JP2532002C - - Google Patents

Info

Publication number
JP2532002C
JP2532002C JP2532002C JP 2532002 C JP2532002 C JP 2532002C JP 2532002 C JP2532002 C JP 2532002C
Authority
JP
Japan
Prior art keywords
metal plate
polyester resin
plane orientation
resin film
orientation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Publication date

Links

Description

【発明の詳现な説明】 【産業䞊の利甚分野】 【】 本発明は、薄肉化深絞り猶甚暹脂被芆金属板に関するものであり、さらに詳し
くは金属板に被芆されたポリ゚ステル暹脂フィルムの最衚面郚分ず金属板ず盞接
しおいる郚分の面配向係数が異なるポリ゚ステル暹脂フィルムで被芆された薄肉
化深絞り猶甚暹脂被芆金属板に関する。 【】 【埓来の技術】 埓来から、食猶あるいは飲料猶には、猶胎、猶蓋および底蓋の䞉぀の郚分から
なるピヌス猶ず、猶胎ず底蓋ずが䞀䜓ずなった猶䜓および猶蓋の二぀の郚分か らなるピヌス猶が甚いられおいる。このピヌス猶の猶胎には䞀回あるいは数
回の塗装を斜したぶりき、電解クロム酞凊理鋌板䞀般にティンフリヌスチヌル
ず呌ばれ、以䞋ず略すが䜿甚され、接合にははんだ付け、ナむロンによ
る接着、あるいは抵抗溶接をする方法が䜿甚されおいる。このように塗装を斜す
こずは、焌付工皋が煩雑であるばかりでなく、焌付のため長時間加熱が必芁であ
る。たた、焌付工皋で塗料䞭の倚量の溶剀成分が排出されるため、公害面から排
出溶剀を特別な焌华炉に導き焌华しなければならないず蚀う欠点をもっおいた。
たた、ピヌス猶には絞り猶、絞り再絞り猶  
 、猶、絞りしごき猶  
、猶があるが、絞り猶、猶のような比范的絞り比の小さい
猶には䞊蚘のピヌス猶甚の材料ず同様に塗装を斜したぶりきたたはが䜿
甚されおいる。そのため䞊蚘同様に工皋面および環境汚染の面から問題がある。
たた絞り猶、猶にはぶりきおよびアルミニりムが䜿甚されおいるが、猶
の補造には成圢時に最滑油を甚い、成圢加工埌、この最滑油を掗浄で陀去し、也
燥埌、猶の内倖面に塗装が斜される。この猶の補造工皋は公害面から最滑油
の凊理、塗装焌き付け時における塗料䞭から揮散される溶剀成分の凊理などに問
題がある。近幎、塗装を斜したを絞り加工埌、ストレッチ加工を斜す薄肉
化深絞り猶の補造技術が開発され、その材料ずしお塗装したが怜蚎されお
きた。しかし塗装したはこのような厳しい加工を斜した時、塗膜に無数の
クラックが入り、いただに特性良奜な薄肉化深絞り猶は実甚化されおいない。 【】 この薄肉化深絞り猶の補造技術は猶の補造技術に比范し、䟋えば、補造蚭
備がコンパクトで蚭備費が安い、蚭備蚭眮面積が小さい、運転人員の削枛が可胜
である、プレコヌト材の䜿甚が可胜であり公害察策が䞍芁であり、ぶりきより安
䟡なの䜿甚が可胜であるなど倚くの利点をもっおいるが、塗料をプレコヌ
トしたを薄肉化深絞り猶ぞ適甚した堎合、加工埌の耐食性が䞍十分である
ため、いただに広く普及しおいない。 䞀方、塗料に代わる方法ずしお、ポリ゚ステル暹脂フィルムを接着剀を䜿甚せ
ずに金属板に積局する方法特公昭−号などおよび゚ポキシ暹 脂ずその硬化剀などからなる重合組成物などを予め塗垃したポリ゚ステル暹脂フ
ィルムを金属板に積局する方法特公昭−号、特開平−
号、特願平−号などが開発されおいる。 特公昭−号公報蚘茉の方法で埗られたポリ゚ステル暹脂被芆鋌
板は、゚ポキシ系の重合組成物を介しお二軞延䌞ポリ゚チレンテレフタレヌトフ
ィルムで鋌板衚面を被芆した鋌板であり、ポリ゚チレンテレフタレヌトフィルム
の加工性が぀ぎに蚘す共重合ポリ゚ステル暹脂フィルムの加工性より劣り、比范
的加工皋床が小さい絞り猶、猶、猶蓋甚には䜿甚可胜であるが、さらに厳
しい加工性が芁求される薄肉化深絞り猶甚には䜿甚できない。その理由はこのよ
うな厳しい加工を斜すず、ポリ゚ステル暹脂フィルムが剥離したり、フィルムに
無数のクラックが入るためであり、腐食性の匷い内容物を充填するこずができな
い。たた、特開平−号公報蚘茉の方法で埗られたポリ゚ステル暹
脂被芆金属板は積局される共重合ポリ゚ステル暹脂フィルムの軟化開始枩床、結
晶融解枩床、砎断䌞びを限定したものであり、たた特願平−号公
報蚘茉の方法で埗られるポリ゚ステル暹脂被芆金属板は積局される共重合ポリ゚
ステル暹脂フィルムの面内の屈折率および結晶融解枩床を限定したものである。
これらの方法で甚いられるフィルムは特公昭−号公報蚘茉の方法
で甚いられるフィルムより加工性は優れおいるが、薄肉化深絞り猶に適甚した堎
合、積局されたフィルムが金属衚面より剥離するこずがある。これは金属衚面ず
盞接しおいるポリ゚ステル暹脂局の面配向係数および最衚局のポリ゚ステル暹脂
局の面配向係数が調補されないため、成圢加工性および金属板衚面ずの密着性、
特に、薄肉化深絞り猶のような厳しい成圢加工埌の密着性が劣るこずによる。 【】 【発明が解決しようずする課題】 このように埓来の補猶技術に比范し、薄肉化深絞り猶の補造技術は倚くの利点
をもっおいるが、この薄肉化深絞り猶に適した材料がない。本発明は薄肉化深絞
り猶に適した優れた加工性、および加工耐食性を兌ね備えた暹脂被芆金属板を開
発するこずにある。 【】 【課題を解決するための手段】 本発明の薄肉化深絞り猶甚暹脂被芆金属板は、金属板の少なくずも片面に、融
点〜℃のポリ゚ステル暹脂フィルムを加熱させた金属板に被芆し、
前蚘暹脂の金属板ず盞接しおいる郚分の面配向係数を1ずし、金属板ず盞接し
おいない最衚面の郚分の面配向係数を2ずしたずき、1がを越えお
以䞋、2が以䞊、以䞋であり、か぀1≊2であるこずを特
城ずする。さらにたた、金属板の少なくずも片面に、融点〜℃でか
぀面配向係数〜である二軞延䌞ポリ゚ステル暹脂フィルムを、
前蚘暹脂の融点以䞊の枩床に加熱された金属板に接觊させお圧着し、被芆埌の前
蚘暹脂の金属板ず盞接しおいる郚分の面配向係数を1ずし、金属板ず盞接しお
いない最衚面の郚分の面配向係数を2ずしたずき、1がをこえお以
䞋、2が以䞊、以䞋であり、か぀1≊2であるこずを特城
ずする。これらの暹脂被芆金属板は、金属板ず暹脂フィルムずの間に接着剀局が
介圚するこずが望たしい。 【】 以䞋、本発明の内容に぀いお詳现に説明する。たず、本発明に甚いられるポリ
゚ステル暹脂フィルムは、少なくずもポリ゚ステル暹脂局のなかに配向郚分があ
るこずが重芁である。ポリ゚ステル暹脂ずしおは、゚ステル反埩単䜍の〜
が゚チレンテレフタレヌト単䜍からなり、残りの〜の゚ステル反埩
単䜍が䟋えば゚チレンむ゜フタレヌト単䜍からなる共重合ポリ゚ステル暹脂であ
るこずが奜たしい。 ゚チレンテレフタレヌト、および゚チレンむ゜フタレヌト以倖の゚ステルを合
成するために甚いられるテレフタル酞、およびむ゜フタル酞以倖の酞成分ずしお
は、フタル酞、コハク酞、アれラむン酞、アゞピン酞、セバチン酞、ドデカンゞ
オン酞、ゞフェニルカルボン酞、ナフタレンゞカルボン酞、シクロ
ヘキサンゞカルボン酞、無氎トリメリット酞の皮あるいは皮以䞊の酞成分が
挙げられ、゚チレングリコヌル以倖のアルコヌル成分ずしおは、ブタンゞ
オヌル、ペンタンゞオヌル、ヘキサンゞオヌル、プロピレングリコ
ヌル、ポリテトラメチレングリコヌル、トリメチレングリコヌル、トリ゚チレン グリコヌル、ネオペンチルグリコヌル、シクロヘキサンゞメタノヌル、ト
リメチロヌルプロパン、ペンタ゚リスリトヌルの皮あるいは皮以䞊の飜和倚
䟡アルコヌルが挙げられる。 ゚チレンテレフタレヌト単䜍以倖の゚ステル単䜍は、酞成分およびアルコヌル
成分の䜕れか䞀方あるいは䞡方がテレフタル酞以倖の酞成分および゚チレングリ
コヌル以倖の倚䟡アルコヌルであれば良く、䞊述した酞成分および倚䟡アルコヌ
ル成分を甚いお共重合ポリ゚ステル暹脂を埗るこずができる。このような共重合
ポリ゚ステル暹脂は共重合成分からなるポリ゚ステルを゚チレンテレフタレヌト
暹脂にブレンド埌、溶融し、分配反応により共重合化する方法により埗るこずも
可胜である。これらの共重合ポリ゚ステル暹脂は公知の抌出機によりフィルム成
圢埌、瞊暪二方向に二軞延䌞し、熱固定するこずによっお補造される。フィルム
成圢埌、延䌞を斜さない未延䌞フィルムを積局した金属板を甚いた堎合は補猶工
具ずの摩擊係数が高くなり、極端に補猶性が䜎䞋するずずもに、内容物に察する
バリダヌ性も劣っおくる。そのため本発明においおは、ポリ゚ステ暹脂フィルム
の最衚面の郚分は、フィルムを金属板に加熱しお積局した埌においおも、フィル
ム成圢時に付䞎された延䌞による配向が残存しおいるこずが必須である。たたあ
る堎合には、フィルム成圢時に必芁に応じお、安定剀、酞化防止剀、垯電防止剀
顔料、滑剀、腐食防止剀などのような添加剀を加えおも本発明に支障をきたすこ
ずはない。 【】 たた、本発明においお䜿甚されるポリ゚ステル暹脂フィルムの厚さは特に限定
するものではないが、〜Όが奜たしい。厚さがΌ以䞋になるず、ラ
ミネヌト䜜業性が著しく䜎䞋するずずもに、十分な加工耐食性が埗られない。た
た、厚さがΌ以䞊になるず、補猶甚材料に広く䜿甚されおいる゚ポキシ暹
脂塗料などず比范し経枈的でない。 【】 本発明においお重芁な芁因である、金属板に積局する以前の二軞延䌞ポリ゚ス
テル暹脂フィルムの面配向係数、およびポリ゚ステル暹脂被芆金属板のポリ゚ス
テル暹脂フィルムの金属板ず盞接しおいる郚分の面配向係数1、および金 属板ず盞接しおいない最衚面の郚分の面配向係数2は次に瀺す方法で求め
られる。すなわち、金属板に積局する以前の二軞延䌞延䌞ポリ゚ステル暹脂フィ
ルムの堎合は、フィルムのいずれかの片面のそれぞれの瞊方向、暪方向および厚
さ方向の屈折率をアッベの屈折蚈で枬定し、次匏から求める。 面配向係数− 瞊方向の屈折率 暪方向の屈折率 厚さ方向の屈折率 たた、ポリ゚ステル暹脂被芆金属板のポリ゚ステル暹脂フィルムの堎合は、埗ら
れたポリ゚ステル暹脂被芆金属板を塩酞に浞挬し、金属板衚面を化孊的に溶解さ
せ、ポリ゚ステル暹脂フィルムのみを剥離し、埗られたフィルムの最衚面偎およ
び金属板に接しおいた偎のそれぞれの瞊方向、暪方向および厚さ方向の屈折率を
アッベの屈折蚈で枬定し、䞊蚘の匏を甚いお二軞延䌞延䌞ポリ゚ステル暹脂フィ
ルムの堎合ず同様にしお求める。二軞延䌞延䌞ポリ゚ステル暹脂フィルムの配向
は、ポリ゚ステル暹脂の融点以䞊の枩床に加熱された金属板に接觊させお圧着す
るこずにより、金属板からの熱䌝導により金属板に近い郚分ほどくずれるが、䞊
蚘の方法で求められた二軞延䌞ポリ゚ステル暹脂フィルムの面配向係数が
を超える堎合は、面配向係数2を以䞋、か぀面配向係数1
を以䞋ずするこずが極めお困難になる。䞀方、二軞延䌞延䌞ポリ゚ステ
ル暹脂フィルムの面配向係数が未満の堎合は、ポリ゚ステル暹脂の融点
以䞊の枩床に加熱された金属板に接觊させお圧着した埌のポリ゚ステル暹脂フィ
ルムの配向が殆ど倱われるため、面配向係数2以䞊ずし、か぀金
属板ず盞接しおいる郚分の面配向係数1がを越えるこずが極めお困難に
なる。さらに、ポリ゚ステル暹脂被芆金属板から埗られたポリ゚ステル暹脂フィ
ルムの面配向係数1がを越えるず、薄肉化深絞り猶に加工した時
、ポリ゚ステル暹脂フィルムが金属板衚面から容易に剥離する。面配向係数
1が以䞋であればポリ゚ステル暹脂フィルムは剥離しにくいが、より
奜たしくは以䞋が必芁である。 䞊蚘の方法で枬定される屈折率は暹脂フィルムの最衚面から深さΌ皋床た での郚分の平均的な倀であり、その倀より求められる面配向係数1は、金
属板衚面ず実際に接しおいた最衚面郚分の面配向係数が、すなわち、無配向で
あっおも、深さΌ以内に配向郚分が存圚すれば面配向係数がを越えるこず
になる。本発明においお、面配向係数1をを越えお以䞋ずした
のはこのようなこずを考慮した結果であり、ポリ゚ステル暹脂フィルムの面配向
係数1がであるこずは、詳しくいえば金属板ずの接觊面から深さΌ
たでの郚分の面配向係数が、すなわち無配向であるこずを意味しおいる。 金属板ず盞接しおいない最衚面の郚分の面配向係数が以䞋であるず、
前述したように絞り工皋においお、しわ抌さえ工具、ポンチなどの補猶工具ずの
摩擊係数が高くなりすぎ、加工が均䞀に行われなくなり、ポリ゚ステル暹脂フィ
ルムおよび金属板に著しい肌荒れを生じ奜たしくない。たた、ポリ゚ステル暹脂
フィルムを構成する暹脂局自䜓の内容物に察するバリダヌ性が著しく劣り、腐食
性の匷い内容物を充填した埌長期間貯蔵した堎合、金属板衚面が腐食されるので
奜たしくない。䞀方、面配向係数2がを越えるず、たずえ面配向
係数1が以䞋でも、薄肉化深絞り猶ぞ加工した時、ポリ゚ステル
暹脂フィルム党䜓に無数のクラックが入り、猶ずしお実甚に䟛し埗なくなる。す
なわち、面配向係数2ずしおは〜の範囲にあるこずが必
芁である。さらに、厳しい絞り加工、ストレッチ加工、ネッキング加工などを斜
しおも、ポリ゚ステル暹脂フィルムが金属板より剥離するこずなく远埓させるた
めには、面配向係数1は特に重芁である。 【】 ぀ぎに、金属板ずポリ゚ステル暹脂フィルムの間に接着剀局が介圚する堎合に
぀いお説明する。接着剀局が介圚せず、か぀本発明で限定した範囲の面配向係数
を有するポリ゚ステル暹脂フィルムで被芆された金属板は、すでに蚘したように
優れた加工性、加工耐食性、耐きず付き性を有しおいるが、より腐食性の匷い内
容物ず接觊するず、ポリ゚ステル暹脂フィルムを通しお金属板衚面が腐食され、
ポリ゚ステル暹脂フィルムが金属板から剥離する堎合がある。金属板ずポリ゚ス
テル暹脂フィルムの間に介圚する接着剀局は、このような堎合における金属板衚
面の腐食、およびポリ゚ステル暹脂フィルムの金属板からの剥離を防止するのに 効果がある。接着剀ずしおは公知のものも䜿甚可胜であるが、゚ポキシ基を分子
内に有する重合組成物がより奜たしく、ポリ゚ステル暹脂フィルムの金属板ず接
する面に塗垃、也燥させた埌、金属板に積局しおも良いし、あるいは金属板衚面
に塗垃、也燥させた埌、ポリ゚ステル暹脂フィルムを積局しおも良い。接着剀を
塗垃する方法に関しおはロヌルコヌト法などの公知の方法を甚いれば良く、特に
制限するものではない。 【】 本発明のポリ゚ステル暹脂フィルム被芆金属板を埗るには、䟋えば次に瀺す方
法がある。〜℃の融点を有する、二軞延䌞した埌熱固定し
〜の面配向係数を有するポリ゚ステル暹脂フィルムを、ポリ゚ステル暹
脂の融点前埌の枩床に加熱しお積局し、面配向係数2が以䞊、
以䞋、面配向係数1がを越え、以䞋ずなるように調敎す
る方法などがある。 ポリ゚ステル暹脂フィルムはその融点前埌の枩床に加熱した金属板に積局され
る際に、加熱により延䌞配向された結晶構造を厩し、積局埌のポリ゚ステル暹脂
フィルムの面配向係数1は積局前の面配向係数よりも䜎䞋させるこずがで
きる。たた、金属板の加熱枩床、ラミネヌトロヌルの枩床が高く、垞枩たで冷华
するのに芁する時間が短いほど積局埌の面配向係数は䜎䞋する。特に、加熱され
た金属板から積局されるポリ゚ステル暹脂フィルムに熱が䌝達されるため、面配
向係数1が最も小さくなり、金属板から離れるに぀れおその郚分の面配向
係数が倧きくなり、面配向係数2が最も倧きくなる。 【】 次に本発明に甚いられる金属板ずしおは、シヌト状および垯状の鋌板、たたは
アルミニりム合金板の衚面にクロム氎和酞化物皮膜を有するものが積局されるポ
リ゚ステル暹脂フィルムずの優れた密着性を確保するために奜たしい。特に、䞋
局が金属クロム、䞊局がクロム氎和酞化物の二局構造の皮膜を有するが奜
たしく、さらに鋌板衚面に錫、ニッケル、亜鉛、アルミニりムなどの皮たたは
皮以䞊の耇局めっき、合金めっきを斜し、その䞊局に䞊蚘の二局構造の皮膜を
圢成させたもの、あるいはアルミニりム合金板に電解クロム酞凊理、浞挬クロム 酞凊理を斜し、衚面にクロム氎和酞化物皮膜を圢成させたものなどを甚いるこず
が可胜である。金属板衚面に圢成されたクロム氎和酞化物皮膜の量がクロムずし
お2未満、あるいは2を越えるず、積局されるポリ゚ステ
ル暹脂フィルムずの密着性、特に加工埌の密着性が䜎䞋する。したがっおクロム
氎和酞化物皮膜の量はクロムずしお〜2の範囲にあるこずが奜た
しく、より奜たしくは〜2である。金属クロム量は特に限定する
必芁はないが、加工埌の耐食性、ポリ゚ステル暹脂フィルムの密着性の芳点から
〜2の範囲にあるこずがより奜たしい。 【】 金属板を加熱する方法ずしおは、公知の熱颚埪環電熱方匏、抵抗加熱方匏、誘
導加熱方匏、ヒヌトロヌル方匏などが挙げられ、これらの方法を単独でもちいお
も、或いは䜵甚しおも良い。 【】 【実斜䟋】 次にに本発明を実斜䟋におさらに詳现に説明する。 板厚、テンパヌ床−の電解クロム酞凊理鋌板
金属クロム量2、クロム氎和酞化物䞭のクロム量
2、たたは板厚のアルミニりム合金、、衚
面に圢成されたクロム氎和酞化物皮膜䞭のクロム量2の䞡面に
、衚〜に瀺す皮々のポリ゚ステル暹脂フィルムを衚〜に瀺す条件で加熱
積局し、衚〜に瀺すポリ゚ステル暹脂フィルム被芆金属板を䜜成した。積局
埌、それぞれのポリ゚ステル暹脂被芆金属板から詊隓片を切り出し、詳现な説明
䞭に瀺した方法でポリ゚ステル暹脂フィルムの面配向係数1、および2
を枬定した。ポリ゚ステル暹脂被芆金属板の構造、および積局埌枬定した面配
向係数を衚〜に瀺す。これらの被芆金属板を䞋蚘に瀺す加工条件で薄肉化深
絞り猶に成圢し猶の䞊端郚をトリミングした埌、垞法の手段によりドヌミング、
ネックむン、フランゞング加工を斜した。 【】 成圢加工条件 絞り工皋 ブランク埄 絞り比  再絞り工皋 第䞀次再絞り比 第二次再絞り比 第䞉次再絞り比 ダむスのコヌナヌ郚の曲率半埄 しわ抌さえ荷重金属板がの堎合  金属板がアルミニりム合金の堎合 猶胎郚の平均薄肉化率 成圢前のポリ゚ステル暹脂被芆金属板の厚さに察しお− 【】 衚〜に瀺したポリ゚ステル暹脂被芆金属板から成圢した薄肉化深絞り猶の
特性を、䞋蚘に瀺す方法で評䟡した。評䟡結果を衚に瀺す。 特性評䟡 ポリ゚ステル暹脂皮膜の加工密着性 フランゞング加工郚のポリ゚ステル暹脂皮膜のフィルム割れ、および剥離状態
を目芖芳察し、䞋蚘に瀺す段階の評点で評䟡した。 評点フィルム割れ、および剥離は認められない。 フランゞング加工郚の端郚にわずかなフィルム剥離が認められるが実
甚䞊問題無し。 フランゞング加工郚の端郚にフィルム割れ、および剥離が認められる
。 フランゞング加工郚からネックむン郚に達するフィルム割れ、および
剥離が認められる。 フランゞング加工郚からネックむン郚にかけお、党面的なフィルム剥
離が認められる。 【】 猶䜓内面の金属衚面の露出皋床 成圢した薄肉化深絞り猶に食塩氎を充填し、その䞭にステンレス棒を浞挬
し、猶䜓を陜極、ステンレス棒を陰極ずしお䞡極猶にの盎流電圧を印加
し、流れる電流倀で金属衚面の露出皋床を評䟡した。 【】 耐熱氎性 成圢した薄肉化深絞り猶をレトルト釜に入れ、℃の氎蒞気䞭で分間
熱氎凊理した埌のフランゞング加工郚からネックむン郚にかけおのポリ゚ステル
暹脂皮膜の剥離状態を目芖芳察し、䞋蚘に瀺す段階の評点で評䟡した。 評点フィルム割れ、および剥離は認められない。 フランゞング加工郚の端郚にわずかなフィルム剥離が認められるが実
甚䞊問題無し。 フランゞング加工郚の端郚に実甚䞊問題ずなる皋床のフィルム剥離が
認められる。 フランゞング加工郚からネックむン郚に達するフィルム剥離が認めら
れる。 フランゞング加工郚からネックむン郚にかけお、党面的なフィルム剥
離が認められる。 【】 耐熱性 䞊蚘の第䞉次再絞り加工たで成圢した絞り猶を、倖面印刷の焌き付け枩床に盞
圓する℃の枩床で分間加熱した埌、猶胎郚のポリ゚ステル暹脂フィルム
の倉色、フィルム割れ、剥離に぀いお目芖芳察し、いずれの欠陥も生じおいない
ものを点ずし、〜点ずなるに぀れおいずれかの欠陥の皋床が増倧する段
階の評点で評䟡した。 【】 耐食性 成圢した薄肉化深絞り猶に酢酞氎溶液を充填し、℃でヶ月間貯蔵し
た埌開猶し、猶内面の腐食状態を目芖芳察し、腐食無しを点ずし、〜点ず なるに぀れお腐食皋床が増倧する段階の評点で評䟡した。 【】 【衚】 【】 【衚】 【】 【衚】 【】 【衚】 【】 【衚】 【】 【発明の効果】 以䞊説明したように、本発明の薄肉化深絞り猶甚暹脂被芆金属板は、加工性お
よび加工耐食性に優れた材料であり、埓来の猶䜓に比范し皮々の利点をも぀薄肉
化深絞り猶甚に甚いられるだけでなく、絞り猶、猶蓋、むヌゞヌオヌプン可胜な
猶蓋、王冠、キャップ類などの容噚材料ずしおも、広く適甚可胜である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-coated metal plate for a thin-walled deep-drawing can, and more particularly, to a polyester resin film coated on a metal plate. The present invention relates to a resin-coated metal plate for a thin-drawing deep drawn can covered with a polyester resin film in which a surface portion and a portion in contact with the metal plate have different plane orientation coefficients. 2. Description of the Related Art Conventionally, a food or beverage can has a three-piece can consisting of a can body, a can lid and a bottom lid, and a can in which the can body and the bottom lid are integrated. A two-piece can consisting of two parts, a body and a can lid, is used. The three-piece can body is made of tinplate that has been painted once or several times, and is made of electrolytic chromic acid-treated steel sheet (generally called tin-free steel, hereinafter abbreviated as TFS). Adhesion with nylon or resistance welding is used. Applying the coating in this manner not only complicates the baking process, but also requires long-time heating for baking. Further, since a large amount of solvent components in the paint are discharged in the baking process, there is a drawback that the discharged solvent must be guided to a special incinerator and incinerated from the viewpoint of pollution.
In addition, drawn and redrawn cans (Drawn and redra) can be used for two-piece cans.
wn can, DRD can), drawn and ironed can (Drawn and Ironed)
can, DI can), but for tins with a relatively small drawing ratio, such as drawn cans and DRD cans, painted tin or TFS is used in the same manner as the above-mentioned three-piece can material. . Therefore, there is a problem in terms of process and environmental pollution as in the above.
Tin and aluminum are used for drawn cans and DI cans, but lubricating oil is used in the manufacture of DI cans during molding. After forming, the lubricating oil is removed by washing, and after drying, the cans are dried. The interior and exterior are painted. The manufacturing process of this DI can has problems in terms of treatment of lubricating oil from the viewpoint of pollution, treatment of a solvent component volatilized from paint during baking of paint, and the like. In recent years, a technique for manufacturing a thin-walled deep-drawn can that performs stretching after painting TFS has been developed has been developed, and painted TFS has been studied as a material thereof. However, when the painted TFS is subjected to such severe processing, countless cracks are formed in the coating film, and a thin-walled deep-drawing can having good characteristics has not yet been put to practical use. [0003] The manufacturing technology of the thinned deep drawn can is compared with the manufacturing technology of the DI can. For example, the manufacturing equipment is compact, the equipment cost is low, the equipment installation area is small, and the number of operating personnel can be reduced. It has many advantages, such as the use of materials and no pollution countermeasures, and the use of TFS, which is cheaper than tinplate, has many advantages, but when TFS pre-coated with paint is applied to thin-walled deep drawn cans, Due to insufficient corrosion resistance after processing, it has not been widely used yet. On the other hand, as a method of replacing the paint, a method of laminating a polyester resin film on a metal plate without using an adhesive (such as Japanese Patent Publication No. 60-47103) and a polymer composition comprising an epoxy resin and a curing agent thereof are used in advance. A method of laminating the applied polyester resin film on a metal plate (Japanese Patent Publication No. 63-13829,
331, Japanese Patent Application No. 1-154523, etc.) have been developed. The polyester resin-coated steel sheet obtained by the method described in JP-B-63-13829 is a steel sheet whose surface is coated with a biaxially stretched polyethylene terephthalate film via an epoxy-based polymer composition. It is inferior to the processability of the copolyester resin film described below, and can be used for draw cans, DRD cans, and can lids with a relatively small degree of processing. Cannot be used for drawn cans. The reason for this is that when such severe processing is performed, the polyester resin film is peeled off or countless cracks are formed in the film, so that highly corrosive contents cannot be filled. Further, the polyester resin-coated metal plate obtained by the method described in JP-A-1-249331 is one in which the softening start temperature, crystal melting temperature, and elongation at break of the laminated polyester resin film are limited. The polyester resin-coated metal plate obtained by the method described in Japanese Patent Application No. 1-154523 is one in which the in-plane refractive index and the crystal melting temperature of the laminated polyester resin film are limited.
The film used in these methods has better workability than the film used in the method described in JP-B-63-13829, but when applied to a thinned deep drawing can, the laminated film peels off from the metal surface. May be. This is because the plane orientation coefficient of the polyester resin layer in contact with the metal surface and the plane orientation coefficient of the outermost polyester resin layer are not adjusted, so that moldability and adhesion to the metal plate surface,
In particular, the adhesion after severe forming such as a thinned deep drawn can is poor. [0004] As described above, the technique of manufacturing a thinned deep-drawn can has many advantages as compared with the conventional can-making technique, but a material suitable for the thinned deep-drawn can is used. There is no. An object of the present invention is to develop a resin-coated metal plate having excellent workability and work corrosion resistance suitable for a thinned deep drawn can. [0005] The resin-coated metal plate for a thin-walled deep-drawing can of the present invention is formed by heating a polyester resin film having a melting point of 190 to 250 ° C on at least one surface of the metal plate. Coated,
The plane orientation coefficient of the metal plate and the phase contact with that portion of the resin and n 1, when the plane orientation coefficient of a portion of the outermost surface which is not in contact the metal plate and the phase was n 2, n 1 is greater than zero 0.10
Hereinafter, n 2 is 0.01 or more state, and are 0.15 or less and characterized in that it is a n 1 ≩ n 2. Furthermore, a biaxially stretched polyester resin film having a melting point of 190 to 250 ° C. and a plane orientation coefficient of 0.12 to 0.17 on at least one surface of the metal plate,
Crimp in contact with the metal plate is heated to a temperature above the melting point of the resin, the plane orientation coefficient of the metal plate and the phase contact with that portion of the resin after coating and n 1, a metal plate and a phase contact when the plane orientation coefficient of a portion of the outermost surface is not set to n 2, 0.10 or less n 1 is beyond 0, n 2 is 0.01 or more state, and are 0.15 or less, and n 1 ≩ n It is characterized by being 2 . In these resin-coated metal plates, it is desirable that an adhesive layer is interposed between the metal plate and the resin film. Hereinafter, the contents of the present invention will be described in detail. First, it is important that the polyester resin film used in the present invention has at least an oriented portion in the polyester resin layer. As the polyester resin, 75 to 9 of ester repeating units are used.
It is preferred that 5% is an ethylene terephthalate unit and the remaining 5 to 25% of the ester repeating unit is, for example, a copolymerized polyester resin consisting of ethylene isophthalate units. Ethylene terephthalate and terephthalic acid used to synthesize esters other than ethylene isophthalate, and acid components other than isophthalic acid include phthalic acid, succinic acid, azelaic acid, adipic acid, sebacic acid, dodecanedioic acid, diphenyl One or more acid components of carboxylic acid, 2,6 naphthalenedicarboxylic acid, 1,4 cyclohexanedicarboxylic acid, and trimellitic anhydride are cited, and alcohol components other than ethylene glycol include 1,4 butanediol, 1,5 pentanediol, 1,6 hexanediol, propylene glycol, polytetramethylene glycol, trimethylene glycol, triethylene glycol, neopentyl glycol, 1,4 cyclohexane dimethanol, trimethylolpropane Alone or in combination of two or more saturated polyhydric alcohols pentaerythritol. The ester unit other than the ethylene terephthalate unit may be any one or both of the acid component and the alcohol component, provided that the acid component is other than terephthalic acid and the polyhydric alcohol is other than ethylene glycol. Can be used to obtain a copolymerized polyester resin. Such a copolymerized polyester resin can be obtained by a method in which a polyester comprising a copolymerized component is blended with an ethylene terephthalate resin, melted, and then copolymerized by a distribution reaction. These copolyester resins are produced by forming a film with a known extruder, then biaxially stretching in two directions, and heat-setting. After film formation, when using a metal plate laminated with an unstretched film that is not stretched, the coefficient of friction with the can-making tool becomes high, and the can-making property is extremely reduced, and the barrier property to the contents is also inferior. come. For this reason, in the present invention, it is essential that the outermost surface portion of the polyester resin film retain the orientation provided by the stretching imparted at the time of film forming even after the film is heated and laminated on a metal plate. In some cases, when the film is formed, if necessary, additives such as a stabilizer, an antioxidant, an antistatic pigment, a lubricant, and a corrosion inhibitor do not interfere with the present invention. . The thickness of the polyester resin film used in the present invention is not particularly limited, but is preferably 5 to 50 ÎŒm. When the thickness is 5 ÎŒm or less, laminating workability is remarkably reduced, and sufficient working corrosion resistance cannot be obtained. On the other hand, when the thickness is 50 ÎŒm or more, it is not economical as compared with an epoxy resin paint widely used as a material for cans. The important factors in the present invention are the plane orientation coefficient of the biaxially stretched polyester resin film before lamination on the metal plate, and the portion of the polyester resin coated metal plate in contact with the metal plate of the polyester resin film. plane orientation coefficient of (n 1), and the plane orientation coefficient of the portion of the metal plate and a phase not in contact with the uppermost surface (n 2) is obtained by the following method. In other words, in the case of a biaxially stretched stretched polyester resin film before being laminated on a metal plate, the refractive index in each of the longitudinal direction, the lateral direction and the thickness direction of any one side of the film is measured by Abbe's refractometer, It is obtained from the following equation. Plane orientation coefficient = (A + B) / 2-CA A: vertical refractive index B: horizontal refractive index C: refractive index in the thickness direction Also, in the case of a polyester resin film of a polyester resin coated metal plate, it is obtained. The polyester resin-coated metal plate is immersed in hydrochloric acid, the surface of the metal plate is chemically dissolved, only the polyester resin film is peeled off, and the respective vertical surfaces of the outermost surface of the obtained film and the side in contact with the metal plate are obtained. The refractive indices in the direction, the transverse direction and the thickness direction are measured with an Abbe refractometer, and are determined in the same manner as in the case of the biaxially stretched stretched polyester resin film using the above formula. The orientation of the biaxially stretched stretched polyester resin film is brought closer to the metal plate due to heat conduction from the metal plate by being brought into contact with and pressed against a metal plate heated to a temperature equal to or higher than the melting point of the polyester resin. The plane orientation coefficient of the biaxially stretched polyester resin film determined by the method of 0.1 is 0.1
If it exceeds 7, the plane orientation coefficient (n 2 ) is 0.15 or less and the plane orientation coefficient (n 1 )
Is extremely difficult to be 0.10 or less. On the other hand, when the plane orientation coefficient of the biaxially stretched stretched polyester resin film is less than 0.12, the orientation of the polyester resin film after being brought into contact with a metal plate heated to a temperature equal to or higher than the melting point of the polyester resin and crimped is almost zero. Since it is lost, it is extremely difficult to set the plane orientation coefficient (n 2 ) to 0.01 or more and to make the plane orientation coefficient (n 1 ) of the portion in contact with the metal plate exceed 0. Further, when the plane orientation coefficient (n 1 ) of the polyester resin film obtained from the polyester resin-coated metal plate exceeds 0.10, the polyester resin film can be easily removed from the metal plate surface when processed into a thinned deep drawn can. Peel off. Plane orientation coefficient (n
If 1 ) is 0.10 or less, the polyester resin film is difficult to peel off, but more preferably 0.05 or less. Refractive index measured by the method described above is an average value of the portion to a depth of 5ÎŒm approximately from the outermost surface of the resin film, plane orientation coefficient obtained from the value (n 1) is actually the metal plate surface The surface orientation coefficient of the outermost surface portion that is in contact with is 0, that is, even if it is non-oriented, the plane orientation coefficient exceeds 0 if the oriented portion exists within a depth of 5 ÎŒm. In the present invention, the reason that the plane orientation coefficient (n 1 ) is set to more than 0 and equal to or less than 0.10 is a result in consideration of such a fact, and the plane orientation coefficient (n 1 ) of the polyester resin film is 0. To be more specific, the depth is 5 ÎŒm from the contact surface with the metal plate.
The plane orientation coefficient of the portion up to 0 means 0, that is, no orientation. When the plane orientation coefficient of the outermost surface portion not in contact with the metal plate is 0.01 or less,
As described above, in the drawing step, the coefficient of friction with a can-making tool such as a wrinkle holding tool or a punch becomes too high, whereby the processing is not performed uniformly, and the polyester resin film and the metal plate are unfavorably roughened. Further, the barrier property of the resin layer itself constituting the polyester resin film itself to the content is remarkably poor, and if the corrosive content is filled and stored for a long period of time, the metal plate surface is corroded, which is not preferable. On the other hand, if the plane orientation coefficient (n 2 ) exceeds 0.15, even if the plane orientation coefficient (n 1 ) is 0.10 or less, innumerable cracks occur in the entire polyester resin film when processed into a thinned deep drawn can. And cannot be put to practical use as a can. That is, the plane orientation coefficient (n 2) is required to be in the range of 0.01 to 0.15. Furthermore, even if severe drawing, stretching, necking, or the like is performed, the plane orientation coefficient (n 1 ) is particularly important in order for the polyester resin film to follow the metal plate without peeling off. Next, a case where an adhesive layer is interposed between the metal plate and the polyester resin film will be described. A metal plate covered with a polyester resin film having no adhesive layer and having a plane orientation coefficient in the range limited by the present invention has excellent workability, work corrosion resistance, and scratch resistance as described above. Has, but when in contact with more corrosive contents, the metal plate surface is corroded through the polyester resin film,
The polyester resin film may peel off from the metal plate. The adhesive layer interposed between the metal plate and the polyester resin film is effective in preventing corrosion of the surface of the metal plate and peeling of the polyester resin film from the metal plate in such a case. Known adhesives can be used as the adhesive, but a polymer composition having an epoxy group in the molecule is more preferable.The adhesive is applied to the surface of the polyester resin film which is in contact with the metal plate, dried, and then laminated on the metal plate. Alternatively, a polyester resin film may be laminated after coating and drying on the surface of a metal plate. A known method such as a roll coating method may be used for applying the adhesive, and is not particularly limited. In order to obtain the metal sheet coated with the polyester resin film of the present invention, for example, there is the following method. It has a melting point of 190-250 ° C.
A polyester resin film having a plane orientation coefficient of about 0.17 is laminated by heating to a temperature around the melting point of the polyester resin, and the plane orientation coefficient (n 2 ) is 0.01 or more and 0
. There is a method of adjusting the plane orientation coefficient (n 1 ) to be not more than 15 and not more than 0 to not more than 0.10. When a polyester resin film is laminated on a metal plate heated to a temperature around its melting point, the crystalline structure stretched and oriented by heating is broken, and the plane orientation coefficient (n 1 ) of the polyester resin film after lamination is determined before lamination. It can be lower than the plane orientation coefficient. Also, the higher the heating temperature of the metal plate and the temperature of the laminating roll and the shorter the time required for cooling to room temperature, the lower the plane orientation coefficient after lamination. In particular, since heat is transferred from the heated metal plate to the laminated polyester resin film, the plane orientation coefficient (n 1 ) becomes the smallest, and as the distance from the metal plate increases, the plane orientation coefficient of the portion becomes larger. The orientation coefficient (n 2 ) is the largest. Next, the metal plate used in the present invention has excellent adhesion to a polyester resin film in which a sheet-like or belt-like steel plate or an aluminum alloy plate having a chromium hydrate oxide film on the surface is laminated. It is preferable to secure the property. In particular, TFS having a two-layered film of a lower layer of metallic chromium and an upper layer of chromium hydrated oxide is preferable, and further, tin, nickel, zinc, one or two or more kinds of multi-layer plating such as aluminum, An alloy plating was applied, and a film having the above-mentioned two-layer structure was formed thereon, or an aluminum alloy plate was subjected to electrolytic chromic acid treatment and immersion chromic acid treatment to form a chromium hydrated oxide film on the surface. It is possible to use such things. 3 mg / m less than 2 amount as chromium metal plate surface formed hydrated chromium oxide film, or exceeds 50 mg / m 2, adhesion between the polyester resin film to be laminated, particularly adhesion after working Decrease. Therefore, the amount of the chromium hydrated oxide film is preferably in the range of 3 to 50 mg / m 2 as chromium, and more preferably 7 to 25 mg / m 2 . Although there is no particular limitation on the amount of chromium metal, it is more preferably in the range of 10 to 200 mg / m 2 from the viewpoint of corrosion resistance after processing and adhesion of the polyester resin film. As a method for heating the metal plate, there are known hot air circulating electric heating method, resistance heating method, induction heating method, heat roll method and the like, and these methods may be used alone or in combination. good. Next, the present invention will be described in more detail with reference to examples. Electrolytic chromic acid treated steel sheet (TFS) with a thickness of 0.17 mm and a temper degree of DR-10
(Amount of chromium metal: 110 mg / m 2 , amount of chromium in hydrated chromium oxide: 23 mg
/ M 2 ) or a 0.30 mm-thick aluminum alloy (3004, H38, the amount of chromium in the chromium hydrated oxide film formed on the surface: 18 mg / m 2 ). Various polyester resin films were heat-laminated under the conditions shown in Tables 3 and 4 to prepare metal sheets coated with polyester resin films shown in Tables 3 and 4. After lamination, a test piece was cut out from each of the polyester resin-coated metal plates, and the plane orientation coefficient (n 1 ) and (n 2 ) of the polyester resin film were determined by the method described in the detailed description.
) Was measured. Tables 3 and 4 show the structure of the polyester resin-coated metal plate and the plane orientation coefficient measured after lamination. After forming these coated metal plates into thinned deep-drawing cans under the processing conditions shown below and trimming the upper end of the can, doming by a conventional method,
Neck-in and flanging were applied. [Molding Processing Conditions] Drawing process Blank diameter: 187 mm Drawing ratio: 1.50 Redrawing step Primary redrawing ratio: 1.29 Secondary redrawing ratio: 1.24 Tertiary redrawing ratio: 1.20 Curvature radius at corner of die: 0.4 mm Wrinkle holding load (metal plate) Is TFS): 6000 kg (when the metal plate is an aluminum alloy): 2000 kg) Average Thinning Rate of Can Body -20% of Thickness of Polyester Resin-Coated Metal Sheet Before Molding Characteristics of Thin-Walled Deep-Draw Cans Formed from Polyester Resin-Coated Metal Sheets as Shown in Tables 3 and 4 Was evaluated by the following method. Table 5 shows the evaluation results. [Characteristic Evaluation] (1) Processing Adhesion of Polyester Resin Film The film cracking and peeling state of the polyester resin film in the flanged portion were visually observed, and evaluated according to the following five grades. Rating 5: Film cracking and peeling were not observed. 4: Slight film peeling was observed at the end of the flanged portion, but there was no practical problem. 3: Film cracking and peeling were observed at the end of the flanged portion. 2: A film crack reaching the neck-in portion from the flanged portion and peeling are observed. 1: From the flanged portion to the neck-in portion, complete film peeling is observed. (2) Extent of Exposing Metal Surface Inside Can Body A 3% saline solution is filled in a molded thin-walled deep-drawing can, a stainless steel bar is immersed in the solution, and the can body is used as an anode and the stainless steel bar is used as a cathode. A DC voltage of 6.3 V was applied to the bipolar can and the degree of exposure of the metal surface was evaluated based on the flowing current value. (3) Hot Water Resistance The molded thin-walled deep-drawing can is put into a retort pot, and subjected to hot water treatment in steam at 125 ° C. for 30 minutes, and then the polyester resin film is peeled from the flanged portion to the neck-in portion. The state was visually observed and evaluated according to the following five-point scale. Rating 5: Film cracking and peeling were not observed. 4: Slight film peeling was observed at the end of the flanged portion, but there was no practical problem. 3: Film peeling to an extent that would cause a problem in practice is observed at the end of the flanged portion. 2: Film peeling from the flanged portion to the neck-in portion is observed. 1: From the flanged portion to the neck-in portion, complete film peeling is observed. (4) Heat Resistance The drawn can formed up to the above-mentioned third redrawing is heated at 205 ° C. corresponding to the baking temperature of the outer surface printing for 5 minutes. Discoloration, film cracking, and peeling were visually observed, and five points where no defect was generated were evaluated as five points, and the degree of any one of the points increased as the number of points reached 4-1. (5) Corrosion Resistance A 3% acetic acid aqueous solution is filled in a molded thin-walled deep-drawing can, stored at 50 ° C. for 3 months, opened, and the corrosion state of the inner surface of the can is visually observed. The score was evaluated on a five-point scale in which the degree of corrosion increased as the score reached 4 to 1. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] As described above, the resin-coated metal sheet for a thin-walled deep drawn can according to the present invention is a material excellent in workability and corrosion resistance, and has various properties as compared with conventional can bodies. Not only can it be used for thin-walled deep-drawing cans that have advantages, but it can also be widely applied as container materials for drawn cans, can lids, easy-open can lids, crowns, caps, and the like.

Claims (1)

【特蚱請求の範囲】 【請求項】 金属板の少なくずも片面に、融点〜℃のポリ゚ス
テル暹脂フィルムを加熱された金属板に被芆し、前蚘暹脂の金属板ず盞接しおい
る郚分の面配向係数を1ずし、金属板ず盞接しおいない最衚面の郚分の面配向
係数を2ずしたずき、1がを越えお以䞋、2が以䞊、
以䞋であり、か぀1≊2であるこずを特城ずする薄肉化深絞り猶甚暹脂
被芆金属板。 【請求項】 金属板の少なくずも片面に、融点〜℃でか぀面配
向係数〜である二軞延䌞ポリ゚ステル暹脂フィルムを、前蚘暹
脂の融点以䞊の枩床に加熱された金属板に接觊させお圧着し、被芆埌の前蚘暹脂
の金属板ず盞接しおいる郚分の面配向係数を1ずし、金属板ず盞接しおいない
最衚面の郚分の面配向係数を2ずしたずき、1がを越えお以䞋、
2が以䞊、以䞋であり、か぀1≊2であるこずを特城ずする
薄肉化深絞り猶甚暹脂被芆金属板。 【請求項】 前蚘金属板ず前蚘暹脂フィルムずの間に接着剀局が介圚するこ
ずを特城ずする請求項たたは蚘茉の薄肉化深絞り猶甚暹脂被芆金属板。
Claims: 1. A heated metal plate is coated with a polyester resin film having a melting point of 190 to 250 ° C. on at least one surface of the metal plate, and a portion of the metal plate which is in contact with the metal plate is heated. When the plane orientation coefficient is n 1 and the plane orientation coefficient of the outermost surface portion not in contact with the metal plate is n 2 , n 1 exceeds 0 and is 0.10 or less, and n 2 is 0.01 or more. , 0
. 15 Ri der less and thinner deep-drawing a resin-coated metal sheet for cans, characterized in that a n 1 ≩ n 2. 2. A biaxially stretched polyester resin film having a melting point of 190 to 250 ° C. and a plane orientation coefficient of 0.12 to 0.17 on at least one surface of a metal plate was heated to a temperature not lower than the melting point of the resin. crimp in contact with the metal plate, the plane orientation coefficient of the metal plate and the phase contact with that portion of the resin after coating and n 1, the plane orientation coefficient of a portion of the outermost surface which is not in contact the metal plate and the phase When n 2 , n 1 exceeds 0 and is 0.10 or less;
2 is 0.01 or more, 0.15 or less der is, and thin deep drawn resin-coated metal sheet for cans, characterized in that a n 1 ≩ n 2. 3. The resin-coated metal plate for a deep-drawn thin drawing can according to claim 1, wherein an adhesive layer is interposed between the metal plate and the resin film.

Family

ID=

Similar Documents

Publication Publication Date Title
US5179854A (en) Process for production of draw-ironed can
JP4805613B2 (en) Surface-treated metal plate and surface treatment method thereof, and resin-coated metal plate, can and can lid
JP4487651B2 (en) Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, metal lid
JP4492103B2 (en) Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, can lid
JPH0755552B2 (en) Deep drawing can manufacturing method
WO2004053195A1 (en) Surface-treated metallic material, method of surface treating therefor and resin-coated metallic material, metal can and can lid
JPH0757387B2 (en) Thinning squeezer
JPH085158B2 (en) Laminated steel sheet for cans with excellent workability and corrosion resistance
JP4631111B2 (en) Aluminum can materials, cans and can lids
JP2532002B2 (en) Resin coated metal plate for thin-walled deep drawing
JP5377817B2 (en) Can body applicable to cap with excellent corrosion resistance
JP4019751B2 (en) Press-formed can made of pre-coated steel plate
JP2711947B2 (en) Method for producing resin-coated tin-plated steel sheet for thinned deep drawn cans with excellent processing corrosion resistance
KR100897311B1 (en) Resin coated steel sheet and can formed by pressing the same
JP2934182B2 (en) Resin coated metal plate for thinned deep drawn cans
JP3041153B2 (en) Resin coated metal plate for thinned deep drawn cans
JP2802355B2 (en) Resin-coated metal sheet for thinned deep drawn cans with excellent denting resistance
JP3926052B2 (en) Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance
JP2532002C (en)
JPH06218465A (en) Deep draw forming can and manufacture thereof
JP4254112B2 (en) Press-formed cans using pre-coated steel sheets
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JP3282994B2 (en) Surface treatment method of steel sheet, surface treated steel sheet, and thermoplastic resin coated steel sheet using the surface treated steel sheet
JP3489167B2 (en) Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance, and method for producing the same
JP2581624B2 (en) Method for producing polyester resin-coated steel sheet for thinned deep drawn cans with excellent impact resistance