JP2015115485A - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
JP2015115485A
JP2015115485A JP2013256997A JP2013256997A JP2015115485A JP 2015115485 A JP2015115485 A JP 2015115485A JP 2013256997 A JP2013256997 A JP 2013256997A JP 2013256997 A JP2013256997 A JP 2013256997A JP 2015115485 A JP2015115485 A JP 2015115485A
Authority
JP
Japan
Prior art keywords
active layer
light
spectrum
reflectance
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013256997A
Other languages
English (en)
Inventor
亮三郎 能川
Ryozaburo Nokawa
亮三郎 能川
勝久 多田
Katsuhisa Tada
勝久 多田
藤本 毅
Tsuyoshi Fujimoto
毅 藤本
友二 山形
Tomoji Yamagata
友二 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Optoenergy Inc
Original Assignee
Fujikura Ltd
Optoenergy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Optoenergy Inc filed Critical Fujikura Ltd
Priority to JP2013256997A priority Critical patent/JP2015115485A/ja
Publication of JP2015115485A publication Critical patent/JP2015115485A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】高出力であっても広帯域化を図り得る光モジュールを提供する。
【解決手段】光モジュール1は、量子井戸構造の活性層を有する半導体発光素子2と、活性層における一方の端面から出射する光を反射させる反射部材4と、反射部材で反射した光と活性層における他方の端面から出射する光とを合波する光合波器7とを備える。反射部材は、最小の反射率となる波長が活性層で生じる光のスペクトルの半値幅内にあり、かつ、光合波器で合波された光の半値幅が活性層で生じる光のスペクトルの半値幅よりも広くさせる反射率となる反射スペクトルを有する。
【選択図】図1

Description

本発明は光モジュールに関し、スーパールミネッセントダイオード(Super Luminescent Diode:SLD)と呼ばれる半導体発光素子を用いる場合に好適なものである。
スーパールミネッセントダイオードは、広い波長帯域のスペクトル分布を有するという発光ダイオードの特徴と、高出力を有するという半導体レーザの特徴とを合わせもつ半導体発光素子であり、医療分野や計測分野における装置用の光源として注目されている。
また、例えばOCT(Optical Coherence Tomography)と呼ばれる眼科検診用装置などのように、スーパールミネッセントダイオードを光源として利用した装置が製品化されつつある。
このようなスーパールミネッセントダイオードとして、例えば下記特許文献1に記載されたものが提案されている。この特許文献1におけるスーパールミネッセントダイオードでは、インジウムまたはアルミニウムの少なくとも一方の組成を含んだ多重井戸構造の活性層を有し、その活性層における障壁層の層数が4以下とされ、障壁層の厚みが1.5nm〜3.0nmとされている。
このようなスーパールミネッセントダイオードによれば、多重量子井戸における第1量子準位と第2量子準位との発光スペクトルが重ね合わせられて、出力光の波長帯域が広くなるようになっている。
特開2010−141039号公報
ところが、特許文献1におけるスーパールミネッセントダイオードでは、ある一定の出力値を超えると、各井戸層における第1量子準位に比べて第2量子準位の発光強度が大きくなり、出力光の波長帯域が狭まってしまう。
このため、特許文献1におけるスーパールミネッセントダイオードでは、高出力を維持しながら波長帯域を広げることができず、当該波長帯域が限定的となるという課題があった。
そこで、本発明は、高出力であっても広帯域化を図り得る光モジュールを提供することを目的とする。
かかる課題を解決するため本発明の光モジュールは、量子井戸構造の活性層を有する半導体発光素子と、前記活性層における一方の端面から出力する光を反射させる反射部材と、前記反射部材で反射した光と前記活性層における他方の端面から出力する光とを合波する光合波器とを備え、前記反射部材は、反射率が最小となる波長が前記活性層で生じる光のスペクトルの半値幅内にあり、かつ、前記光合波器で合波された光の半値幅が前記活性層で生じる光のスペクトルの半値幅よりも広くさせる反射率となる反射スペクトルを有することを特徴とする。
このような光モジュールでは、半導体発光素子の活性層にキャリアが注入された場合、当該活性層における一方の端面と他方の端面との双方から光が出力され、当該一方の端面から出力する光は反射部材によって反射される。
この反射部材の反射スペクトルは、反射率が最小となる波長が活性層で生じる光のスペクトルの半値幅内にあるので、当該半値幅内において反射率が増加する部位を有している。
このため、反射部材で反射する反射光のスペクトルにおいては、反射スペクトルの反射率が増加する部位に相当する部分の波長間の強度差が小さくなってなだらかとなり、当該反射光のスペクトルの半値幅が広がる。そして、この反射光は、ビームスプリッタによって活性層における他方の端面から出力される光と合成される。
このように、活性層における一方の端面から出射する光の半値幅を反射部材により広げた後に、当該活性層における他方の端面から出力する光と合波させるようにしたことで、活性層に注入すべきキャリアの注入量にかかわらず広帯域化することができる。こうして、高出力であっても広帯域化を図り得る半導体発光素子が提供される。
より一段と広帯域化する観点では、前記反射スペクトルは、反射率が最小となる波長を基準として短波長側および長波長側の少なくとも一方側の反射率が前記半値幅内において増加し続けるスペクトル形状を有することが好ましい。あるいは、前記反射率が最小となる波長は、前記活性層で生じる光の最大強度における波長と一致することが好ましい。
なお、前記反射部材は、誘電体層を光学ガラス上に設けた構造とされるようにすることができ、前記半導体発光素子は、スーパールミネッセントダイオードであり、前記スーパールミネッセントダイオードを構成する基礎材料は、ガリウムヒ素系、リン化インジウム系あるいは窒化ガリウム系とされるようにすることができる。
以上のように本発明によれば、高出力であっても広帯域化を図り得る光モジュールが提供される。
本実施形態における光モジュールの構成を示す図である。 スーパールミネッセントダイオードの外観を示す図である。 図2のX−X線を通る断面を示す図である。 活性層の断面構造を示す図である。 活性層で生じる光のスペクトルを示す図である。 反射部材の反射スペクトルを示す図である。 反射部材で反射した光のスペクトルを示す図である。 ビームスプリッタから出射した光のスペクトルを示す図である。
(1)第1実施形態
本発明を実施するために好適となる第1実施形態について図面を用いながら詳細に説明する。
<光モジュールの構成>
図1は、本実施形態における光モジュールの構成を示す図である。図1に示すように、本実施形態における光モジュール1は、スーパールミネッセントダイオード2と、コリメートレンズ3Aおよび3Bと、反射部材4と、全反射ミラー5Aおよび5Bと、1/4波長板6と、ビームスプリッタ7とを主な構成要素として備える。なお、図1のLRはスーパールミネッセントダイオード2に形成される光導波路を示している。
図2はスーパールミネッセントダイオードの外観を示す図であり、図3は図2のX−X線を通る断面を示す図である。
図2および図3に示すように、スーパールミネッセントダイオード2は、n型半導体層10と、p型半導体層20と、活性層30と、反射防止膜40および50とを主な構成要素として備える。
n型半導体層10は、クラッド層13および光導波層14を有し、基板11の一面上にバッファ層12、クラッド層13、光導波層14の順で積層した構造とされる。また、基板11の他面には第1電極層15が設けられる。
p型半導体層20は、光導波層21、第1クラッド層22、エッチングストッパ層23、第2クラッド層24およびコンタクト層25を有し、活性層30の一面上に光導波層21、第1クラッド層22、エッチングストッパ層23、第2クラッド層24、コンタクト層25の順で積層した構造とされる。
第2クラッド層24は断面凸状のリッジ型とされ、当該第2クラッド層24の幅はエッチングストッパ層23の幅よりも小さく、当該第2クラッド層24の長さはエッチングストッパ層23の長さと同程度とされる。この第2クラッド層24は、エッチングストッパ層23における短手方向の一端から他端にわたって、当該エッチングストッパ層23における長手方向の一端に対して斜めに配置される。また、第2クラッド層24は屈曲部位を有し、当該屈曲部位はエッチングストッパ層23における短手方向の一端と他端との間の途中に位置している。
コンタクト層25は、第2クラッド層24の形状と同じ形状とされ、第2クラッド層24の頂面に配置される。
第2クラッド層24およびコンタクト層25のテーパ面とエッチングストッパ層23の一面とには絶縁膜26が設けられており、当該絶縁膜26一面とコンタクト層25の頂面とを覆うように第2電極層27が設けられる。
すなわち第2電極層27は、p型半導体層20におけるリッジ部のコンタクト層25だけに接触するようになっている。
活性層30は、n型半導体層10とp型半導体層20との層間に配置され、複数の井戸層および障壁層を交互に積層した多重量子井戸構造(Multiple Quantum Well:MQW)を有する。
図4は、活性層30の断面構造例を示す図である。図4に示すように、活性層30は、4つの井戸層31A〜31Dと5つの障壁層32A〜32Eとを交互に積層した多重の量子井戸構造を有するものとされ、当該井戸層31A〜31Dで発光される光の最大強度の波長はそれぞれ異なるものとされる。
また、図4に示す活性層30ではキャリアブロック層33および34が最外層として設けられており、当該キャリアブロック層33上にn型半導体層10が配置され、当該キャリアブロック層34上にp型半導体層20が配置される。
このような活性層30では、p型半導体層20におけるリッジ部に沿って、図1に示すような光導波路LRが形成される。
なお、n型半導体層10、p型半導体層20および活性層30の基礎材料としては、例えば、ガリウムヒ素(GaAs)系、リン化インジウム(InP)系あるいは窒化ガリウム(GaN)系が挙げられる。
反射防止膜40は、活性層30の側面のうち、当該活性層30に形成される光導波路LRの後方側となる一方の端面(以下、後端面という)に成膜される。一方、反射防止膜50は、活性層30の側面のうち、後端面とは逆の他方の端面(以下、前端面という)に成膜される。これら反射防止膜40および50の形成手法としては、例えば、フッ化マグネシウムなどを単層または多層に蒸着する手法が挙げられる。
コリメートレンズ3Aは、活性層30の後端面側に設けられ、当該活性層30の後端面から反射防止膜40を介して出射する光をコリメートする。また、コリメートレンズ3Bは、活性層30の前端面側に設けられ、当該活性層30の前端面から反射防止膜50を介して出射する光をコリメートする。
反射部材4は、コリメートレンズ3Aから入射する光を反射させる部材であり、例えば、金属膜、誘電体膜あるいは金属と誘電体を組み合わせた膜を層状に光学ガラス上に設けた構造とされる。本実施形態では、単層または多層の誘電体膜が光学ガラス上に設けられる。なお、反射部材4の反射面は、コリメートレンズ3Aから入射する光に対して例えば45°傾けられ、当該光に対する反射光の反射角度は例えば90°とされる。
図5は活性層30で生じる光のスペクトルを示す図であり、図6は反射部材4の反射スペクトルを示す図である。図5および図6に示すように、本実施形態における反射部材4の反射スペクトルは、反射率が最小となる波長が活性層30で生じる光のスペクトルの半値幅HW内にあり、かつ、半値幅HW内では反射率が最小となる波長を基準として短波長側および長波長側の双方の反射率が最小の反射率から離れるにつれて増加するスペクトル形状となっている。
すなわち、活性層30で生じる光はピーク(極大部)から短波長側および長波長側に向かって減少し続けるスペクトル線L1を有しているのに対し、反射部材4はボトムピーク(極小部)から短波長側および長波長側に向かって増加し続けるスペクトル線L2を有する。いいかえると、活性層30で生じる光のスペクトル線L1の向きと、反射スペクトルのスペクトル線L2の向きとが上下反転した関係となっている。これらスペクトル線L1およびL2のスペクトル形状(単位波長あたりの変化量)は異なっていても同じであっても良い。
なお、活性層30で生じる光のスペクトルは、本実施形態では、各井戸層31A〜31Dで発光される光の合成光のスペクトル分布を意味する。また、半値幅HWはスペクトル分布において相対強度がピーク値から50%となる波長の幅(波長帯域)を意味し、スペクトル線L1およびL2はスペクトル分布に近似する曲線(回帰曲線)または直線(回帰直線)のことを意味する。
全反射ミラー5Aは、反射部材4から入射する光を、ビームスプリッタ7の反射面に対して45°となる方向に全反射させる。また、全反射ミラー5Bは、コリメートレンズ3Bから入射する光を、ビームスプリッタ7の透過面に対して90°となる方向に全反射させる。
1/4波長板6は、全反射ミラー5Bとビームスプリッタ7との間に配置され、当該全反射ミラー5Bを反射する光の偏波面を90°回転させてビームスプリッタ7の透過面に入射させる。
ビームスプリッタ7は、光合波器として用いられるものであり、全反射ミラー5Aからビームスプリッタ7の反射面に入射する光と、1/4波長板6からビームスプリッタ7の透過面に入射する光とを合波する。すなわち、活性層30の後端面から出射してコリメートレンズ3A、反射部材4および全反射ミラー5Aを順次経由した光と、当該活性層30の前端面から出射してコリメートレンズ3B、全反射ミラー5Bおよび1/4波長板6を順次経由した光とが合波される。
<作用・効果>
このような光モジュール1では、スーパールミネッセントダイオード2における第1電極層15および第2電極層27に電流が印加された場合、活性層30にキャリアが注入される。第2電極層27はp型半導体層20におけるリッジ部のコンタクト層25だけに接触しているため、活性層30のなかでリッジ部下方にあたる領域にキャリアが選択的に注入される。
したがってリッジ部下方領域のみが発光に寄与し、また井戸層31A〜31Dで発光した光はn型半導体層10のクラッド層13およびp型半導体層20の第1クラッド層22に閉じ込められる。これにより活性層30では、リッジ部に沿って光導波路LR(図1)が形成されることになる。
光導波路LRの光は、活性層30の後端面に向かって進みながら増幅される光(以下、後進光という)と、当該活性層30の前端面に向かって進みながら増幅される光(以下、前進光という)とを有する。なお、図1では、活性層30の後端面から出射した後進光は破線で示され、当該活性層30の前端面から出射した前進光は一点鎖線で示されている。
図1に示すように、後進光は、活性層30の後端面から出射した後、コリメートレンズ3Aでコリメートされ、反射部材4で反射して曲げられ、全反射ミラー5Aで反射して曲げられ、ビームスプリッタ7に進む。
一方、前進光は、活性層30の前端面から出射した後、コリメートレンズ3Bでコリメートされ、全反射ミラー5Bで反射して曲げられ、1/4波長板6で偏光面が90°回転させられ、ビームスプリッタ7に進む。
このようにしてビームスプリッタ7に進む後進光と前進光とは合波され、例えば光ファイバFBのコアに入射される。図7は反射部材4で反射した光のスペクトルを示す図であり、図8はビームスプリッタ7から出射した光のスペクトルを示す図である。
反射部材4の反射スペクトルにおいては、上述したように、反射率が最小となる波長が活性層30で生じる光のスペクトルの半値幅HW内にある。また、反射部材4の反射スペクトルにおいては、上述したように、半値幅HW内では反射率が最小となる波長を基準として短波長側および長波長側の双方の反射率が最小の反射率から離れるにつれて増加するスペクトル形状となっている。
このため、反射部材4で反射した反射光のスペクトルにおいては、図7に示すように、半値幅内の一部の波長間の強度差が小さくなってなだらかとなり、当該半値幅HWが広がる。そして、この反射光は上述したように前進光と合成され、図8に示すように、所定の帯域が広がることとなる。
このように、活性層30における後端面から出射する光の半値幅HWを反射部材4により広げた後に、当該活性層30における前端面から出力する光と合波させるようにしたことで、活性層30に注入すべきキャリアの注入量にかかわらず広帯域化することができる。こうして、高出力であっても広帯域化を図り得る光モジュール1が提供される。
なお、広帯域化をより一段と図る観点では、反射スペクトルにおいて反射率が最小となる波長は、活性層30で生じる光の最大強度における波長と一致することが好ましい。
ところで、本実施形態における活性層30では、光出射端面に対して垂直ではなく斜めに光導波路が形成される。このため、光導波路内での光の往復による増幅作用が抑制され、レーザ発振を抑制している。レーザ発振が起こると特定の波長に収束するため、波長幅は、非常に狭くなるが、レーザ発振を抑制することで、波長の収束が起こらないので、波長帯域を広く保ったままの発光とすることができる。
(2)変形例
上記実施形態が一例として挙げられた。しかしながら本発明は上記実施形態に限定されるものではない。
例えば上記実施形態では、4つの井戸層31A〜31Dと5つの障壁層32A〜32Eとを交互に積層した多重の量子井戸構造を有する活性層30が適用された。しかしながら、井戸層の層数と障壁層の層数とは上記実施形態以外の層数としても良く、また、単層の量子井戸構造を有する活性層が適用されても良い。
また上記実施形態では、活性層30における光出射端面(前端面)に反射防止膜40が成膜され、その光出射端面とは逆の端面(後端面)に反射防止膜50が成膜された。しかしながら、スーパールミネッセントダイオード2本体において前端面を含む端面全体と後端面を含む端面全体とに反射防止膜が成膜されていても良い。また、反射防止膜40および50の双方もしくは一方が省略されていても良い。
また上記実施形態では、反射率が最小となる波長を基準として短波長側および長波長側の双方の反射率が半値幅HW内において最小の反射率から離れるにつれて増加し続けるスペクトル形状となる反射スペクトルを反射部材4が有していた。しかしながら、少なくとも、反射率が最小となる波長を基準として短波長側および長波長側のいずれか一方側の反射率が半値幅HW内において最小の反射率から離れるにつれて増加していれば良い。
また、反射率が最小となる波長を基準として短波長側および長波長側の双方の反射率が半値幅HW内において必ず増加し続けていなくても良い。すなわち、反射スペクトルが平坦となっている部位を有していても減少している部位を有していても良い。
要するに、反射率が最小となる波長が前記活性層で生じる光のスペクトルの半値幅内にあり、かつ、前記光合波器で合波された光の半値幅が前記活性層で生じる光のスペクトルの半値幅よりも広くさせる反射率となる反射スペクトルを有する反射部材であれば良い。
このような反射スペクトルを有していれば、当該反射スペクトルの半値幅内において反射率が増加する部位を必ず有していることになる。このため、反射部材で反射する反射光のスペクトルにおいては、反射スペクトルの反射率が増加する部位に相当する部分の波長間の強度差が小さくなってなだらかとなり、当該反射光のスペクトルの半値幅が広がる。したがって、上述の実施形態と同じような効果が得られる。ただし、より一段と広帯域化する観点では、上述の実施形態のほうが好ましい。
また上記実施形態では、反射部材4で反射した後進光と前進光とが合波された。しかしながら、反射部材4で反射した前進光と後進光とが合波されても良い。例えば、上記実施形態における全反射ミラー5Bを反射部材4に変更するとともに、当該実施形態における反射部材4を全反射ミラー5Bに変更することで、反射部材4で反射した前進光と後進光とを合波することができる。
また上記実施形態では、反射部材4で反射した後進光と前進光とをビームスプリッタ7で合波することによって、光ファイバFBなどに出力すべき光が広帯域化された。しかしながら、ビームスプリッタ7の後方にバンドパスフィルタを設け、当該ビームスプリッタ7で合波された光をバンドパスフィルタでさらに広帯域化しても良い。このようにした場合、反射部材4だけが設けられている場合に比べて、発光波長の対称性を図る等といった発光スペクトルの調整をし易くできる。
また、反射部材4を全反射ミラーに変更するとともに、ビームスプリッタ7の後方にバンドパスフィルタを設け、当該ビームスプリッタ7で合波された光をバンドパスフィルタで広帯域化しても良い。
なお、このようなバンドパスフィルタは、ピークとなる波長が活性層30で生じる光のスペクトルの半値幅HW内にあり、かつ、その半値幅HW内ではピークとなる波長を基準として短波長側および長波長側の少なくとも一方側の反射率がピークから離れるにつれて増加するスペクトル形状となるスペクトルを有していることが好ましい。
つまり、反射スペクトルのスペクトル線L2の向きに対し、バンドパスフィルタにおけるスペクトル線の向きが上下反転した関係となっていると良い。なお、スペクトル線L2と、フィルタ膜におけるスペクトル線とのスペクトル形状(単位波長あたりの変化量)は異なっていても同じであっても良い。
また上記実施形態では、スーパールミネッセントダイオード2におけるp型半導体層20が断面凸状のリッジ型とされた。しかしながら、p型半導体層20の形状は、例えば断面凸状の扇形またはテーパ型などといったように、各種形状を採用することができる。また、p型半導体層20のリッジ部分が屈曲部位を有する曲がり導波路型とされたが、当該屈曲部位を有さない直線導波路型とされても良い。
なお、半導体発光素子としてのスーパールミネッセントダイオード2の各構成要素は、上記実施形態に示された内容以外に、適宜、本願目的を逸脱しない範囲で組み合わせ、省略、変更、周知技術の付加などをすることができる。
本発明は、医療分野や計測分野などにおいて利用可能性がある。
1・・・光モジュール
2・・・スーパールミネッセントダイオード
3A,3B・・・コリメートレンズ
4・・・反射部材
5A,5B・・・全反射ミラー
6・・・1/4波長板
7・・・ビームスプリッタ
10・・・n型半導体層
20・・・p型半導体層
30・・・活性層
31A〜31D・・・井戸層
32A〜32E・・・障壁層
33,34・・・キャリアブロック層
40,50・・・反射防止膜

Claims (5)

  1. 量子井戸構造の活性層を有する半導体発光素子と、
    前記活性層における一方の端面から出射する光を反射させる反射部材と、
    前記反射部材で反射した光と前記活性層における他方の端面から出射する光とを合波する光合波器と
    を備え、
    前記反射部材は、
    反射率が最小となる波長が前記活性層で生じる光のスペクトルの半値幅内にあり、かつ、前記光合波器で合波された光の半値幅が前記活性層で生じる光のスペクトルの半値幅よりも広くさせる反射率となる反射スペクトルを有する
    ことを特徴とする光モジュール。
  2. 前記反射スペクトルは、反射率が最小となる波長を基準として短波長側および長波長側の少なくとも一方側の反射率が前記半値幅内において増加し続けるスペクトル形状を有する
    ことを特徴とする請求項1に記載の光モジュール。
  3. 前記反射率が最小波長は、前記活性層で生じる光の最大強度における波長と一致する
    ことを特徴とする請求項1又は請求項2に記載の光モジュール。
  4. 前記反射部材は、誘電体層を光学ガラス上に設けた構造とされる
    ことを特徴とする請求項1〜請求項3いずれか1項に記載の光モジュール。
  5. 前記半導体発光素子は、スーパールミネッセントダイオードであり、前記スーパールミネッセントダイオードを構成する基礎材料は、ガリウムヒ素系、リン化インジウム系あるいは窒化ガリウム系とされる
    ことを特徴とする請求項1〜請求項3いずれか1項に記載の光モジュール。
JP2013256997A 2013-12-12 2013-12-12 光モジュール Pending JP2015115485A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256997A JP2015115485A (ja) 2013-12-12 2013-12-12 光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256997A JP2015115485A (ja) 2013-12-12 2013-12-12 光モジュール

Publications (1)

Publication Number Publication Date
JP2015115485A true JP2015115485A (ja) 2015-06-22

Family

ID=53529016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256997A Pending JP2015115485A (ja) 2013-12-12 2013-12-12 光モジュール

Country Status (1)

Country Link
JP (1) JP2015115485A (ja)

Similar Documents

Publication Publication Date Title
TWI481137B (zh) 變頻式脈衝雷射光源
US10490967B2 (en) Bidirectional long cavity semiconductor laser for improved power and efficiency
JP6257361B2 (ja) 半導体レーザアレイ
JP2011155103A (ja) 半導体発光素子
US9285665B2 (en) Semiconductor light-emitting device, super luminescent diode, and projector
JP2007165689A (ja) スーパールミネッセントダイオード
JP2007273690A (ja) 光半導体素子、及びこれを備えた波長可変光源
WO1997047042A9 (en) Light emitting semiconductor device
EP0902978A1 (en) Light emitting semiconductor device
WO2013125214A1 (ja) 半導体発光素子
JP7478910B2 (ja) 発光半導体チップおよび発光半導体チップの製造方法
US20160099544A1 (en) Laser apparatus
US20100135348A1 (en) Method for improvement of beam quality and wavelength stabilized operation of a semiconductor diode laser with an extended waveguide
US20200036162A1 (en) Laser
US9882354B2 (en) Semiconductor laser device
JP2013197237A (ja) スーパールミネッセントダイオードを備えた光源装置とその駆動方法、及び光断層画像撮像装置
US10090642B2 (en) Wavelength stabilized diode laser
CN107104362B (zh) 半导体激光二极管及其制造方法
US20130208749A1 (en) Superluminescent diode and optical coherence tomography apparatus including the superluminescent diode
KR20050120483A (ko) 고효율 면발광 반도체 레이저 소자, 상기 레이저 소자용레이저 펌핑부, 그리고 그 제조 방법
JP2012142504A (ja) 半導体発光素子
JP2007149808A (ja) スーパールミネッセントダイオード
JP2015115485A (ja) 光モジュール
JP2006128656A (ja) 外部共振型半導体レーザ
JP2010165704A (ja) 半導体レーザ及びその製造方法