JP2015105562A - Aseismic reinforcement method for rigid-frame viaduct arranging beams in intermediate layer - Google Patents
Aseismic reinforcement method for rigid-frame viaduct arranging beams in intermediate layer Download PDFInfo
- Publication number
- JP2015105562A JP2015105562A JP2013249761A JP2013249761A JP2015105562A JP 2015105562 A JP2015105562 A JP 2015105562A JP 2013249761 A JP2013249761 A JP 2013249761A JP 2013249761 A JP2013249761 A JP 2013249761A JP 2015105562 A JP2015105562 A JP 2015105562A
- Authority
- JP
- Japan
- Prior art keywords
- ramen viaduct
- ramen
- viaduct
- arrangement
- seismic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000002787 reinforcement Effects 0.000 title claims abstract description 34
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 230000006378 damage Effects 0.000 claims description 8
- 239000011150 reinforced concrete Substances 0.000 claims description 7
- 238000005728 strengthening Methods 0.000 claims description 4
- 239000004567 concrete Substances 0.000 claims description 3
- 238000009420 retrofitting Methods 0.000 claims 1
- 238000003491 array Methods 0.000 abstract 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000004804 winding Methods 0.000 description 12
- 238000005452 bending Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011178 precast concrete Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Bridges Or Land Bridges (AREA)
Abstract
Description
本発明は、鉄道RCラーメン高架橋等の地震対策に係り、特に中層梁の配置によるラーメン高架橋の耐震補強工法に関するものである。 The present invention relates to earthquake countermeasures such as a railway RC ramen viaduct, and more particularly to a seismic reinforcement method for a ramen viaduct with an arrangement of intermediate beams.
一般に、鉄道ラーメン高架橋の耐震補強は、例えば、RC鉄道ラーメン高架橋に対する鋼板や帯鉄筋、モルタル等による巻立てにより実施されている。これは、変形性能を確保することにより、構造体としての安全性と復旧性を満足するものである。 In general, the seismic reinforcement of the railway ramen viaduct is carried out, for example, by winding with a steel plate, a reinforcing bar, mortar, or the like for the RC railway ramen viaduct. This satisfies the safety and recoverability of the structure by ensuring the deformation performance.
図5は従来の組み合わせ鋼材巻立て工法によるラーメン高架橋補強を示す図、図6は従来の鋼製パネル組立て工法によるラーメン高架橋補強を示す図、図7は従来の外部スパイラル巻立て工法によるラーメン高架橋補強を示す図である。 FIG. 5 is a diagram showing a ramen viaduct reinforcement by a conventional combined steel winding method, FIG. 6 is a diagram showing a ramen viaduct reinforcement by a conventional steel panel assembling method, and FIG. 7 is a ramen viaduct reinforcement by a conventional external spiral winding method. FIG.
例えば、図5に示す組み合わせ鋼材巻立て工法は、鉄道RCラーメン高架橋101に分割した帯鉄筋102を配置し、これらを緊結後に吹付けモルタル103を施工して一体化している。
For example, in the combined steel material winding method shown in FIG. 5, the
また、図6に示す鋼製パネル組立て工法は、既設柱201に小型の鋼製パネル202を組み合わせて設置し、既設柱201と鋼製パネル202の間に充填剤203を注入して一体化している。さらに、図7に示す外部スパイラル巻立て工法は、既設柱301に分割したプレキャストコンクリートブロック302を取付け、鋼より線303を巻き付けることによって一体化している。
Further, in the steel panel assembling method shown in FIG. 6, a
しかしながら、ラーメン高架下が店舗等で利用されている場合には、すべての既設柱を補強することが困難であるのが実情である。 However, when the ramen underpass is used in stores or the like, it is actually difficult to reinforce all the existing pillars.
一方、鉄道ラーメン高架橋全体系の耐荷力や剛性を増加させる工法としては、ダンパーブレースが実用化されている(下記非特許文献1参照)。
On the other hand, a damper brace has been put to practical use as a method for increasing the load bearing capacity and rigidity of the entire railway ramen viaduct (see Non-Patent
図8は従来の圧縮型ダンパーブレース工法を示す図であり、図8(a)はその工法を施した様子を示す図面代用写真、図8(b)はその工法による作用を示す模式図である。 FIG. 8 is a view showing a conventional compression damper brace construction method, FIG. 8 (a) is a drawing-substituting photograph showing a state where the construction method is applied, and FIG. 8 (b) is a schematic view showing an effect of the construction method. .
従来の巻立て補強では、ラーメン高架橋全体の耐荷力(震度)が小さい場合には、地震時に過大な変形性能が要求され、補強設計が困難な場合がありうる。走行安全性の観点からも、極力応答変位を小さくすることが望ましい。また、巻立てた部材が大きな損傷を受けた場合に、補強材(巻立て材)を取り換えることは必ずしも簡易ではない。 In conventional winding reinforcement, if the load bearing capacity (seismic intensity) of the entire ramen viaduct is small, excessive deformation performance is required at the time of an earthquake, and reinforcement design may be difficult. From the viewpoint of running safety, it is desirable to reduce the response displacement as much as possible. Further, when the wound member is greatly damaged, it is not always easy to replace the reinforcing material (winding material).
また、現状ではラーメン高架橋柱の全てを補強することが原則であるが、ラーメン高架下の利用状況によっては全てのラーメン高架橋柱を施工することが困難な場合がある。しかしながら、従来の工法では、簡易な方法によってラーメン高架橋柱(列)の全体または一部を補強することにより、ラーメン高架橋柱全体の耐荷力(震度)や剛性を向上させる工法は少ないのが実情である。 In addition, at present, it is a principle to reinforce all the ramen viaduct columns, but depending on the usage situation under the ramen viaduct, it may be difficult to construct all the ramen viaduct columns. However, in the conventional method, there are few methods that improve the load bearing capacity (seismic intensity) and rigidity of the entire ramen viaduct column by reinforcing the entire or part of the ramen viaduct column (row) by a simple method. is there.
さらに、実用化されている耐荷力、剛性増加型のダンパーブレース工法は、施工がやや大掛かりであること、ラーメン高架下の空間が占有されることなどの課題がある。 Furthermore, the load-bearing force and rigidity-enhanced damper brace method that has been put to practical use has problems such as that the construction is somewhat large and that the space under the elevated ramen is occupied.
本発明は、上記状況に鑑みて、ラーメン高架橋柱(列)の全体または一部に、損傷を意図的に集中させる簡易な中層梁をラーメン高架橋の高さ中間位置に配置(追加)することのみによって、ラーメン高架橋全体の耐荷力(震度)や剛性を向上させ、安全性、復旧性を満足できる中層梁の配置によるラーメン高架橋の耐震補強工法を提供することを目的とする。 In view of the above situation, the present invention only arranges (adds) a simple middle-layer beam that intentionally concentrates damage to all or part of the ramen viaduct columns (rows) at the intermediate position of the ramen viaduct. The purpose is to provide an anti-seismic reinforcement method for the ramen viaduct by improving the load carrying capacity (seismic intensity) and rigidity of the entire ramen viaduct and satisfying safety and restoration.
本発明は、上記目的を達成するために、
〔1〕中層梁の配置によるラーメン高架橋の耐震補強工法において、中層梁を、ラーメン高架橋柱の中間位置であって、ラーメン高架橋柱の列の全て、またはラーメン高架橋柱の列の一部に配置して補強することにより、ラーメン高架橋全体の耐荷力(震度)や剛性を向上させることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the seismic reinforcement method for ramen viaducts by the arrangement of middle-rise beams, the middle-rise beams are placed in the middle of the ramen viaduct columns and in all the columns of the ramen viaduct columns or in a part of the rows of the ramen viaduct columns. It is characterized by improving the load carrying capacity (seismic intensity) and rigidity of the entire ramen viaduct.
〔2〕上記〔1〕記載の中層梁の配置によるラーメン高架橋の耐震補強工法において、前記中層梁は鉄筋コンクリートプレキャスト中層梁であることを特徴とする。 [2] In the seismic strengthening method of the ramen viaduct by the arrangement of the middle beam described in [1], the middle beam is a reinforced concrete precast middle beam.
〔3〕上記〔1〕記載の中層梁の配置によるラーメン高架橋の耐震補強工法において、前記中層梁は配置後にコンクリートが収縮すると望ましくないため、収縮が落ち着くまで養生したものを用いることを特徴とする。 [3] In the seismic reinforcement method of the ramen viaduct by the arrangement of the middle beam described in the above [1], the middle beam is not desirable when the concrete shrinks after the placement, so that the one cured until the shrinkage is settled is used. .
〔4〕上記〔1〕記載の中層梁の配置によるラーメン高架橋の耐震補強工法において、ラーメン高架橋柱を挟むように鋼板およびPC鋼棒を地震時に中層梁が浮き上がらない程度のプレストレスを導入して設置することを特徴とする。 [4] In the seismic strengthening method of the ramen viaduct by the arrangement of the middle-layer beam described in [1] above, a prestress is introduced so that the middle-layer beam does not float during the earthquake so that the steel frame and the PC steel rod are sandwiched between the ramen viaduct columns. It is characterized by installing.
〔5〕上記〔1〕記載の中層梁の配置によるラーメン高架橋の耐震補強工法において、前記中層梁は地震時には積極的に損傷させてエネルギーを吸収できるように構成したことを特徴とする。 [5] In the seismic reinforcement method of the ramen viaduct by the arrangement of the middle-layer beam described in [1], the middle-layer beam is configured to be able to actively damage and absorb energy during an earthquake.
〔6〕上記〔5〕記載の中層梁の配置によるラーメン高架橋の耐震補強工法において、地震後に前記中層梁を取り換えるのみで復旧ができるように構成したことを特徴とする。 [6] In the seismic reinforcement method for the ramen viaduct according to the arrangement of the middle-layer beam described in [5] above, the structure can be restored only by replacing the middle-layer beam after the earthquake.
本発明によれば、ラーメン高架橋の簡易かつ経済的な構造によって、地震時の安全性、復旧性を確保し、走行安全性を向上することができる、中層梁の配置によるラーメン高架橋の耐震補強工法提供することができる。 According to the present invention, the simple and economical structure of the ramen viaduct ensures safety during earthquakes, recoverability, and can improve running safety. Can be provided.
中層梁の配置によるラーメン高架橋の耐震補強工法は、ラーメン高架橋柱の中間位置であって、ラーメン高架橋柱の列の全て、またはラーメン高架橋柱の列の一部に中層梁を配置して補強することにより、ラーメン高架橋全体の耐荷力(震度)や剛性を向上させる。 The seismic reinforcement method for the ramen viaduct by placing the middle-rise beam is to be reinforced by placing the mid-rise beam in the middle of the ramen viaduct column or all of the ramen viaduct column or part of the ramen viaduct column. This improves the load bearing capacity (seismic intensity) and rigidity of the entire ramen viaduct.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明の実施例を示す中層梁の配置によるラーメン高架橋の耐震補強工法を示す図、図2はその設置された中層梁と既存柱の接続工法の一例を示す斜視図、図3はその中層梁の配置による構造全体系の応答例を示す図であり、図3(a)はその水平震度−水平変位例を示すグラフ、図3(b)はその解析モデルを示す図である。図4はその中層梁の部材性能の違いがラーメン高架橋柱の損傷に及ぼす影響を示すグラフである。 FIG. 1 is a diagram showing an anti-seismic reinforcement method for a ramen viaduct according to an arrangement of middle-layer beams according to an embodiment of the present invention, FIG. 2 is a perspective view showing an example of a connection method between the installed middle-layer beams and existing columns, and FIG. It is a figure which shows the example of a response of the whole structure system by arrangement | positioning of the middle layer beam, Fig.3 (a) is a graph which shows the example of the horizontal seismic intensity-horizontal displacement, FIG.3 (b) is a figure which shows the analysis model. FIG. 4 is a graph showing the influence of the difference in member performance of the middle beam on the damage of the ramen viaduct column.
本発明の中層梁の配置によるラーメン高架橋の耐震補強工法、図1に示すように、例えば、ラーメン高架橋10には、ラーメン高架橋柱11の高さ中間位置に中層梁12を適宜配置(追加)する。つまり、図2に示すように、ラーメン高架橋柱11を挟むようにして鋼板13およびPC鋼棒14を、地震時に中層梁12が浮き上がらない程度のプレストレスを導入して設置する。中層梁12は、ラーメン高架橋柱11に接続する必要があるが、図2はその簡易かつ取り外し可能な方法の一例である。なお、補強効果は中層梁の曲げ耐力のみで評価できる(剛性にあまり依存しない)ことを考えると、中層梁12とラーメン高架橋柱11における接続部は、完全剛結のような状態でなくても影響は少ない。
As shown in FIG. 1, for example, in the
図3は、ラーメン高架橋柱11に中層梁12を適宜配置(追加)すると、構造全体系の耐荷力、剛性は増加することを解析により示している。
FIG. 3 shows by analysis that the load bearing force and rigidity of the entire structure system increase when the middle-
図4は、中層梁の部材性能を変化させて配置効果を解析的に検証した結果を示している。この図において、横軸は中層梁の曲げ耐力(kN・m)、縦軸はラーメン高架橋柱の損傷レベル2の最大照査値であり、ptは引張鉄筋比(%)である。また、中層梁の曲げ耐力が増加するとラーメン高架橋柱の損傷レベル、全体系の応答変位が抑制できる。また、中層梁による補強効果は中層梁の曲げ耐力のみで概ね評価できる。よって、目標に合致する曲げ耐力を有する中層梁であれば、中層梁はどのようなものでもよい。なお、ここでは、中層梁を鉄筋コンクリート梁と仮定し、断面高さ(400〜1200mm)、引っ張り鉄筋比(0.3〜1.5%)と実用的な範囲で解析した結果であり、どんな状況でも曲げ耐力のみで評価できるというわけではない。 FIG. 4 shows the result of analytically verifying the placement effect by changing the member performance of the middle-layer beam. In this figure, the horizontal axis is the bending strength (kN · m) of the middle beam, the vertical axis is the maximum verification value of the damage level 2 of the ramen viaduct column, and pt is the tensile reinforcement ratio (%). Further, when the bending strength of the middle-layer beam is increased, the damage level of the ramen viaduct column and the response displacement of the entire system can be suppressed. In addition, the reinforcement effect of the middle beam can be generally evaluated only by the bending strength of the middle beam. Therefore, any intermediate beam may be used as long as it has a bending strength that matches the target. In this case, it is assumed that the middle-layer beam is a reinforced concrete beam, and is a result of analysis within a practical range such as the cross-section height (400 to 1200 mm) and the tensile reinforcement ratio (0.3 to 1.5%). But it is not possible to evaluate only by bending strength.
なお、中層梁は施工性、経済性を考慮して、簡易なものがよい。例えば、鉄筋コンクリートプレキャスト中層梁があげられる。なお、中層梁の配置後にコンクリートが収縮すると望ましくないため、収縮が落ち着くまで養生したものを用いる。また、補強効果は中層梁の曲げ耐力で評価できることを考えると、高強度材料を用いて中層梁をより小型・軽量化することができる。また、中層梁としてはラーメン高架橋柱となじむので鉄筋コンクリートが望ましいが、必ずしも鉄筋コンクリートに限定されるものではなく、鉄筋コンクリート以外のものを用いるようにしてもよい。 In addition, the middle-layer beam should be simple in consideration of workability and economy. For example, a reinforced concrete precast middle beam. In addition, since it is not desirable if the concrete shrinks after the middle beam is placed, a material cured until the shrinkage is settled is used. Considering that the reinforcement effect can be evaluated by the bending strength of the middle beam, the middle beam can be made smaller and lighter using a high-strength material. In addition, reinforced concrete is desirable as the middle-layer beam because it is compatible with the ramen viaduct pillar, but it is not necessarily limited to reinforced concrete, and other than reinforced concrete may be used.
本発明による中層梁の設計コンセプトとしては、地震後に、取り外しが可能な中層梁を積極的に損傷(エネルギー吸収)させる。すなわち、大規模地震後に中層梁の取り換えのみで復旧可能な設計とする。また、中層梁は、ラーメン高架橋柱構造全体に設置してもよいが、一部に設置するのみで構造全体系の応答が低減されて性能を満足する場合には、一部のみに配置してもよい。 As a design concept of the middle beam according to the present invention, the removable middle beam is actively damaged (energy absorption) after the earthquake. In other words, the design can be restored by replacing the middle beam after a large earthquake. In addition, the intermediate beam may be installed in the entire ramen viaduct column structure. Also good.
中層梁の配置により、ラーメン高架橋柱のせん断力が増加するので、ラーメン高架橋柱がせん断破壊しないよう照査を満足する必要がある。特に、一部のラーメン高架橋柱列にのみに中層梁を設置し、大きな剛性増加を見込んだ場合、そのラーメン高架橋柱のせん断力は大きくなることが想定される。その場合、ラーメン高架橋柱に鋼板巻きを施すことも考慮する(中層梁と鋼板巻きの併用)。 Since the shear force of the ramen viaduct column increases due to the arrangement of the middle beam, it is necessary to satisfy the verification so that the ramen viaduct column does not undergo shear failure. In particular, when the middle-layer beam is installed only in some of the ramen viaduct columns, and a large increase in rigidity is expected, it is assumed that the shear force of the ramen viaduct columns will increase. In that case, it is also considered to apply steel plate winding to the ramen viaduct pillar (combined use of middle beam and steel plate winding).
中層梁の配置により、上部工の耐荷力、剛性が増加すると、基礎への負担が増加する。よって、基礎の破壊が先行しない程度の補強量とする必要がある。 If the load capacity and rigidity of the superstructure increase due to the arrangement of the middle beam, the burden on the foundation will increase. Therefore, it is necessary to set the amount of reinforcement so as not to precede the destruction of the foundation.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の中層梁の配置によるラーメン高架橋の耐震補強工法は、簡易な方法により、ラーメン高架橋柱(列)の全て、または一部を補強することにより、ラーメン高架橋全体の耐荷力(震度)や剛性を向上させる、中層梁の配置によるラーメン高架橋の耐震補強工法として利用可能である。 The seismic reinforcement method for ramen viaducts according to the arrangement of the middle beam of the present invention is a simple method that reinforces all or part of the ramen viaduct columns (rows), so that the load resistance (seismic intensity) and rigidity of the entire ramen viaduct are strengthened. It can be used as an anti-seismic reinforcement method for ramen viaducts by arranging intermediate beams.
10 ラーメン高架橋
11 ラーメン高架橋柱
12 中層梁
13 鋼板
14 PC鋼棒
10
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013249761A JP6472039B2 (en) | 2013-12-03 | 2013-12-03 | Seismic retrofitting method for ramen viaduct by placing middle-rise beams |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013249761A JP6472039B2 (en) | 2013-12-03 | 2013-12-03 | Seismic retrofitting method for ramen viaduct by placing middle-rise beams |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015105562A true JP2015105562A (en) | 2015-06-08 |
JP6472039B2 JP6472039B2 (en) | 2019-02-20 |
Family
ID=53435854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013249761A Expired - Fee Related JP6472039B2 (en) | 2013-12-03 | 2013-12-03 | Seismic retrofitting method for ramen viaduct by placing middle-rise beams |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6472039B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6142228B1 (en) * | 2016-11-07 | 2017-06-07 | 株式会社神島組 | Reinforcing equipment for concrete pier and concrete pier reinforcement method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11280023A (en) * | 1998-03-27 | 1999-10-12 | Nkk Corp | Earthquake resistant beam of rigid frame bridge |
JP2001064913A (en) * | 1999-08-25 | 2001-03-13 | Nkk Corp | Rigid frame bridge pier |
JP2003064624A (en) * | 2001-08-24 | 2003-03-05 | Railway Technical Res Inst | Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge |
JP2003239220A (en) * | 2002-02-18 | 2003-08-27 | Shimizu Corp | Vibration control elevated structure |
JP2006077492A (en) * | 2004-09-10 | 2006-03-23 | Hanshin Expressway Public Corp | Earthquake resisting pier |
JP2011080293A (en) * | 2009-10-08 | 2011-04-21 | Kajima Corp | Seismic response controlled bridge pier |
JP2011202419A (en) * | 2010-03-25 | 2011-10-13 | Ohbayashi Corp | Structure and method for joining shaft member and rc member |
JP2012077471A (en) * | 2010-09-30 | 2012-04-19 | Yokogawa Koji Kk | Joint structure of precast members and concrete precast members |
CN103628402A (en) * | 2013-12-20 | 2014-03-12 | 中铁二院工程集团有限责任公司 | Earthquake energy dissipation structure of multi-pillar pier |
CN104452566A (en) * | 2014-10-22 | 2015-03-25 | 大连海事大学 | Swing self-reset bridge bent frame with ductility replaceable collar beam and installation method thereof |
-
2013
- 2013-12-03 JP JP2013249761A patent/JP6472039B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11280023A (en) * | 1998-03-27 | 1999-10-12 | Nkk Corp | Earthquake resistant beam of rigid frame bridge |
JP2001064913A (en) * | 1999-08-25 | 2001-03-13 | Nkk Corp | Rigid frame bridge pier |
JP2003064624A (en) * | 2001-08-24 | 2003-03-05 | Railway Technical Res Inst | Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge |
JP2003239220A (en) * | 2002-02-18 | 2003-08-27 | Shimizu Corp | Vibration control elevated structure |
JP2006077492A (en) * | 2004-09-10 | 2006-03-23 | Hanshin Expressway Public Corp | Earthquake resisting pier |
JP2011080293A (en) * | 2009-10-08 | 2011-04-21 | Kajima Corp | Seismic response controlled bridge pier |
JP2011202419A (en) * | 2010-03-25 | 2011-10-13 | Ohbayashi Corp | Structure and method for joining shaft member and rc member |
JP2012077471A (en) * | 2010-09-30 | 2012-04-19 | Yokogawa Koji Kk | Joint structure of precast members and concrete precast members |
CN103628402A (en) * | 2013-12-20 | 2014-03-12 | 中铁二院工程集团有限责任公司 | Earthquake energy dissipation structure of multi-pillar pier |
CN104452566A (en) * | 2014-10-22 | 2015-03-25 | 大连海事大学 | Swing self-reset bridge bent frame with ductility replaceable collar beam and installation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6142228B1 (en) * | 2016-11-07 | 2017-06-07 | 株式会社神島組 | Reinforcing equipment for concrete pier and concrete pier reinforcement method |
Also Published As
Publication number | Publication date |
---|---|
JP6472039B2 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103882803B (en) | A kind of replaceable landscape configuration presstressed reinforcing steel Self-resetting power consumption bridge pier | |
JP4647714B1 (en) | Buildings using walled columns with seismic prestressing | |
CN112761253A (en) | Full-assembly type self-resetting frame structure with steel strands arranged in single-span through length mode | |
CN106285139B (en) | One kind wearing bucket type wood-structure old building pylon energy consumption bracing means and erection method | |
CN102900169A (en) | Concrete-filled steel tube combined shear wall and construction process thereof | |
CN103122676A (en) | Corner-reinforced steel tube concrete composite column and manufacturing method thereof | |
CN203741998U (en) | Connected joint of self-resetting beam and column | |
JP2016204925A (en) | Prestressed Concrete Slab | |
KR101139761B1 (en) | Reinforcing wall for construction | |
JP6472039B2 (en) | Seismic retrofitting method for ramen viaduct by placing middle-rise beams | |
CN101550727A (en) | Node of connection of column and beam | |
CN106400677A (en) | Box type steel bridge pier with earthquake damage capable of being fast restored in situ | |
CN105102734A (en) | Hybrid structure and construction method for same | |
CN203113624U (en) | Joist steel regionally confined concrete column with longitudinal bars | |
CN107859196B (en) | Replaceable assembled energy dissipation and vibration reduction node with self-resetting function | |
CN203769142U (en) | Densely-arrayed spiral stirrup confined concrete shear wall structure | |
Kalibhat et al. | Seismic performance of concentric braced steel frames from pushover analysis | |
CN202644386U (en) | Post-tensioned method prestressed steel pipe high-strength concrete composite bridge pier | |
CN202644387U (en) | Prestress steel pipe high strength concrete laminated pier in pre-tensioning method | |
CN214784723U (en) | Full-assembly type self-resetting frame structure with steel strands arranged in single-span through length mode | |
CN211368748U (en) | Side slope reinforcing unit body and side slope reinforcing structure | |
CN103590514A (en) | Densely-arrayed spiral stirrup confined concrete shear wall structure and construction method thereof | |
CN209975348U (en) | Shock attenuation rigid frame bridge pier that contains bucking restraint and support | |
JP5379285B1 (en) | Buildings using seismic control PC columns | |
Salameh et al. | Seismic Performance of a Hybrid Coupled Wall System Using different Coupling Beam Arrangements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170630 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180110 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180117 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20180406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6472039 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |