JP2004169309A - Bridge and its main tower - Google Patents

Bridge and its main tower Download PDF

Info

Publication number
JP2004169309A
JP2004169309A JP2002333618A JP2002333618A JP2004169309A JP 2004169309 A JP2004169309 A JP 2004169309A JP 2002333618 A JP2002333618 A JP 2002333618A JP 2002333618 A JP2002333618 A JP 2002333618A JP 2004169309 A JP2004169309 A JP 2004169309A
Authority
JP
Japan
Prior art keywords
bridge
main tower
tower
main
absorption mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333618A
Other languages
Japanese (ja)
Other versions
JP4001545B2 (en
Inventor
Yukihiro Nakajima
行弘 中島
Ichiro Masuda
伊知郎 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002333618A priority Critical patent/JP4001545B2/en
Publication of JP2004169309A publication Critical patent/JP2004169309A/en
Application granted granted Critical
Publication of JP4001545B2 publication Critical patent/JP4001545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a main tower of a bridge, which can reduce not only the weight of a main tower body but also steel materials and working processes, even if assumed earthquakes are big. <P>SOLUTION: The main tower 15 of the bridge, which adopts a rigid frame type, is used for a suspension bridge, and equipped with a pair of tower columns 21 which are erected from a tower base part 20, and horizontal materials 22-26 which are arranged as rigid frame type supporting members between the tower columns 21 so as to couple the tower columns 21 together. A stiffening girder 27 for coupling the main towers 20 together and a road 27A, which is supported by the stiffening girder 27, are provided in a lowermost part between the tower columns 21. The horizontal member 23 is divided into one end 28 and the other end 29, and a main-tower surface direction absorption mechanism 30 is provided between both the ends 28 and 29. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吊橋等の橋及びこれらの橋に用いられる主塔に関する。
【0002】
【従来の技術】
吊橋は、図9に示す吊橋1のように、立設された主塔2と、主塔2の上方間を連結するケーブル3と、主塔2の下方間を連結する補剛桁4と、ケーブル3と補剛桁4とを連結する吊材5とから構成されている。
【0003】
この吊橋の主塔は、その骨組形式から、トラス形式、ラーメン形式、トラス・ラーメン複合形式の3つに大きく分類される。
これらの形式は、耐震性等の構造環境を考慮して選択されるが、その他、経済性、景観等も考慮して主塔形状が決定される(例えば、非特許文献1参照)。
【0004】
上記従来の吊橋の主塔であって、ラーメン形式の主塔の一例を図10及び図11に示す。
この主塔2において、主塔2を構成する塔柱6と水平材7の隅角部8や、塔基部9の断面形状・大きさは、地震に対する耐震性から決定される。
なお、車両が通行する道路10は、補剛桁4に沿って延在している。
【0005】
【非特許文献1】
本州四国連絡橋公団編集「吊橋の設計」、平成2年7月、1.2.3項
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来のラーメン形式の主塔2は、耐力構造を採用しているため、想定する地震が大きくなるほど主塔の断面構造が大きくなって、全体重量が大きくなる問題があった。また、それに伴う必要鋼材数や、溶接工程等も増加し、コスト増となる問題があった。
【0007】
本発明は上記事情に鑑みて成されたものであり、想定される地震が大きくても、主塔本体の重量を削減し、あわせて鋼材や作業工程を削減できる橋の主塔を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用する。
請求項1に記載の発明は、一対の塔柱が水平材によりラーメン形式で支持された橋の主塔であって、前記水平材が分断された一方の端部と他方の端部との間に、前記一対の塔柱を互いに相対的に変位させるエネルギーを吸収する主塔面方向吸収機構を備えていることを特徴とする。
【0009】
この橋の主塔は、水平材が分断された一方の端部と他方の端部の間に、一対の塔柱を互いに相対的に変位させるエネルギーを吸収する主塔面方向吸収機構を備えているので、主塔面方向吸収機構により、主塔の水平材の延在する方向に負荷される地震エネルギー等を吸収させることができる。
【0010】
請求項2に記載の発明は、請求項1記載の橋の主塔であって、前記主塔面方向吸収機構が、前記一方の端部の上端から前記他方の端部の下端を連結させる軸部材と、前記一方の端部の下端から前記他方の端部の上端を連結させる軸部材とから構成され、これら軸部材は、少なくとも一部が前記水平材よりも低い降伏応力を有する低降伏材で形成されていることを特徴とする。
【0011】
この橋の主塔は、主塔面方向吸収機構の軸部材が、少なくとも一部が水平材よりも低い降伏応力を有する低降伏材で形成されているので、主塔の水平材の延在する方向に地震エネルギー等が負荷されても、水平材が降伏する前に低降伏材が降伏する。この時に地震エネルギー等が吸収されるので、塔柱等への負荷を軽減させることができる。特に、軸部材がトラス状に水平材の両端部に配設されているので、水平材の延在方向に対して斜め方向に負荷される地震エネルギー等も効率的に吸収することができる。
【0012】
請求項3に記載の発明は、請求項1又は2記載の橋の主塔において、前記主塔面方向吸収機構が、前記一方の端部から前記他方の端部とを連結させる薄板部材から構成されていることを特徴とする。
【0013】
この橋の主塔は、主塔面方向吸収機構が、一方の端部から他方の端部とを連結させる薄板部材から構成されているので、主塔の水平材の延在する方向に地震エネルギー等が負荷されても、水平材が降伏する前に薄板部材が降伏する。このときに地震エネルギー等が吸収され、塔柱等への負荷を軽減させることができる。
【0014】
請求項4に記載の発明は、請求項3に記載の橋の主塔であって、前記薄板部材には、リブ状の補剛部が設けられていることを特徴とする。
【0015】
この橋の主塔は、薄板部材にリブ状の補剛部が設けられているので、補剛部により薄板部材の降伏応力を所定のレベルまで高めることができる。
【0016】
請求項5に記載の発明は、請求項1から4の何れかに記載の橋の主塔であって、前記一対の塔柱には前記水平材が複数備えられ、前記主塔面方向吸収機構は、前記塔柱の上端から2番目の前記水平材に設けられていることを特徴とする。
【0017】
この橋の主塔は、主塔面方向吸収機構が塔柱の上端から2番目の水平材に設けられているので、塔柱の上端部にある場合と比較して主塔の運搬や工事によって主塔面方向吸収機構が破損されることなく、かつ、塔柱の上端部と同様に揺れの大きい場所で地震エネルギー等を効率よく吸収させることができる。
【0018】
請求項6に記載の発明は、一対の塔柱が水平材によりラーメン形式で支持された橋の主塔であって、前記塔柱は、その中心軸より橋軸方向に変位した位置で高さ方向に渡って設けられたロッドと、該ロッドが分断された一方の端部と他方の端部との間に連結され両端部を互いに相対的に変位させるエネルギーを吸収する橋軸方向吸収機構とを備えていることを特徴とする。
【0019】
この橋の主塔は、ロッド両端部を互いに相対的に変位させるエネルギーを吸収する橋軸方向吸収機構を備えているので、主塔の橋軸方向に地震エネルギー等が負荷されてロッドの両端部が相対的に変位しても、橋軸方向吸収機構によって地震エネルギー等が吸収され、塔柱等への負荷を軽減させることができる。
【0020】
請求項7に記載の発明は、請求項6記載の橋の主塔であって、前記橋軸方向吸収機構が、オイルダンパであることを特徴とする。
【0021】
この橋の主塔は、橋軸方向吸収機構がオイルダンパであるので、ロッドの両端部の変位及びその振動をオイルダンパが有する粘性によって減衰させることができる。
【0022】
請求項8に記載の発明は、請求項6又は7記載の橋の主塔であって、前記橋軸方向吸収機構が、前記塔柱の断面隅角部にそれぞれ設けられていることを特徴とする。
【0023】
この橋の主塔は、橋軸方向吸収機構が、塔柱断面隅角部の4箇所で、塔柱に最大変位を生じさせる位置に設けられているので、地震エネルギー等を効率よく吸収させることができる。
【0024】
請求項9に記載の発明は、請求項1から8の何れかに記載の橋の主塔を備えていることを特徴とする。
【0025】
この橋は、主塔に地震エネルギー等を吸収する吸収機構が設けられているので、長大な橋となっても主塔の大型化や重量増が抑えられる。
【0026】
【発明の実施の形態】
次に、本発明の実施形態について、図面を参照して説明する。
図1〜図3は本発明の第1の実施形態を示す。
【0027】
図1に示す橋の主塔15は、吊橋に用いられるもので、ラーメン形式を採用し、塔基部20から立設する一対の塔柱21と、塔柱21間を連結するために、ラーメン形式の支持部材として塔柱21間に配設された水平材22〜26とを備えている。塔柱21間の最下方には、主塔20間を連結する補剛桁27と、補剛桁27に支持された道路27Aが設けられている。
【0028】
図1において、水平部材23は、塔柱21の上端から2番目に配設されており、一方の端部28と他方の端部29とに分断され、両者間には主塔面方向の免震装置として機能する主塔面方向吸収機構30が設けられている。
この主塔面方向吸収機構30は、図2,3に図示するように、一方の端部28の前側上端隅31と他方の端部29の前側下端隅32に配設された前側ガセット33と、各前側ガセット間を連結する前側軸部材34とを備えている。また、一方の端部28の後側下端隅35と他方の端部の後側上端隅36に配設された後側ガセット37と、各後側ガセット間を連結する後側軸部材38とを備えている。
【0029】
前側軸部材34は、中央部分を構成する前側軸部39と、前側ガセット33と前側軸部39端部とをそれぞれ連結する塑性変形部(低降伏材)40とから構成されている。
後側軸部材38も同様に、後側軸部41と、塑性変形部40とから構成されている。この塑性変形部40の圧縮降伏応力は、水平材22〜25及前側軸部39、後側軸部41が有する圧縮降伏応力よりも小さい値となるよう部材設定している。
【0030】
これら前側軸部材34と後側軸部材38とを外観上隠すため、一方の端部28と他方の端部29の壁部間には、遮蔽板42が、免震効果に影響しない程度にボルト方向のみ各端部と拘束されるようにボルト止めされている。
【0031】
次に、上記主塔の地震時における免震方法について説明する。この主塔面方向免震装置30は、地震が発生した際に道路27Aの幅方向となる主塔面方向の荷重が主塔15に負荷された場合に機能する。
すなわち、一対の塔柱21間を互いに相対的に変位させようと水平材23の延在方向から伝播する地震エネルギー等は、主塔面方向免震装置30の配設位置においては、塑性変形部40の軸方向の圧縮力として作用する。この力による圧縮応力の値が塑性変形部40の圧縮降伏応力を上回った場合には、塑性変形部40は降伏するので、道路27Aの幅方向に加えられた地震エネルギー等の一部が吸収されることとなって、その他の部材にかかる荷重は低減される。
【0032】
また、前側軸部材34と後側軸部材38とが、トラス的に互いに異なる方向に延在して配設されているので、水平材の延在する方向に対して斜め方向から負荷される地震エネルギー等に対しても、各軸部材の延在する方向に分岐されて、効率的に吸収される。
【0033】
この橋の主塔によれば、塑性変形部40の圧縮降伏後の荷重に基づいて主塔構成部材である水平材や塔柱等の形状を決定できるため、耐震性を維持しながら主塔等の重量を軽減させることができる。
【0034】
次に、本発明に係る第2の実施形態について、図4から図6を参照して説明する。なお、以下の説明において、上記第1の実施形態において説明した構成要素には同一符号を付し、その説明は省略する。
【0035】
第2の実施形態と第1の実施形態との異なる点は、第1の実施形態では、前側軸部材34と後側軸部材38とを用いた主塔面方向吸収機構を採用したのに対して、第2の実施形態では、図5、6に示す薄板部材を採用した点である。
すなわち、図5、図6に示す主塔面方向吸収機構43は、一方の端部28の中央部と他方の端部29の中央部間を連結するせん断パネル(薄板部材)45を備えている。
【0036】
上記のせん断パネル45は、板部46の片面側に、凸部状のリブ(補剛部)47が、一定の長さ寸法及び幅寸法を有し、隣接するリブ47と一定の距離を保つように複数個配設されている。
なお、このせん断パネル45を外観上隠すため、一方の端部28と他方の端部29の壁部間には、遮蔽板42が、免震効果に影響しない程度にボルト方向のみ各端部と拘束されるようにボルト止めされている。
【0037】
次に、本実施形態における地震時の免震方法について説明する。この主塔面方向吸収機構43は、第1の実施形態と同様に、地震が発生した際に主塔面方向の荷重が主塔15に負荷された場合に機能する。
すなわち、水平材23の延在方向から伝播した地震エネルギー等は、一方の端部28及び他方の端部29とからせん断パネル45に、パネル面内方向の圧縮力として作用する。この荷重がせん断パネル45の座屈応力を上回った場合に、せん断パネル45は座屈変形する。この座屈によって、道路27Aの幅方向に加えられた地震エネルギー等の一部は、せん断パネル45を降伏させるエネルギーに変換されることとなって吸収され、その他の部材にかかる荷重を低減させる。
【0038】
また、せん断パネル45には、リブ47が形成されているので、リブ47がない場合に比べて、座屈応力を所定レベルまで高く設定でき、想定される地震エネルギー等を下回るエネルギーが負荷されても座屈しないようになっている。
【0039】
この橋の主塔によれば、せん断パネル45の座屈後の荷重に基づいて主塔構成部材である水平材や塔柱等の形状を決定できるため、耐震性を維持しながら主塔等の重量を軽減させることができる。
【0040】
次に、本発明に係る第3の実施形態について、図7及び図8を参照して説明する。なお、以下の説明において、上記の実施形態において説明した構成要素には同一符号を付し、その説明は省略する。
【0041】
第3の実施形態と第1、2の実施形態との異なる点は、第1、2の実施形態では、水平材23に主塔面方向吸収機構を採用したのに対して、第3の実施形態では、塔柱21内に橋軸方向吸収機構を採用した点である。
【0042】
図7に示す橋軸方向免震装置50には、塔柱21の中心軸より橋軸方向に変位した位置となる断面内部の四隅位置に、塔柱21の上端部51と塔基部20の下端部52とを高さ方向に連結するロッド53が設けられている。また、橋軸方向免震装置50には、上記ロッド53が途中で分断されて形成されたロッド上端断面部(一方の端部)54とロッド下端断面部(他方の端部)55との間に連結され、両端部を互いに相対的に変位させるエネルギーを吸収させるオイルダンパ56が設けられている。
【0043】
ロッド53は、主塔15の塔柱21の断面の四隅角部位置に上下方向に貫通して設けられた前側貫通部57内及び後側貫通部58内をそれぞれ貫通するように配設されている。
なお、これらのロッド53は、剛性を有する鋼材から構成されている。
【0044】
次に、本実施形態における地震時の免震方法について説明する。この橋軸方向吸収機構50は、地震が発生した際に道路27Aの延在方向である橋軸方向の荷重が主塔15に負荷された場合に機能する。
すなわち、橋軸方向の揺れが塔基部20を介して塔柱21に伝播すると、橋軸方向に変位を発生する。このとき、前側貫通部57内に配設されたロッド53は、オイルダンパ56で連結されたロッド上端断面部54とロッド下端断面部55を上下方向に離間されようとする。同時に、後側貫通部58内に配設されたロッド53は、オイルダンパ56で連結されたロッド上端断面部54とロッド下端断面部55を上下方向に近接されようとして、これらの状況が交互に発生する。
【0045】
その際、ロッド53は、オイルダンパ56によって上記の離間/近接されようとする変位及び振動が減衰されるので、橋軸方向に加えられた地震エネルギー等の一部はオイルダンパ56に吸収されることとなって、その他の部材にかかる荷重は低減される。
【0046】
この橋の主塔によれば、オイルダンパ56の減衰能力をあらかじめ見積もることによって、主塔構成部材である水平材や塔柱等の形状を決定できるため、耐震性を維持しながら主塔等の重量を軽減させることができる。
【0047】
なお、上記第1の実施形態或いは第2の実施形態とに示す主塔面方向免震装置と、第3の実施形態に示す橋軸方向免震装置とを併用して実施しても構わない。
また、吊橋は、主塔にケーブルを支持する構成を有する端であるが、主塔にケーブルを支持する構成を有する橋に特に有効で、上述した橋の主塔は、吊橋のみならず斜長橋の主塔として使用されても構わない。
【0048】
【発明の効果】
以上説明した本発明においては以下の効果を奏する。
本発明の橋の主塔は、水平材に主塔面方向吸収機構が設けられているので、耐震性を維持しながら、主塔等の構成部材数を減少させることができ、重量軽減や工程数の減少を図ることができる。
【0049】
本発明の橋の主塔は、主塔の高さ方向に橋軸方向吸収機構が設けられているので、同一環境条件下でも従来より主塔等の構造を大きくすることなく、全体の重量軽減や、構成部材数の減少、工程数の減少が可能となる。
【0050】
本発明の橋は、上記本発明の橋の主塔を備えているので、長大な橋であっても主塔の重量を小さくでき、建設にかかる費用や労力を低減することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における主塔面方向吸収機構が配設された橋の主塔の正面図である。
【図2】図1のA部II−II線矢視図である。
【図3】図2のIII−III線矢視図である。
【図4】本発明の第2の実施形態における主塔面方向吸収機構が配設された橋の主塔の正面図である。
【図5】図4のA部IV−IV線矢視図である。
【図6】図5のV−V矢視図である。
【図7】本発明の第3の実施形態における橋軸方向吸収機構が配設された橋の主塔の側面図である。
【図8】本発明の第3の実施形態における橋軸方向吸収機構が配設された橋の主塔の断面図である。
【図9】従来の橋の主塔が配設された吊橋の概要図である。
【図10】従来の橋の主塔の正面図である。
【図11】従来の橋の主塔の側面図である。
【符号の説明】
2、15 橋の主塔
7、22〜26 水平材
28 一方の端部
29 他方の端部
30、43 主塔面方向吸収機構
34 前側軸部材(軸部材)
38 後側軸部材(軸部材)
40 塑性変形部(低降伏材)
45 せん断パネル(薄板部材)
50 橋軸方向吸収機構
53 ロッド
56 オイルダンパ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to bridges such as suspension bridges and main towers used for these bridges.
[0002]
[Prior art]
The suspension bridge is, like the suspension bridge 1 shown in FIG. 9, an upright main tower 2, a cable 3 connecting the upper part of the main tower 2, a stiffening girder 4 connecting the lower part of the main tower 2, It comprises a cable 3 and a stiffener 4 for connecting the stiffening girder 4.
[0003]
The main towers of this suspension bridge are broadly classified into three types: truss type, ramen type, and truss / ramen combined type.
These types are selected in consideration of the structural environment such as earthquake resistance, but the shape of the main tower is also determined in consideration of economy, landscape, and the like (for example, see Non-Patent Document 1).
[0004]
FIGS. 10 and 11 show an example of a main tower of the above-mentioned conventional suspension bridge, which is a ramen type main tower.
In the main tower 2, the corners 8 of the tower 6 and the horizontal members 7 constituting the main tower 2 and the cross-sectional shape and size of the tower base 9 are determined based on the earthquake resistance to an earthquake.
The road 10 on which the vehicle passes extends along the stiffening girder 4.
[0005]
[Non-patent document 1]
Edited by Honshu-Shikoku Bridge Authority, "Design of Suspension Bridge", July 1990, Section 1.2.3 [0006]
[Problems to be solved by the invention]
However, since the conventional ramen-type main tower 2 employs a load-bearing structure, the sectional structure of the main tower becomes larger as the anticipated earthquake increases, resulting in a problem that the overall weight increases. In addition, the number of necessary steel materials and the welding process are also increased, resulting in a problem that the cost is increased.
[0007]
The present invention has been made in view of the above circumstances, and provides a main tower of a bridge that can reduce the weight of the main tower body and reduce the number of steel materials and work processes even when an anticipated earthquake is large. With the goal.
[0008]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The invention according to claim 1 is a main tower of a bridge in which a pair of tower pillars is supported in a ramen form by a horizontal member, wherein the horizontal member is separated between one end and the other end. A main tower surface absorbing mechanism for absorbing energy for displacing the pair of columns relatively to each other.
[0009]
The main tower of this bridge has a main tower surface absorption mechanism that absorbs energy for displacing a pair of tower columns relatively to each other between one end and the other end where the horizontal member is divided. Therefore, the main tower surface direction absorbing mechanism can absorb seismic energy or the like applied in the direction in which the horizontal members of the main tower extend.
[0010]
The invention according to claim 2 is the main tower of the bridge according to claim 1, wherein the main tower surface direction absorbing mechanism connects a lower end of the other end to an upper end of the one end. A low-yield material having at least a portion having a lower yield stress than the horizontal material, the shaft member comprising: a member; and a shaft member connecting the lower end of the one end to the upper end of the other end. It is characterized by being formed by.
[0011]
In the main tower of this bridge, since the shaft member of the main tower surface absorption mechanism is formed at least in part of a low yield material having a lower yield stress than the horizontal material, the horizontal material of the main tower extends. Even if seismic energy or the like is applied in the direction, the low-yield material yields before the horizontal material yields. At this time, since the seismic energy and the like are absorbed, the load on the tower columns and the like can be reduced. In particular, since the shaft members are disposed at both ends of the horizontal member in a truss shape, seismic energy or the like that is obliquely applied to the extending direction of the horizontal member can be efficiently absorbed.
[0012]
According to a third aspect of the present invention, in the main tower of the bridge according to the first or second aspect, the main tower surface direction absorbing mechanism includes a thin plate member that connects the one end to the other end. It is characterized by having been done.
[0013]
In the main tower of this bridge, the main tower surface absorption mechanism is composed of a thin plate member connecting one end to the other end. Even if a load is applied, the thin plate member yields before the horizontal member yields. At this time, seismic energy and the like are absorbed, and the load on the tower columns and the like can be reduced.
[0014]
The invention according to claim 4 is the main tower of the bridge according to claim 3, wherein the thin plate member is provided with a rib-like stiffening portion.
[0015]
In the main tower of this bridge, the thin plate member is provided with a rib-like stiffening portion, so that the stiffening portion can increase the yield stress of the thin plate member to a predetermined level.
[0016]
The invention according to claim 5 is the main tower of the bridge according to any one of claims 1 to 4, wherein the pair of tower columns includes a plurality of the horizontal members, and the main tower surface direction absorbing mechanism. Is provided on the second horizontal member from the upper end of the column.
[0017]
In the main tower of this bridge, the main tower surface absorption mechanism is provided on the second horizontal member from the upper end of the tower post, so compared to the case where it is at the upper end of the tower post, transportation and construction of the main tower The main tower surface absorption mechanism is not damaged, and seismic energy or the like can be efficiently absorbed in a place having a large swing similarly to the upper end of the tower column.
[0018]
The invention according to claim 6 is a main tower of a bridge in which a pair of towers is supported in a ramen form by horizontal members, wherein the towers have a height at a position displaced in a bridge axis direction from a center axis thereof. A rod provided in the direction, and a bridge axis direction absorbing mechanism that is connected between one end and the other end where the rod is divided and absorbs energy that displaces both ends relatively to each other. It is characterized by having.
[0019]
The main tower of this bridge has a bridge axial absorption mechanism that absorbs energy that displaces both ends of the rod relatively to each other. , The seismic energy or the like is absorbed by the bridge axial absorption mechanism, and the load on the tower columns and the like can be reduced.
[0020]
The invention according to claim 7 is the main tower of the bridge according to claim 6, wherein the bridge axial absorption mechanism is an oil damper.
[0021]
In the main tower of this bridge, since the bridge axial absorption mechanism is an oil damper, the displacement of both ends of the rod and its vibration can be attenuated by the viscosity of the oil damper.
[0022]
The invention according to claim 8 is the main tower of the bridge according to claim 6 or 7, wherein the bridge axial absorption mechanism is provided at each of the cross-sectional corners of the tower column. I do.
[0023]
In the main tower of this bridge, the bridge axial absorption mechanism is installed at the position that causes the maximum displacement of the column at the four corners of the column cross section, so that seismic energy etc. can be efficiently absorbed. Can be.
[0024]
According to a ninth aspect of the present invention, there is provided the bridge according to any one of the first to eighth aspects.
[0025]
In this bridge, the main tower is provided with an absorption mechanism for absorbing seismic energy and the like, so that even if the bridge becomes a long bridge, the size and weight of the main tower can be suppressed.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of the present invention.
[0027]
The main tower 15 of the bridge shown in FIG. 1 is used for a suspension bridge, adopts a ramen type, and uses a ramen type to connect a pair of towers 21 erected from a tower base 20 and the towers 21. And horizontal members 22 to 26 disposed between the tower columns 21 as support members. A stiffening girder 27 connecting between the main towers 20 and a road 27A supported by the stiffening girder 27 are provided at the lowermost part between the tower columns 21.
[0028]
In FIG. 1, the horizontal member 23 is disposed second from the upper end of the tower column 21 and is divided into one end 28 and the other end 29, and a gap between the two in the main tower surface direction is provided. A main tower surface absorption mechanism 30 functioning as a vibration device is provided.
As shown in FIGS. 2 and 3, the main tower surface absorption mechanism 30 includes a front gusset 33 provided at a front upper corner 31 of one end 28 and a front lower corner 32 of the other end 29. And a front shaft member 34 for connecting the front gussets. Also, a rear gusset 37 disposed at the rear lower corner 35 of the one end 28 and the rear upper corner 36 of the other end, and a rear shaft member 38 connecting the rear gussets are formed. Have.
[0029]
The front shaft member 34 includes a front shaft portion 39 that forms a central portion, and a plastic deformation portion (low-yield material) 40 that connects the front gusset 33 and an end of the front shaft portion 39, respectively.
Similarly, the rear shaft member 38 includes a rear shaft portion 41 and a plastic deformation portion 40. The members are set so that the compressive yield stress of the plastic deformation portion 40 is smaller than the compressive yield stress of the horizontal members 22 to 25 and the front shaft portion 39 and the rear shaft portion 41.
[0030]
In order to hide the front shaft member 34 and the rear shaft member 38 from the outside, the shielding plate 42 is bolted between the walls of the one end 28 and the other end 29 to such an extent that the seismic isolation effect is not affected. It is bolted so that it is restricted to each end only in the direction.
[0031]
Next, a seismic isolation method for the main tower during an earthquake will be described. The main tower surface seismic isolation device 30 functions when a load is applied to the main tower 15 in the width direction of the road 27A when the earthquake occurs.
That is, the seismic energy or the like propagating from the extending direction of the horizontal member 23 in order to displace the pair of tower columns 21 relatively to each other, is in a plastically deformed portion 40 acts as a compressive force in the axial direction. If the value of the compressive stress caused by this force exceeds the compressive yield stress of the plastically deformable portion 40, the plastically deformable portion 40 yields, so that a part of the seismic energy applied in the width direction of the road 27A is absorbed. That is, the load applied to the other members is reduced.
[0032]
Further, since the front shaft member 34 and the rear shaft member 38 are disposed so as to extend in directions different from each other in a truss-like manner, an earthquake is applied obliquely to the direction in which the horizontal members extend. Energy and the like are also branched in the direction in which each shaft member extends, and are efficiently absorbed.
[0033]
According to the main tower of this bridge, since the shape of the horizontal members and the pillars, which are the main tower constituent members, can be determined based on the load after compression yielding of the plastic deformation portion 40, the main tower and the like can be maintained while maintaining the earthquake resistance. Weight can be reduced.
[0034]
Next, a second embodiment according to the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to the components described in the first embodiment, and description thereof will be omitted.
[0035]
The difference between the second embodiment and the first embodiment is that the first embodiment employs a main tower direction absorption mechanism using a front shaft member 34 and a rear shaft member 38. In the second embodiment, the thin plate member shown in FIGS.
That is, the main tower surface absorption mechanism 43 shown in FIGS. 5 and 6 includes a shear panel (thin plate member) 45 that connects between the center of one end 28 and the center of the other end 29. .
[0036]
In the above-mentioned shear panel 45, a convex rib (stiffening part) 47 has a certain length dimension and a certain width dimension on one side of the plate part 46, and keeps a certain distance from the adjacent rib 47. Are arranged in such a manner.
Note that, in order to hide the shear panel 45 from the exterior, between the walls of the one end 28 and the other end 29, the shielding plate 42 is connected to each end only in the bolt direction so as not to affect the seismic isolation effect. It is bolted to be restrained.
[0037]
Next, a seismic isolation method at the time of an earthquake in the present embodiment will be described. As in the first embodiment, the main tower surface absorption mechanism 43 functions when a load in the main tower direction is applied to the main tower 15 when an earthquake occurs.
That is, the seismic energy or the like propagated from the extending direction of the horizontal member 23 acts on the shear panel 45 from one end 28 and the other end 29 as a compressive force in a panel in-plane direction. When this load exceeds the buckling stress of the shear panel 45, the shear panel 45 undergoes buckling deformation. Due to this buckling, part of the seismic energy and the like applied in the width direction of the road 27A is converted into energy that yields the shear panel 45 and absorbed, and the load applied to other members is reduced.
[0038]
Further, since the ribs 47 are formed on the shear panel 45, the buckling stress can be set to a predetermined level higher than the case where the ribs 47 are not provided, and energy lower than the estimated seismic energy or the like is applied. Not to buckle.
[0039]
According to the main tower of this bridge, the shape of the horizontal member, the pillar, and the like, which are the main tower constituent members, can be determined based on the post-buckling load of the shear panel 45. Weight can be reduced.
[0040]
Next, a third embodiment according to the present invention will be described with reference to FIGS. In the following description, the components described in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0041]
The difference between the third embodiment and the first and second embodiments is that, in the first and second embodiments, the horizontal member 23 is provided with the main tower surface absorption mechanism, whereas the third embodiment is different from the third embodiment. This embodiment is different from the first embodiment in that a bridge axial absorption mechanism is employed in the tower 21.
[0042]
The bridge-axis seismic isolation device 50 shown in FIG. 7 includes an upper end 51 of the tower 21 and a lower end of the tower base 20 at four corners inside the cross section which is displaced in the bridge axis direction from the center axis of the tower 21. A rod 53 that connects the portion 52 in the height direction is provided. Further, in the bridge axial seismic isolation device 50, a portion between a rod upper end cross-section (one end) 54 and a rod lower end cross-section (the other end) 55 formed by dividing the rod 53 in the middle is provided. And an oil damper 56 for absorbing energy for displacing both ends relatively to each other.
[0043]
The rods 53 are disposed so as to penetrate through the front-side penetration portion 57 and the rear-side penetration portion 58 that are vertically provided at four corners of the cross section of the tower column 21 of the main tower 15. I have.
These rods 53 are made of a rigid steel material.
[0044]
Next, a seismic isolation method at the time of an earthquake in the present embodiment will be described. The bridge axis direction absorbing mechanism 50 functions when a load is applied to the main tower 15 in the bridge axis direction, which is the extending direction of the road 27A, when an earthquake occurs.
That is, when the shaking in the bridge axis direction propagates to the tower column 21 via the tower base 20, displacement occurs in the bridge axis direction. At this time, the rod 53 disposed in the front side penetrating portion 57 tends to vertically separate the rod upper end cross-section 54 and the rod lower end cross-section 55 connected by the oil damper 56. At the same time, the rod 53 disposed in the rear side penetrating portion 58 tries to approach the upper end cross-sectional portion 54 and the lower end cross-sectional portion 55 connected by the oil damper 56 in the vertical direction, so that these situations alternate. appear.
[0045]
At this time, since the displacement and vibration of the rod 53 that is going to be separated or approached by the oil damper 56 are attenuated, a part of the seismic energy or the like applied in the bridge axis direction is absorbed by the oil damper 56. That is, the load on the other members is reduced.
[0046]
According to the main tower of this bridge, by estimating the damping capacity of the oil damper 56 in advance, it is possible to determine the shape of the horizontal members, the tower columns, etc., which are the main tower constituent members. Weight can be reduced.
[0047]
Note that the main tower surface seismic isolation device shown in the first embodiment or the second embodiment and the bridge axis seismic isolation device shown in the third embodiment may be used in combination. .
In addition, the suspension bridge is an end having a configuration for supporting the cable on the main tower, but is particularly effective for a bridge having a configuration for supporting the cable on the main tower. May be used as the main tower.
[0048]
【The invention's effect】
The present invention described above has the following effects.
Since the main tower of the bridge of the present invention is provided with the main tower surface direction absorbing mechanism on the horizontal member, it is possible to reduce the number of components such as the main tower while maintaining the earthquake resistance, thereby reducing the weight and the process. The number can be reduced.
[0049]
The main tower of the bridge of the present invention is provided with a bridge axial absorption mechanism in the height direction of the main tower, so that the overall weight can be reduced without increasing the size of the main tower and the like even under the same environmental conditions. In addition, the number of components and the number of steps can be reduced.
[0050]
Since the bridge of the present invention includes the main tower of the bridge of the present invention, the weight of the main tower can be reduced even for a long bridge, and the cost and labor required for construction can be reduced.
[Brief description of the drawings]
FIG. 1 is a front view of a main tower of a bridge provided with a main tower direction absorbing mechanism according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along the line II-II in FIG.
FIG. 3 is a view taken along line III-III in FIG. 2;
FIG. 4 is a front view of a main tower of a bridge provided with a main tower direction absorbing mechanism according to a second embodiment of the present invention.
FIG. 5 is a sectional view taken along line IV-IV of section A in FIG. 4;
FIG. 6 is a view taken in the direction of arrows VV in FIG. 5;
FIG. 7 is a side view of a main tower of a bridge provided with a bridge axial absorption mechanism according to a third embodiment of the present invention.
FIG. 8 is a sectional view of a main tower of a bridge provided with a bridge axial absorption mechanism according to a third embodiment of the present invention.
FIG. 9 is a schematic diagram of a suspension bridge on which a main tower of a conventional bridge is provided.
FIG. 10 is a front view of a main tower of a conventional bridge.
FIG. 11 is a side view of a main tower of a conventional bridge.
[Explanation of symbols]
2, 15 Main tower 7, 22 to 26 of bridge Horizontal member 28 One end 29 The other end 30, 43 Main tower surface direction absorbing mechanism 34 Front shaft member (shaft member)
38 Rear shaft member (shaft member)
40 plastic deformation part (low yielding material)
45 shear panel (thin plate member)
50 Bridge axis direction absorption mechanism 53 Rod 56 Oil damper

Claims (9)

一対の塔柱が水平材によりラーメン形式で支持された橋の主塔であって、
前記水平材が分断された一方の端部と他方の端部との間に、前記一対の塔柱を互いに相対的に変位させるエネルギーを吸収する主塔面方向吸収機構を備えていることを特徴とする橋の主塔。
A pair of towers is the main tower of the bridge supported by horizontal members in a ramen style,
A main tower surface direction absorbing mechanism for absorbing energy for displacing the pair of tower columns relatively to each other is provided between one end and the other end where the horizontal member is divided. And the main tower of the bridge.
前記主塔面方向吸収機構は、前記一方の端部の上端から前記他方の端部の下端を連結させる軸部材と、前記一方の端部の下端から前記他方の端部の上端を連結させる軸部材とから構成され、これらの軸部材は、少なくとも一部が前記水平材よりも低い降伏応力を有するよう形成されていることを特徴とする請求項1記載の橋の主塔。The main tower direction absorption mechanism includes a shaft member that connects the upper end of the one end to the lower end of the other end, and a shaft that connects the lower end of the one end to the upper end of the other end. The main tower of a bridge according to claim 1, wherein at least a part of the shaft members is formed to have a lower yield stress than the horizontal member. 前記主塔面方向吸収機構は、前記一方の端部から前記他方の端部とを連結させる薄板部材から構成されていることを特徴とする請求項1又は2記載の橋の主塔。The main tower of a bridge according to claim 1 or 2, wherein the main tower surface direction absorbing mechanism is constituted by a thin plate member connecting the one end to the other end. 前記薄板部材には、リブ状の補剛部が設けられていることを特徴とする請求項3記載の橋の主塔。The main tower of a bridge according to claim 3, wherein the thin plate member is provided with a rib-shaped stiffening portion. 前記一対の塔柱には前記水平材が複数備えられ、前記主塔面方向吸収機構は、前記塔柱の上端から2番目の前記水平材に設けられていることを特徴とする請求項1から4の何れかに記載の橋の主塔。The pair of towers are provided with a plurality of the horizontal members, and the main tower surface direction absorbing mechanism is provided on the second horizontal member from an upper end of the tower columns. 4. The main tower of the bridge according to any one of 4. 一対の塔柱が水平材によりラーメン形式で支持された橋の主塔であって、
前記塔柱は、その中心軸より橋軸方向に変位した位置で高さ方向に渡って設けられたロッドと、該ロッドが分断された一方の端部と他方の端部との間に連結され両端部を互いに相対的に変位させるエネルギーを吸収する橋軸方向吸収機構とを備えていることを特徴とする橋の主塔。
A pair of towers is the main tower of the bridge supported by horizontal members in a ramen style,
The tower post is connected between a rod provided in a height direction at a position displaced in a bridge axis direction from a center axis thereof, and one end portion and the other end portion of the rod divided. A bridge main tower, comprising: a bridge axial absorption mechanism that absorbs energy for displacing both ends relatively to each other.
前記橋軸方向吸収機構が、オイルダンパであることを特徴とする請求項6記載の橋の主塔。The main tower of a bridge according to claim 6, wherein the bridge axial absorption mechanism is an oil damper. 前記橋軸方向吸収機構が、前記塔柱の断面隅角部にそれぞれ設けられていることを特徴とする請求項6又は7記載の橋の主塔。The main tower of a bridge according to claim 6 or 7, wherein the bridge axial absorption mechanism is provided at each of the cross-sectional corners of the tower column. 請求項1から8の何れかに記載の橋の主塔を備えていることを特徴とする橋。A bridge comprising the main tower of the bridge according to claim 1.
JP2002333618A 2002-11-18 2002-11-18 Bridge and main tower of the bridge Expired - Fee Related JP4001545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333618A JP4001545B2 (en) 2002-11-18 2002-11-18 Bridge and main tower of the bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333618A JP4001545B2 (en) 2002-11-18 2002-11-18 Bridge and main tower of the bridge

Publications (2)

Publication Number Publication Date
JP2004169309A true JP2004169309A (en) 2004-06-17
JP4001545B2 JP4001545B2 (en) 2007-10-31

Family

ID=32698277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333618A Expired - Fee Related JP4001545B2 (en) 2002-11-18 2002-11-18 Bridge and main tower of the bridge

Country Status (1)

Country Link
JP (1) JP4001545B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002910A (en) * 2010-11-15 2011-04-06 湖南大学 Cable support tower of cable load-bearing bridge
JP2011080293A (en) * 2009-10-08 2011-04-21 Kajima Corp Seismic response controlled bridge pier
CN102561174A (en) * 2012-01-13 2012-07-11 东南大学 Green shock and vibration absorbing bridge tower
CN113622303A (en) * 2021-07-30 2021-11-09 中铁二十三局集团第三工程有限公司 Three-dimensional framework of X-shaped tower column and construction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532737B (en) * 2014-11-27 2016-08-24 同济大学 It is applied to the combined shear hinge device of H type concrete bridge tower entablature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080293A (en) * 2009-10-08 2011-04-21 Kajima Corp Seismic response controlled bridge pier
CN102002910A (en) * 2010-11-15 2011-04-06 湖南大学 Cable support tower of cable load-bearing bridge
CN102561174A (en) * 2012-01-13 2012-07-11 东南大学 Green shock and vibration absorbing bridge tower
CN102561174B (en) * 2012-01-13 2014-05-07 东南大学 Green shock and vibration absorbing bridge tower
CN113622303A (en) * 2021-07-30 2021-11-09 中铁二十三局集团第三工程有限公司 Three-dimensional framework of X-shaped tower column and construction method

Also Published As

Publication number Publication date
JP4001545B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
Alinia et al. Cyclic behaviour, deformability and rigidity of stiffened steel shear panels
KR20100105726A (en) Connection metal fitting and building with the same
CN105649230A (en) Buckling-proof steel plate shear wall with end columns and construction method thereof
JP4957295B2 (en) Seismic control pier structure
JP2004169309A (en) Bridge and its main tower
JP3016634B2 (en) Damping structure
KR102130843B1 (en) Seismic reinforcement concrete structure using steel braces with dampers
JPH09296625A (en) Building structure having earthquake-resistant construction
KR102130842B1 (en) Seismic reinforcement method using steel braces with dampers
JP5940416B2 (en) building
JP2008208612A (en) External aseismatic reinforcing structure
JP2004270168A (en) Earthquake-proof reinforcement structure and method
JP3100922B2 (en) Steel-concrete composite rockshed
CN205839572U (en) A kind of energy-dissipating and shock-absorbing pier stud
CN104929271B (en) Multifunctional buckling-preventive energy-consuming combined wall and mounting method
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP2002004632A (en) Base isolation column base structure
JPH10280725A (en) Damping skeleton construction
JP4923641B2 (en) Column-beam joints, steel frames and steel structures with excellent seismic performance
JP2012117364A (en) Vibration control bridge pier structure
JP2008063914A (en) Seismic response control frame
CN107447886A (en) It is a kind of from vibration damping wallboard and its damper and wallboard preparation method
JP2012233374A (en) Seismic reinforcement structure
De Matteis et al. Seismic protection of steel buildings by pure aluminium shear panels
KR100448441B1 (en) Bracing type steel frame construction with slited damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees