JP2013002032A - Earthquake-resisting wall of corrugated steel plate and calculation method of initial elastic shear stiffness thereof - Google Patents

Earthquake-resisting wall of corrugated steel plate and calculation method of initial elastic shear stiffness thereof Download PDF

Info

Publication number
JP2013002032A
JP2013002032A JP2011130587A JP2011130587A JP2013002032A JP 2013002032 A JP2013002032 A JP 2013002032A JP 2011130587 A JP2011130587 A JP 2011130587A JP 2011130587 A JP2011130587 A JP 2011130587A JP 2013002032 A JP2013002032 A JP 2013002032A
Authority
JP
Japan
Prior art keywords
corrugated steel
openings
steel sheet
stress
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011130587A
Other languages
Japanese (ja)
Other versions
JP5917838B2 (en
Inventor
Yoshihiro Ota
義弘 太田
Hirofumi Kaneko
洋文 金子
Ai Yamada
藍 山田
Mitsuru Takeuchi
満 竹内
Hideto Tanaka
秀人 田中
Naomiki Suzuki
直幹 鈴木
Hirokazu Nozawa
裕和 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2011130587A priority Critical patent/JP5917838B2/en
Publication of JP2013002032A publication Critical patent/JP2013002032A/en
Application granted granted Critical
Publication of JP5917838B2 publication Critical patent/JP5917838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake-resisting wall of corrugated steel plate which allows a plurality of openings to be formed with improved workability, and a calculation method of the initial elastic shear stiffness thereof.SOLUTION: A corrugated steel plate 30 is provided with a plurality of openings 40. The openings 40 are holes in a circular form having the same radius, and arranged in a staggered form in each flat plate part 30P of the corrugated steel plate 30, such that stress transmitting parts 42A and 42B tilted in the opposite directions relative to the vertical direction are formed between the neighboring openings 40.

Description

本発明は、波形鋼板耐震壁、及びこれの初期弾性せん断剛性算出方法に関する。   The present invention relates to a corrugated steel shear wall and a method for calculating an initial elastic shear stiffness thereof.

波形鋼板に設備用等の開口部が形成された波形鋼板耐震壁が知られている(例えば、特許文献1)。特許文献1に開示された技術では、開口部の周辺部が当て板等で補強されている。   There is known a corrugated steel shear wall in which corrugated steel sheets are provided with openings for equipment or the like (for example, Patent Document 1). In the technique disclosed in Patent Document 1, the periphery of the opening is reinforced with a backing plate or the like.

特開2010−127051号公報JP 2010-127051 A

ところで、設備用以外にも採光性、風通性等の観点から複数の開口部を波形鋼板耐震壁に形成することが考えられる。しかしながら、特許文献1に開示された技術では、開口部の数に応じて当て板等の補強材が増加するため、施工性の点で改善の余地がある。   By the way, it can be considered that a plurality of openings are formed in the corrugated steel shear wall from the viewpoints of daylighting, ventilation and the like in addition to the equipment. However, in the technique disclosed in Patent Document 1, there is room for improvement in terms of workability because the number of openings increases the number of reinforcing materials such as a backing plate.

本発明は、上記の事実を考慮し、施工性を向上しつつ、複数の開口部を形成することができる波形鋼板耐震壁、及びこれの初期弾性せん断剛性算出方法を得ることを目的とする。   In view of the above facts, an object of the present invention is to obtain a corrugated steel shear wall capable of forming a plurality of openings while improving workability, and a method for calculating the initial elastic shear stiffness thereof.

請求項1に記載の波形鋼板耐震壁は、一対の柱の間に架設された上下の水平部材に、幅方向を前記水平部材の軸方向にして取り付けられる波形鋼板と、長手方向を上下方向にすると共に前記幅方向に間隔を空けて前記波形鋼板に設けられ、該波形鋼板から伝達された応力を前記柱又は前記水平部材へ伝達する縦材と、前記波形鋼板に複数の開口部を形成することにより該開口部間に設けられ、上下方向に対して反対方向へ傾斜する傾斜方向にそれぞれ延びて、前記開口部間に発生する応力を前記水平部材又は前記縦材へ伝達する複数の応力伝達部と、を備えている。   The corrugated steel plate earthquake-resistant wall according to claim 1 is a corrugated steel plate attached to an upper and lower horizontal member laid between a pair of pillars with a width direction being an axial direction of the horizontal member, and a longitudinal direction being an upper and lower direction. In addition, a vertical member is provided on the corrugated steel sheet with an interval in the width direction and transmits the stress transmitted from the corrugated steel sheet to the column or the horizontal member, and a plurality of openings are formed in the corrugated steel sheet. A plurality of stress transmissions that are provided between the openings and extend in the inclined direction that is inclined in the opposite direction with respect to the vertical direction, and transmit stress generated between the openings to the horizontal member or the vertical member. And a section.

請求項1に係る波形鋼板耐震壁によれば、応力伝達部によって、波形鋼板の開口部間に発生した応力(圧縮応力、引張り応力等)が水平部材又は縦材へ伝達される。縦材へ伝達された応力は柱又は水平部材へ伝達される。これにより、開口部周辺の応力集中が低減される。従って、開口部周辺の補強を低減することができるため、波形鋼板耐震壁の施工性を向上することができる。   According to the corrugated steel shear wall according to the first aspect, the stress (compression stress, tensile stress, etc.) generated between the openings of the corrugated steel sheet is transmitted to the horizontal member or the longitudinal member by the stress transmission section. The stress transmitted to the longitudinal member is transmitted to the column or the horizontal member. Thereby, the stress concentration around the opening is reduced. Therefore, since the reinforcement around the opening can be reduced, the workability of the corrugated steel shear wall can be improved.

請求項2に記載の波形鋼板耐震壁は、請求項1に記載の波形鋼板耐震壁において、前記開口部が、半径が同一の円形の孔とされると共に、前記波形鋼板における折り目間の平板部に式(1)を満たすように千鳥状に配列されている。   The corrugated steel earthquake resistant wall according to claim 2 is the corrugated steel earthquake resistant wall according to claim 1, wherein the opening is a circular hole having the same radius, and the flat plate portion between the creases in the corrugated steel sheet. Are arranged in a staggered pattern so as to satisfy the formula (1).

請求項2に係る波形鋼板耐震壁によれば、波形鋼板の平板部に応力伝達部が直線状に形成される。従って、開口部間に発生する応力を水平部材又は縦材へ伝達する応力伝達部の伝達効率が向上する。   According to the corrugated steel shear wall according to claim 2, the stress transmission part is formed linearly on the flat plate part of the corrugated steel sheet. Therefore, the transmission efficiency of the stress transmission unit that transmits the stress generated between the openings to the horizontal member or the vertical member is improved.

請求項3に記載の波形鋼板耐震壁は、請求項1に記載の波形鋼板耐震壁において、前記開口部が、半径が同一の円形の孔とされると共に、前記波形鋼板における折り目間の平板部に式(2)を満たすように上下方向及び前記幅方向に配列されている。   The corrugated steel earthquake resistant wall according to claim 3 is the corrugated steel earthquake resistant wall according to claim 1, wherein the opening is a circular hole having the same radius, and the flat plate portion between the creases in the corrugated steel sheet. Are arranged in the vertical direction and the width direction so as to satisfy the formula (2).

請求項3に係る波形鋼板耐震壁によれば、波形鋼板の平板部に応力伝達部が直線状に形成される。従って、開口部間に発生する応力を水平部材又は縦材へ伝達する応力伝達部の伝達効率が向上する。   According to the corrugated steel shear wall according to claim 3, the stress transmission part is formed linearly on the flat plate part of the corrugated steel sheet. Therefore, the transmission efficiency of the stress transmission unit that transmits the stress generated between the openings to the horizontal member or the vertical member is improved.

請求項4に記載の初期弾性せん断剛性算出方法は、請求項2又は請求項3に記載の波形鋼板耐震壁の初期弾性せん断剛性Gを式(3)から算出する。   The initial elastic shear stiffness calculation method according to claim 4 calculates the initial elastic shear stiffness G of the corrugated steel shear wall according to claim 2 or 3 from equation (3).

請求項4に係る波形鋼板耐震壁の初期弾性せん断剛性算出方法によれば、波形鋼板耐震壁の初期弾性せん断剛性を式(3)から算出することにより、波形鋼板耐震壁の設計が容易となる。   According to the method for calculating the initial elastic shear stiffness of the corrugated steel shear wall according to claim 4, the initial elastic shear stiffness of the corrugated steel shear wall is calculated from the equation (3), thereby facilitating the design of the corrugated steel shear wall. .

本発明は、上記の構成としたので、施工性を向上しつつ、複数の開口部を形成することができる。   Since this invention was set as said structure, a some opening part can be formed, improving workability | operativity.

本発明の一実施形態に係る波形鋼板耐震壁を示す正面図である。It is a front view which shows the corrugated steel earthquake-resistant wall which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁を示す図1の2−2線断面図である。It is the 2-2 sectional view taken on the line of FIG. 1 which shows the corrugated steel earthquake-resistant wall which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁を示す図1の一部拡大正面図である。It is a partially expanded front view of FIG. 1 which shows the corrugated steel earthquake proof wall which concerns on one Embodiment of this invention. 本発明の一実施形態における波形鋼板の平板部を部分的に示す正面図である。It is a front view which shows partially the flat plate part of the corrugated steel plate in one Embodiment of this invention. 本発明の一実施形態における波形鋼板の平板部を部分的に示す正面図である。It is a front view which shows partially the flat plate part of the corrugated steel plate in one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁の変形例を示す図3に相当する一部拡大正面図である。It is a partially expanded front view equivalent to FIG. 3 which shows the modification of the corrugated steel earthquake proof wall which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁の変形例を示す図5に相当する正面図である。It is a front view equivalent to FIG. 5 which shows the modification of the corrugated steel earthquake proof wall which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁の変形例を示す図4に相当する正面図である。It is a front view equivalent to FIG. 4 which shows the modification of the corrugated steel earthquake-resistant wall which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁の変形例を示す図1に相当する正面図である。It is a front view equivalent to FIG. 1 which shows the modification of the corrugated steel earthquake-resistant wall which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波形鋼板耐震壁の初期弾性せん断剛性算出方法を説明する図5に相当する正面図である。It is a front view equivalent to FIG. 5 explaining the initial elastic shear rigidity calculation method of the corrugated steel shear wall according to one embodiment of the present invention. 載荷試験で用いた試験体を示す正面図、断面図、一部拡大正面図である。It is the front view which shows the test body used by the loading test, sectional drawing, and a partially expanded front view. 試験体の水平荷重とせん断変形角との関係を示すグラフである。It is a graph which shows the relationship between the horizontal load of a test body, and a shear deformation angle.

以下、図面を参照しながら本発明の一実施形態に係る波形鋼板耐震壁について説明する。なお、各図において適宜図示される矢印Hは上下方向(波形鋼板の高さ方向)を示し、矢印Wは波形鋼板の幅方向を示している。   Hereinafter, a corrugated steel shear wall according to an embodiment of the present invention will be described with reference to the drawings. In addition, the arrow H suitably shown in each figure shows the up-down direction (the height direction of a corrugated steel plate), and the arrow W has shown the width direction of the corrugated steel plate.

図1及び図2には、本実施形態に係る波形鋼板耐震壁10が取り付けられた架構12が示されている。架構12は、鉄筋コンクリート造の左右一対の柱14と、これらの柱14の間に架設された鉄筋コンクリート造の上下一対の梁(水平部材)16とを有して構成されたラーメン構造とされている。柱14及び梁16には、主筋及びせん断補強筋が適宜埋設されている。なお、図2における符号18、20は、梁16に埋設された主筋、せん断補強筋である。   1 and 2 show a frame 12 to which a corrugated steel earthquake proof wall 10 according to this embodiment is attached. The frame 12 has a ramen structure including a pair of left and right columns 14 made of reinforced concrete, and a pair of upper and lower beams (horizontal members) 16 made of reinforced concrete built between these columns 14. . In the column 14 and the beam 16, a main reinforcing bar and a shear reinforcing bar are appropriately embedded. Reference numerals 18 and 20 in FIG. 2 are main bars and shear reinforcement bars embedded in the beam 16.

図1及び図2に示されるように、波形鋼板耐震壁10は、波形鋼板30と、横フランジ32と、縦材としての縦フランジ34と、縦材としての縦補強リブ36とを備えている。波形鋼板30は、その断面形状が山部と谷部が交互に繰り返す波形形状とされ、折り目Kを横(折り目Kの向きを水平方向)にして架構12の構面に配置されている。また、波形鋼板30における折り目K間の平板部30Pには、後述する複数の開口部40が形成されている。なお、波形鋼板30の材料としては、普通鋼(例えば、SM490、SN400等)や低降伏点鋼(例えば、LY225等)等が用いられる。   As shown in FIGS. 1 and 2, the corrugated steel shear wall 10 includes a corrugated steel plate 30, a lateral flange 32, a longitudinal flange 34 as a longitudinal member, and a longitudinal reinforcing rib 36 as a longitudinal member. . The corrugated steel sheet 30 has a corrugated shape in which the cross-sectional shape alternately repeats crests and troughs. Further, a plurality of openings 40 to be described later are formed in the flat plate portion 30P between the creases K in the corrugated steel plate 30. In addition, as a material of the corrugated steel plate 30, ordinary steel (for example, SM490, SN400, etc.), low yield point steel (for example, LY225, etc.), etc. are used.

波形鋼板30の幅方向の両端部には、縦フランジ34がそれぞれ設けられている。縦フランジ34は平板状の鋼板で構成され、波形鋼板30の幅方向の両端部に沿って溶接等で接合されている。また、波形鋼板30の上下方向の両端部には、横フランジ32がそれぞれ設けられている。これらの横フランジ32は平板状の鋼板で構成され、波形鋼板30の上下方向の両端部に沿って溶接等で接合されている。   Longitudinal flanges 34 are provided at both ends of the corrugated steel sheet 30 in the width direction. The vertical flange 34 is composed of a flat steel plate, and is joined by welding or the like along both widthwise ends of the corrugated steel plate 30. Moreover, the horizontal flange 32 is provided in the both ends of the up-down direction of the corrugated steel plate 30, respectively. These lateral flanges 32 are made of flat steel plates, and are joined by welding or the like along the vertical ends of the corrugated steel plate 30.

また、縦フランジ34及び横フランジ32には、せん断力伝達手段としてのスタッド38がそれぞれ突設されている。これらのスタッド38は柱14及び梁16に埋設されており、これにより波形鋼板30が柱14及び梁16に取り付けられている。また、スタッド38を介して波形鋼板30と柱14及び梁16との間でせん断力等が伝達可能となっている。   Further, studs 38 as shearing force transmitting means project from the vertical flange 34 and the horizontal flange 32, respectively. These studs 38 are embedded in the column 14 and the beam 16, and thereby the corrugated steel plate 30 is attached to the column 14 and the beam 16. Further, a shearing force or the like can be transmitted between the corrugated steel plate 30 and the column 14 and the beam 16 via the stud 38.

なお、縦フランジ34と柱14、横フランジ32と梁16の接合方法は、上記したものに限らない。例えば、スタッドが立設された接合用プレートを柱14及び梁16にそれぞれ埋設し、この接合用プレートに縦フランジ34及び横フランジ32を溶接又はボルト等で接合しても良い。また、エポキシ樹脂等の接着剤により、縦フランジ34と柱14、横フランジ32と梁16を接着接合しても良い(接着工法)。更に、縦フランジ34及び横フランジ32は板状に限らず、H形鋼、L形鋼、T形鋼、C形鋼等でも良い。   In addition, the joining method of the vertical flange 34 and the column 14 and the horizontal flange 32 and the beam 16 is not limited to the above. For example, a joining plate in which studs are erected may be embedded in the column 14 and the beam 16, and the longitudinal flange 34 and the lateral flange 32 may be joined to the joining plate by welding or bolts. Further, the vertical flange 34 and the column 14, and the horizontal flange 32 and the beam 16 may be bonded and bonded with an adhesive such as epoxy resin (adhesion method). Furthermore, the vertical flange 34 and the horizontal flange 32 are not limited to a plate shape, and may be an H-shaped steel, an L-shaped steel, a T-shaped steel, a C-shaped steel, or the like.

また、波形鋼板30には、複数(本実施形態では、4つ)の縦補強リブ36が設けられている。縦補強リブ36は平板状の鋼板で構成されており、長手方向を上下方向(矢印H方向)にすると共に、波形鋼板30の幅方向に間隔を空けて配置されている。また、縦補強リブ36の長手方向に沿った一端部(長辺部)は、波形鋼板30の波形形状に応じて切り欠かれており、波形鋼板30の表面に組み合わされて当該表面に溶接等で接合されている。これらの縦補強リブ36によって波形鋼板30に面外剛性が付与されており、波形鋼板30のせん断座屈が抑制されている。なお、波形鋼板30を幅方向に分割し、分割された波形鋼板30の間に平板状の縦補強リブを配置して当該縦補強リブに波形鋼板30の端部を突き当てて溶接等で接合しても良い。   In addition, the corrugated steel sheet 30 is provided with a plurality (four in this embodiment) of vertical reinforcing ribs 36. The longitudinal reinforcing ribs 36 are made of a flat steel plate, and are arranged in the vertical direction (arrow H direction) in the longitudinal direction and at intervals in the width direction of the corrugated steel plate 30. Further, one end portion (long side portion) along the longitudinal direction of the longitudinal reinforcing rib 36 is notched according to the corrugated shape of the corrugated steel plate 30, and is combined with the surface of the corrugated steel plate 30 to be welded to the surface. It is joined with. These longitudinal reinforcing ribs 36 provide out-of-plane rigidity to the corrugated steel sheet 30, and shear buckling of the corrugated steel sheet 30 is suppressed. In addition, the corrugated steel plate 30 is divided in the width direction, flat plate-shaped longitudinal reinforcing ribs are arranged between the divided corrugated steel plates 30, and the ends of the corrugated steel plates 30 are abutted against the longitudinal reinforcing ribs and joined by welding or the like. You may do it.

また、縦補強リブ36の長手方向の両端部(上端部及び下端部)は、横フランジ32にそれぞれ突き当てられて溶接等で接合されている。これにより、波形鋼板30から縦補強リブ36に伝達された応力(せん断応力の鉛直成分)が、横フランジ32を介して梁16へ伝達可能になっている。   Further, both end portions (upper end portion and lower end portion) of the longitudinal reinforcing rib 36 in the longitudinal direction are respectively abutted against the lateral flange 32 and joined by welding or the like. Thereby, the stress (vertical component of shear stress) transmitted from the corrugated steel plate 30 to the longitudinal reinforcing rib 36 can be transmitted to the beam 16 via the lateral flange 32.

ここで、図3に示されるように、波形鋼板30には、複数の開口部40が形成されている。これらの開口部40は半径が同一の円形の孔とされており、隣接する開口部40間に上下方向に対して反対方向へ傾斜する応力伝達部42A,42Bが形成されるように、波形鋼板30の各平板部30Pに千鳥状に配列されている。応力伝達部42A,42Bは、波形鋼板30がせん断変形したときに、開口部40周辺に発生する応力を周辺の縦補強リブ36、縦フランジ34、横フランジ32へ伝達する応力伝達経路として機能するものであり、例えば、応力伝達部42A1は、波形鋼板30に発生する応力が縦補強リブ36及び横フランジ32へ伝達されるように、縦補強リブ36と横フランジ32とに渡って略直線状に延びている。これと同様に、応力伝達部42B1は、横フランジ32と縦フランジ34とに渡って設けられ、応力伝達部42A2,42B2は、縦補強リブ36と縦フランジ34とに渡って設けられている。なお、図3では、図が煩雑となるため、上下方向に対して傾斜する平板部30Pにおける応力伝達部42A,42Bの図示を省略している。   Here, as shown in FIG. 3, a plurality of openings 40 are formed in the corrugated steel sheet 30. These openings 40 are circular holes having the same radius, and corrugated steel plates are formed so that stress transmission parts 42A and 42B that are inclined in opposite directions with respect to the vertical direction are formed between adjacent openings 40. The 30 flat plate portions 30P are arranged in a staggered pattern. The stress transmission parts 42A and 42B function as a stress transmission path for transmitting stress generated around the opening 40 to the peripheral vertical reinforcing rib 36, the vertical flange 34, and the horizontal flange 32 when the corrugated steel sheet 30 undergoes shear deformation. For example, the stress transmitting portion 42A1 is substantially linear across the longitudinal reinforcing rib 36 and the lateral flange 32 so that the stress generated in the corrugated steel sheet 30 is transmitted to the longitudinal reinforcing rib 36 and the lateral flange 32. It extends to. Similarly, the stress transmission part 42B1 is provided across the horizontal flange 32 and the vertical flange 34, and the stress transmission parts 42A2 and 42B2 are provided across the vertical reinforcing rib 36 and the vertical flange 34. In addition, in FIG. 3, since the figure becomes complicated, illustration of the stress transmission parts 42A and 42B in the flat plate part 30P inclined with respect to the vertical direction is omitted.

また、例えば、応力伝達部42A1の両端部は、縦補強リブ36及び横フランジ32に接合(拘束)され、これらの縦補強リブ36及び横フランジ32へ応力が伝達可能になっている。他の応力伝達部42A,42Bについても同様である。   Further, for example, both end portions of the stress transmission portion 42A1 are joined (restrained) to the vertical reinforcing ribs 36 and the horizontal flanges 32 so that stress can be transmitted to the vertical reinforcing ribs 36 and the horizontal flanges 32. The same applies to the other stress transmission portions 42A and 42B.

なお、前述したように応力伝達部42A,42Bは、波形鋼板30に発生する応力を周辺の縦補強リブ36、縦フランジ34、横フランジ32へ伝達可能であれば良く、厳密に直線状である必要はない。即ち、ここでいう応力伝達部42A,42Bが略直線状に延びるとは、応力伝達部42A,42Bが厳密に直線状に延びる構成だけでなく、隣接する平板部30P間において、応力伝達部42A,42Bがずれる構成を含む概念である。   As described above, the stress transmission portions 42A and 42B only need to be able to transmit the stress generated in the corrugated steel sheet 30 to the surrounding vertical reinforcing ribs 36, vertical flanges 34, and horizontal flanges 32, and are strictly linear. There is no need. That is, the stress transmission portions 42A and 42B here extend substantially linearly, not only the configuration in which the stress transmission portions 42A and 42B extend strictly linearly, but also between the adjacent flat plate portions 30P. , 42B are included in the concept.

図4に示されるように、応力伝達部42Aは上下方向に対して一方側(図5において右側)へ傾斜するのに対し、応力伝達部42Bは上下方向に対して他方側(応力伝達部42Aと反対側)へ傾斜されている。これにより、波形鋼板30のせん断変形に伴って平板部30Pに作用する引張り力T及び圧縮力Cに対し、各応力伝達部42A,42Bがブレースのように抵抗するようになっている。換言すると、波形鋼板30のせん断変形に伴って平板部30Pの開口部40周辺に発生した引張り応力及び圧縮応力が、応力伝達部42A,42Bによって隣接する他の平板部30Pへ伝達されるようになっている。   As shown in FIG. 4, the stress transmission part 42A is inclined to one side (right side in FIG. 5) with respect to the vertical direction, whereas the stress transmission part 42B is inclined to the other side (stress transmission part 42A) with respect to the vertical direction. The other side). Thereby, each stress transmission part 42A, 42B resists the tensile force T and the compressive force C which act on the flat plate part 30P with the shear deformation of the corrugated steel sheet 30 like a brace. In other words, the tensile stress and the compressive stress generated around the opening 40 of the flat plate portion 30P due to the shear deformation of the corrugated steel plate 30 are transmitted to the other adjacent flat plate portion 30P by the stress transmission portions 42A and 42B. It has become.

また、応力伝達部42Aと応力伝達部42Bとが交差する交点N間の長さ(座屈長さ)e,eは、各応力伝達部42A,42Bに作用する圧縮力に対して座屈しないよう設定されている。 Further, the lengths (buckling lengths) e 1 and e 2 between the intersections N where the stress transmission part 42A and the stress transmission part 42B intersect are seated against the compressive force acting on the stress transmission parts 42A and 42B. It is set not to bend.

なお、本実施形態では、一例として、上下方向に対して一方側へ傾斜する応力伝達部42Aの傾斜角度α(αは、水平方向に対する傾斜角度)と、上下方向に対して他方側(応力伝達部42Aと反対側)へ傾斜する応力伝達部42Bの傾斜角度β(βは、水平方向に対する傾斜角度)とが同じ角度(α=β)に設定されている。また、応力伝達部42A,42Bに接するように各開口部40が形成されている。   In the present embodiment, as an example, the inclination angle α (α is an inclination angle with respect to the horizontal direction) of the stress transmission portion 42A inclined to one side with respect to the vertical direction and the other side (stress transmission with respect to the vertical direction). The inclination angle β (β is an inclination angle with respect to the horizontal direction) of the stress transmission portion 42B inclined to the side opposite to the portion 42A is set to the same angle (α = β). Moreover, each opening part 40 is formed so that the stress transmission parts 42A and 42B may be contact | connected.

ここで、本実施形態では、一例として図5に示されるように中心Oを中心とした半径rが同一の複数の円形の孔とされた開口部40が、波形鋼板30の平板部30Pに下記式(1)を満たすように千鳥状に配列されている。これにより、波形鋼板30の各平板部30Pに直線状の応力伝達部42A,42Bが設けられている。

Figure 2013002032
ただし、
r:開口部の半径
X:応力伝達部の傾斜方向に隣接する開口部の中心間距離を水平線に投影した長さ
Y:応力伝達部の傾斜方向に隣接する開口部の中心間距離を鉛直線に投影した長さ
である。 Here, in this embodiment, as shown in FIG. 5 as an example, openings 40 formed as a plurality of circular holes having the same radius r around the center O are formed in the flat plate portion 30P of the corrugated steel plate 30 as follows. They are arranged in a staggered pattern so as to satisfy the formula (1). Thereby, linear stress transmission part 42A, 42B is provided in each flat plate part 30P of the corrugated steel plate 30.
Figure 2013002032
However,
r: Radius of the opening X: Length obtained by projecting the distance between the centers of the openings adjacent in the inclination direction of the stress transmission part onto the horizontal line Y: The distance between the centers of the openings adjacent in the inclination direction of the stress transmission part is a vertical line This is the length projected on.

上記式(1)について解説すると、水平方向に対する応力伝達部42Aの傾斜角をαとすると、応力伝達部42の幅Sは下記式(a)で表される。また、cosαは、下記式(b)で表される。これらの式(a)及び式(b)から上記式(1)が得られる。

Figure 2013002032
Explaining the above equation (1), if the inclination angle of the stress transmission portion 42A with respect to the horizontal direction is α, the width S of the stress transmission portion 42 is expressed by the following equation (a). Further, cos α is represented by the following formula (b). The above formula (1) is obtained from these formulas (a) and (b).
Figure 2013002032

なお、図6に示されるように、例えば、縦フランジ34が接合される波形鋼板30の幅方向の端部では、開口部40が円形ではなく、半円形になっても良い。   As shown in FIG. 6, for example, the opening 40 may be semicircular at the end in the width direction of the corrugated steel sheet 30 to which the vertical flange 34 is joined.

次に、本実施形態に係る波形鋼板耐震壁の作用について説明する。   Next, the operation of the corrugated steel shear wall according to the present embodiment will be described.

風や地震等によって架構12に水平力が作用すると、図1に示されるように、横フランジ32及び縦フランジ34を介して波形鋼板30にせん断力が伝達される。これにより、波形鋼板30がせん断変形しながら水平力に抵抗して耐震性能を発揮する。また、水平力に対して波形鋼板30が降伏するように設計することで、鋼材の履歴エネルギーによって振動エネルギーが吸収され、制振性能を発揮する。   When a horizontal force acts on the frame 12 due to wind, earthquake, or the like, a shearing force is transmitted to the corrugated steel plate 30 via the horizontal flange 32 and the vertical flange 34 as shown in FIG. Thereby, the corrugated steel sheet 30 resists horizontal force while exhibiting shear deformation and exhibits seismic performance. Moreover, by designing the corrugated steel sheet 30 to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel material, and the damping performance is exhibited.

また、波形鋼板30の各平板部30Pには、上記式(1)を満たすように複数の開口部40が千鳥状に配列されており、これらの開口部40間に応力伝達部42A,42Bが設けられている。   Further, each flat plate portion 30P of the corrugated steel plate 30 has a plurality of openings 40 arranged in a staggered manner so as to satisfy the above formula (1), and stress transmission portions 42A and 42B are provided between these openings 40. Is provided.

ここで、例えば、図4に示されるように、波形鋼板30の平板部30Pが矢印F方向へせん断変形すると、上下方向に対して傾斜する方向から平板部30Pに引張り力T及び圧縮力Cが作用する。これにより、平板部30Pの開口部40周辺に発生する引張り応力が、応力伝達部42Aを介して隣接する他の平板部30Pの応力伝達部42Aへ伝達される。この応力伝達部42Aは、例えば、図3に示される応力伝達部42A2のように、縦補強リブ36と縦フランジ34とに渡って設けられている。これにより、各平板部30Pの開口部40周辺に発生した引張り応力が、応力伝達部42A2を介して縦補強リブ36及び縦フランジ34へ伝達される。そして、縦補強リブ36へ伝達された応力は横フランジ32を介して梁16へ伝達され、縦フランジ34へ伝達された応力は柱14へ伝達される。これと同様に、各平板部30Pの開口部40周辺に発生した圧縮応力は、応力伝達部42Bを介して梁16及び柱14へ伝達される。   Here, for example, as shown in FIG. 4, when the flat plate portion 30P of the corrugated steel plate 30 is shear-deformed in the direction of arrow F, the tensile force T and the compressive force C are applied to the flat plate portion 30P from the direction inclined with respect to the vertical direction. Works. Thereby, the tensile stress which generate | occur | produces around the opening part 40 of the flat plate part 30P is transmitted to the stress transmission part 42A of the other adjacent flat plate part 30P via the stress transmission part 42A. The stress transmission part 42A is provided across the vertical reinforcing rib 36 and the vertical flange 34, for example, like the stress transmission part 42A2 shown in FIG. Thereby, the tensile stress which generate | occur | produced around the opening part 40 of each flat plate part 30P is transmitted to the vertical reinforcement rib 36 and the vertical flange 34 via stress transmission part 42A2. The stress transmitted to the vertical reinforcing rib 36 is transmitted to the beam 16 through the lateral flange 32, and the stress transmitted to the vertical flange 34 is transmitted to the column 14. Similarly, the compressive stress generated around the opening 40 of each flat plate portion 30P is transmitted to the beam 16 and the column 14 via the stress transmission portion 42B.

このように波形鋼板30の開口部40間に略直線状に延びる応力伝達部42A,42Bを設け、波形鋼板30に発生する応力を横フランジ32、縦フランジ34、及び縦補強リブ36へ伝達する応力伝達経路を確保することにより、開口部40周辺の応力集中が低減される。従って、開口部40周辺の補強を低減することができるため、波形鋼板耐震壁10の施工性を向上することができる。   As described above, the stress transmission portions 42A and 42B extending substantially linearly are provided between the opening portions 40 of the corrugated steel sheet 30, and the stress generated in the corrugated steel sheet 30 is transmitted to the lateral flange 32, the longitudinal flange 34, and the longitudinal reinforcing rib 36. By securing the stress transmission path, stress concentration around the opening 40 is reduced. Therefore, since the reinforcement around the opening 40 can be reduced, the workability of the corrugated steel shear wall 10 can be improved.

また、波形鋼板30に複数の開口部40を形成することにより、採光性、通風性、意匠性等が向上すると共に、視線が遮断されないため、例えばガラスやガラリのような機能を波形鋼板耐震壁10に付加することができる。これにより、例えば、建物のエントランス等にも波形鋼板耐震壁10を設置することができるため、波形鋼板耐震壁10の設置自由度が向上する。また、採光性、通風性を確保しつつ、所定の遮熱性能を確保することができると共に、軽量化を図ることができる。更に、展示物等のフック等を開口部40に引っ掛けることができるため、展示台としての機能も波形鋼板耐震壁10に付加することができる。更にまた、開口部40の大きさを増減することにより、採光量、通風量を調整することができると共に、耐震壁(耐力壁)としての耐力も調整することができる。   Further, by forming a plurality of openings 40 in the corrugated steel plate 30, the lighting, ventilation, design, etc. are improved and the line of sight is not blocked, so that the corrugated steel plate shear wall has functions such as glass and glazing. 10 can be added. Thereby, for example, since the corrugated steel shear wall 10 can be installed also at the entrance of a building, the degree of freedom of installation of the corrugated steel earthquake resistant wall 10 is improved. In addition, it is possible to ensure predetermined heat shielding performance while ensuring daylighting and ventilation, and to reduce weight. Furthermore, since a hook or the like of an exhibit can be hooked on the opening 40, a function as an exhibition stand can also be added to the corrugated steel earthquake resistant wall 10. Furthermore, by increasing / decreasing the size of the opening 40, it is possible to adjust the amount of light collected and the amount of ventilation, and to adjust the proof stress as a seismic wall (bearing wall).

次に、本実施形態に係る波形鋼板耐震壁の変形例について説明する。   Next, a modified example of the corrugated steel shear wall according to the present embodiment will be described.

上記実施形態では、波形鋼板30の平板部30Pに複数の開口部40を千鳥状に配列したがこれに限らない。例えば、図7に示されるように、中心Oを中心し、半径rが同一の複数の開口部50を上下方向(矢印H方向)及び波形鋼板30の幅方向(矢印W方向)にマトリックス状に配列しても良い。この場合、下記式(2)を満たすように複数の開口部50を波形鋼板30の平板部30Pに配列することにより、平板部30Pに直線状に延びる応力伝達部52Aを設けることができる。

Figure 2013002032
ただし、
r:開口部の半径
X:波形鋼板の幅方向に隣接する開口部の中心間距離
Y:上下方向に隣接する前記開口部の中心間距離
である。 In the said embodiment, although the several opening part 40 was arranged in the flat plate part 30P of the corrugated steel plate 30 in zigzag form, it does not restrict to this. For example, as shown in FIG. 7, a plurality of openings 50 centered on the center O and having the same radius r are arranged in a matrix in the vertical direction (arrow H direction) and the width direction of the corrugated steel sheet 30 (arrow W direction). It may be arranged. In this case, by arranging the plurality of openings 50 in the flat plate portion 30P of the corrugated steel plate 30 so as to satisfy the following formula (2), the stress transmission portion 52A extending linearly can be provided in the flat plate portion 30P.
Figure 2013002032
However,
r: Radius of the opening X: Distance between the centers of the openings adjacent in the width direction of the corrugated steel sheet Y: Distance between the centers of the openings adjacent in the vertical direction.

ここで、上記式(2)について解説すると、水平方向に対する応力伝達部42の傾斜角をαとすると、応力伝達部42の幅Sは下記式(c)で表される。また、cosαは、下記式(d)で表される。これらの式(c)及び式(d)から上記式(2)が得られる。

Figure 2013002032
Here, the above equation (2) will be explained. When the inclination angle of the stress transmission portion 42 with respect to the horizontal direction is α, the width S of the stress transmission portion 42 is expressed by the following equation (c). Further, cos α is represented by the following formula (d). The above formula (2) is obtained from these formulas (c) and (d).
Figure 2013002032

なお、前述した式(1)及び式(2)は一例であって、これらの式(1)及び式(2)に限定されるものではない。また、上記実施形態では、複数の開口部40の半径rが同一とされているが、これに限らない。開口部40は、応力伝達部42A,42Bが分断されないように、応力伝達部42A,42Bで囲まれた矩形の領域内に形成すれば良く、例えば、図8に示されるように、応力伝達部42A,42Bで囲まれたひし形の領域J内に開口部40と半径が異なる開口部60を形成しても良い。また、2つの応力伝達部42にのみ接するように開口部62を形成しても良いし、領域J内に複数(図8では、2つの)の開口部64を形成しても良い。更に、開口部40は真円の孔に限らず、楕円形の孔でも良いし、三角形や四角形等の多角形の孔で良い。   Note that the above-described formulas (1) and (2) are merely examples, and are not limited to these formulas (1) and (2). Moreover, in the said embodiment, although the radius r of the some opening part 40 is made the same, it is not restricted to this. The opening 40 may be formed in a rectangular region surrounded by the stress transmission parts 42A and 42B so that the stress transmission parts 42A and 42B are not divided. For example, as shown in FIG. An opening 60 having a radius different from that of the opening 40 may be formed in a rhombus region J surrounded by 42A and 42B. Further, the openings 62 may be formed so as to be in contact with only the two stress transmission parts 42, or a plurality (two in FIG. 8) of openings 64 may be formed in the region J. Furthermore, the opening 40 is not limited to a perfect hole, and may be an elliptical hole or a polygonal hole such as a triangle or a quadrangle.

また、上記実施形態では、応力伝達部42Aの傾斜角度αと、応力伝達部42Bの傾斜角度βを同じに設定したが、応力伝達部42Aの傾斜角度αと応力伝達部42Bの傾斜角度βを異なる値に設定しても良い。なお、応力伝達部42A,42Bをブレースとして機能させるためには、傾斜角度α,βを30°〜60°に設定することが好ましく、45°に設定することがより好ましい。   In the above embodiment, the inclination angle α of the stress transmission part 42A and the inclination angle β of the stress transmission part 42B are set to be the same. However, the inclination angle α of the stress transmission part 42A and the inclination angle β of the stress transmission part 42B are set. Different values may be set. In order to cause the stress transmission portions 42A and 42B to function as braces, the inclination angles α and β are preferably set to 30 ° to 60 °, and more preferably set to 45 °.

更に、上記実施形態では、波形鋼板30の全面に開口部40を形成したがこれに限らず、波形鋼板30の一部に開口部40を形成しても良い。例えば、図9に示されるように、波形鋼板30の中央部にのみ開口部40を形成しても良い。また、図9に示されるように、波形鋼板30は、少なくとも上下の梁16に取り付けられていれば良く、縦フランジ34と柱14との間に間隔D(開口)を空けても良い。この場合、波形鋼板30から縦材としての縦フランジ34に伝達された応力は、当該縦フランジ34を介して上下の梁16へ伝達される。   Furthermore, in the said embodiment, although the opening part 40 was formed in the whole surface of the corrugated steel plate 30, you may form not only this but the opening part 40 in a part of corrugated steel plate 30. FIG. For example, as shown in FIG. 9, the opening 40 may be formed only at the center of the corrugated steel sheet 30. Further, as shown in FIG. 9, the corrugated steel plate 30 may be attached to at least the upper and lower beams 16, and a gap D (opening) may be provided between the vertical flange 34 and the column 14. In this case, the stress transmitted from the corrugated steel plate 30 to the vertical flange 34 as a vertical member is transmitted to the upper and lower beams 16 via the vertical flange 34.

更にまた、縦補強リブ36は、波形鋼板30のせん断座屈耐力に応じて設ければ良く、適宜省略可能である。この場合、応力伝達部42A,42Bは、波形鋼板30の幅方向の両端部に設けられた縦フランジ34間に渡って設ければ良い。また、縦補強リブ36は、平板状の鋼板に限らず、T形鋼、L形鋼等でも良い。   Furthermore, the longitudinal reinforcing ribs 36 may be provided according to the shear buckling strength of the corrugated steel sheet 30 and can be omitted as appropriate. In this case, the stress transmission parts 42 </ b> A and 42 </ b> B may be provided across the longitudinal flanges 34 provided at both ends in the width direction of the corrugated steel sheet 30. The vertical reinforcing ribs 36 are not limited to flat steel plates, but may be T-shaped steel, L-shaped steel, or the like.

また、架構12を構成する柱14及び梁16は、鉄筋コンクリート造に限らず、鉄骨鉄筋コンクリート造、プレストレスコンクリート造、鉄骨造、CFT造、更には現場打ち工法、プレキャスト工法等の種々の工法を用いることができる。また、梁16に替えて水平部材としてのコンクリートスラブ又は小梁等に波形鋼板耐震壁10を取り付けても良い。なお、梁16がH形鋼等の鉄骨造の場合は、横フランジ32を省略し、波形鋼板30の上下方向の端部を梁16に溶接等で直接接合しても良い。この場合、波形鋼板30の上下方向の端部と梁16との間でせん断力等が伝達される。   Further, the columns 14 and the beams 16 constituting the frame 12 are not limited to the reinforced concrete structure, but use various methods such as a steel reinforced concrete structure, a prestressed concrete structure, a steel frame structure, a CFT structure, and a spot casting method and a precast method. be able to. Further, the corrugated steel shear wall 10 may be attached to a concrete slab or a small beam as a horizontal member instead of the beam 16. When the beam 16 is a steel structure such as H-shaped steel, the horizontal flange 32 may be omitted, and the vertical end of the corrugated steel plate 30 may be directly joined to the beam 16 by welding or the like. In this case, a shearing force or the like is transmitted between the vertical end of the corrugated steel plate 30 and the beam 16.

更に、上記実施形態では、図2に示されるように、波形鋼板30の中心軸から外れた位置で、波形鋼板30の上端部及び下端部を梁16に接合したが、例えば、波形鋼板30の中心軸上で、波形鋼板30の上端部及び下端部を梁16に接合しても良い。また、波形鋼板30の中心軸から一方側に外れた位置で、波形鋼板30の上端部及び下端部を梁16に接合しても良いし、中心軸を挟んで互い違いになるように波形鋼板30の上端部及び下端部を梁16に接合しても良い。なお、ここでいう波形鋼板の中心軸とは、波形鋼板30の山部と谷部の中間にある仮想の軸である。   Furthermore, in the said embodiment, as FIG. 2 shows, although the upper end part and lower end part of the corrugated steel plate 30 were joined to the beam 16 in the position off from the central axis of the corrugated steel plate 30, for example, The upper end and lower end of the corrugated steel plate 30 may be joined to the beam 16 on the central axis. Moreover, the upper end part and lower end part of the corrugated steel sheet 30 may be joined to the beam 16 at a position deviated to one side from the central axis of the corrugated steel sheet 30, or the corrugated steel sheet 30 may be staggered across the central axis. The upper end portion and the lower end portion may be joined to the beam 16. The central axis of the corrugated steel sheet here is an imaginary axis that is intermediate between the crest and trough of the corrugated steel sheet 30.

更にまた、波形鋼板耐震壁10は、建物の一部に用いても良いし、建物の全てに用いても良い。また、耐震構造や免震構造等の種々の新築建物、改築建物に適用することができる。波形鋼板耐震壁を設置することにより、耐震性能、制振性能が向上された建物を構築することができる。   Furthermore, the corrugated steel shear wall 10 may be used for a part of the building or for all of the building. In addition, it can be applied to various new buildings and renovated buildings such as seismic structures and seismic isolation structures. By installing a corrugated steel shear wall, it is possible to construct a building with improved seismic performance and damping performance.

次に、一実施形態に係る波形鋼板耐震壁の初期弾性せん断剛性算出方法について説明する。   Next, a method for calculating the initial elastic shear stiffness of the corrugated steel shear wall according to an embodiment will be described.

例えば、上記式(1)に基づいて、半径rが同一の複数の開口部40を波形鋼板30の平板部30Pに千鳥状に形成した場合、波形鋼板耐震壁10の初期弾性せん断剛性Gは、下記式(3)から求めることができる。

Figure 2013002032
ただし、
L :隣接する縦補強リブの間隔、若しくは隣接する縦補強リブと縦フランジの間隔
α :水平方向に対して応力伝達部が傾斜する傾斜角度
:開口部がない波形鋼板耐震壁の初期弾性せん断剛性
である。 For example, when a plurality of openings 40 having the same radius r are formed in a staggered pattern on the flat plate portion 30P of the corrugated steel plate 30 based on the above formula (1), the initial elastic shear rigidity G of the corrugated steel plate shear wall 10 is It can obtain | require from following formula (3).
Figure 2013002032
However,
L: Spacing between adjacent longitudinal reinforcing ribs, or spacing between adjacent longitudinal reinforcing ribs and longitudinal flanges α: Inclination angle at which the stress transmission part is inclined with respect to the horizontal direction G 0 : Initial elasticity of the corrugated steel shear wall without opening Shear stiffness.

ここで、上記式(3)について解説すると、式(3)では、図10に示されるように、波形鋼板30の平板部30Pのうち、隣接する応力伝達部42A間の領域Q(グレーの領域)に弾性せん断剛性がないものと仮定し、平板部30Pに対する応力伝達部42Aの面積比率を低減率として、開口部40がない場合の波形鋼板耐震壁10の初期弾性せん断剛性Gに乗じている。 Here, the above formula (3) will be explained. In the formula (3), as shown in FIG. 10, among the flat plate portions 30P of the corrugated steel sheet 30, a region Q (gray region) between adjacent stress transmission portions 42A. ) in assuming no elastic shear modulus, the area ratio of the stress transmission portion 42A with respect to the flat plate portion 30P as the reduction rate, multiplied by the initial elastic shear modulus G 0 of corrugated steel shear wall 10 when there is no opening 40 Yes.

なお、式(3)におけるLは、例えば、図3に示される縦補強リブ36と縦フランジ34の間の距離である。この場合、波形鋼板耐震壁10の初期弾性せん断剛性Gは、縦補強リブ36と縦フランジ34との間の波形鋼板30(開口部40なし)の初期弾性せん断剛性となる。また、Σ(2r/sinα)は、(2r/sinα)×(幅Lの平板部30Pにある領域Qの総数)を意味する。 In addition, L in Formula (3) is the distance between the vertical reinforcement rib 36 and the vertical flange 34 which are shown by FIG. In this case, the initial elastic shear stiffness G 0 of the corrugated steel shear wall 10 is the initial elastic shear stiffness of the corrugated steel plate 30 (without the opening 40) between the longitudinal reinforcing ribs 36 and the longitudinal flange 34. Σ (2r / sin α) means (2r / sin α) × (total number of regions Q in the flat plate portion 30P having the width L).

このように、式(3)を用いて波形鋼板耐震壁10の初期弾性せん断剛性Gを算出することにより、波形鋼板耐震壁10の設計が容易となる。   Thus, by calculating the initial elastic shear rigidity G of the corrugated steel shear wall 10 using the formula (3), the design of the corrugated steel shear wall 10 becomes easy.

なお、上記式(3)は、半径が同一の複数の開口部が規則的に波形鋼板の平板部に形成されている場合に用いることができ、例えば、上記式(2)に基づいて複数の開口部50(図7参照)が平板部30Pに形成された波形鋼板耐震壁にも用いることができる。   In addition, said Formula (3) can be used when the some opening part with the same radius is regularly formed in the flat plate part of a corrugated steel plate, for example, based on said Formula (2), a several The opening part 50 (refer FIG. 7) can be used also for the corrugated steel earthquake-resistant wall in which the flat plate part 30P was formed.

以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、上記実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to such an embodiment, and the above embodiment and various modifications may be used in combination as appropriate, and the gist of the present invention will be described. Of course, various embodiments can be implemented without departing from the scope.

次に、載荷試験について説明する。   Next, the loading test will be described.

<試験概要>
本載荷試験では、実施例に係る試験体に対し、逆対称曲げを付加するように水平荷重を正負交互に繰り返し載荷した。水平荷重は変位制御とし、せん断変形角1,2,4,6(1/1000rad)について、それぞれ正負2回ずつ載荷した。
<Summary of test>
In this loading test, the horizontal load was repeatedly loaded alternately on the positive and negative sides so as to add antisymmetric bending to the test body according to the example. The horizontal load was displacement control, and the shear deformation angles 1, 2, 4, and 6 (1/1000 rad) were loaded twice positive and negative respectively.

<試験体>
図11には、本載荷試験で用いた試験体68の正面図、断面図、及び一部拡大正面図が示されている。試験体68は、波形鋼板70と、波形鋼板70の上下方向の端部にそれぞれ設けられた横フランジ72と、波形鋼板70の幅方向の端部にそれぞれ設けられた縦フランジ74と、波形鋼板70の表面に設けられた4本の縦補強リブ76を備えている。また、波形鋼板70の各平板部70Pには、半径11mmの複数の開口部80が上記式(1)に基づいて千鳥状に形成されている。なお、開口部80は、波形鋼板70の全面に渡って形成されている。
<Test body>
FIG. 11 shows a front view, a cross-sectional view, and a partially enlarged front view of the test body 68 used in this loading test. The test body 68 includes a corrugated steel plate 70, a horizontal flange 72 provided at each end in the vertical direction of the corrugated steel plate 70, a vertical flange 74 provided at each end in the width direction of the corrugated steel plate 70, and a corrugated steel plate. Four vertical reinforcing ribs 76 are provided on the surface of 70. Further, in each flat plate portion 70P of the corrugated steel plate 70, a plurality of openings 80 having a radius of 11 mm are formed in a staggered pattern based on the above formula (1). The opening 80 is formed over the entire surface of the corrugated steel sheet 70.

試験体68は、複数の開口部80が形成された平鋼板を波形形状に折り曲げ加工して波形鋼板70を形成し、この波形鋼板70に横フランジ72、縦フランジ74、及び縦補強リブ76を溶接することにより製造した。なお、平板部70Pの面積に対する開口部80の開口面積の比率(開口率)は約40%である。また、各種部材の寸法等は、図11及び下記表1に示される通りである。   The test body 68 is formed by bending a flat steel plate having a plurality of openings 80 into a corrugated shape to form a corrugated steel plate 70. The corrugated steel plate 70 is provided with a horizontal flange 72, a vertical flange 74, and a vertical reinforcing rib 76. Manufactured by welding. The ratio (opening ratio) of the opening area of the opening 80 to the area of the flat plate portion 70P is about 40%. The dimensions of various members are as shown in FIG. 11 and Table 1 below.

Figure 2013002032
Figure 2013002032

<試験結果>
図12には、試験体68の水平荷重とせん断変形角との関係が示されている。また、図12には、上記式(3)を用いて算出した試験体68の初期弾性せん断剛性Gが示されている。
<Test results>
FIG. 12 shows the relationship between the horizontal load of the test body 68 and the shear deformation angle. FIG. 12 shows the initial elastic shear stiffness G of the test body 68 calculated using the above equation (3).

図12から分かるように、試験体68が、開口部がない一般的な波形鋼板耐震壁と同様の紡錘形の履歴ループを描いた。このことから、試験体68が、開口部がない一般的な波形鋼板耐震壁と同等の力学的性状を有することが確認できる。   As can be seen from FIG. 12, the test body 68 depicted a spindle-shaped hysteresis loop similar to a general corrugated steel shear wall without an opening. From this, it can confirm that the test body 68 has a mechanical property equivalent to the general corrugated steel shear wall without an opening part.

また、上記式(3)を用いて算出した試験体68の初期弾性せん断剛性Gが、試験体68の初期せん断剛性に近似する結果となった。このことから、下記式(3)の妥当性が確認できる。   In addition, the initial elastic shear stiffness G of the test body 68 calculated using the above formula (3) approximated the initial shear stiffness of the test body 68. From this, the validity of the following formula (3) can be confirmed.

10 波形鋼板耐震壁
14 柱
16 梁(水平部材)
30 波形鋼板
30P 平板部
34 縦フランジ(縦材)
36 縦補強リブ(縦材)
40 開口部
42A 応力伝達部
42B 応力伝達部
50 開口部
52A 応力伝達部
60 開口部
62 開口部
64 開口部
10 Corrugated steel shear wall 14 Column 16 Beam (horizontal member)
30 Corrugated Steel Plate 30P Flat Plate 34 Vertical Flange (Vertical Material)
36 Longitudinal reinforcement rib (longitudinal)
40 opening portion 42A stress transmission portion 42B stress transmission portion 50 opening portion 52A stress transmission portion 60 opening portion 62 opening portion 64 opening portion

Claims (4)

一対の柱の間に架設された上下の水平部材に、幅方向を前記水平部材の軸方向にして取り付けられる波形鋼板と、
長手方向を上下方向にすると共に前記幅方向に間隔を空けて前記波形鋼板に設けられ、該波形鋼板から伝達された応力を前記柱又は前記水平部材へ伝達する縦材と、
前記波形鋼板に複数の開口部を形成することにより該開口部間に設けられ、上下方向に対して反対方向へ傾斜する傾斜方向にそれぞれ延びて、前記開口部間に発生する応力を前記水平部材又は前記縦材へ伝達する複数の応力伝達部と、
を備える波形鋼板耐震壁。
Corrugated steel plates attached to the upper and lower horizontal members laid between a pair of pillars with the width direction being the axial direction of the horizontal members;
A longitudinal member that is provided in the corrugated steel sheet with a longitudinal direction in the vertical direction and spaced in the width direction, and transmits the stress transmitted from the corrugated steel sheet to the column or the horizontal member,
By forming a plurality of openings in the corrugated steel sheet, the horizontal member is provided between the openings and extends in an inclined direction inclined in the opposite direction with respect to the vertical direction, and generates stress generated between the openings. Or a plurality of stress transmission parts that transmit to the longitudinal member;
Corrugated steel shear wall with
前記開口部が、半径が同一の円形の孔とされると共に、前記波形鋼板における折り目間の平板部に式(1)を満たすように千鳥状に配列されている請求項1に記載の波形鋼板耐震壁。
Figure 2013002032
ただし、
r:開口部の半径
X:応力伝達部の傾斜方向に隣接する開口部の中心間距離を水平線に投影した長さ
Y:応力伝達部の傾斜方向に隣接する開口部の中心間距離を鉛直線に投影した長さ
である。
2. The corrugated steel sheet according to claim 1, wherein the openings are circular holes having the same radius, and are arranged in a staggered manner so that a flat plate portion between creases in the corrugated steel sheet satisfies the formula (1). Seismic wall.
Figure 2013002032
However,
r: Radius of the opening X: Length obtained by projecting the distance between the centers of the openings adjacent in the inclination direction of the stress transmission part onto the horizontal line Y: The distance between the centers of the openings adjacent in the inclination direction of the stress transmission part is a vertical line This is the length projected on.
前記開口部が、半径が同一の円形の孔とされると共に、前記波形鋼板における折り目間の平板部に式(2)を満たすように上下方向及び前記幅方向に配列されている請求項1に記載の波形鋼板耐震壁。
Figure 2013002032
ただし、
r:開口部の半径
X:波形鋼板の幅方向に隣接する開口部の中心間距離
Y:上下方向に隣接する前記開口部の中心間距離
である。
The opening is a circular hole having the same radius, and is arranged in the vertical direction and the width direction so that a flat plate portion between creases in the corrugated steel sheet satisfies the formula (2). Corrugated steel shear wall as described.
Figure 2013002032
However,
r: Radius of the opening X: Distance between the centers of the openings adjacent in the width direction of the corrugated steel sheet Y: Distance between the centers of the openings adjacent in the vertical direction.
請求項2又は請求項3に記載の波形鋼板耐震壁の初期弾性せん断剛性Gを式(3)から算出する波形鋼板耐震壁の初期弾性せん断剛性算出方法。
Figure 2013002032
ただし、
L :隣接する縦材の間隔
α :水平方向に対して応力伝達部が傾斜する傾斜角度
:開口部がない波形鋼板耐震壁の初期弾性せん断剛性
である。
The initial elastic shear rigidity calculation method of the corrugated steel shear wall according to claim 2 or claim 3, wherein the initial elastic shear rigidity G of the corrugated steel shear wall is calculated from the equation (3).
Figure 2013002032
However,
L: Spacing between adjacent longitudinal members α: Inclination angle at which the stress transmission part inclines with respect to the horizontal direction G 0 : Initial elastic shear rigidity of the corrugated steel shear wall having no opening.
JP2011130587A 2011-06-10 2011-06-10 Corrugated steel shear wall and calculation method of initial shear stiffness Active JP5917838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011130587A JP5917838B2 (en) 2011-06-10 2011-06-10 Corrugated steel shear wall and calculation method of initial shear stiffness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130587A JP5917838B2 (en) 2011-06-10 2011-06-10 Corrugated steel shear wall and calculation method of initial shear stiffness

Publications (2)

Publication Number Publication Date
JP2013002032A true JP2013002032A (en) 2013-01-07
JP5917838B2 JP5917838B2 (en) 2016-05-18

Family

ID=47670908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130587A Active JP5917838B2 (en) 2011-06-10 2011-06-10 Corrugated steel shear wall and calculation method of initial shear stiffness

Country Status (1)

Country Link
JP (1) JP5917838B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234266A (en) * 2014-08-25 2014-12-24 哈尔滨工业大学 Buckling-restrained thin steel plate shear wall adopting prestressed cable nets
JP2016008422A (en) * 2014-06-24 2016-01-18 新日鐵住金株式会社 Surface material for bearing wall, and bearing wall
US20160281359A1 (en) * 2014-03-25 2016-09-29 Steven B. Tipping Wall sheathing with passive energy dissipation
JP2017066660A (en) * 2015-09-29 2017-04-06 株式会社竹中工務店 Solar radiation heat control structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146430A (en) * 1992-11-13 1994-05-27 Sanko Metal Ind Co Ltd Two layer outer surrounding body having sound absorbing performance
JPH09287298A (en) * 1996-02-23 1997-11-04 Taisei Corp Aseismatic performance reinforcing method for building and aseismatic block
JPH09302994A (en) * 1996-03-13 1997-11-25 Hideo Maeda Snow-melting roof
JP2002081156A (en) * 2000-06-30 2002-03-22 Daiwa House Ind Co Ltd Bearing wall panel
JP2005240436A (en) * 2004-02-26 2005-09-08 Daiwa House Ind Co Ltd Bearing wall panel for construction
JP2006207130A (en) * 2005-01-25 2006-08-10 Ina:Kk Tide plate and tide fence
JP2010127051A (en) * 2008-12-01 2010-06-10 Takenaka Komuten Co Ltd Corrugated steel-plate earthquake-resisting wall, method for designing the same and building
JP2010133187A (en) * 2008-12-08 2010-06-17 Takenaka Komuten Co Ltd Earthquake-resistant structure, building with earthquake-resistant structure, and repair method
JP2011006966A (en) * 2009-06-26 2011-01-13 Takenaka Komuten Co Ltd Steel earthquake resisting wall, and building with the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146430A (en) * 1992-11-13 1994-05-27 Sanko Metal Ind Co Ltd Two layer outer surrounding body having sound absorbing performance
JPH09287298A (en) * 1996-02-23 1997-11-04 Taisei Corp Aseismatic performance reinforcing method for building and aseismatic block
JPH09302994A (en) * 1996-03-13 1997-11-25 Hideo Maeda Snow-melting roof
JP2002081156A (en) * 2000-06-30 2002-03-22 Daiwa House Ind Co Ltd Bearing wall panel
JP2005240436A (en) * 2004-02-26 2005-09-08 Daiwa House Ind Co Ltd Bearing wall panel for construction
JP2006207130A (en) * 2005-01-25 2006-08-10 Ina:Kk Tide plate and tide fence
JP2010127051A (en) * 2008-12-01 2010-06-10 Takenaka Komuten Co Ltd Corrugated steel-plate earthquake-resisting wall, method for designing the same and building
JP2010133187A (en) * 2008-12-08 2010-06-17 Takenaka Komuten Co Ltd Earthquake-resistant structure, building with earthquake-resistant structure, and repair method
JP2011006966A (en) * 2009-06-26 2011-01-13 Takenaka Komuten Co Ltd Steel earthquake resisting wall, and building with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160281359A1 (en) * 2014-03-25 2016-09-29 Steven B. Tipping Wall sheathing with passive energy dissipation
US9828770B2 (en) * 2014-03-25 2017-11-28 Steven B. Tipping Wall sheathing with passive energy dissipation
US10392799B2 (en) 2014-03-25 2019-08-27 Zeniada Lu Loyola Tipping Wall sheathing with passive energy dissipation
JP2016008422A (en) * 2014-06-24 2016-01-18 新日鐵住金株式会社 Surface material for bearing wall, and bearing wall
CN104234266A (en) * 2014-08-25 2014-12-24 哈尔滨工业大学 Buckling-restrained thin steel plate shear wall adopting prestressed cable nets
JP2017066660A (en) * 2015-09-29 2017-04-06 株式会社竹中工務店 Solar radiation heat control structure

Also Published As

Publication number Publication date
JP5917838B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
KR101622522B1 (en) Concrete Filled Steel Tube Columns using H-beam and bending iron plate
JP5486278B2 (en) How to install the viscoelastic damper
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
JP5601882B2 (en) Steel seismic wall and building with the same
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP5917838B2 (en) Corrugated steel shear wall and calculation method of initial shear stiffness
JP4563872B2 (en) Seismic wall
JP4414833B2 (en) Seismic walls using corrugated steel
JP5291330B2 (en) Corrugated steel shear wall
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP4395419B2 (en) Vibration control pillar
JP2011006966A (en) Steel earthquake resisting wall, and building with the same
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP5254767B2 (en) Seismic structure, building with seismic structure, and repair method.
JP5095492B2 (en) Corrugated steel shear wall
JP4897854B2 (en) Seismic structure
JP5674338B2 (en) Steel shear wall
JP6126941B2 (en) Structure
JP2011127279A (en) Earthquake resisting wall formed by corrugated steel plate and building having the same
JP5280939B2 (en) building
JP4881084B2 (en) Seismic structure
JP4485876B2 (en) Seismic walls and structures
KR101509175B1 (en) Steel Reinforcement Integrated Composite Bean System
JP5341335B2 (en) Corrugated steel shear wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5917838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150