to electrolytic degreasing, pickling, water washing, pure water washing, pretreatment, and 2.0 g / m tin per side. 2 after plating, followed by reflow treatment, followed by cathodic electrolysis with a current density of 0.6 A / dm 2 in the treatment bath of Table 2 with 0.6 second energization-0.4 second stop 16 times repeated. Except for the above, cathodic electrolysis was performed in the same manner as in Example 1 to obtain a surface-treated metal plate for can bodies.
On the other hand, a cold-rolled steel sheet having a tempering degree T4 of 0.21 mm was treated in the same manner as described above to obtain a surface-treated metal sheet for can lids.

2.樹脂被覆金属板、缶胴及び缶蓋の作成
缶胴用表面処理金属板を用いて、エポキシアクリル系水性塗料を缶胴の継目部分にあたる場所を除いて、焼付け後の膜厚が内面側5μm、外面側3μmになるようにマージン塗装し、熱風乾燥炉中で10分間焼付け硬化させて樹脂被覆金属板を得た。作成した樹脂被覆金属板をブランク状に切断し、そのブランクを線電極を用いた市販の電気抵抗溶接機にて円筒状に溶接し、次に、缶胴の溶接継ぎ目部の内外面側に溶剤型エポキシユリア系補修塗料を乾燥塗膜厚みが40μmになるようにスプレー塗装した後、熱風乾燥炉中で3分間焼付け、継ぎ目部分を被覆して溶接缶胴(缶径65.4mm、缶胴高さ122mm)を作成した。
一方、缶蓋用表面処理金属板に、エポキシアクリル系水性塗料を、焼付け後の塗膜厚みが10μmになるように両面にロールコートし、200℃10分間の焼付け処理を行った後、定法により、209径のシェル蓋に成形した。
缶胴の一方の開口端を、フランジ加工、ネックイン加工し、前記209径の蓋を巻締めた後、もう一方の開口端をトリプルネックイン、フランジ加工した。
2. Preparation of resin-coated metal plate, can barrel and can lid Using a surface-treated metal plate for can barrels, the film thickness after baking is 5 μm on the inner surface side, except where the epoxy acrylic water-based paint hits the seam portion of the can barrel. Margin coating was performed so that the outer surface side would be 3 μm, and baking and curing was performed for 10 minutes in a hot air drying furnace to obtain a resin-coated metal plate. The prepared resin-coated metal plate is cut into a blank shape, and the blank is welded into a cylindrical shape by a commercially available electric resistance welder using a wire electrode. Next, a solvent is formed on the inner and outer surfaces of the weld seam of the can body. Type epoxy urea-based repair paint is spray-coated to a dry film thickness of 40 μm, then baked in a hot air drying oven for 3 minutes, and the seam is covered to weld the can body (can diameter 65.4 mm, can body height 122 mm).
On the other hand, an epoxy acrylic water-based paint is roll-coated on both sides so that the coating thickness after baking is 10 μm on the surface-treated metal plate for can lids, and subjected to baking treatment at 200 ° C. for 10 minutes. , 209 diameter shell lid.
One opening end of the can body was subjected to flange processing and neck-in processing. After the 209-diameter lid was wound, the other opening end was subjected to triple neck-in processing and flange processing.

3.内容品充填試験
50℃でコーヒー飲料を充填した後、206径アルミSOT蓋を2重巻締めし、125℃25分のレトルト殺菌処理を行った。
4.表面処理金属板の評価
実施例35と同様に、重量膜厚測定、表面原子比の測定を実施した。
5.容器評価
開缶後の鉄溶出量も測定した以外は、実施例35と同様に容器評価を実施した。
3. Content product filling test After filling a coffee beverage at 50 ° C, a 206-diameter aluminum SOT lid was double-wrapped and subjected to a retort sterilization treatment at 125 ° C for 25 minutes.
4). Evaluation of surface-treated metal plate In the same manner as in Example 35, weight film thickness measurement and surface atomic ratio measurement were performed.
5. Container evaluation Container evaluation was performed in the same manner as in Example 35 except that the amount of iron elution after opening the can was also measured.

(実施例38)
1.表面処理金属板の作成
片面あたり錫を11.2g/mにめっき後、リフロー処理を行った以外は、実施例37と同様に処理し、缶胴用表面処理鋼板を得た。一方、缶蓋用表面処理金属板は実施例37と同一の処理板を用いた。
(Example 38)
1. Preparation of surface-treated metal plate A tin-coated surface-treated steel sheet was obtained in the same manner as in Example 37 except that tin was plated to 11.2 g / m 2 and then reflow treatment was performed. On the other hand, the same treatment plate as in Example 37 was used as the surface treatment metal plate for the can lid.

2.樹脂被覆金属板、缶胴及び缶蓋の作成
缶胴用表面処理金属板は、塗装せずにブランク状に切断し、そのブランクを線電極を用いた市販の電気抵抗溶接機にて円筒状に溶接し、缶胴の溶接継ぎ目部の内外面側に溶剤型エポキシユリア系補修塗料を乾燥塗膜厚みが40μmになるようにスプレー塗装した後、熱風乾燥炉中で3分間焼付け、継ぎ目部分を被覆して缶胴(缶径74.1mm、缶胴高さ81.2mm)を作成した。
一方、缶蓋用表面処理金属板に、エポキシアクリル系水性塗料を、焼付け後の塗膜厚みが10μmになるように両面にロールコートし、200℃10分間の焼付け処理を行った後、定法により、301径のシェル蓋に成形した。
缶胴の一方の開口端を、フランジ加工、ネックイン加工し、前記301径の蓋を巻締めた後、もう一方の開口端をトリプルネックイン、フランジ加工した。
2. Preparation of resin-coated metal plate, can body and can lid The surface-treated metal plate for can body is cut into a blank shape without painting, and the blank is formed into a cylindrical shape with a commercially available resistance welding machine using wire electrodes. After welding, spray coating of solvent-type epoxy urea-based repair paint on the inner and outer surfaces of the welded seam of the can body so that the dry coating thickness is 40 μm, then baked in a hot air drying oven for 3 minutes to cover the joint A can body (can diameter: 74.1 mm, can body height: 81.2 mm) was prepared.
On the other hand, an epoxy acrylic water-based paint is roll-coated on both sides so that the coating thickness after baking is 10 μm on the surface-treated metal plate for can lids, and subjected to baking treatment at 200 ° C. for 10 minutes. , Molded into a 301-diameter shell lid.
One opening end of the can body was subjected to flange processing and neck-in processing, and after the 301-diameter lid was wound, the other opening end was subjected to triple neck-in processing and flange processing.

3.内容品充填試験
得られた缶にみかんシロップ漬けをホットパック充填した後、開口部にも前記301径蓋を2重巻締めし、湯殺菌処理をおこなった。
4.表面処理金属板の評価
実施例35と同様に、重量膜厚測定、表面原子比の測定を実施した。
5.容器評価
37℃で6ヶ月貯蔵後開缶し、容器内面の不均一な変色が発生していないか、及び、内容物の褐変など生じていないかを評価した他は、実施例35と同様に評価した。
3. Content Product Filling Test After hot pack filling the resulting can with tangerine syrup, the 301-diameter lid was double wrapped around the opening and sterilized with hot water.
4). Evaluation of surface-treated metal plate In the same manner as in Example 35, weight film thickness measurement and surface atomic ratio measurement were performed.
5. Container evaluation The same as in Example 35, except that the container was opened after storage at 37 ° C. for 6 months, and whether or not uneven discoloration of the inner surface of the container had occurred and whether the contents had not browned or not was evaluated. evaluated.

(実施例39)
1.表面処理金属板の作成
金属板として厚み0.22mm、調質度T4の冷延鋼板を、電解脱脂、酸洗、水洗、純水洗し、前処理を行い、片面あたりニッケルを0.03g/mにめっきした後、片面あたり錫を1.3g/mにめっき後、リフロー処理を行い、続いて、実施例37と同様に、表2のAの処理浴中で陰極電解処理を行って缶胴用表面処理金属板を得た。 一方、0.21mmの調質度T4の冷延鋼板についても、上記と同様に処理し、缶蓋用表面処理金属板を得た。
(Example 39)
1. Preparation of surface-treated metal plate Cold-rolled steel sheet having a thickness of 0.22 mm and a tempering degree T4 as a metal plate is subjected to electrolytic degreasing, pickling, water washing, pure water washing, pretreatment, and nickel per one side of 0.03 g / m. After plating to 2 , tin was plated to 1.3 g / m 2 on one side, followed by reflow treatment, and then, in the same manner as in Example 37, cathodic electrolysis was performed in the treatment bath of Table A. A surface-treated metal plate for can bodies was obtained. On the other hand, a cold-rolled steel sheet having a tempering degree T4 of 0.21 mm was treated in the same manner as described above to obtain a surface-treated metal sheet for can lids.

2.樹脂被覆金属板、缶胴及び缶蓋の作成
缶胴用表面処理金属板を用いて、エポキシフェノール溶剤型塗料を缶胴の継目部分にあたる場所を除いて、焼付け後の膜厚が内面側5μm、外面側3μmになるようにマージン塗装し、熱風乾燥炉中で10分間焼付け硬化させて樹脂被覆金属板を得た。作成した樹脂被覆金属板をブランク状に切断し、そのブランクを線電極を用いた市販の電気抵抗溶接機にて円筒状に溶接し、次に、缶胴の溶接継ぎ目部の内外面側に溶剤型エポキシユリア系補修塗料を乾燥塗膜厚みが40μmになるようにスプレー塗装した後、熱風乾燥炉中で3分間焼付け、継ぎ目部分を被覆して溶接缶胴(缶径65.4mm、缶胴高さ122mm)を作成した。
一方、缶蓋用表面処理金属板に、エポキシフェノール溶剤型塗料を、焼付け後の塗膜厚みが10μmになるように両面にロールコートし、200℃10分間の焼付け処理を行った後、定法により、209径のシェル蓋に成形した。
缶胴の一方の開口端を、フランジ加工、ネックイン加工し、前記209径の蓋を巻締めた後、もう一方の開口端をトリプルネックイン、フランジ加工した。
2. Preparation of resin-coated metal plate, can body and can lid Using the surface-treated metal plate for can body, the film thickness after baking is 5 μm on the inner surface side except for the place where the epoxy phenol solvent type paint is applied to the joint part of the can body. Margin coating was performed so that the outer surface side would be 3 μm, and baking and curing was performed for 10 minutes in a hot air drying furnace to obtain a resin-coated metal plate. The prepared resin-coated metal plate is cut into a blank shape, and the blank is welded into a cylindrical shape by a commercially available electric resistance welder using a wire electrode. Next, a solvent is formed on the inner and outer surfaces of the weld seam of the can body. Type epoxy urea-based repair paint is spray-coated to a dry film thickness of 40 μm, then baked in a hot air drying oven for 3 minutes, and the seam is covered to weld the can body (can diameter 65.4 mm, can body height 122 mm).
On the other hand, an epoxy phenol solvent type paint is roll-coated on both sides so that the coating thickness after baking is 10 μm on the surface-treated metal plate for can lid, and after baking treatment at 200 ° C. for 10 minutes, , 209 diameter shell lid.
One opening end of the can body was subjected to flange processing and neck-in processing. After the 209-diameter lid was wound, the other opening end was subjected to triple neck-in processing and flange processing.

3.内容品充填試験
93℃でオレンジジュースをホットパックした後、市販の206径アルミSOT蓋を2重巻締めて密封した。
4.表面処理金属板の評価
実施例35と同様に、重量膜厚測定、表面原子比の測定を実施した。
5.容器評価
実施例37と同様に容器評価を実施した。
3. Content Product Filling Test After hot-packing orange juice at 93 ° C., a commercially available 206-diameter aluminum SOT lid was double wrapped and sealed.
4). Evaluation of surface-treated metal plate In the same manner as in Example 35, weight film thickness measurement and surface atomic ratio measurement were performed.
5. Container Evaluation Container evaluation was performed in the same manner as in Example 37.

(実施例40)
1.表面処理金属板の作成
金属板として厚み0.195mm、調質度T3の冷延鋼板を、電解脱脂、酸洗、水洗、純水洗し、前処理を行い、片面あたり錫を1.0g/mにめっきした後、続いて、実施例37と同様に、表2のAの処理浴中で陰極電解処理を行って、缶胴用表面処理金属板を得た。
一方、金属板として厚み0.285mmのJIS5182H19アルミ合金板を用いて表2のAの処理浴中で電流密度を5A/dmとし、0.6秒通電−0.4秒停止を8回繰り返して陰極電解した以外は、実施例31と同様にして缶蓋用表面処理金属板を得た。
(Example 40)
1. Preparation of surface-treated metal plate A cold-rolled steel plate having a thickness of 0.195 mm and a tempering degree T3 as a metal plate was subjected to electrolytic degreasing, pickling, water washing, pure water washing, pretreatment, and 1.0 g / m tin per side. after plating to 2, followed by the same manner as in example 37, and subjected to cathodic electrolysis treatment in the processing bath in Table 2 a, to obtain a can barrel for surface treated metal sheet.
On the other hand, using a JIS5182H19 aluminum alloy plate having a thickness of 0.285 mm as a metal plate, the current density was set to 5 A / dm 2 in the treatment bath of Table 2A, and 0.6-second energization-0.4-second stop was repeated 8 times. A surface treatment metal plate for can lids was obtained in the same manner as in Example 31 except that cathode electrolysis was performed.

2.樹脂被覆金属板の作成
得られた缶胴用及び缶蓋用表面処理金属板を予め板温度220℃に加熱しておき、片面上に表4の(ホ)のキャストフィルムの下層側が接して被覆され、外面側となるもう一方の片面上に表4の(ニ)のキャストフィルムが被覆されるように、ラミネートロールを介して熱圧着後、直ちに水冷することにより、樹脂被覆金属板を得た。
2. Preparation of resin-coated metal plate The obtained surface metal plate for can body and can lid is heated in advance to a plate temperature of 220 ° C., and the lower layer side of the cast film of (e) in Table 4 is in contact with one side to cover The resin-coated metal plate was obtained by immediately water-cooling after thermocompression bonding through a laminating roll so that the cast film of (4) in Table 4 was coated on the other surface on the outer surface side. .

3.缶胴及び缶蓋の作成
缶胴用樹脂被覆金属板の両面にパラフィンワックスを静電塗油後、直径140mmの円形に打抜き、定法に従い浅絞りカップを作成した。ついでこの絞りカップを再絞り・しごき加工を2回繰り返して径が小さくハイトの大きい、深絞りーしごきカップを得た。この様にして得られたカップの諸特性は以下の通りであった。
カップ径 52mm、
カップ高さ 138mm、
元板厚に対する缶壁部の厚み −50%
このカップはドーミング成形後、樹脂フィルムの歪みをとるために220℃で60秒間熱処理を行い、続いて開口端端部のトリミング加工、曲面印刷、200径へネックイン加工、フランジ加工、リフランジ加工を行って250gシームレス缶を作成した。
また、缶蓋用樹脂被覆金属板から定法に従い、200径のSOT蓋を作成した。
3. Preparation of can body and can lid Paraffin wax was electrostatically coated on both sides of the resin-coated metal plate for the can body, and then punched into a circle having a diameter of 140 mm, and a shallow drawn cup was prepared according to a conventional method. The drawn cup was then redrawn and ironed twice to obtain a deep drawn ironing cup having a small diameter and a large height. Various characteristics of the cup thus obtained were as follows.
Cup diameter 52mm,
Cup height 138mm,
-50% of can wall thickness with respect to original plate thickness
This cup is heat-treated at 220 ° C. for 60 seconds after doming molding, followed by trimming of the end of the opening, curved surface printing, neck-in to 200 diameters, flange processing, and re-flange processing. A 250 g seamless can was made.
In addition, a 200-diameter SOT lid was prepared from a resin-coated metal plate for can lids according to a conventional method.

4.内容品充填試験
前記250g缶に5℃でコーラをコールドパックし、直ちに、前記SOT蓋を2重巻締めして密封した。
5.表面処理金属板の評価
実施例35と同様に、重量膜厚測定、表面原子比の測定を実施した。
6.容器評価
実施例37と同様に容器評価を実施した。
4). Content product filling test Cola was cold packed in the 250 g can at 5 ° C., and the SOT lid was immediately wound twice and sealed.
5. Evaluation of surface-treated metal plate In the same manner as in Example 35, weight film thickness measurement and surface atomic ratio measurement were performed.
6). Container Evaluation Container evaluation was performed in the same manner as in Example 37.

(実施例41)
1.表面処理金属板及び樹脂被覆金属板の作成
缶胴用金属板として厚み0.28mmのJIS3004H19アルミ合金板を、缶蓋用金属板と して厚み0.25mmのJIS5182H19アルミ合金板を用いて、表2のAに示す処理浴中で、電流密度10A/dmで、0.4秒通電−0.6秒停止を2回繰り返して断続的に陰極電解を行いった以外は、実施例32と同様に処理を行って表面処理アルミニウム板を得た。樹脂被覆は、両面に表4の(ヘ)のキャストフィルムを被覆した以外は、実施例35と同様にして、樹脂被覆を行った。
(Example 41)
1. Preparation of surface-treated metal sheet and resin-coated metal sheet Example 32, except that cathodic electrolysis was performed intermittently by repeating 0.4 second energization-0.6 second stop twice at a current density of 10 A / dm 2 in the treatment bath shown in A of 2. The same treatment was performed to obtain a surface-treated aluminum plate. The resin coating was performed in the same manner as in Example 35 except that the cast film of (F) in Table 4 was coated on both surfaces.

得られた缶胴用樹脂被覆金属板の両面に、パラフィンワックスを両面に静電塗油後、直径166mmの円形に打抜き、定法に従い、浅絞りカップを作成した。次いで、この浅絞りカップを、再絞り−しごき加工を行い、深絞り−しごき加工により缶体を得た。この様にして得られた缶体の諸特性は以下の通りであった。
缶体径 66mm、
缶体高さ 128mm、
元板厚に対する缶壁部の厚み −63%
この缶体を、定法に従い、ドーミング成形後、樹脂フィルムの歪みをとるために220℃で60秒間熱処理を行い、続いて開口端端部のトリミング加工、曲面印刷、206径へネックイン加工、フランジ加工、リフランジ加工を行って350gシームレス缶を作成した。一方、缶蓋用樹脂被覆金属板から定法に従い、206径のSOT蓋を作成した。
A paraffin wax was electrostatically applied to both surfaces of the obtained resin-coated metal plate for a can body, and then punched into a circular shape with a diameter of 166 mm, and a shallow drawn cup was prepared according to a conventional method. Subsequently, this shallow drawn cup was redrawn and ironed, and a can was obtained by deep drawing and ironing. Various characteristics of the can thus obtained were as follows.
Can body diameter 66mm,
Can body height 128mm,
The thickness of the can wall relative to the original plate thickness -63%
This can body was subjected to heat treatment at 220 ° C. for 60 seconds after doming molding in accordance with a conventional method to remove distortion of the resin film, followed by trimming of the end of the opening, curved surface printing, neck-in to 206 diameters, flange The 350g seamless can was made by processing and re-flange processing. On the other hand, a 206-diameter SOT lid was prepared from a resin-coated metal plate for can lids according to a conventional method.

2.内容品充填試験
前記350g缶に5℃でビールをコールドパック後、前記SOT蓋を2重巻締めして密封した。
3.表面処理金属板の評価
実施例35と同様に、重量膜厚測定、表面原子比の測定を実施した。
4.容器評価
開缶後のアルミ溶出量も測定した以外は、実施例32と同様に容器評価を実施した。
2. Content Product Filling Test After cold-packing beer into the 350 g can at 5 ° C., the SOT lid was double wrapped and sealed.
3. Evaluation of surface-treated metal plate In the same manner as in Example 35, weight film thickness measurement and surface atomic ratio measurement were performed.
4). Container evaluation Container evaluation was carried out in the same manner as in Example 32, except that the aluminum elution amount after opening the can was also measured.

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

Figure 0004805613
Figure 0004805613

本発明の表面処理金属板の無機表面処理層について、XPSによりO1s,Al2p,F1sのピークを測定した図である。It is the figure which measured the peak of O1s, Al2p, F1s by XPS about the inorganic surface treatment layer of the surface treatment metal plate of this invention. 本発明の表面処理金属板の無機表面処理層について、XPSによりAl2pのピークを測定した図である。It is the figure which measured the peak of Al2p by XPS about the inorganic surface treatment layer of the surface treatment metal plate of this invention. 本発明の表面処理金増板の無機表面処理層についてのXPSによるS1sピークと、硫酸による陽極酸化アルマイトのXPSによるS1sピークを比較した図である。It is the figure which compared the S1s peak by XPS about the inorganic surface treatment layer of the surface treatment gold slab of this invention, and the S1s peak by XPS of the anodic oxidation alumite by a sulfuric acid. 本発明の有機表面処理層が形成された表面処理金属板の最表面について、XPSによりN1sピークを測定した図である。It is the figure which measured the N1s peak by XPS about the outermost surface of the surface treatment metal plate in which the organic surface treatment layer of this invention was formed. 本発明の表面処理金属板の一例の断面構造を示す図である。It is a figure which shows the cross-section of an example of the surface treatment metal plate of this invention. 本発明の表面処理金属板の他の一例の断面構造を示す図である。It is a figure which shows the cross-section of another example of the surface treatment metal plate of this invention. 本発明の表面処理金属板の他の一例の断面構造を示す図である。It is a figure which shows the cross-section of another example of the surface treatment metal plate of this invention. トータル電解時間とAl重量膜厚の関係を示す図である。It is a figure which shows the relationship between total electrolysis time and Al weight film thickness. 本発明の樹脂被覆金属板の一例の断面構造を示す図である。It is a figure which shows the cross-section of an example of the resin coating metal plate of this invention. 本発明の樹脂被覆金属板の他の一例の断面構造を示す図である。It is a figure which shows the cross-section of another example of the resin coating metal plate of this invention. 本発明の金属缶の一例を示す側面図である。It is a side view which shows an example of the metal can of this invention. 本発明のイージーオープン缶蓋の一例の上面図である。It is a top view of an example of an easy open can lid of the present invention. 図12に示すイージーオープン缶蓋の断面図である。It is sectional drawing of the easy open can lid shown in FIG.

Claims (18)

金属基体(Alを除く)の表面に、水溶液からの陰極電解処理により析出して形成された無機表面処理層を有する表面処理金属板から成る金属缶であって、前記無機表面処理層が、Al及びOを主体とするアルミニウムの水酸化物又はオキシ水酸化物、及びZr,Tiのうち少なくとも1種から成り、表面処理金属板の少なくとも片面上に有機樹脂が被覆されて成る樹脂被覆金属板から成ることを特徴とする金属缶。 A metal can comprising a surface-treated metal plate having an inorganic surface treatment layer formed by precipitation by cathodic electrolysis from an aqueous solution on the surface of a metal substrate (excluding Al), wherein the inorganic surface treatment layer comprises Al And a resin-coated metal plate made of at least one of aluminum hydroxide or oxyhydroxide mainly composed of O and O , and Zr, Ti, and coated with an organic resin on at least one surface of the surface-treated metal plate. A metal can characterized by comprising. 前記無機表面処理層の最表面に含有されるOとM(但し、MはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、1<O/M<5.5である請求項1載の金属缶The inorganic O and M contained in the outermost surface of the surface treatment layer (where, M is a A l, Ti, at least on one or more kinds of Zr) atomic ratio of, 1 <O / M <5.5 there claim 1 Symbol placing a metal can. 前記無機表面処理層の最表層に含有される(P+S)とM(但し、MはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、(P+S)/M<0.25である請求項1又は2記載の金属缶Wherein contained in the outermost layer of the inorganic surface-treating layer (P + S) and M (where, M is a A l, Ti, among the at least one or more kinds of Zr) atomic ratio is, (P + S) / M <0. The metal can according to claim 1 or 2, which is 25. 前記無機表面処理層の膜厚が、Alの重量膜厚で、5〜100mg/mである請求項1乃至3の何れかに記載の金属缶The thickness of the inorganic surface-treating layer, the weight film thickness of Al, metal can according to any one of claims 1 to 3 is 5 to 100 mg / m 2. 前記金属基体が、錫、ニッケル、亜鉛、鉄の1種以上を含むめっき層を有している表面処理鋼板であることを特徴とする請求項1乃至4の何れかに記載の金属缶Said metal substrate is tin, nickel, zinc, metal can according to any one of claims 1 to 4, characterized in that a surface-treated steel sheet having a plating layer comprising one or more iron. 前記金属基体の主元素の表面露出率が5%未満であることを特徴とする請求項1乃至5の何れかに記載の金属缶The metal can according to any one of claims 1 to 5, wherein a surface exposure rate of a main element of the metal base is less than 5%. 前記無機表面処理層の上に、Si量として0.8〜30mg/mのシランカップリング剤を主体とする有機表面処理層が形成されている請求項1乃至6の何れかに記載の金属缶The metal according to any one of claims 1 to 6, wherein an organic surface treatment layer mainly comprising a silane coupling agent having a Si amount of 0.8 to 30 mg / m 2 is formed on the inorganic surface treatment layer. Cans . 前記無機表面処理層の上に、フェノール系水溶性有機化合物を主体とする有機表面処理層が形成されている請求項1乃至7の何れかに記載の金属缶。   The metal can according to any one of claims 1 to 7, wherein an organic surface treatment layer mainly composed of a phenol-based water-soluble organic compound is formed on the inorganic surface treatment layer. 前記有機表面処理層の最表層がNを含有することを特徴とする請求項7又は8記載の金属缶The outermost layer of the said organic surface treatment layer contains N, The metal can of Claim 7 or 8 characterized by the above-mentioned. 金属基体(Alを除く)の表面に、水溶液からの陰極電解処理により析出して形成された無機表面処理層を有する表面処理金属板から成る缶蓋であって、前記無機表面処理層が、Al及びOを主体とするアルミニウムの水酸化物又はオキシ水酸化物、及びZr,Tiのうち少なくとも1種、から成る表面処理金属板の少なくとも片面上に有機樹脂が被覆されて成る樹脂被覆金属板から成ることを特徴とする缶蓋。A can lid made of a surface-treated metal plate having an inorganic surface treatment layer formed by deposition by cathodic electrolysis from an aqueous solution on the surface of a metal substrate (excluding Al), wherein the inorganic surface treatment layer is made of Al And a resin-coated metal plate in which an organic resin is coated on at least one surface of a surface-treated metal plate made of aluminum hydroxide or oxyhydroxide mainly composed of O and O, and at least one of Zr and Ti. A can lid characterized by comprising. 前記無機表面処理層の最表面に含有されるOとM(但し、MはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、1<O/M<5.5である請求項10記載の缶蓋 The atomic ratio of O and M (wherein M is at least one of Al, Ti, and Zr) contained in the outermost surface of the inorganic surface treatment layer is 1 <O / M <5.5. Item 10. The can lid according to item 10 . 前記無機表面処理層の最表層に含有される(P+S)とM(但し、MはAlと、Ti,Zrのうち少なくとも1種以上)の原子比が、(P+S)/M<0.25である請求項10又は11記載の缶蓋 The atomic ratio of (P + S) and M (wherein M is Al and at least one of Ti and Zr) contained in the outermost surface layer of the inorganic surface treatment layer is (P + S) / M <0.25. The can lid according to claim 10 or 11 . 前記無機表面処理層の膜厚が、Alの重量膜厚で、5〜100mg/m である請求項10乃至12の何れかに記載の缶蓋 The can lid according to any one of claims 10 to 12, wherein a film thickness of the inorganic surface treatment layer is 5 to 100 mg / m 2 in terms of a weight film thickness of Al . 前記金属基体が、錫、ニッケル、亜鉛、鉄の1種以上を含むめっき層を有している表面処理鋼板であることを特徴とする請求項10乃至13の何れかに記載の缶蓋。The can lid according to any one of claims 10 to 13, wherein the metal substrate is a surface-treated steel sheet having a plating layer containing one or more of tin, nickel, zinc, and iron. 前記金属基体の主元素の表面露出率が5%未満であることを特徴とする請求項10乃至14の何れかに記載の缶蓋 The can lid according to any one of claims 10 to 14, wherein a surface exposure rate of a main element of the metal base is less than 5% . 前記無機表面処理層の上に、Si量として0.8〜30mg/m のシランカップリング剤を主体とする有機表面処理層が形成されている請求項10乃至15の何れかに記載の缶蓋 The can according to any one of claims 10 to 15, wherein an organic surface treatment layer mainly comprising a silane coupling agent having a Si amount of 0.8 to 30 mg / m 2 is formed on the inorganic surface treatment layer. Lid . 前記無機表面処理層の上に、フェノール系水溶性有機化合物を主体とする有機表面処理層が形成されている請求項10乃至16の何れかに記載の缶蓋 The can lid according to any one of claims 10 to 16, wherein an organic surface treatment layer mainly composed of a phenol-based water-soluble organic compound is formed on the inorganic surface treatment layer . 前記有機表面処理層の最表層がNを含有することを特徴とする請求項16又は17記載の缶蓋 The can lid according to claim 16 or 17, wherein the outermost layer of the organic surface treatment layer contains N.
JP2005177834A 2005-06-17 2005-06-17 Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid Expired - Fee Related JP4805613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177834A JP4805613B2 (en) 2005-06-17 2005-06-17 Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177834A JP4805613B2 (en) 2005-06-17 2005-06-17 Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011100164A Division JP5422602B2 (en) 2011-04-27 2011-04-27 Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid

Publications (2)

Publication Number Publication Date
JP2006348360A JP2006348360A (en) 2006-12-28
JP4805613B2 true JP4805613B2 (en) 2011-11-02

Family

ID=37644504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177834A Expired - Fee Related JP4805613B2 (en) 2005-06-17 2005-06-17 Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid

Country Status (1)

Country Link
JP (1) JP4805613B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046753A (en) * 2007-08-23 2009-03-05 Nippon Steel Corp Steel sheet for container material with less load on environment and its manufacturing method, and laminate steel sheet for container material with less load on environment and pre-coat steel sheet for container material using the same
JP2009221507A (en) * 2008-03-14 2009-10-01 Shingijutsu Kenkyusho:Kk Magnesium alloy molding and its manufacturing method
JP5358994B2 (en) * 2008-03-26 2013-12-04 Jfeスチール株式会社 Polyester resin coated metal sheet for containers
US8822037B2 (en) 2010-05-28 2014-09-02 Toyo Seikan Group Holdings, Ltd. Surface-treated steel plate
JP2012036424A (en) * 2010-08-04 2012-02-23 Jfe Steel Corp Method for manufacturing surface-treated steel sheet and method for manufacturing resin-covered steel sheet
US20140377581A1 (en) * 2011-03-25 2014-12-25 Nippon Paint Co., Ltd. Surface treatment agent composition for tin-plated steel, and tin-plated steel subjected to surface treatment
CN103608491B (en) * 2011-03-25 2016-06-15 日涂表面处理化工有限公司 Surface treatment composition, the manufacture method of surface treated steel plate, surface treated steel plate, organic coating surface treated steel plate, cover, tank body and seamless tank
JP5895905B2 (en) * 2012-07-31 2016-03-30 Jfeスチール株式会社 Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP5991140B2 (en) * 2012-10-29 2016-09-14 Jfeスチール株式会社 Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP5978923B2 (en) * 2012-10-29 2016-08-24 Jfeスチール株式会社 Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP6003553B2 (en) * 2012-11-09 2016-10-05 Jfeスチール株式会社 Treatment liquid, steel plate for container, and method for producing steel plate for container
EP3051006B1 (en) 2013-09-25 2019-06-19 Toyo Kohan Co., Ltd. Method for producing surface-treated steel sheet
JP6220226B2 (en) 2013-10-31 2017-10-25 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet, surface-treated steel sheet, and organic resin-coated metal container
JP6530885B2 (en) 2013-12-18 2019-06-12 東洋製罐株式会社 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet
JP5886919B1 (en) 2014-09-12 2016-03-16 東洋製罐株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated surface-treated steel sheet
US20180016693A1 (en) 2015-01-26 2018-01-18 Toyo Kohan Co., Ltd. Surface-treated steel sheet, metal container, and method for producing surface-treated steel sheet
WO2016121277A1 (en) * 2015-01-26 2016-08-04 東洋鋼鈑株式会社 Method for producing surface-treated steel plate
EP3252190B1 (en) * 2015-01-26 2020-09-02 Toyo Kohan Co., Ltd. Surface-treated steel plate and metal container
JP6197911B2 (en) * 2016-04-19 2017-09-20 Jfeスチール株式会社 Treatment liquid and method for producing steel plate for container
WO2019124416A1 (en) * 2017-12-22 2019-06-27 東洋製罐株式会社 Organic-resin-coated two-piece aluminum can
JP7228973B2 (en) * 2018-08-01 2023-02-27 日本パーカライジング株式会社 METAL MATERIAL WITH FILM AND MANUFACTURING METHOD THEREOF
JP2022007321A (en) 2020-06-26 2022-01-13 東洋鋼鈑株式会社 Surface treated steel sheet, metal container and method for manufacturing surface treated steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604919B2 (en) * 1979-12-27 1985-02-07 サンリツ工業株式会社 Electrodeposition method of beryllium or aluminum hydroxide or hydrate
JPH01272796A (en) * 1988-04-26 1989-10-31 Nippon Parkerizing Co Ltd Zinc or zinc-based alloy composite plated metallic material having high corrosion resistance
JP2001049456A (en) * 1999-08-11 2001-02-20 Nkk Corp Production of chromate treated steel sheet excellent in adhesion with organic film
JP3867202B2 (en) * 2002-06-18 2007-01-10 Jfeスチール株式会社 Method for producing zinc-based plated steel sheet with excellent white rust resistance

Also Published As

Publication number Publication date
JP2006348360A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4805613B2 (en) Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid
JP4487651B2 (en) Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, metal lid
JP4492103B2 (en) Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, can lid
KR101212895B1 (en) Surface-treated metal materials, method of treating the surfaces thereof, resin-coated metal materials, cans and can lids
US7938950B2 (en) Surface-treated metal material, surface-treating method, resin-coated metal material, metal can and can lid
JP4492224B2 (en) Surface-treated metal material, surface treatment method thereof, and resin-coated metal material
JP5980677B2 (en) Surface treatment bath, method for producing surface-treated steel plate using this surface treatment bath, and surface-treated steel plate comprising this production method
JP5422602B2 (en) Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid
JP2009068108A (en) Steel sheet for container materials with less loading to circumstance, its manufacturing method, laminate steel sheet for container materials with less loading to circumstance using this, coating precoated steel sheets for container materials, and these production methods
JP2012082514A (en) Steel plate for container and method of manufacturing the same
JP5729230B2 (en) Steel plate for container and method for producing the same
JP5377817B2 (en) Can body applicable to cap with excellent corrosion resistance
JP4631111B2 (en) Aluminum can materials, cans and can lids
JP4019751B2 (en) Press-formed can made of pre-coated steel plate
JPH06218465A (en) Deep draw forming can and manufacture thereof
JP4569247B2 (en) Press-molded cans and lids with excellent resistance to sulfur discoloration and corrosion
JP5023468B2 (en) Surface treatment metal plate for can or can lid and method for producing the same, resin-coated metal plate for can or can lid, metal can and can lid
JP2001262370A (en) Film laminated two-piece can
JPH05255864A (en) Deep drawn can and its production
JP2532002C (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Ref document number: 4805613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees