JP2015106616A - Lead frame and method of manufacturing the same - Google Patents

Lead frame and method of manufacturing the same Download PDF

Info

Publication number
JP2015106616A
JP2015106616A JP2013247483A JP2013247483A JP2015106616A JP 2015106616 A JP2015106616 A JP 2015106616A JP 2013247483 A JP2013247483 A JP 2013247483A JP 2013247483 A JP2013247483 A JP 2013247483A JP 2015106616 A JP2015106616 A JP 2015106616A
Authority
JP
Japan
Prior art keywords
plating layer
silver
lead frame
nickel
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013247483A
Other languages
Japanese (ja)
Other versions
JP6366032B2 (en
Inventor
啓一 大滝
Keiichi Otaki
啓一 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Materials Co Ltd
Original Assignee
SH Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Materials Co Ltd filed Critical SH Materials Co Ltd
Priority to JP2013247483A priority Critical patent/JP6366032B2/en
Publication of JP2015106616A publication Critical patent/JP2015106616A/en
Application granted granted Critical
Publication of JP6366032B2 publication Critical patent/JP6366032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lead frame plated with silver or an alloy containing silver, that has a high adhesion property with an encapsulation resin, and that can reduce a thickness of the whole plating layer including a plating layer of silver or the alloy containing silver.SOLUTION: In a lead frame mounting a semiconductor element, a plating layer by silver or an alloy containing silver is provided at least on an outermost surface on a pad part where the semiconductor element is mounted. The plating layer is a spherical projection group whose shape is spherical. The shape of the spherical projection group of the plating layer by silver or the alloy containing silver, which is provided on the outermost surface, is formed by a plating layer by nickel that is formed on its foundation and having a spherical projection group. The plating layer by the nickel has a three-layer structure obtained by performing smoothing nickel plating with a good leveling property, performing nickel plating with the spherical projection group on the smoothing nickel plating surface, and further, performing nickel plating with a good leveling property.

Description

本発明は、ニッケルめっきと銀または銀を含有する合金めっきを施した半導体用リードフレーム及びそのリードフレームの製造方法に関するものである。   The present invention relates to a semiconductor lead frame subjected to nickel plating and silver or an alloy plating containing silver, and a method of manufacturing the lead frame.

半導体素子搭載用部品の一つとしてリードフレームがある。従来、リードフレーム上の全面または部分的に銀めっきを施したリードフレームが多く使用されているが、銀または銀を含有する合金は封止樹脂との密着性が悪く、衝撃や熱によってリードフレームと封止樹脂が容易に剥離するため、信頼性に問題がある。そのため、図4に示すようなリードフレームの表面をマイクロエッチング処理によって凹凸を形成した粗化状態とすることで物理的なアンカー効果を生み出し、封止樹脂との密着性を向上させる手法が知られているが、リードフレームで多く使用されているケイ素を含む銅合金のリードフレームではマイクロエッチング処理によってスマットと呼ばれる不純物残渣が発生するため使用できない。   One of semiconductor component mounting parts is a lead frame. Conventionally, many lead frames with silver plating on the whole or part of the lead frame have been used. However, silver or an alloy containing silver has poor adhesion to the sealing resin, and the lead frame is affected by impact or heat. Since the sealing resin peels easily, there is a problem in reliability. Therefore, there is known a technique for creating a physical anchor effect and improving the adhesion with the sealing resin by making the surface of the lead frame as shown in FIG. However, a silicon-containing copper alloy lead frame that is often used in lead frames cannot be used because an impurity residue called smut is generated by the microetching process.

また、銅合金のリードフレームの場合は、半導体素子との接合時に用いる金属線との良好な接合性を確保するには、下地に存在する銅の拡散の影響を最小化する必要があるため、銀または銀を含有する合金などの貴金属または貴金属合金によるめっき層を直接下地銅の上に形成させる場合は、一般的にその貴金属または貴金属合金によるめっき層の厚さを2μm以上にする必要がある。近年半導体パッケージは小型化、低コスト化のため、軽薄短小での高密度実装が求められている。小型化のためにはめっき層の厚みをより薄くすることが求められており、貴金属または貴金属合金によるめっき層の厚みに関しては低コスト化の観点からもより一層薄くすることが求められている。   In the case of a copper alloy lead frame, in order to ensure good bondability with a metal wire used when bonding to a semiconductor element, it is necessary to minimize the influence of copper diffusion existing in the base, When a plating layer made of a noble metal or a noble metal alloy such as silver or a silver-containing alloy is directly formed on the underlying copper, it is generally necessary to set the thickness of the plating layer made of the noble metal or the noble metal alloy to 2 μm or more. . In recent years, in order to reduce the size and cost of semiconductor packages, high-density mounting is required in light, thin, and short. In order to reduce the size, it is required to reduce the thickness of the plating layer, and the thickness of the plating layer made of a noble metal or a noble metal alloy is required to be further reduced from the viewpoint of cost reduction.

銅合金のリードフレームにおいて、貴金属または貴金属合金によるめっき層の厚さを薄くするための方策の一つに、貴金属または貴金属合金によるめっき層の下層として、銅の拡散を抑制する効果のあるニッケルまたはニッケルを含有する合金によるめっき層を形成することで、貴金属または貴金属合金によるめっき層の厚みを薄くする手法がある。   One of the measures to reduce the thickness of the plating layer made of noble metal or noble metal alloy in the lead frame of copper alloy is nickel or nickel, which has the effect of suppressing copper diffusion as the lower layer of the plating layer made of noble metal or noble metal alloy. There is a method of reducing the thickness of a plating layer made of a noble metal or a noble metal alloy by forming a plating layer made of an alloy containing nickel.

しかし、この様な貴金属または貴金属合金によるめっき層が薄くなると樹脂との密着性が悪化してしまう。
そこで、特許文献1として示す特開平9−29826号公報には、図3に示すような銅合金の全面に緻密で平坦なニッケルめっき層を形成し、その上に縦方向への結晶成長を優先させたニッケルめっき層を形成して表面を凹凸のある面とすることにより物理的なアンカー効果を生み出し、封止樹脂との密着性を向上させる技術が開示されている。
However, when the plating layer made of such a noble metal or noble metal alloy is thinned, the adhesion with the resin is deteriorated.
Therefore, in Japanese Patent Application Laid-Open No. 9-29826 shown as Patent Document 1, a dense and flat nickel plating layer is formed on the entire surface of the copper alloy as shown in FIG. 3, and the crystal growth in the vertical direction is prioritized thereon. A technique for producing a physical anchor effect and improving adhesion with a sealing resin by forming a nickel plating layer having a surface having an uneven surface is disclosed.

また、特許文献2として示す特開2010−111899号公報には、銅合金上に山型状のニッケルめっき層を形成させた後、その上にレベリング性の良いニッケルめっき層を形成することで凹凸形状を半球状とすることにより、特許文献と1と同様に封止樹脂との密着性を向上させた上で、エポキシ樹脂成分の滲み出しを防止する技術が開示されている。   Japanese Patent Application Laid-Open No. 2010-111899 shown as Patent Document 2 discloses that a chevron-shaped nickel plating layer is formed on a copper alloy, and then a nickel plating layer having a good leveling property is formed thereon, thereby forming irregularities. A technique for preventing bleeding of the epoxy resin component while improving the adhesion to the sealing resin as in Patent Documents 1 and 1 by making the shape hemispherical is disclosed.

また、特許文献3として示す特許第5151438号公報には、粗面のニッケル層上に金層と銀層からなる貴金属めっき層を形成する技術が開示されている。   Japanese Patent No. 5151438 shown as Patent Document 3 discloses a technique for forming a noble metal plating layer composed of a gold layer and a silver layer on a rough nickel layer.

特開平9−298265公報JP-A-9-298265 特開2010−111899公報JP 2010-111899 A 特許第5151438号公報Japanese Patent No. 5151438

特許文献1に示されるものにあっては、チップ搭載面に必要なアンカー効果を得るという目的はある程度は実現されている。しかし、微細な凹凸面がパッド部にも同様のめっき状態で形成されるため、半導体素子を接着するためのダイボンディング用エポキシ樹脂をパッド部に塗布し、半導体素子を搭載後に加熱硬化させた時、塗布したダイボンディング用エポキシ樹脂中の未硬化のエポキシ樹脂成分が、結晶成長による微細な凹凸構造の隙間から滲み出して不良品を発生させる原因となることもあるため、製造時に細心の注意を払う必要があり、現実としては半導体装置の製造工程が複雑なものとならざるを得ない。   In the device disclosed in Patent Document 1, the purpose of obtaining the anchor effect necessary for the chip mounting surface is realized to some extent. However, since the fine uneven surface is also formed in the pad part in the same plating state, when the epoxy resin for die bonding for adhering the semiconductor element is applied to the pad part and the semiconductor element is mounted and heated and cured Since the uncured epoxy resin component in the applied epoxy resin for die bonding may ooze out from the gaps in the fine uneven structure due to crystal growth, it may cause defective products. Actually, the manufacturing process of the semiconductor device must be complicated.

また、特許文献2に示されるものにあっては、ニッケルめっき上の貴金属めっきの厚みを減らすことは可能であり、また封止樹脂との密着性も維持される。しかし、ニッケルめっき層を半球状に形状にするためには、山型状ニッケルめっき層を1μm施した上に、レベリング性の良いニッケルめっき層を1μmめっきしてニッケルめっき層を半球状に形成する必要があり、更にその上に貴金属または貴金属合金のめっき層を形成する必要があるため、めっき厚みは従来の2μm以上の厚みと大差が無いか、逆に厚くなってしまう場合がある。   Moreover, in what is shown by patent document 2, it is possible to reduce the thickness of the noble metal plating on nickel plating, and the adhesiveness with sealing resin is also maintained. However, in order to make the nickel plating layer into a hemispherical shape, the nickel plating layer is formed into a hemispherical shape by applying a 1 μm thick chevron-shaped nickel plating layer and 1 μm plating with a nickel plating layer having good leveling properties. In addition, since a plating layer of a noble metal or a noble metal alloy needs to be formed thereon, the plating thickness is not much different from the conventional thickness of 2 μm or more, or may be thicker.

また、特許文献3に示されるものにあっては、ニッケル層の表面を十分に荒らす方法が見いだせていないため、貴金属めっき層の厚みを0.5μm以下にしないとニッケル層粗化の効果が得られない上、ニッケル層と金層と銀層の厚さの合計を5μmより薄くすることが出来ていない。また、貴金属めっき層の厚みが薄すぎると、下地の影響が強く出てしまい、半導体素子を接着するためのダイボンディング用エポキシ樹脂が十分に濡れ広がらず十分な接合性が得られない、半導体素子との接合に使用される金属線との金属拡散が十分に行われず接合性が十分に得られない、といった不具合を発生してしまう場合もある。   Moreover, in the thing shown by patent document 3, since the method of fully roughening the surface of a nickel layer was not found, if the thickness of a noble metal plating layer is not made into 0.5 micrometer or less, the effect of nickel layer roughening will be acquired. In addition, the total thickness of the nickel layer, the gold layer, and the silver layer cannot be made thinner than 5 μm. In addition, if the thickness of the noble metal plating layer is too thin, the influence of the substrate will be strong, and the epoxy resin for die bonding for bonding the semiconductor element will not be sufficiently wetted and spread, and sufficient bondability will not be obtained. In some cases, metal diffusion with the metal wire used for bonding to the metal wire is not sufficiently performed and sufficient bondability cannot be obtained.

そこで、本発明は前記課題に鑑みてなされたものであり、その目的とするところは、銀または銀を含む合金のめっきを施したリードフレームで、封止樹脂との密着性が高く、且つ銀または銀を含有する合金めっき層を含んだめっき層全体の厚さを薄くしたリードフレームを提供することである。   Accordingly, the present invention has been made in view of the above problems, and the object of the present invention is a lead frame plated with silver or an alloy containing silver, having high adhesion to a sealing resin and silver. Another object is to provide a lead frame in which the entire plating layer including the alloy plating layer containing silver is thinned.

上記課題を解決するため、本発明のリードフレームは、半導体素子を搭載するリードフレームにおいて、少なくとも半導体素子が搭載されるパッド部上の最表面に銀または銀を含有する合金によるめっき層を有し、その形状が球状の突起群であることを特徴とする。
銀めっき層の最表面に形成される球状の突起群とは、直径1〜4.0μm程度の複数の球状の突起を有する性状のことを示す。図1に一例として直径2〜4.0μm程度の球状突起を有する銀メッキ層の表面状態を示す。本形状の多くは、お互いが銀めっきにより繋がっているものの、球状を維持し、突起部の下部の断面積よりもその上に形成された球状部分の直径に相当する部分の断面積の方が大きくなっている部分を多く有するため、表面積増大の効果とともに、樹脂が球状突起の下側にまで流入して硬化するため、物理的なアンカー効果をも発揮し良好な密着性を得ることが出来る。なお、球状突起群の直径は上記の大きさに限定されるものではなく、例えば直径0.5〜6.0μm程度の範囲で任意に選択可能である。
In order to solve the above problems, a lead frame of the present invention has a plating layer made of silver or an alloy containing silver on at least the outermost surface of the pad portion on which the semiconductor element is mounted in the lead frame on which the semiconductor element is mounted. The shape is a group of spherical protrusions.
The group of spherical protrusions formed on the outermost surface of the silver plating layer indicates a property having a plurality of spherical protrusions having a diameter of about 1 to 4.0 μm. As an example, FIG. 1 shows a surface state of a silver plating layer having a spherical protrusion having a diameter of about 2 to 4.0 μm. Although many of these shapes are connected to each other by silver plating, the cross-sectional area of the portion corresponding to the diameter of the spherical portion formed above the cross-sectional area of the lower portion of the protrusion portion is maintained rather than the spherical shape. Since it has many large parts, the resin flows into the lower side of the spherical protrusion and hardens together with the effect of increasing the surface area, so that it can also exert a physical anchor effect and obtain good adhesion . The diameter of the spherical protrusion group is not limited to the above-described size, and can be arbitrarily selected within a range of, for example, a diameter of about 0.5 to 6.0 μm.

また、本発明のリードフレームにおいては、前記最表面の銀または銀を含有する合金によるめっき層の球状の突起群の形状は、その下地に形成された球状の突起群を有するニッケルによるめっき層により形成されたものであることが好ましい。
ニッケルめっき層に形成される球状の突起群は、直径0.5〜2.0μm程度の複数の球状めっき合金で形成される。図2に一例として直径0.5〜1.0μm程度の球状突起を有するニッケルめっき層の表面状態を示す。本形状の多くは、下地の接触部分の断面積よりもその上に形成された球状部分の直径に相当する部分の断面積の方が大きくなっている。なお、球状突起群の直径は上記の大きさに限定されるものではなく、例えば直径0.2〜4.0μm程度の範囲で任意に選択可能である。
上記銀めっき層上に形成された球状突起は、下地のニッケルめっき層に形成された球状突起の形状を保持したまま、銀めっきにより一回り大きくなった突起が形成される。
Further, in the lead frame of the present invention, the shape of the spherical protrusion group of the plating layer made of the outermost silver or silver-containing alloy is formed by the nickel plating layer having the spherical protrusion group formed on the base. It is preferable that it is formed.
The spherical projection group formed on the nickel plating layer is formed of a plurality of spherical plating alloys having a diameter of about 0.5 to 2.0 μm. FIG. 2 shows the surface state of a nickel plating layer having spherical protrusions having a diameter of about 0.5 to 1.0 μm as an example. In many of these shapes, the cross-sectional area of the portion corresponding to the diameter of the spherical portion formed thereon is larger than the cross-sectional area of the contact portion of the base. The diameter of the spherical protrusion group is not limited to the above-described size, and can be arbitrarily selected within a range of, for example, a diameter of about 0.2 to 4.0 μm.
The spherical protrusion formed on the silver plating layer forms a protrusion that is slightly larger by silver plating while maintaining the shape of the spherical protrusion formed on the underlying nickel plating layer.

また、本発明のリードフレームにおいては、前記ニッケルによるめっき層は、まずレベリング性の良い平滑なニッケルめっきが施され、その平滑なニッケルめっき面上に球状の突起群が形成されたニッケルめっきが施され、更にその上にレベリング性の良いニッケルめっきが施された三層構造であることが好ましい。
なお、レベリング性の良いニッケルめっきとは延展性に優れ、めっき面の表面形状に滑らかに沿うような特性を有するめっきのことをいう。
In the lead frame of the present invention, the nickel plating layer is first subjected to smooth nickel plating with good leveling properties, and nickel plating in which spherical projections are formed on the smooth nickel plating surface. Furthermore, it is preferable to have a three-layer structure on which nickel plating having a good leveling property is applied.
In addition, nickel plating with good leveling refers to plating that is excellent in spreadability and has characteristics that smoothly follow the surface shape of the plated surface.

また、本発明のリードフレームにおいては、前記最表面のめっき層の銀または銀を含有する合金めっき層の厚さは0.5μm以上1.0μm以下であることが好ましい。   In the lead frame of the present invention, the thickness of the outermost plating layer of silver or the alloy plating layer containing silver is preferably 0.5 μm or more and 1.0 μm or less.

また、本発明のリードフレームにおいては、その基材質が銅合金であることが好ましい。   In the lead frame of the present invention, the base material is preferably a copper alloy.

さらに、本発明のリードフレームの製造方法は、前記本発明のリードフレームの製造方法であって、前記球状の突起群を有するニッケルめっき層を得るためのめっき浴は、ニッケルめっき液中のニッケル濃度を5g/L以上20g/L以下の範囲とし、塩素濃度を12g/L以上、22g/L以下の範囲としたことを特徴としている。   Furthermore, the manufacturing method of the lead frame of the present invention is the manufacturing method of the lead frame of the present invention, in which the plating bath for obtaining the nickel plating layer having the spherical projection group has a nickel concentration in the nickel plating solution. Is in the range of 5 g / L to 20 g / L and the chlorine concentration is in the range of 12 g / L to 22 g / L.

また、本発明のリードフレームの製造方法は、前記リードフレームの製造方法であって、めっき浴中にニッケルを含有させる構成成分として硫酸ニッケルを用い、また塩素を含有させる構成成分として塩化アンモニウムを用いることが好ましい。   The lead frame manufacturing method of the present invention is the above-described lead frame manufacturing method, wherein nickel sulfate is used as a component for containing nickel in the plating bath, and ammonium chloride is used as a component for containing chlorine. It is preferable.

本発明によれば、最表面の銀または銀を含有する合金によるめっき層が球状の突起群を有するめっき層となるため、単なる凹凸による粗化面よりも更に深部にまで封止樹脂が入り込むことにより、より密着性が高くなる。さらに、最表面に球状突起群を形成させるための下地ニッケルめっき層の球状突起群を効率的に形成できるため、下地の銅の拡散を抑制する厚みまでニッケルめっき層を薄く形成できることから、ニッケルのコストおよび銀または銀を含有する合金のコストを最小化でき、且つめっきの総厚みを最小化したリードフレームを製造することができる。   According to the present invention, since the plating layer made of silver or an alloy containing silver on the outermost surface becomes a plating layer having a spherical projection group, the sealing resin enters deeper than the roughened surface due to simple unevenness. As a result, the adhesion becomes higher. Furthermore, since the spherical protrusion group of the underlying nickel plating layer for forming the spherical protrusion group on the outermost surface can be efficiently formed, the nickel plating layer can be formed thinly to a thickness that suppresses the diffusion of the underlying copper. Lead frames can be manufactured that can minimize the cost and cost of silver or silver-containing alloys and minimize the total thickness of the plating.

本発明のめっき方法により製造されたリードフレーム最表面の銀めっき表面状態の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the silver plating surface state of the lead frame outermost surface manufactured by the plating method of this invention. 本発明のめっき方法によるリードフレームのニッケルめっき表面状態の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the nickel plating surface state of the lead frame by the plating method of this invention. 一般的なめっき方法によるリードフレームのニッケルめっき表面状態の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the nickel plating surface state of the lead frame by a general plating method. 一般的なエッチングによるリードフレームのニッケルめっき表面状態の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the nickel plating surface state of the lead frame by general etching.

以下に、本発明を適用したリードフレーム及びその製造方法について説明する。なお、本発明は、特に限定が無い限り、以下の詳細な説明に限定されるものではない。
本発明のリードフレームのめっき工程は、銅合金の上に下地となるニッケルめっき層と、最表面に接合電極部となる銀または銀を含有する合金のめっき層と、下地ニッケルめっき層と銀または銀を含有する合金の最表面層との接合性を向上させる金属または合金による中間めっき層を形成するリードフレームにおいて、まず、スルファミン酸浴等によってレベリング性の良好な平滑なニッケルめっき層を形成し、次に硫酸ニッケルと塩化アンモニウムからなるニッケルめっき浴によって表面に球状の突起を多数有するニッケルめっき層を形成する。
Hereinafter, a lead frame to which the present invention is applied and a manufacturing method thereof will be described. In addition, this invention is not limited to the following detailed description, unless there is particular limitation.
The lead frame plating process of the present invention includes a nickel plating layer as a base on a copper alloy, a silver or silver-containing alloy plating layer as a bonding electrode portion on the outermost surface, a base nickel plating layer and silver or In a lead frame that forms an intermediate plating layer of a metal or alloy that improves the bondability with the outermost surface layer of an alloy containing silver, first, a smooth nickel plating layer with good leveling properties is formed using a sulfamic acid bath or the like. Next, a nickel plating layer having many spherical protrusions on the surface is formed by a nickel plating bath made of nickel sulfate and ammonium chloride.

球状の突起を多数有するニッケルめっき層を形成するために、ニッケルめっき浴中のニッケル濃度を5g/L以上20g/L以下、塩素濃度を12g/L以上22g/L以下の範囲とするのが好ましい。特にニッケル濃度が8g/L以上15g/L以下、塩素濃度が14g/L以上20g/L以下の範囲であることがより好ましい。   In order to form a nickel plating layer having a large number of spherical protrusions, the nickel concentration in the nickel plating bath is preferably in the range of 5 g / L to 20 g / L and the chlorine concentration in the range of 12 g / L to 22 g / L. . In particular, the nickel concentration is more preferably in the range of 8 g / L to 15 g / L and the chlorine concentration is in the range of 14 g / L to 20 g / L.

ニッケルの濃度が5g/L未満だと、十分なニッケルめっき被膜を形成することができないので好ましくない。ニッケルの濃度が20g/Lよりも高いと、形成されるニッケルめっき被膜が平滑表面となってしまい、凹凸のある表面を得ることができないので好ましくない。塩素濃度が12g/L未満だと、陽極が不動態化し印加電圧の上昇が起こるので好ましくない。塩素濃度が22g/Lよりも高いと、被膜硬度が上昇し内部応力も高くなってしまうので好ましくない。   If the nickel concentration is less than 5 g / L, it is not preferable because a sufficient nickel plating film cannot be formed. When the concentration of nickel is higher than 20 g / L, the nickel plating film to be formed becomes a smooth surface, and an uneven surface cannot be obtained. A chlorine concentration of less than 12 g / L is not preferable because the anode is passivated and the applied voltage increases. If the chlorine concentration is higher than 22 g / L, the film hardness is increased and the internal stress is increased, which is not preferable.

次に、球状の突起を多数有するニッケルめっき層の表面を保護するため、スルファミン酸浴等によってごく薄いニッケルめっき層を形成する。次に、銀または銀を含有する合金のめっき層との接合性を向上させるために銀または銀を含有する合金のストライクめっきを施すことが好ましい。そして最表面に、半導体素子との接合性を確保するために、銀または銀を含有する合金のめっき層を形成する。   Next, in order to protect the surface of the nickel plating layer having many spherical protrusions, a very thin nickel plating layer is formed by a sulfamic acid bath or the like. Next, it is preferable to perform strike plating of silver or an alloy containing silver in order to improve the bondability with the plating layer of silver or an alloy containing silver. And in order to ensure bondability with a semiconductor element on the outermost surface, the plating layer of silver or the alloy containing silver is formed.

また、ニッケルめっき層と銀または銀を含有する合金のめっき層との接合性を向上させるために用いる銀または銀を含有する合金のストライクめっきの代替として、パラジウムまたはパラジウムを含有する合金のめっき層を用いることにより、ニッケルめっき層と銀または銀を含有する合金のめっき層を好適に接合させることも出来る。   In addition, as an alternative to strike plating of silver or a silver-containing alloy used to improve the bondability between the nickel plating layer and silver or a silver-containing alloy plating layer, the plating layer of palladium or an alloy containing palladium is used. By using this, the nickel plating layer and the plating layer of silver or an alloy containing silver can be suitably bonded.

さらに、半導体素子との接合時に用いる金属線との接合性を向上させるために金または金を含有する合金のめっき層を銀または銀を含有する合金のめっき層の下に形成することもある。   Furthermore, in order to improve the bondability with a metal wire used for bonding to a semiconductor element, a plating layer of gold or an alloy containing gold may be formed under the plating layer of silver or an alloy containing silver.

上記のいずれにおいても、半導体素子を接着するためのダイボンディング用エポキシ樹脂の濡れ性を確保するため、また、半導体素子との接合に使用される金属線と接合性を確保するため、銀または銀を含有する合金めっき層の厚さは0.5μm以上必要であり、さらにコストの観点から、0.5μm〜1.0μmの範囲にあることが好ましい。   In any of the above cases, silver or silver is used to ensure the wettability of the epoxy resin for die bonding for bonding the semiconductor element, and to ensure the bondability with the metal wire used for bonding to the semiconductor element. The thickness of the alloy plating layer containing N should be 0.5 μm or more, and is preferably in the range of 0.5 μm to 1.0 μm from the viewpoint of cost.

(実施例1)
リードフレーム用銅合金として、厚さ0.2mm、幅180mmの帯状銅材(株式会社神戸製鋼所製:KLF−194)を用いて、この銅材の両面に、厚さ25μmのレジスト層(旭化成イーマテリアルズ株式会社製:AQ−2558)を形成し、所定の形状のマスクを用いて露光した後、現像、エッチング処理を行い、めっき用マスクを形成したリードフレームを得た。
Example 1
As a copper alloy for a lead frame, a strip-shaped copper material having a thickness of 0.2 mm and a width of 180 mm (manufactured by Kobe Steel Co., Ltd .: KLF-194) was used, and a resist layer (Asahi Kasei Co., Ltd.) having a thickness of 25 μm was formed on both surfaces of the copper material. EMaterials Co., Ltd .: AQ-2558) was formed and exposed using a mask having a predetermined shape, followed by development and etching to obtain a lead frame on which a plating mask was formed.

このめっき用マスクを形成したリードフレームに対し、アルカリおよび酸によって前処理を施した後、次のように電気めっき処理を施した。
まず、スルファミン酸ニッケルと塩化ニッケル、ホウ酸からなるニッケルめっき浴を用いて、電流密度として5A/dm2で3分間めっきを行い、厚さが約0.5μmの平滑なニッケルめっき層を形成した。
The lead frame on which the plating mask was formed was pretreated with alkali and acid, and then electroplated as follows.
First, using a nickel plating bath made of nickel sulfamate, nickel chloride, and boric acid, plating was performed at a current density of 5 A / dm 2 for 3 minutes to form a smooth nickel plating layer having a thickness of about 0.5 μm. .

次に、ニッケル濃度13g/Lの硫酸ニッケルと、塩素濃度17g/Lの塩化アンモニウムからなるニッケルめっき浴を用いて、電流密度として30A/dm2で30秒間めっきを行い、球状の突起を多数有する厚さが約0.5μmのニッケルめっき層を形成した。 Next, using a nickel plating bath made of nickel sulfate having a nickel concentration of 13 g / L and ammonium chloride having a chlorine concentration of 17 g / L, plating was performed at a current density of 30 A / dm 2 for 30 seconds, and many spherical protrusions were formed. A nickel plating layer having a thickness of about 0.5 μm was formed.

次に、表面の保護を目的として、スルファミン酸ニッケルと塩化ニッケル、ホウ酸からなるニッケルめっき浴を用いて、電流密度として5A/dm2で30秒間めっきを行い、厚さが約0.1μmのニッケルめっき層を形成して、球状の突起群が形成された三層めっき構造を得た。 Next, for the purpose of protecting the surface, plating was performed at a current density of 5 A / dm 2 for 30 seconds using a nickel plating bath made of nickel sulfamate, nickel chloride, and boric acid, and the thickness was about 0.1 μm. A nickel plating layer was formed to obtain a three-layer plating structure in which spherical protrusions were formed.

その後に、この球状の突起群が形成されたニッケルめっき層の上に青化銀および青化カリウムからなるストライク銀めっき浴を用いて、電流密度として15A/dm2で30秒間めっきを行い、下地となるニッケルめっき層と銀めっき層との密着性を確保してニッケルめっき層の球状の突起群の形状に沿った形状の球状の突起群を有する銀ストライクめっき層を形成した。 Thereafter, using a strike silver plating bath made of silver bromide and potassium bromide on the nickel plating layer on which the spherical projections are formed, plating is performed at a current density of 15 A / dm 2 for 30 seconds. A silver strike plating layer having a spherical projection group having a shape along the shape of the spherical projection group of the nickel plating layer while ensuring the adhesion between the nickel plating layer and the silver plating layer was formed.

さらに銀ストライクめっき層の上に、青化銀、青化銀カリウム、青化カリウムからなる銀めっき浴を用いて、電流密度として10A/dm2で1分30秒間めっきを行い、ニッケルめっき層の球状の突起群の形状に沿った形状の球状の突起群を有する厚さが約0.5μmの銀めっき層を形成し、リードフレームの製造を完了した。 Furthermore, on the silver strike plating layer, using a silver plating bath composed of silver bromide, potassium blue bromide, and potassium bromide, plating was performed at a current density of 10 A / dm 2 for 1 minute 30 seconds, and the nickel plating layer A silver plating layer having a thickness of about 0.5 μm and having a spherical protrusion group shaped along the shape of the spherical protrusion group was formed, and the manufacture of the lead frame was completed.

完成したリードフレームの銀めっき層の上に、評価用のΦ2mmの円筒形の樹脂モールドを形成した。この樹脂に対し、ボンドテスタとしてDage Series4000(Dage社製)を用いてシェア強度を測定することで樹脂密着性の評価を行ったところ、密着強度は23.0MPaで良好な密着性を示した。   A cylindrical resin mold of Φ2 mm for evaluation was formed on the silver plating layer of the completed lead frame. The resin adhesion was evaluated by measuring the shear strength of this resin using a Dage Series 4000 (manufactured by Dage) as a bond tester. The adhesion strength was 23.0 MPa and good adhesion was exhibited.

また、完成したリードフレームの銀めっき層の上に評価用の金属線を接合した。金属線の接合にはワイヤボンダとしてUTC−1000Super(新川社製)を、金属線には純度4N、直径20μmの金線(住友金属鉱山社製)を用いた。この金属線の2nd側のスティッチプル強度をDage Series4000(Dage社製)を用いて測定したところ、6.3gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
Further, a metal wire for evaluation was joined on the silver plating layer of the completed lead frame. As a wire bonder, UTC-1000 Super (manufactured by Shinkawa) was used for joining the metal wires, and a gold wire (manufactured by Sumitomo Metal Mining) having a purity of 4N and a diameter of 20 μm was used as the metal wires. When the stitch pull strength on the 2nd side of the metal wire was measured using Dage Series 4000 (manufactured by Dage), good bondability was exhibited at 6.3 gf.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(実施例2)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、ニッケル濃度13g/Lの硫酸ニッケルに代えてニッケル濃度5g/Lの硫酸ニッケルを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Example 2)
Among the steps of performing nickel plating on the lead frame, in the step of forming a nickel plating layer having many spherical protrusions, nickel sulfate with a nickel concentration of 5 g / L was used instead of nickel sulfate with a nickel concentration of 13 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着強度は14.7MPaで良好な密着性を示した。また、金属線の2nd側のスティッチプル強度は6.3gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion strength of the silver plating layer of the completed lead frame was 14.7 MPa and showed good adhesion. Further, the stitch pull strength on the 2nd side of the metal wire was 6.3 gf, and good bondability was exhibited.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(実施例3)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、ニッケル濃度13g/Lの硫酸ニッケルに代えてニッケル濃度20g/Lの硫酸ニッケルを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Example 3)
Among the steps of performing nickel plating on the lead frame, in the step of forming a nickel plating layer having many spherical protrusions, nickel sulfate having a nickel concentration of 20 g / L was used instead of nickel sulfate having a nickel concentration of 13 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着強度は15.2MPaで良好な密着性を示した。また、金属線の2nd側のスティッチプル強度は6.5gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion strength of the silver plating layer of the completed lead frame was 15.2 MPa, which showed good adhesion. Further, the stitch pull strength on the 2nd side of the metal wire was 6.5 gf, and good bondability was exhibited.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(実施例4)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、塩素濃度17g/Lの塩化アンモニウムに代えて塩素濃度12g/Lの塩化アンモニウムを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
Example 4
In the step of forming a nickel plating layer having many spherical protrusions in the step of performing nickel plating on the lead frame, ammonium chloride having a chlorine concentration of 12 g / L was used instead of ammonium chloride having a chlorine concentration of 17 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着強度は22.3MPaで良好な密着性を示した。また、金属線の2nd側のスティッチプル強度は6.2gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion strength of the silver plating layer of the completed lead frame was 22.3 MPa, indicating good adhesion. Further, the stitch pull strength on the 2nd side of the metal wire was 6.2 gf, and good bondability was exhibited.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(実施例5)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、塩素濃度17g/Lの塩化アンモニウムに代えて塩素濃度22g/Lの塩化アンモニウムを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Example 5)
In the step of forming a nickel plating layer having many spherical protrusions in the step of performing nickel plating on the lead frame, ammonium chloride having a chlorine concentration of 22 g / L was used instead of ammonium chloride having a chlorine concentration of 17 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着強度は24.1MPaで良好な密着性を示した。また、金属線の2nd側のスティッチプル強度は5.3gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion strength of the silver plating layer of the completed lead frame was 24.1 MPa, indicating good adhesion. Further, the stitch pull strength on the 2nd side of the metal wire was 5.3 gf, and good bondability was exhibited.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(実施例6)
リードフレーム上にニッケルめっき層の球状の突起群の形状に沿った形状の球状の突起群を有する銀めっき層を形成させる工程の内、銀ストライクめっき層の上に青化銀、青化銀カリウム、青化カリウムからなる銀めっき浴を用いて、電流密度として10A/dm2で3分間めっきを行い、厚さが約1.0μmの銀めっき層を形成した以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Example 6)
In the process of forming a silver plating layer having a spherical projection group having a shape along the shape of the spherical projection group of the nickel plating layer on the lead frame, silver bromide and silver bromide potassium are formed on the silver strike plating layer. Using the silver plating bath made of potassium blue, the same as in Example 1 except that the plating was carried out at a current density of 10 A / dm 2 for 3 minutes to form a silver plating layer having a thickness of about 1.0 μm. The electroplating process was applied to complete the lead frame manufacturing.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着強度は22.7MPaで良好な密着性を示した。また、金属線の2nd側のスティッチプル強度は6.7gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は2.1μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion strength of the silver plating layer of the completed lead frame was 22.7 MPa, which showed good adhesion. Further, the stitch pull strength on the 2nd side of the metal wire was 6.7 gf, and good bondability was exhibited.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 2.1 μm.

(比較例1)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、ニッケル濃度13g/Lの硫酸ニッケルに代えてニッケル濃度3g/Lの硫酸ニッケルを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 1)
Among the steps of performing nickel plating on the lead frame, in the step of forming a nickel plating layer having many spherical protrusions, nickel sulfate with a nickel concentration of 3 g / L was used instead of nickel sulfate with a nickel concentration of 13 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着強度は7.7MPaであり、これは実用においては十分な密着性を示しているとは言い難い。金属線の2nd側のスティッチプル強度は6.1gfで良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion strength of the silver plating layer of the completed lead frame is 7.7 MPa, which is said to indicate sufficient adhesion in practical use. hard. The stitch pull strength on the 2nd side of the metal wire was 6.1 gf, indicating good bondability.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(比較例2)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、ニッケル濃度13g/Lの硫酸ニッケルに代えてニッケル濃度25g/Lの硫酸ニッケルを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 2)
Among the steps of performing nickel plating on the lead frame, in the step of forming a nickel plating layer having many spherical protrusions, nickel sulfate having a nickel concentration of 25 g / L was used instead of nickel sulfate having a nickel concentration of 13 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着性は7.3MPaであり、これは実用においては十分な密着性を示しているとは言い難い。金属線の2nd側のスティッチプル強度は6.3gfで、良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion of the silver plating layer of the completed lead frame is 7.3 MPa, which is said to indicate sufficient adhesion in practical use. hard. The stitch pull strength on the 2nd side of the metal wire was 6.3 gf, indicating a good bondability.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(比較例3)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、塩素濃度17g/Lの塩化アンモニウムに代えて塩素濃度10g/Lの塩化アンモニウムを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 3)
Among the steps of performing nickel plating on the lead frame, in the step of forming a nickel plating layer having many spherical protrusions, ammonium chloride having a chlorine concentration of 10 g / L was used instead of ammonium chloride having a chlorine concentration of 17 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着性は23.0MPaであり、良好な密着性を示した。金属線の2nd側のスティッチプル強度は6.2gfで、良好な接合性を示した。しかしながら、本条件で球状の突起を多数有するニッケルめっきを行う際、電圧の上昇が確認された。この電圧の上昇は陽極の不導体化が原因であり、継続して処理することにより陽極の不導体化が進行し、それに伴い電圧が継続して上昇することにより、非常に高電圧となってしまうため、安全上好ましくない。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion of the silver plating layer of the completed lead frame was 23.0 MPa, indicating good adhesion. The stitch pull strength on the 2nd side of the metal wire was 6.2 gf, indicating a good bondability. However, an increase in voltage was confirmed when nickel plating having many spherical protrusions was performed under these conditions. This increase in voltage is due to the non-conductivity of the anode, and the anode becomes non-conductive as a result of continuous treatment, and the voltage continuously rises accordingly, resulting in a very high voltage. Therefore, it is not preferable for safety.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(比較例4)
リードフレーム上にニッケルめっき処理を施す工程の内、球状の突起を多数有するニッケルめっき層を形成させる工程において、塩素濃度17g/Lの塩化アンモニウムに代えて塩素濃度25g/Lの塩化アンモニウムを用いた以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 4)
In the step of forming a nickel plating layer having many spherical protrusions in the step of performing nickel plating on the lead frame, ammonium chloride having a chlorine concentration of 25 g / L was used instead of ammonium chloride having a chlorine concentration of 17 g / L. Except for the above, electroplating was performed in the same manner as in Example 1 to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着性は22.8MPaであり、良好な密着性を示した。金属線の2nd側のスティッチプル強度は4.8gfであり、これは実用においては十分な接合性を示しているとは言い難い。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion of the silver plating layer of the completed lead frame was 22.8 MPa, indicating good adhesion. The stitch pull strength on the 2nd side of the metal wire is 4.8 gf, which cannot be said to show sufficient bondability in practical use.
In addition, the average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.6 μm.

(比較例5)
リードフレーム上にニッケルめっき層の球状の突起群の形状に沿った形状の球状の突起群を有する銀めっき層を形成させる工程の内、銀ストライクめっき層の上に、青化銀、青化銀カリウム、青化カリウムからなる銀めっき浴を用いて、電流密度として10A/dm2で1分間めっきを行い、厚さが約0.3μmの銀めっき層を形成した以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 5)
In the process of forming a silver plating layer having a spherical projection group having a shape along the shape of the spherical projection group of the nickel plating layer on the lead frame, silver bromide, silver bromide is formed on the silver strike plating layer. Example 1 except that a silver plating bath made of potassium and potassium bromide was used for plating for 1 minute at a current density of 10 A / dm 2 to form a silver plating layer having a thickness of about 0.3 μm. The electroplating process was applied by this method, and the manufacture of the lead frame was completed.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着性は23.2MPaであり、良好な密着性を示した。金属線の2nd側のスティッチプル強度は3.9gfであり、これは実用においては十分な接合性を示しているとは言い難い。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は1.4μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion of the silver plating layer of the completed lead frame was 23.2 MPa, indicating good adhesion. The stitch pull strength on the 2nd side of the metal wire is 3.9 gf, which cannot be said to show sufficient bondability in practical use.
In addition, the average plating thickness of the three layers of the nickel plating layer, the silver strike plating layer, and the silver plating layer was 1.4 μm.

(比較例6)
リードフレーム上にニッケルめっき層の球状の突起群の形状に沿った形状の球状の突起群を有する銀めっき層を形成させる工程の内、銀ストライクめっき層の上に、青化銀、青化銀カリウム、青化カリウムからなる銀めっき浴を用いて、電流密度として10A/dm2で4分30秒間めっきを行い、厚さが約1.5μmの銀めっき層を形成した以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 6)
In the process of forming a silver plating layer having a spherical projection group having a shape along the shape of the spherical projection group of the nickel plating layer on the lead frame, silver bromide, silver bromide is formed on the silver strike plating layer. Example 1 except that plating was performed at a current density of 10 A / dm 2 for 4 minutes and 30 seconds using a silver plating bath composed of potassium and potassium bromide to form a silver plating layer having a thickness of about 1.5 μm. The electroplating process was performed in the same manner as described above to complete the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着性は21.3MPaであり、良好な密着性を示した。金属線の2nd側のスティッチプル強度は6.6gfであり、良好な接合性を示した。しかしながら、銀めっき層が厚くなったことにより、下地の球状効果が弱くなり、実施例1よりは密着性が劣り、接合性は実施例1と大差ないことから、銀めっき層を1.0μmよりも厚くすることは特性改善がなくコストアップに繋がり、かつ従来品と同等かそれ以上のめっき厚になってしまうので好ましくない。
ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は2.6μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion of the silver plating layer of the completed lead frame was 21.3 MPa, indicating a good adhesion. The stitch pull strength on the 2nd side of the metal wire was 6.6 gf, indicating good bondability. However, as the silver plating layer becomes thicker, the spherical effect of the base is weakened, the adhesiveness is inferior to that of Example 1, and the bonding property is not much different from that of Example 1, so that the silver plating layer is more than 1.0 μm. However, it is not preferable to make the thickness thicker, because there is no improvement in characteristics, leading to an increase in cost, and a plating thickness equal to or greater than that of the conventional product.
The average plating thickness of the three layers including the nickel plating layer, the silver strike plating layer, and the silver plating layer was 2.6 μm.

(比較例7)
リードフレーム上にニッケルめっき処理を施す工程において、最初のスルファミン酸ニッケルと塩化ニッケル、ホウ酸からなるニッケルめっき浴を用いて、電流密度を5A/dm2で6分間めっきを行い、厚さが約1.0μmの平滑なニッケルめっき層のみを形成して三層めっき構造としなかった以外は、実施例1と同様の方法で電気めっき処理を施し、リードフレームの製造を完了した。
(Comparative Example 7)
In the process of nickel plating on the lead frame, the first nickel plating bath composed of nickel sulfamate, nickel chloride and boric acid is used for plating for 6 minutes at a current density of 5 A / dm 2 and the thickness is about Electroplating was performed in the same manner as in Example 1 except that only a smooth nickel plating layer having a thickness of 1.0 μm was not formed to form a three-layer plating structure, thereby completing the manufacture of the lead frame.

実施例1と同様にして樹脂密着性を評価した結果、完成したリードフレームの銀めっき層の樹脂密着性は7.1MPaであり、これは実用においては十分な密着性を示しているとは言い難い。金属線の2nd側のスティッチプル強度は6.6gfで、良好な接合性を示した。
なお、ニッケルめっき層と銀ストライクめっき層と銀めっき層の3層合計の平均めっき厚は2.0μmであった。
As a result of evaluating the resin adhesion in the same manner as in Example 1, the resin adhesion of the silver plating layer of the completed lead frame is 7.1 MPa, which indicates that this shows sufficient adhesion in practical use. hard. The stitch pull strength on the 2nd side of the metal wire was 6.6 gf, indicating good bondability.
In addition, the average plating thickness of the three layers of the nickel plating layer, the silver strike plating layer, and the silver plating layer was 2.0 μm.

Claims (7)

半導体素子を搭載するリードフレームにおいて、少なくとも半導体素子が搭載されるパッド部上の最表面に銀または銀を含有する合金によるめっき層を有し、その形状が球状の突起群であることを特徴とするリードフレーム。   A lead frame for mounting a semiconductor element has a plating layer made of silver or an alloy containing silver on at least an outermost surface of a pad portion on which the semiconductor element is mounted, and the shape thereof is a spherical protrusion group. Lead frame. 前記最表面の銀または銀を含有する合金によるめっき層の球状の突起群の形状は、その下地に形成された球状の突起群を有するニッケルによるめっき層により形成されたものであることを特徴とする請求項1に記載のリードフレーム。   The shape of the spherical protrusion group of the plating layer made of silver or an alloy containing silver on the outermost surface is formed by a nickel plating layer having a spherical protrusion group formed on the base. The lead frame according to claim 1. 前記ニッケルによるめっき層は、まずレベリング性の良い平滑なニッケルめっきが施され、その平滑なニッケルめっき面上に球状の突起群が形成されたニッケルめっきが施され、更にその上にレベリング性の良いニッケルめっきが施された三層構造であることを特徴とする請求項2に記載のリードフレーム。   The nickel plating layer is first subjected to smooth nickel plating with good leveling properties, nickel plating with spherical projections formed on the smooth nickel plating surface, and further to good leveling properties thereon. The lead frame according to claim 2, wherein the lead frame has a three-layer structure plated with nickel. 前記最表面の銀または銀を含有する合金によるめっき層の厚さは0.5μm以上1.0μm以下であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のリードフレーム。   The lead frame according to any one of claims 1 to 3, wherein a thickness of the plating layer made of silver on the outermost surface or an alloy containing silver is not less than 0.5 µm and not more than 1.0 µm. . リードフレームの基材質が銅合金であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のリードフレーム。   The lead frame according to any one of claims 1 to 4, wherein the base material of the lead frame is a copper alloy. 請求項1乃至請求項5のいずれか1項に記載のリードフレームの製造方法であって、前記球状の突起群を有するニッケルめっき層を得るためのめっき浴は、ニッケルめっき浴中のニッケル濃度を5g/L以上20g/L以下の範囲とし、塩素濃度を12g/L以上22g/L以下の範囲としたことを特徴とするリードフレームの製造方法。   The lead frame manufacturing method according to any one of claims 1 to 5, wherein a plating bath for obtaining a nickel plating layer having the spherical projection group has a nickel concentration in the nickel plating bath. A lead frame manufacturing method, wherein a range of 5 g / L to 20 g / L and a chlorine concentration of 12 g / L to 22 g / L are set. めっき浴中にニッケルを含有させる構成成分として硫酸ニッケルを用い、また塩素を含有させる構成成分として塩化アンモニウムを用いることを特徴とする請求項6に記載のリードフレームの製造方法。   The lead frame manufacturing method according to claim 6, wherein nickel sulfate is used as a constituent component containing nickel in the plating bath, and ammonium chloride is used as a constituent component containing chlorine.
JP2013247483A 2013-11-29 2013-11-29 Lead frame and manufacturing method thereof Active JP6366032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247483A JP6366032B2 (en) 2013-11-29 2013-11-29 Lead frame and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247483A JP6366032B2 (en) 2013-11-29 2013-11-29 Lead frame and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015106616A true JP2015106616A (en) 2015-06-08
JP6366032B2 JP6366032B2 (en) 2018-08-01

Family

ID=53436584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247483A Active JP6366032B2 (en) 2013-11-29 2013-11-29 Lead frame and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6366032B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089004A (en) * 2015-11-06 2017-05-25 株式会社ワールドメタル Bonding member
JP2018021221A (en) * 2016-08-02 2018-02-08 古河電気工業株式会社 Silver coated material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033294A (en) * 1989-05-30 1991-01-09 Sankyo Kasei Co Ltd Insert member for electronic component
JPH0629439A (en) * 1992-07-11 1994-02-04 Shinko Electric Ind Co Ltd Insert member for resin
JPH10265968A (en) * 1997-03-28 1998-10-06 Nippon Steel Corp Manufacture of steel sheet for welded can, excellent in weldability, corrosion resistance, external appearance characteristic, and adhesion
JP2000077850A (en) * 1998-08-31 2000-03-14 Kyocera Corp Multilayer wiring board and its manufacture
JP2001284797A (en) * 2000-03-28 2001-10-12 Kyocera Corp Multilayer wiring board and method for manufacturing it
JP2004349497A (en) * 2003-05-22 2004-12-09 Shinko Electric Ind Co Ltd Packaging component and semiconductor package
JP2010111899A (en) * 2008-11-05 2010-05-20 Sumitomo Metal Mining Co Ltd Method for manufacturing lead frame

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033294A (en) * 1989-05-30 1991-01-09 Sankyo Kasei Co Ltd Insert member for electronic component
JPH0629439A (en) * 1992-07-11 1994-02-04 Shinko Electric Ind Co Ltd Insert member for resin
JPH10265968A (en) * 1997-03-28 1998-10-06 Nippon Steel Corp Manufacture of steel sheet for welded can, excellent in weldability, corrosion resistance, external appearance characteristic, and adhesion
JP2000077850A (en) * 1998-08-31 2000-03-14 Kyocera Corp Multilayer wiring board and its manufacture
JP2001284797A (en) * 2000-03-28 2001-10-12 Kyocera Corp Multilayer wiring board and method for manufacturing it
JP2004349497A (en) * 2003-05-22 2004-12-09 Shinko Electric Ind Co Ltd Packaging component and semiconductor package
JP2010111899A (en) * 2008-11-05 2010-05-20 Sumitomo Metal Mining Co Ltd Method for manufacturing lead frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089004A (en) * 2015-11-06 2017-05-25 株式会社ワールドメタル Bonding member
JP2018021221A (en) * 2016-08-02 2018-02-08 古河電気工業株式会社 Silver coated material

Also Published As

Publication number Publication date
JP6366032B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5863174B2 (en) Manufacturing method of semiconductor device
JP2006303492A (en) Lead frame for semiconductor package
KR102633614B1 (en) Semiconductor device-mounting component, lead frame, and semiconductor device-mounting substrate
TWI831944B (en) Lead frame
JP2009010407A (en) Package component, manufacturing method therefor, and semiconductor package
KR101628785B1 (en) Lead frame and method of manufacturing the same
JP6366032B2 (en) Lead frame and manufacturing method thereof
JP6685112B2 (en) Lead frame, lead frame package, and manufacturing method thereof
TWI811532B (en) Lead frame
JP2011071566A (en) Package component and semiconductor package
JP2010287741A (en) Lead frame and method of manufacturing the same, and semiconductor device
JP5387374B2 (en) Lead frame manufacturing method
TWI820313B (en) Lead frame
JP6733941B1 (en) Substrate for mounting semiconductor elements
TWI831948B (en) Semiconductor element mounting substrate
JP5299411B2 (en) Lead frame manufacturing method
JP6736716B1 (en) Lead frame
JP6623493B2 (en) Lead frame, semiconductor device, and manufacturing method thereof
KR20100128061A (en) Method for manufacturing lead frame and integrated-circuit device
JP2020063493A (en) Electroconductive material, molded article, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6366032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350