JP2011080293A - Seismic response controlled bridge pier - Google Patents

Seismic response controlled bridge pier Download PDF

Info

Publication number
JP2011080293A
JP2011080293A JP2009234388A JP2009234388A JP2011080293A JP 2011080293 A JP2011080293 A JP 2011080293A JP 2009234388 A JP2009234388 A JP 2009234388A JP 2009234388 A JP2009234388 A JP 2009234388A JP 2011080293 A JP2011080293 A JP 2011080293A
Authority
JP
Japan
Prior art keywords
rod
shaped damper
column
damper
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234388A
Other languages
Japanese (ja)
Other versions
JP5528763B2 (en
Inventor
Hiroyuki Nagumo
広幸 南雲
Naoki Sogabe
直樹 曽我部
Toshimichi Ichinomiya
利通 一宮
Shinichi Yamanobe
慎一 山野辺
Tetsuya Kono
哲也 河野
Ichiro Oda
一郎 織田
Kimio Saito
公生 齋藤
Chikashi Endo
史 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2009234388A priority Critical patent/JP5528763B2/en
Publication of JP2011080293A publication Critical patent/JP2011080293A/en
Application granted granted Critical
Publication of JP5528763B2 publication Critical patent/JP5528763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic response controlled bridge pier which is easily maintained and is excellent in durability, workability, and economical efficiency. <P>SOLUTION: RC rod-like dampers 21 also serving as connecting members are installed in a form similar to the intermediate beams between RC columns 2 constituting the seismic response controlled bridge pier 1. In the RC rod-like dampers 21, reinforcing bars 22 for energy absorption or PC steel extending in a longitudinal direction are embedded in concrete, and the end sections of the RC rod-like dampers 21 are inserted in the restricting holes 24 of circular restricting pipes 23 having a circularly formed inner surface. When the RC columns 2 are bent and deformed by an earthquake, such bending deformations as to cause vertical displacements occur in the RC rod-like dampers 21, and the reinforcing bars 22 etc. in the RC rod-like dampers 21 are elastically deformed to absorb vibration energies generated at the earthquake. The deformation of the RC columns 2 thereby falls within an elastic range even at the time of, for example, a level 2 earthquake. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、組柱構造または組壁構造の橋脚に、地震時のエネルギーを吸収するためのダンパーを組み込んでなる制震橋脚に関するものである。   The present invention relates to a seismic control pier in which a damper for absorbing energy during an earthquake is incorporated in a pier having a column structure or a wall structure.

本願の出願人は、連続ラーメン橋に対して橋脚部材を細くして固有周期の長周期化を図り地震時の橋脚の応答加速度の低減を図るとともに、鋼板ダンパーなどの制震装置を組み込んで地震エネルギーを吸収させるようにした制震橋脚を開発している(特許文献1、非特許文献1参照)。   The applicant of the present application has made the pier member thinner than the continuous rigid frame bridge to make the natural period longer, thereby reducing the response speed of the pier during an earthquake and incorporating a vibration control device such as a steel plate damper. We have developed seismic piers that absorb energy (see Patent Document 1 and Non-Patent Document 1).

上記の制震橋脚の代表的な形態としては、複数の柱をトラスで連結してトラス構造の組柱を構成し、柱間のトラスを柱間中央のトラス格点位置で左右に分離し、トラス格点に鋼板ダンパーを配置して左右のトラスを連結し、地震時の組柱の水平方向のずれをトラス格点位置の上下方向のずれに変換し、鋼板ダンパーに作用する上下方向の相対変位により地震エネルギーを吸収するようにしたものがある。   As a typical form of the above-mentioned seismic control pier, a plurality of columns are connected by a truss to form a truss structure column, and the truss between the columns is separated to the left and right at the truss rating point in the center between the columns, A steel plate damper is placed at the truss rating point and the left and right trusses are connected to convert the horizontal displacement of the column during the earthquake into a vertical displacement of the truss rating point position. There is one that absorbs seismic energy by displacement.

また、本願の出願人は、沿岸部等の劣悪な環境下にも適用できる耐久性・耐候性を有し、さらに温度伸縮等にも追随可能な構造物用のダンパーとして、RC部材等からなる棒状ダンパー構造を開発している(特許文献2参照)。   In addition, the applicant of the present application is composed of RC members and the like as a damper for a structure that has durability and weather resistance that can be applied even in a poor environment such as a coastal area and that can also follow temperature expansion and contraction. A rod-shaped damper structure has been developed (see Patent Document 2).

上記棒状ダンパーは、両端をそれぞれ構造物に定着し、構造物の相対変位による棒状のダンパーの曲げ変形でエネルギーを吸収するようにしたものであり、RC部材またはPC部材からなる棒状ダンパー本体と、構造物に定着される筒状の部材であって棒状ダンパーの端部が挿入される拘束孔を有する拘束部材とから構成され、拘束孔の内面には、基部から先端部に向かって棒状ダンパーの外面から離れていく円弧による曲面が形成されている。   The rod-shaped damper is fixed to the structure at both ends, and absorbs energy by bending deformation of the rod-shaped damper due to relative displacement of the structure. A rod-shaped damper main body made of an RC member or a PC member; A cylindrical member fixed to the structure and having a restraining hole into which an end portion of the rod-shaped damper is inserted. The inner surface of the restraining hole has a rod-shaped damper on the inner surface from the base portion toward the tip portion. A curved surface is formed by an arc that separates from the outer surface.

拘束孔は、例えば棒状ダンパー本体の終局曲率に合わせた円弧で上方に向かって広がる朝顔状とし、地震時における上部構造からの慣性力等の水平力が棒状ダンパーの上部に作用すると、棒状ダンパー本体の曲率が拘束孔の形状に従い、曲率分布の制御・曲げ変形の分散により、棒状ダンパーの終局回転角、すなわち変形性能を大幅に向上させることができる。   The constraining hole is, for example, a morning glory that extends upward with an arc that matches the ultimate curvature of the rod-shaped damper body, and when a horizontal force such as inertial force from the upper structure during an earthquake acts on the upper portion of the rod-shaped damper, According to the shape of the constraining hole, the ultimate rotation angle of the rod-shaped damper, that is, the deformation performance can be greatly improved by controlling the curvature distribution and dispersing the bending deformation.

特開2005−207111号公報JP-A-2005-207111 特開2008−240488号公報JP 2008-240488 A 特開2008−214973号公報JP 2008-214973 A

“ハイフレッド(HiFleD)橋脚工法 -High Flexibility and Damping- 鋼製ダンパーを用いた制振橋脚工法”、[online]、鹿島建設株式会社、[平成21年6月29日検索]、インターネット<http://www.kajima.co.jp/tech/c_bridge/structure/04/index.html>“HiFleD pier construction method -High Flexibility and Damping- Damping pier construction method using steel dampers”, [online], Kashima Construction Co., Ltd., [Search June 29, 2009], Internet <http: //www.kajima.co.jp/tech/c_bridge/structure/04/index.html>

上述した従来の制震橋脚には、以下のような問題点がある。   The conventional seismic control pier described above has the following problems.

(1) RCラーメン構造の面内に設置されるブレース、トラス部材およびエネルギー吸収デバイス(鋼板ダンパー等)が鋼製部材であり、防錆処理等の定期的なメンテナンスを必要とし、ライフサイクルコストが増加する。 (1) Braces, truss members and energy absorbing devices (steel plate dampers, etc.) installed in the surface of the RC frame structure are steel members, which require regular maintenance such as rust prevention treatment, and have a life cycle cost. To increase.

(2) 鋼製ブレースをRC組柱の施工中、もしくは、施工後に設置し、かつ、ダンパー部材を鋼製ブレース設置後にセットしなければならず、施工作業が煩雑となる。 (2) The steel brace must be installed during or after the RC column construction and the damper member must be set after the steel brace is installed, which complicates the construction work.

(3) コスト低減を考慮するとダンパーは規格品が望ましいが、制震橋脚ではその規模に応じてダンパーの必要性能が変わるため、特注品となる可能性が高く、経済的でない。 (3) Considering cost reduction, a standard damper is desirable, but the required performance of the damper varies depending on the scale of the vibration control pier, so it is likely to be a custom product and is not economical.

本発明は、上述のような問題点の解決を図ったものであり、メンテナンスが容易で、耐久性、施工性、経済性にも優れた制震橋脚を提供することを目的としている。   The present invention is intended to solve the above-described problems, and an object thereof is to provide a vibration control pier that is easy to maintain and is excellent in durability, workability, and economy.

本願の請求項1に係る発明は、複数の柱または壁を、該柱または壁間に架け渡した複数の連結部材で連結してなる組柱構造または組壁構造の橋脚であり、前記連結部材として、エネルギー吸収材としての長手方向に延びる鉄筋またはPC鋼材をコンクリート材料で被覆してなるRC構造またはPC構造の棒状ダンパーを用いたことを特徴とするものである。   The invention according to claim 1 of the present application is a bridge pier having a column structure or a group wall structure in which a plurality of columns or walls are coupled by a plurality of coupling members spanned between the columns or walls. As described above, a bar-shaped damper having an RC structure or a PC structure in which a reinforcing bar or a PC steel material extending in the longitudinal direction as an energy absorbing material is coated with a concrete material is used.

棒状ダンパーはコンクリート内の長手方向に、通常、複数本の鉄筋またはPC鋼材が埋め込まれたものであるが、構造部材としての鉄筋コンクリートやプレストレストコンクリートとは異なり、鉄筋あるいはPC鋼材をエネルギー吸収材とし、せん断による曲げや引張力に対し、鉄筋やPC鋼材が塑性変形することで地震エネルギーを吸収するようにしたものである。エネルギー吸収効率を高めるため鉄筋として低降伏点鋼の鉄筋を用いることもできる。   A rod-shaped damper is usually one in which a plurality of rebars or PC steel is embedded in the longitudinal direction of the concrete, but unlike reinforced concrete or prestressed concrete as a structural member, rebar or PC steel is used as an energy absorber, It is designed to absorb seismic energy by plastic deformation of rebar and PC steel against bending and tensile forces caused by shear. In order to increase energy absorption efficiency, a low yield point steel rebar can be used as the rebar.

棒状ダンパーにおけるエネルギー吸収材である鉄筋あるいはPC鋼材はコンクリートで被覆されているため、耐候性に優れ、特に防錆処理などを施す必要がない。   Since the reinforcing steel or PC steel material, which is an energy absorbing material in the rod-shaped damper, is coated with concrete, it is excellent in weather resistance and does not need to be subjected to rust prevention treatment.

また、組柱あるいは組壁を構成する細い柱あるいは壁どうしをつなぐ連結部材として梁的に用いることができるため、設計、施工も容易である。   In addition, since it can be used as a beam as a connecting member for connecting thin columns or walls constituting the assembled column or the assembled wall, design and construction are easy.

この棒状ダンパーは、ダンパー部材単品として製品化したものを用いることができるが、鉄筋コンクリート梁やプレストレストコンクリート梁の場合と同様な現場打ち施工も可能である。ただし、連結部材として梁的に機能させることも可能であるが、鉄筋やPC鋼材は、あくまでエネルギー吸収材であるため、エネルギー吸収材としての断面設計、配筋となる。   Although this rod-shaped damper can use what was commercialized as a damper member single item, it can also perform on-site construction similar to the case of a reinforced concrete beam or a prestressed concrete beam. However, although it is possible to function as a connecting member as a connecting member, reinforcing bars and PC steel materials are energy absorbing materials to the last, and therefore, cross-sectional designs and reinforcing bars as energy absorbing materials.

請求項2は、請求項1に係る制震橋脚において、前記棒状ダンパーの端部が、該棒状ダンパーの曲げ変形量を制限する筒状の拘束部材に挿入されており、前記拘束部材が前記柱または壁に設けられていることを特徴とするものである。   According to a second aspect of the present invention, in the vibration control pier according to the first aspect, an end portion of the rod-shaped damper is inserted into a cylindrical constraining member that limits a bending deformation amount of the rod-shaped damper, and the constraining member is the column. Or it is provided in the wall.

請求項1において、筒状の拘束部材は必須ではないが、請求項2のように棒状ダンパーの端部を筒状の拘束部材で拘束し、棒状ダンパーの曲げ変形量を制御することで、特許文献2記載の棒状ダンパーの場合と同様に、棒状ダンパーの破損を防止しつつ大きなエネルギー吸収能力を発揮させることができる。   In Claim 1, the cylindrical restraining member is not essential, but the end of the rod-like damper is restrained by the tubular restraining member as in Claim 2, and the amount of bending deformation of the rod-like damper is controlled. As in the case of the rod-shaped damper described in Document 2, it is possible to exert a large energy absorption capability while preventing the rod-shaped damper from being damaged.

また、拘束部材を柱または壁に設けることで、そのまま棒状ダンパーの取付部とすることができる。   Further, by providing the restraining member on the column or wall, it can be used as the mounting portion of the rod-shaped damper as it is.

請求項3は、請求項2に係る制震橋脚において、前記拘束部材は、前記棒状ダンパーの端部が挿入される拘束孔を有し、内面に基部から先端部に向かって前記棒状ダンパーの外面から離れて行く弧状の曲面を形成したものであることを特徴とするものである。   According to a third aspect of the present invention, in the vibration control pier according to the second aspect, the constraining member has a constraining hole into which an end portion of the rod-shaped damper is inserted, and an outer surface of the rod-shaped damper is formed on the inner surface from the base portion toward the tip portion. It is characterized by forming an arcuate curved surface that goes away from.

弧状の曲面の設計により、棒状ダンパーの長手方向に渡り、エネルギー吸収材としての鉄筋あるいはPC鋼材を均等に変形させ、最大限の変形性能とエネルギー吸収能力を発揮させることができる。   By designing the arcuate curved surface, it is possible to uniformly deform the reinforcing bar or the PC steel material as the energy absorbing material over the longitudinal direction of the rod-shaped damper, and to exert the maximum deformation performance and energy absorbing ability.

請求項4は、請求項2または3に係る制震橋脚において、前記棒状ダンパーの端部は、前記拘束部材に取り付けられていることを特徴とするものである。   According to a fourth aspect of the present invention, in the vibration control pier according to the second or third aspect, an end portion of the rod-shaped damper is attached to the restraining member.

請求項4は、棒状ダンパーの端部が拘束部材内に納まる場合を想定しており、拘束部材を組柱あるいは組壁を構成する柱または壁に取り付けられることで、拘束部材に取り付けられた棒状ダンパーが所定の位置に設置されることになる。   Claim 4 assumes the case where the end of the rod-shaped damper is housed in the restraining member, and the rod-like member attached to the restraining member by attaching the restraining member to the pillar or wall constituting the assembled column or the assembled wall. The damper is installed at a predetermined position.

請求項5は、請求項4に係る制震橋脚において、前記拘束部材は、前記柱または壁に一体化されており、前記棒状ダンパーは前記拘束部材に対し着脱可能となっていることを特徴とするものである。   According to a fifth aspect of the present invention, in the vibration-damping pier according to the fourth aspect, the restraining member is integrated with the column or the wall, and the rod-shaped damper is detachable from the restraining member. To do.

この場合、拘束部材に対し着脱可能な棒状ダンパー本体部分のみの交換が可能となる。また、拘束部材をあらかじめ制震橋脚の柱または壁に一体化しておくことで、施工も容易となる。   In this case, it is possible to replace only the rod-shaped damper main body portion that can be attached to and detached from the restraining member. Moreover, construction is also facilitated by integrating the restraining member in advance with the pillar or wall of the vibration control pier.

請求項6は、請求項1、2または3に係る制震橋脚において、前記棒状ダンパーは、前記柱または壁に形成された貫通孔に挿入して取り付けられていることを特徴とするものである。   According to a sixth aspect of the present invention, in the vibration control pier according to the first, second, or third aspect, the rod-shaped damper is attached by being inserted into a through hole formed in the column or the wall. .

請求項6は、棒状ダンパーの端部が拘束部材を貫通して構造部材の一部である柱または壁内に納まることを想定しており、棒状ダンパーの定着という面では、拘束部材内に納まる場合より有利である。   The sixth aspect assumes that the end of the rod-shaped damper passes through the restraining member and is housed in a column or wall that is a part of the structural member, and in terms of fixing the rod-shaped damper, fits in the restraining member. More advantageous than the case.

この場合、棒状ダンパーの取り付けは、柱または壁の反対側から柱または壁を貫通させるように行うこともできる。   In this case, the rod-shaped damper can be attached so as to penetrate the column or wall from the opposite side of the column or wall.

(1) 制震橋脚がダンパー部も含めて全てコンクリート製となり、防錆処理等のサイクル作業が不要となり、コスト(ライフサイクルコストを含む)が低減できる。基本的に耐久性に関して、メンテナンスフリーとなる。 (1) The seismic control piers, including the dampers, are all made of concrete, eliminating the need for cycle work such as rust prevention, and reducing costs (including life cycle costs). Basically, it is maintenance-free with regard to durability.

(2) 棒状ダンパー部材については、交換可能な取り付け方法を採用することにより、地震後の補修作業が容易となる。 (2) For rod-shaped damper members, repair work after an earthquake becomes easy by adopting a replaceable mounting method.

(3) 棒状ダンパーの設置作業は、組柱または組壁の施工と同時に行うことができ、また、組柱または組壁を構成する柱または壁に、ダンパー取付け用の鋼製部材等を必ずしも埋設しなくて良いため、工期短縮、施工性、品質の安定性の向上において有利である。 (3) The installation of the rod-shaped damper can be performed simultaneously with the construction of the assembled column or the assembled wall. Also, the steel member for installing the damper is not necessarily embedded in the column or wall constituting the assembled column or the assembled wall. This is advantageous in terms of shortening the construction period, improving workability, and improving the stability of quality.

(4) 棒状ダンパーについては、円弧拘束部の曲率、配筋、寸法などの設計により、エネルギー吸収性能、変形性能を制御できるため、橋脚ごと、設置箇所ごとにカスタマイズされたダンパーを製作、設置することができる。 (4) For rod-shaped dampers, energy absorption performance and deformation performance can be controlled by designing the curvature, bar arrangement, dimensions, etc. of the arc constraining part, so customized dampers are manufactured and installed for each pier and each installation location. be able to.

本発明の制震橋脚の基本構造(実施例1)を示す斜視図である。It is a perspective view which shows the basic structure (Example 1) of the seismic control pier of this invention. 本発明の実施例2としての制震橋脚を示したもので、(a)は平常時の正面図、(b)は地震時の変形状態を示す正面図である。FIG. 5 shows a seismic control pier as Example 2 of the present invention, in which (a) is a front view in a normal state, and (b) is a front view showing a deformed state at the time of an earthquake. 実施例3におけるRC棒状ダンパーのプレキャスト式円弧拘束部を示す斜視図である。It is a perspective view which shows the precast-type arc restraint part of RC rod-shaped damper in Example 3. FIG. (a)〜(d)はそれぞれ実施例3の変形例におけるプレキャスト式円弧拘束部を示す斜視図である。(a)-(d) is a perspective view which shows the precast-type circular arc restraint part in the modification of Example 3, respectively. 実施例4におけるRC棒状ダンパーの取付け方法を示す断面図である。It is sectional drawing which shows the attachment method of RC rod-shaped damper in Example 4. 実施例5におけるRC棒状ダンパーの取付け方法を示す断面図である。It is sectional drawing which shows the attachment method of RC rod-shaped damper in Example 5. FIG. 実施例6として円弧拘束部の製作、設置をRC柱の施工と同時に行う場合の円弧拘束部の断面図である。It is sectional drawing of the circular arc restraint part in case manufacture and installation of a circular arc restraint part are performed simultaneously with construction of RC pillar as Example 6. FIG. 実施例7として円弧拘束部をプレキャスト部材として製作し、RC柱の施工時に設置をする場合の円弧拘束部の断面図である。It is sectional drawing of the circular arc restraint part in case an arc restraint part is manufactured as a precast member as Example 7, and it installs at the time of construction of RC pillar. 実施例8として円弧拘束部をプレキャスト部材として製作し、RC柱の施工時に設置をする場合の円弧拘束部の断面図である。It is sectional drawing of the circular arc restraint part in the case of producing an arc restraint part as a precast member as Example 8, and installing at the time of construction of RC pillar. 実施例9として円弧拘束部をプレキャスト部材として製作し、RC柱の施工後に設置をする場合の円弧拘束部の断面図である。It is sectional drawing of the circular arc restraint part in case the arc restraint part is manufactured as a precast member as Example 9, and it installs after construction of RC pillar. 実施例10として円弧拘束部をプレキャスト部材として製作し、RC柱の施工後に設置をする場合の円弧拘束部の断面図である。It is sectional drawing of the circular arc restraint part in case the arc restraint part is manufactured as a precast member as Example 10, and it installs after construction of RC pillar. RC棒状ダンパーの配筋と円弧拘束管との寸法関係を参考的に示したもので、(a)は軸方向の断面図、(b)は軸方向と直角方向の断面図である。The dimensional relationship between the reinforcing bar of RC rod-shaped damper and the circular arc restraint pipe is shown as a reference. (A) is a sectional view in the axial direction, and (b) is a sectional view in the direction perpendicular to the axial direction.

図1は、実施例1として、本発明の基本形態を示したもので、組柱構造の制震橋脚1を構成する複数のRC柱2の間に連結部材を兼ねたRC棒状ダンパー11を、中間梁的に、設置したものである。   FIG. 1 shows a basic form of the present invention as Example 1, and an RC rod-shaped damper 11 that also serves as a connecting member between a plurality of RC columns 2 constituting a seismic control pier 1 having a column structure. It is installed as an intermediate beam.

この場合、外観は通常のRC構造の組柱と似るが、連結部材としてのRC棒状ダンパー11内のエネルギー吸収用鉄筋12(破線で示す)は、RC梁としての配筋ではなく、所定以上の地震応答に対し、塑性変形することで地震エネルギーを吸収し、制震橋脚1の応答を低減するものである。   In this case, the appearance is similar to that of a normal RC structure column, but the energy absorbing rebar 12 (shown by a broken line) in the RC rod-shaped damper 11 as a connecting member is not a reinforcing bar as an RC beam, but more than a predetermined value. The seismic energy is absorbed by the plastic deformation in response to the earthquake response, and the response of the vibration control pier 1 is reduced.

RC棒状ダンパー11は、工場製作したものを用いることもできるが、現場打ちコンクリートにより、従来のRC梁と同様に現場施工することもできる。   Although the RC rod-shaped damper 11 can be manufactured at a factory, it can also be constructed on site by using cast-in-place concrete in the same manner as a conventional RC beam.

このRC棒状ダンパー11は、それ自体の寸法、配筋によっても任意の特性を実現できるため、個々の制震橋脚に対して最適な特性にカスタマイズされたダンパーを必要最小限の個数で設置することができ、効率的である。   Since this RC rod-shaped damper 11 can realize any characteristics depending on its own dimensions and bar arrangement, it is necessary to install a minimum number of dampers customized to the optimum characteristics for each damping bridge pier. Can be efficient.

また、RC棒状ダンパー11については、基本的に通常のRC部材と同等以上の耐久性を有しているため、制震橋脚1の全てをコンクリート製として、サイクル的なメンテナンス作業を軽減することができる。   Further, the RC rod-shaped damper 11 basically has durability equal to or higher than that of a normal RC member, so that all of the vibration control piers 1 are made of concrete to reduce cyclic maintenance work. it can.

なお、組柱に代え、組壁構造とした場合も、考え方は同様である。   In addition, it replaces with an assembly pillar, and the way of thinking is the same also when it uses an assembly wall structure.

図2は、組柱構造の制震橋脚1を構成する複数のRC柱2の間に連結部材を兼ねたRC棒状ダンパー21を、中間梁的に、設置した場合を示したもので、(a)は平常時の状態、(b)は地震時の変形状態(誇張して示している)である。   FIG. 2 shows a case where RC rod-shaped dampers 21 that also serve as connecting members are installed as intermediate beams between a plurality of RC columns 2 constituting the seismic control pier 1 having a column structure. ) Is the normal state, and (b) is the deformation state during the earthquake (exaggerated).

なお、図12は、RC棒状ダンパー21の配筋(軸方向筋22aとスパイラル筋22b)および後述する円弧拘束管23との寸法関係を参考的に示したものであり、軸方向筋22aとしては、例えばSD490 D19を10本配筋し、その周りにSD295 D10のスパイラル筋22bを密に巻いている。   FIG. 12 shows the dimensional relationship between the reinforcing bars of the RC rod-shaped damper 21 (axial direction stripes 22a and spiral stripes 22b) and an arc constraining tube 23 to be described later. As the axial direction stripes 22a, FIG. For example, ten SD490 D19 bars are arranged, and a spiral line 22b of SD295 D10 is tightly wound around it.

スパイラル筋22bは、RC棒状ダンパー21がせん断破壊するのを防ぎ、安定して曲げ変形するように、配置するものである。矩形断面の場合も、同様に、軸方向筋とスパイラル筋などのせん断補強鉄筋を配置する。   The spiral line 22b is disposed so as to prevent the RC rod-shaped damper 21 from being sheared and to bend and deform stably. Similarly, in the case of a rectangular cross section, a shear reinforcing bar such as an axial bar and a spiral bar is arranged.

図1に示した4本の組柱構造では、図示していないが、組柱の基部は基礎構造で固定され、上端は主桁で固定されている。地震により、任意の方向の水平力を受けても、各RC棒状ダンパー21は1方向の曲げ変形だけを受ける。   In the four columnar structure shown in FIG. 1, although not shown, the base of the column is fixed by the foundation structure, and the upper end is fixed by the main girder. Even if a horizontal force in an arbitrary direction is received due to an earthquake, each RC rod-shaped damper 21 receives only a bending deformation in one direction.

そのため、矩形断面とすることもできる。矩形断面は必要な曲げの方向に対し、断面の上下(または左右)のみに軸方向鉄筋22aあるいはPC鋼材を配置すればよいので、曲げに対して力学的に最も効率よく鋼材を配置できる。   Therefore, it can also be set as a rectangular cross section. In the rectangular cross section, since the axial rebar 22a or the PC steel material may be disposed only in the upper and lower sides (or left and right) of the cross section with respect to the necessary bending direction, the steel material can be mechanically most efficiently disposed with respect to the bending.

一方、円形断面は、製作が容易であると同時に、任意の曲げ方向に対して等しい特性を持つため、組柱構造がねじりを受けた場合でも、安定した曲げ変形が生じ、ダンパーとして機能することができる。   On the other hand, the circular cross-section is easy to manufacture and has the same characteristics in any bending direction, so that even when the column structure is subjected to torsion, stable bending deformation occurs and functions as a damper. Can do.

実施例2におけるRC棒状ダンパー21の本体部分は、実施例1と同様、コンクリートの内部に長手方向に延びるエネルギー吸収用鉄筋22またはPC鋼材が埋め込まれたものであるが、その端部を、内面を弧状に形成した筒状の拘束管(以下、「円弧拘束管」という。)23の拘束孔24に挿入してある。   As in the first embodiment, the main body portion of the RC rod-shaped damper 21 in the second embodiment is the one in which the reinforcing steel 22 for absorbing energy or the PC steel material extending in the longitudinal direction is embedded in the concrete, Is inserted into a restraint hole 24 of a cylindrical restraint pipe (hereinafter referred to as “arc restraint pipe”) 23 formed in an arc shape.

実施例2におけるRC棒状ダンパー21の設置は、円弧拘束管23を制震橋脚1の組柱を構成するRC柱2の側面に固定することにより行うことができる。固定方法は接合金具を用いたボルト接合や、円弧拘束管23をRC柱2と一体として施工する方法など特に限定されない。   The RC rod-shaped damper 21 according to the second embodiment can be installed by fixing the arc constraining pipe 23 to the side surface of the RC column 2 constituting the assembled column of the vibration control pier 1. The fixing method is not particularly limited, such as a bolt joint using a joint fitting or a method of constructing the arc constraining tube 23 integrally with the RC pillar 2.

制震橋脚としての基本的な機能は、背景技術の項で述べた特許文献1や非特許文献1等に記載されている従来の制震橋脚の場合と同様であり、RC柱2が曲げ変形した際に、RC棒状ダンパー21に上下にずれるような曲げ変形が与えられ(図2(b)参照)、RC棒状ダンパー21内の鉄筋22等が塑性変形することにより地震時における振動エネルギーを吸収する。それにより、例えばレベル2地震時でもRC柱2の変形は弾性範囲内に収まるという状態を想定している。   The basic function as a seismic control pier is the same as that of the conventional seismic control pier described in Patent Document 1 and Non-Patent Document 1 described in the background section, and the RC column 2 is bent and deformed. When this occurs, bending deformation is applied to the RC rod-shaped damper 21 so as to shift up and down (see FIG. 2B), and the reinforcing bars 22 and the like in the RC rod-shaped damper 21 are plastically deformed to absorb vibration energy during an earthquake. To do. Thereby, for example, it is assumed that the deformation of the RC column 2 is within the elastic range even during a level 2 earthquake.

また、RC棒状ダンパー21は、それ自体の寸法、配筋によっても任意の特性を実現できるため、個々の制震橋脚に対して最適な特性にカスタマイズされたダンパーを必要最小限の個数で設置することができるという点は実施例1で述べた通りである。さらに、実施例2の場合、円弧拘束管23内面の円弧形状によりダンパー全体の変形性能、エネルギー吸収性能を調節することが可能である。   In addition, since the RC rod-shaped damper 21 can realize arbitrary characteristics depending on its own dimensions and bar arrangement, a minimum number of dampers customized to the optimum characteristics for each damping bridge pier are installed. This is possible as described in the first embodiment. Furthermore, in the case of the second embodiment, it is possible to adjust the deformation performance and energy absorption performance of the entire damper by the arc shape of the inner surface of the arc constraining tube 23.

図3は、RC棒状ダンパー31の具体的な実施形態として、RC棒状ダンパー31本体の端部をプレキャスト式円弧拘束部33で拘束した場合を示したものである。   FIG. 3 shows a case where the end portion of the RC rod-shaped damper 31 main body is constrained by a precast arc constraining portion 33 as a specific embodiment of the RC rod-shaped damper 31.

円弧拘束部33については、着脱可能なRC製蓋35でRC棒状ダンパー設置部34を覆うことができるようにする(図中、37、38は取付け用の孔を示す。)。また、円弧部はコの字型の箱抜き構造とし、側方からRC棒状ダンパー31本体をスライドさせて設置できるようにする。これにより、地震などで損傷したRC棒状ダンパー31本体の交換が容易となる。   The arc constraining portion 33 is configured so that the RC rod-shaped damper installation portion 34 can be covered with a detachable RC lid 35 (in the drawing, 37 and 38 indicate mounting holes). Further, the arc portion has a U-shaped box opening structure so that the RC rod-shaped damper 31 main body can be slid and installed from the side. Thereby, replacement | exchange of the RC rod-shaped damper 31 main body damaged by the earthquake etc. becomes easy.

円弧拘束部33の上下側面は、ハンチ形状、または、曲面形状とするのが好ましい。これは、円弧部を介して伝達するRC棒状ダンパー31の水平力を緩やかにRC柱部へ伝達するための工夫である。これにより、円弧拘束部33を小型化することも可能である。   It is preferable that the upper and lower side surfaces of the arc constraining portion 33 have a haunch shape or a curved surface shape. This is a device for gently transmitting the horizontal force of the RC rod-shaped damper 31 transmitted through the arc portion to the RC column portion. Thereby, it is also possible to reduce the size of the arc restraint portion 33.

円弧拘束部33のRC柱2への設置面については、凹凸を設けて、せん断キーとして機能させることもできる。また、円弧拘束部33をプレキャスト部材とする場合は、孔あき鋼板ジベル36あるいはアンカー筋(図示せず)を接続部材として、設置しておけば、RC柱2との一体性を高めることができる。   The installation surface of the arc constraining portion 33 on the RC pillar 2 can be provided with irregularities so as to function as a shear key. Further, when the arc constraining portion 33 is a precast member, it is possible to enhance the integrity with the RC pillar 2 by installing a perforated steel plate gibber 36 or an anchor bar (not shown) as a connecting member. .

この例では、ダンパーの変形が一方向であるため、矩形断面としてエネルギー吸収用鉄筋32を埋め込んでいるが、例えば実施例3の変形例としての図4(a)〜(d)に示すように円形断面でもよい。   In this example, since the damper is deformed in one direction, the energy absorbing rebar 32 is embedded as a rectangular cross section. For example, as shown in FIGS. 4 (a) to 4 (d) as modifications of the third embodiment. A circular section may be sufficient.

また、着脱可能な蓋35は、円弧拘束部33の形状に応じて、他の形態でもよい。すなわち、図4(a)は円弧拘束部33aとRC製蓋35aとを2分割した形態となっている。図4(b)はRC製蓋35bがRC棒状ダンパー31bを設置できる(取り出せる)最小の幅となっている。   Further, the removable cover 35 may take other forms depending on the shape of the arc restraining portion 33. That is, FIG. 4 (a) has a form in which the arc constraining portion 33a and the RC lid 35a are divided into two. In FIG. 4B, the RC lid 35b has a minimum width in which the RC rod-shaped damper 31b can be installed (taken out).

同様に、図4(c)は円弧拘束部33cとRC製蓋35cとを2分割した形態となっている。図4(d)はRC製蓋35dがRC棒状ダンパー31dを設置できる(取り出せる)最小の幅となっている。   Similarly, FIG. 4 (c) shows a form in which the arc restraint portion 33c and the RC lid 35c are divided into two. In FIG. 4 (d), the RC lid 35d has a minimum width in which the RC rod-shaped damper 31d can be installed (taken out).

図5は、RC棒状ダンパー41の具体的な実施形態として、RC棒状ダンパー41本体の端部を設置路付き円弧拘束部43で拘束した場合を示したものである。   FIG. 5 shows, as a specific embodiment of the RC rod-shaped damper 41, a case where the end of the RC rod-shaped damper 41 main body is constrained by an arc confining portion 43 with an installation path.

すなわち、図4(b)に示すように、円弧拘束部43から側面にわたって、RC棒状ダンパー41の設置路44を設けたものである。この場合、柱側面の投入口45から円形断面のRC棒状ダンパー41を投入すれば、下方向へ転がり、円弧拘束部43に自動的に設置できる。   That is, as shown in FIG. 4B, the installation path 44 of the RC rod-shaped damper 41 is provided from the arc restraint portion 43 to the side surface. In this case, if the RC rod-shaped damper 41 having a circular cross section is inserted from the insertion port 45 on the side surface of the column, it rolls downward and can be automatically installed on the arc constraining portion 43.

円弧拘束部43と設置路44との境界には、段差46を設けたり、RC棒状ダンパー41設置後にストッパー47を設けておけば、地震時にRC棒状ダンパー41が側方へ移動することはない。また、地震後にRC棒状ダンパー41を交換する際には、クレーン等により、設置路44に沿ってRC棒状ダンパー41を移動させるか、RC棒状ダンパー41の中央部を切断すれば、撤去が可能である。   If the step 46 is provided at the boundary between the arc constraining portion 43 and the installation path 44 or if the stopper 47 is provided after the RC rod damper 41 is installed, the RC rod damper 41 will not move to the side during an earthquake. Moreover, when exchanging the RC rod-shaped damper 41 after the earthquake, the RC rod-shaped damper 41 can be removed by moving the RC rod-shaped damper 41 along the installation path 44 or cutting the central portion of the RC rod-shaped damper 41 with a crane or the like. is there.

この方法では、円弧拘束部43および設置路44をRC柱2の施工時に設けることができれば、RC棒状ダンパー41の設置が極めて容易となる方法である。その反面、設置部が大型化する可能性があることが留意点である。   In this method, if the arc constraining portion 43 and the installation path 44 can be provided at the time of the construction of the RC pillar 2, the RC rod-shaped damper 41 can be installed very easily. On the other hand, there is a possibility that the installation part may be enlarged.

図6は、RC棒状ダンパー51の具体的な実施形態として、RC棒状ダンパー51本体の端部を挿入路付き円弧拘束部53で拘束した場合を示したものである。   FIG. 6 shows, as a specific embodiment of the RC rod-shaped damper 51, a case where the end portion of the RC rod-shaped damper 51 main body is restrained by an arc restraint portion 53 with an insertion path.

すなわち、RC柱2にRC棒状ダンパー51の設置のための挿入路を設けるものであり、図中左側のRC柱2には、円弧拘束部53につながる貫通孔2a(径:RC棒状ダンパー51の外径+α)がラーメン架構の面内外側から設けられている。RC棒状ダンパー51は、反対側のRC柱2の孔2b内へ突き当たるまで挿入して、設置する。   That is, an insertion path for installing the RC rod-shaped damper 51 is provided in the RC column 2, and the RC column 2 on the left side in the drawing has a through-hole 2 a (diameter: RC rod-shaped damper 51 of the RC rod-shaped damper 51. The outer diameter + α) is provided from the inside and outside of the frame. The RC rod-shaped damper 51 is inserted and installed until it hits into the hole 2b of the RC pillar 2 on the opposite side.

この方法では、RC柱2内にRC棒状ダンパー51の根入れ深さを確保できるため、円弧拘束部53の高さを小さくすることができる。その反面、RC棒状ダンパー51の部材径が大きいと貫通孔2a、孔2bが大きくなり、RC柱2部の主鉄筋等を侵す可能性がある。RC壁式橋脚のように奥行きがあり小さな径のRC棒状ダンパーを数多く設置できる場合や、主鉄筋間隔が大きいようなRC柱等に適している。   In this method, since the penetration depth of the RC rod-shaped damper 51 can be secured in the RC pillar 2, the height of the arc constraining portion 53 can be reduced. On the other hand, if the member diameter of the RC rod-shaped damper 51 is large, the through hole 2a and the hole 2b become large, and there is a possibility that the main reinforcing bar and the like of the RC column 2 part are affected. It is suitable for RC columns with large depth and small RC rod-like dampers such as RC wall type piers, or RC columns with large main reinforcing bar spacing.

円弧拘束部については、RC柱2の施工と同時に製作する方法と、プレキャスト部材として製作しておき、RC柱2の施工後に設置する方法が考えられるが、図7は、円弧拘束部63の製作、設置をRC柱2の施工と同時に製作する方法の一例を示したものである。   Regarding the arc constraining portion, there are a method of manufacturing the RC column 2 at the same time as the construction and a method of manufacturing as a precast member and installing it after the RC column 2 is constructed. An example of a method for producing the installation simultaneously with the construction of the RC pillar 2 is shown.

円弧拘束部63の外側は、RC棒状ダンパーからの水平力を緩やかにRC柱2へ伝達するためにハンチ形状とする。また、円弧拘束部63の円弧部の拘束筋、組立筋等としての鉄筋64は、RC柱2内へ定着し、一体化する。   The outside of the arc constraining portion 63 is formed in a haunch shape so as to gently transmit the horizontal force from the RC rod-shaped damper to the RC column 2. Further, the reinforcing bars 64 as the reinforcing bars and the assembly bars of the arc part of the arc restricting part 63 are fixed in the RC column 2 and integrated.

この方法では、RC柱2の施工時にダンパー取り付け部を製作できるため、後述の後設置方式に比べ作業手間を減らすことができる。ただし、円弧拘束部63の型枠の形状が複雑となり、コンクリートの充填性に注意する必要がある。この場合、RC柱2のコンクリートの打ち継目を各取り付け部の直下とすれば、型枠の設置、コンクリートの充填において有利となる。   In this method, since the damper mounting portion can be manufactured at the time of the construction of the RC pillar 2, it is possible to reduce the work labor as compared with the later installation method described later. However, the shape of the form of the arc constraining portion 63 is complicated, and it is necessary to pay attention to the filling property of the concrete. In this case, if the concrete joint of the RC pillar 2 is directly under each mounting portion, it is advantageous in installing the mold and filling the concrete.

図8は、円弧拘束部73をプレキャスト部材として製作し、RC柱2の施工時に設置をする場合の一例を示したものである。プレキャスト製円弧拘束部73には、図に示すように、RC柱2との接続部に孔あき鋼板ジベル74を設けておき、RC柱2のコンクリート打設時にそれらを埋設することにより設置を行う。   FIG. 8 shows an example in which the arc constraining portion 73 is manufactured as a precast member and is installed when the RC pillar 2 is constructed. As shown in the figure, the precast arc restraint portion 73 is provided with a perforated steel plate gibel 74 at the connection portion with the RC column 2 and is embedded by embedding them when the RC column 2 is placed in concrete. .

なお、円弧拘束部73のRC柱2との設置面に凹凸を設けておき、せん断キーとして機能させることも有効である。   It is also effective to provide an unevenness on the installation surface of the arc constraining portion 73 with the RC pillar 2 so as to function as a shear key.

円弧拘束部73をRC柱2の施工時に設置することができれば、施工後に設置作業のために、施工機械や作業員等の上下移動を低減でき、効率的である   If the arc constraining portion 73 can be installed at the time of the construction of the RC pillar 2, the vertical movement of the construction machine or the worker can be reduced for the installation work after the construction, which is efficient.

図9は、実施例7と同様、円弧拘束部83をプレキャスト部材として製作し、RC柱2の施工時に設置をする方法を示したものである。プレキャスト製円弧拘束部83には、図に示すように、RC柱2との接続部に先端に定着体としての突起部85を有する複数本のアンカー筋84を設けておき、RC柱2のコンクリート打設時にそれらを埋設することにより設置を行う。   FIG. 9 shows a method of manufacturing the arc constraining portion 83 as a precast member and installing it at the time of construction of the RC pillar 2 as in the seventh embodiment. As shown in the figure, the precast arc restraint portion 83 is provided with a plurality of anchor bars 84 having a protrusion 85 as a fixing body at the tip at the connection portion with the RC pillar 2, and the concrete of the RC pillar 2 is provided. Installation is carried out by burying them when placing.

実施例7と同様、円弧拘束部83のRC柱2との設置面に凹凸を設けておき、せん断キーとして機能させることも有効である。また、円弧拘束部83をRC柱2の施工時に設置することができれば、施工後に設置作業のために、施工機械や作業員等の上下移動を低減でき、効率的である   As in the seventh embodiment, it is also effective to provide unevenness on the installation surface of the arc constraining portion 83 with the RC pillar 2 so as to function as a shear key. Moreover, if the arc restraint part 83 can be installed at the time of the construction of the RC pillar 2, the vertical movement of the construction machine or the worker can be reduced for the installation work after the construction, which is efficient.

図10は、円弧拘束部93をプレキャスト部材として製作し、RC柱2の施工後に設置をする場合の一例を示したものである。   FIG. 10 shows an example in which the arc restraint portion 93 is manufactured as a precast member and is installed after the construction of the RC pillar 2.

円弧拘束部の固定方法としては、RC柱2に後施工で掘削孔94を設け、円弧拘束部93に埋め込んだアンカー筋95を挿入し、充填材(例えば、無収縮モルタルやエポキシ樹脂等)で一体化させる。   As a method for fixing the arc constraining portion, an excavation hole 94 is provided in the RC column 2 in a later work, an anchor bar 95 embedded in the arc constraining portion 93 is inserted, and a filler (for example, non-shrink mortar or epoxy resin) is used. Integrate.

図11は、実施例9と同様、円弧拘束部103をプレキャスト部材として製作し、RC柱2の施工後に設置をする場合の一例を示したものである。   FIG. 11 shows an example in which the arc constraining portion 103 is manufactured as a precast member and installed after the construction of the RC pillar 2 as in the ninth embodiment.

円弧拘束部の固定方法としては、RC柱2に後施工で貫通孔2cを設け、また、円弧拘束部103にも貫通孔104を設けておき、両者を貫通するようにPC鋼棒105あるいはアンカーボルトを挿通し、緊張、締め付けによる摩擦により固定する。   As a method of fixing the arc constraining portion, the RC pillar 2 is provided with a through hole 2c in a post-construction, and the arc constraining portion 103 is also provided with a through hole 104, and the PC steel rod 105 or anchor is provided so as to penetrate both. Insert bolts and fix them by tension and friction by tightening.

この場合、円弧拘束部103の取り外しが可能であり、万一、地震後や経年劣化で円弧拘束部103が損傷した場合に、取換えが容易となる。   In this case, the arc constraining portion 103 can be removed, and replacement is easy if the arc constraining portion 103 is damaged after an earthquake or due to deterioration over time.

本発明は、組柱構造または組壁構造の制震橋脚として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a seismic pier with a column structure or a wall structure.

1…制震橋脚、
2…RC柱、2a…貫通孔、2b…孔、2c…貫通孔、
11、21、31、41、51、61…RC棒状ダンパー、
12、22、32、42、52…エネルギー吸収用鉄筋、
23…円弧拘束管、24…拘束孔、
33…プレキャスト式円弧拘束部、34…RC棒状ダンパー設置部、35…RC製蓋、36…孔あき鋼板ジベル、37、38…取付け用孔、
43…円弧拘束部、44…設置路、45…投入口、46…段差、47…ストッパー、
53…円弧拘束部、
63…円弧拘束部、64…鉄筋、
73…プレキャスト製円弧拘束部、74…孔あき鋼板ジベル、
83…プレキャスト製円弧拘束部、84…アンカー筋、85…突起部、
93…プレキャスト製円弧拘束部、94…掘削孔、95…アンカー筋、
103…プレキャスト製円弧拘束部、104…貫通孔、105…PC鋼棒
1 ... Aseismic bridge pier,
2 ... RC pillar, 2a ... through hole, 2b ... hole, 2c ... through hole,
11, 21, 31, 41, 51, 61 ... RC rod damper,
12, 22, 32, 42, 52 ... rebar for energy absorption,
23 ... Circular restraint tube, 24 ... Restraint hole,
33 ... Precast type arc restraint part, 34 ... RC rod-shaped damper installation part, 35 ... RC lid, 36 ... Perforated steel plate gibel, 37, 38 ... Mounting hole,
43 ... Arc restraint part, 44 ... Installation path, 45 ... Inlet, 46 ... Step, 47 ... Stopper
53 ... Arc restraint part,
63 ... arc restraint part, 64 ... rebar,
73 ... Precast arc restraint part, 74 ... Perforated steel plate gibber,
83 ... Precast arc restraint part, 84 ... Anchor bar, 85 ... Projection part,
93 ... Precast arc restraint part, 94 ... Drilling hole, 95 ... Anchor bar,
103 ... Precast arc restraint part, 104 ... Through hole, 105 ... PC steel rod

Claims (6)

複数の柱または壁を、該柱または壁間に架け渡した複数の連結部材で連結してなる組柱構造または組壁構造の橋脚であり、前記連結部材として、エネルギー吸収材としての長手方向に延びる鉄筋またはPC鋼材をコンクリート材料で被覆してなるRC構造またはPC構造の棒状ダンパーを用いたことを特徴とする制震橋脚。   It is a bridge pier of an assembled column structure or an assembled wall structure formed by connecting a plurality of columns or walls with a plurality of connecting members spanned between the columns or walls, and as the connecting member, in the longitudinal direction as an energy absorbing material A seismic control pier characterized by using a RC-type or PC-structured bar-shaped damper formed by covering extending steel bars or PC steel with a concrete material. 前記棒状ダンパーの端部が、該棒状ダンパーの曲げ変形量を制限する筒状の拘束部材に挿入されており、前記拘束部材が前記柱または壁に設けられていることを特徴とする請求項1記載の制震橋脚。   The end of the rod-shaped damper is inserted into a cylindrical constraining member that limits the amount of bending deformation of the rod-shaped damper, and the constraining member is provided on the column or wall. Seismic control pier as described. 前記拘束部材は、前記棒状ダンパーの端部が挿入される拘束孔を有し、内面に基部から先端部に向かって前記棒状ダンパーの外面から離れて行く弧状の曲面を形成したものであることを特徴とする請求項2記載の制震橋脚。   The constraining member has a constraining hole into which an end portion of the rod-shaped damper is inserted, and has an arcuate curved surface going away from the outer surface of the rod-shaped damper from the base portion toward the tip portion on the inner surface. The vibration control pier according to claim 2, wherein 前記棒状ダンパーの端部は、前記拘束部材に取り付けられていることを特徴とする請求項2または3記載の制震橋脚。   4. The damping pier according to claim 2, wherein an end of the rod-shaped damper is attached to the restraining member. 前記拘束部材は、前記柱または壁に一体化されており、前記棒状ダンパーは前記拘束部材に対し着脱可能となっていることを特徴とする請求項4記載の制震橋脚。   The seismic control pier according to claim 4, wherein the restraining member is integrated with the column or wall, and the rod-shaped damper is detachable from the restraining member. 前記棒状ダンパーは、前記柱または壁に形成された貫通孔に挿入して取り付けられていることを特徴とする請求項1、2または3記載の制震橋脚。   4. The damping pier according to claim 1, wherein the rod-shaped damper is attached by being inserted into a through-hole formed in the column or wall.
JP2009234388A 2009-10-08 2009-10-08 Seismic control pier Active JP5528763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234388A JP5528763B2 (en) 2009-10-08 2009-10-08 Seismic control pier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234388A JP5528763B2 (en) 2009-10-08 2009-10-08 Seismic control pier

Publications (2)

Publication Number Publication Date
JP2011080293A true JP2011080293A (en) 2011-04-21
JP5528763B2 JP5528763B2 (en) 2014-06-25

Family

ID=44074593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234388A Active JP5528763B2 (en) 2009-10-08 2009-10-08 Seismic control pier

Country Status (1)

Country Link
JP (1) JP5528763B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060754A (en) * 2011-09-14 2013-04-04 Ohbayashi Corp Vibration control column and its structure
JP2013133681A (en) * 2011-12-27 2013-07-08 Kajima Corp Damper structure and construction method therefor
JP2014228131A (en) * 2013-05-27 2014-12-08 鹿島建設株式会社 Suspension material support structure of aseismic device
CN104452577A (en) * 2014-12-24 2015-03-25 福州大学 Pier and bent cap structure capable of improving lateral seismic performance of beam bridge and construction method
JP2015105562A (en) * 2013-12-03 2015-06-08 公益財団法人鉄道総合技術研究所 Aseismic reinforcement method for rigid-frame viaduct arranging beams in intermediate layer
CN105568845A (en) * 2016-02-29 2016-05-11 石家庄铁道大学 Replaceable shock-absorbing and energy-dissipating type double-leg high-pier system beam
JP2016108931A (en) * 2014-12-08 2016-06-20 東日本旅客鉄道株式会社 Bridge structure
JP2016108932A (en) * 2014-12-08 2016-06-20 東日本旅客鉄道株式会社 Support leg structure body, and construction method for support leg structure body
JP2017096007A (en) * 2015-11-26 2017-06-01 東日本旅客鉄道株式会社 Pedestal structure
CN107974931A (en) * 2017-11-23 2018-05-01 南京工业大学 Self-energy-consumption high pier structure system with post-earthquake recoverable performance
CN108729343A (en) * 2018-05-24 2018-11-02 西南交通大学 It can restore assembled energy consumption stub structure after a kind of shake
CN109235460A (en) * 2018-09-03 2019-01-18 石家庄铁道大学 A kind of double limbs energy consumption friction pile and its construction method
CN110258306A (en) * 2019-07-03 2019-09-20 重庆锦森腾建筑工程咨询有限公司 A kind of assembled anti-knock bridge pier
CN111305049A (en) * 2020-03-01 2020-06-19 北京工业大学 Self-resetting energy-consumption connecting structure of swinging pier-tie beam
CN113174842A (en) * 2021-05-26 2021-07-27 合肥工业大学 Combined pier crossbeam of split type power consumption antidetonation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185297A (en) * 1983-04-06 1984-10-20 日立造船株式会社 Ground detecting apparatus in shield drilling machine
JPS6234061U (en) * 1985-08-15 1987-02-28
JPH06313303A (en) * 1993-04-30 1994-11-08 Toshiaki Ota Bridge pier structure
JPH10169094A (en) * 1996-12-13 1998-06-23 Shimizu Corp Base isolation post
JP2001303516A (en) * 2000-04-19 2001-10-31 Tokai Rubber Ind Ltd Shift restriction device for bridge
JP2004169309A (en) * 2002-11-18 2004-06-17 Mitsubishi Heavy Ind Ltd Bridge and its main tower
JP2006077492A (en) * 2004-09-10 2006-03-23 Hanshin Expressway Public Corp Earthquake resisting pier
JP2008240488A (en) * 2007-03-29 2008-10-09 Kajima Corp Concrete type bar-shaped damper structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185297A (en) * 1983-04-06 1984-10-20 日立造船株式会社 Ground detecting apparatus in shield drilling machine
JPS6234061U (en) * 1985-08-15 1987-02-28
JPH06313303A (en) * 1993-04-30 1994-11-08 Toshiaki Ota Bridge pier structure
JPH10169094A (en) * 1996-12-13 1998-06-23 Shimizu Corp Base isolation post
JP2001303516A (en) * 2000-04-19 2001-10-31 Tokai Rubber Ind Ltd Shift restriction device for bridge
JP2004169309A (en) * 2002-11-18 2004-06-17 Mitsubishi Heavy Ind Ltd Bridge and its main tower
JP2006077492A (en) * 2004-09-10 2006-03-23 Hanshin Expressway Public Corp Earthquake resisting pier
JP2008240488A (en) * 2007-03-29 2008-10-09 Kajima Corp Concrete type bar-shaped damper structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060754A (en) * 2011-09-14 2013-04-04 Ohbayashi Corp Vibration control column and its structure
JP2013133681A (en) * 2011-12-27 2013-07-08 Kajima Corp Damper structure and construction method therefor
JP2014228131A (en) * 2013-05-27 2014-12-08 鹿島建設株式会社 Suspension material support structure of aseismic device
JP2015105562A (en) * 2013-12-03 2015-06-08 公益財団法人鉄道総合技術研究所 Aseismic reinforcement method for rigid-frame viaduct arranging beams in intermediate layer
JP2016108931A (en) * 2014-12-08 2016-06-20 東日本旅客鉄道株式会社 Bridge structure
JP2016108932A (en) * 2014-12-08 2016-06-20 東日本旅客鉄道株式会社 Support leg structure body, and construction method for support leg structure body
CN104452577A (en) * 2014-12-24 2015-03-25 福州大学 Pier and bent cap structure capable of improving lateral seismic performance of beam bridge and construction method
JP2017096007A (en) * 2015-11-26 2017-06-01 東日本旅客鉄道株式会社 Pedestal structure
CN105568845B (en) * 2016-02-29 2017-05-10 石家庄铁道大学 Replaceable shock-absorbing and energy-dissipating type double-leg high-pier system beam
CN105568845A (en) * 2016-02-29 2016-05-11 石家庄铁道大学 Replaceable shock-absorbing and energy-dissipating type double-leg high-pier system beam
CN107974931A (en) * 2017-11-23 2018-05-01 南京工业大学 Self-energy-consumption high pier structure system with post-earthquake recoverable performance
CN107974931B (en) * 2017-11-23 2019-05-31 南京工业大学 Self-energy-consumption high pier structure system with post-earthquake recoverable performance
CN108729343A (en) * 2018-05-24 2018-11-02 西南交通大学 It can restore assembled energy consumption stub structure after a kind of shake
CN109235460A (en) * 2018-09-03 2019-01-18 石家庄铁道大学 A kind of double limbs energy consumption friction pile and its construction method
CN110258306A (en) * 2019-07-03 2019-09-20 重庆锦森腾建筑工程咨询有限公司 A kind of assembled anti-knock bridge pier
CN111305049A (en) * 2020-03-01 2020-06-19 北京工业大学 Self-resetting energy-consumption connecting structure of swinging pier-tie beam
CN111305049B (en) * 2020-03-01 2021-07-02 北京工业大学 Self-resetting energy-consumption connecting structure of swinging pier-tie beam
CN113174842A (en) * 2021-05-26 2021-07-27 合肥工业大学 Combined pier crossbeam of split type power consumption antidetonation

Also Published As

Publication number Publication date
JP5528763B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5528763B2 (en) Seismic control pier
JP4735585B2 (en) Concrete rod-shaped damper structure
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
KR100955706B1 (en) Structural and seismic damper and its strengthening techniques using multi-layered elastic-plastic castellated plates and elastic rubbers
KR100589289B1 (en) Improvement of seismic performance of bridges using the circular steel members, and a seismic retrofit method of bridges
KR101478654B1 (en) Seismic Retrofit Technology using Diagrid Frames
JP2007321486A (en) Armed pipe aseismatic structure and armed pipe aseismatic reinforcing method
KR100802515B1 (en) Composite floor structure using two precast composite steel beams
JP2008214973A (en) Seismic-control bridge pier structure
JP5048516B2 (en) Carbon fiber reinforced plastic structure and housing formed from this carbon fiber reinforced plastic structure
JP2001262774A (en) Steel concrete composite structural member
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
JP2012255330A (en) Damper to be rigid-frame in earthquake, earthquake resistance improving construction method of dam sluice gate piers and earthquake resistance improving construction method of bridge
JP5868603B2 (en) Seismic reinforcement method for existing buildings
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP5721059B2 (en) Method of increasing the size of protective fences and existing protective fences
JP2000129951A (en) Vibration control wall
JP5214371B2 (en) Structure
JP2007039992A (en) Bridge girder movement inhibiting device, and method of producing bridge girder movement inhibiting device
KR101378700B1 (en) Unit modular seismic absorbing apparatus for rahmen structures
JP2013002032A (en) Earthquake-resisting wall of corrugated steel plate and calculation method of initial elastic shear stiffness thereof
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP2006132150A (en) Seismic response control column and its construction method
JP3791478B2 (en) Pile head joint structure
JP2010090547A (en) Pile head joining structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140416

R150 Certificate of patent or registration of utility model

Ref document number: 5528763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250