JP2015102255A - Hydrate solid drying device - Google Patents

Hydrate solid drying device Download PDF

Info

Publication number
JP2015102255A
JP2015102255A JP2013241455A JP2013241455A JP2015102255A JP 2015102255 A JP2015102255 A JP 2015102255A JP 2013241455 A JP2013241455 A JP 2013241455A JP 2013241455 A JP2013241455 A JP 2013241455A JP 2015102255 A JP2015102255 A JP 2015102255A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
water
solid
countercurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013241455A
Other languages
Japanese (ja)
Other versions
JP6364753B2 (en
Inventor
知哉 村本
Tomoya Muramoto
知哉 村本
裕一 西山
Yuichi Nishiyama
裕一 西山
真也 奥野
Masaya Okuno
真也 奥野
俊一朗 上野
Toshiichiro Ueno
俊一朗 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013241455A priority Critical patent/JP6364753B2/en
Publication of JP2015102255A publication Critical patent/JP2015102255A/en
Application granted granted Critical
Publication of JP6364753B2 publication Critical patent/JP6364753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PROBLEM TO BE SOLVED: To reduce energy consumption of a hydrate solid drying device.SOLUTION: A hydrate solid drying device includes: a preheating heat exchanger 11 preheating a hydrate solid using hot water and a gas medium as a heat source; a fluidized bed dryer 12 heating the preheated hydrate solid using compressed steam, evaporating water contained in the hydrate solid to separate the water as steam, and supplying a dried solid; a heat-recovery heat exchanger 15 cooling the dried solid using the gas medium as a cold source, and recovering heat; and a gas compressor 16 increasing a temperature of the gas medium recovering the heat by compressing the gas. The heated gas medium is supplied together with hot water formed by condensing the compressed steam in the fluidized bed dryer 12 to the preheating heat exchanger 11. The preheating heat exchanger 11 and the heat-recovery heat exchanger 15 are counterflow heat exchangers.

Description

この発明は、含水固形物乾燥装置に関する。   The present invention relates to a hydrated solid material drying apparatus.

従来、泥炭、褐炭、バイオマス等の含水固形物を加熱して乾燥し、乾燥物として提供する含水固形物乾燥装置が提供されている。   DESCRIPTION OF RELATED ART Conventionally, the hydrated solid drying apparatus which heats and dries hydrated solids, such as peat, lignite, and biomass, and provides as a dried product is provided.

例えば、下記特許文献1、2には、含水固形物を1次乾燥用熱交換器にて所定温度まで加熱した後、乾燥機にて流動層に形成した含水固形物を伝熱管により加熱して水分を蒸発させ、放熱熱交換器にて冷却して乾燥固体物として提供する乾燥装置が開示されている。   For example, in Patent Documents 1 and 2 below, a hydrated solid is heated to a predetermined temperature with a heat exchanger for primary drying, and then the hydrated solid formed in a fluidized bed with a dryer is heated with a heat transfer tube. A drying apparatus is disclosed that evaporates moisture, cools it with a radiant heat exchanger, and provides it as a dry solid.

この乾燥装置において、前記伝熱管には、乾燥機において流動層を形成した空気などの流動化ガスに含水固形物から蒸発した蒸気が加わった混合ガス流体が昇温されて供給されている。伝熱管において、混合ガス流体中の水蒸気は潜熱を放出して凝縮し、混合ガスは流動化ガスと水との混合流体になる。   In this drying apparatus, the heat transfer tube is supplied with a mixed gas fluid obtained by adding a vaporized gas, which is vaporized from a hydrated solid, to a fluidized gas such as air that has formed a fluidized bed in a dryer. In the heat transfer tube, water vapor in the mixed gas fluid releases latent heat and condenses, and the mixed gas becomes a mixed fluid of fluidized gas and water.

この混合流体は、前記1次乾燥用熱交換器に熱媒として供されている。一方、乾燥機において乾燥された含水固形物は、放熱熱交換器に送られ、乾燥機に供給される混合ガスに対して放熱し、冷却されて提供される。   This mixed fluid is provided as a heat medium to the primary drying heat exchanger. On the other hand, the hydrated solid material dried in the dryer is sent to a heat-dissipating heat exchanger, dissipates heat to the mixed gas supplied to the dryer, and is cooled and provided.

従来の含水固形物乾燥装置においては、含水固形物を乾燥する乾燥機とともに、含水固形物を所定温度まで加熱する1次乾燥用熱交換器や乾燥した含水固形物が放熱して冷却される放熱熱交換器にも流動層熱交換器を使用していた。   In the conventional water-containing solids drying apparatus, a primary drying heat exchanger that heats the water-containing solids to a predetermined temperature and a heat release that cools the dried water-containing solids by releasing heat together with a dryer that dries the water-containing solids. A fluidized bed heat exchanger was also used as the heat exchanger.

特開2012−154605号公報JP 2012-154605 A 特開2010−276259号公報JP 2010-276259 A

含水固形物乾燥装置においては、含水固形物を乾燥する際の熱効率を高め、エネルギー消費を低減することが求められている。   In the water-containing solid material drying apparatus, it is required to increase the thermal efficiency when drying the water-containing solid material and reduce the energy consumption.

この出願は、上述の実情に鑑みて提案されるものであって、熱効率を高め、エネルギー消費を低減した含水固形物乾燥装置を提供することを目的とする。   This application is proposed in view of the above-described circumstances, and an object thereof is to provide a water-containing solid material drying device that has improved thermal efficiency and reduced energy consumption.

上述の課題を解決するため、この発明に係る含水固形物乾燥装置の発明は、含水固形物、温水及び気体媒体が供給され、前記温水及び前記気体媒体を熱源として前記含水固形物を加熱し、前記含水固形物に含まれる水が蒸発を始めるまで予熱する予熱熱交換器と、前記予熱熱交換器にて予熱された前記含水固形物、圧縮後水蒸気が供給され、前記圧縮後水蒸気を熱源として前記含水固形物を加熱し、前記含水固形物に含まれる水を蒸発させて水蒸気とし、前記含水固形物から水を分離して乾燥した固形物とする乾燥機と、前記乾燥機にて乾燥された前記固形物、及び気体媒体が供給され、前記気体媒体を冷熱源として前記固形物を冷却し、前記固形物から前記気体媒体に熱を回収する熱回収熱交換器と、前記熱回収熱交換器にて熱を回収した前記気体媒体が供給され、この気体媒体を圧縮により昇温するガス圧縮機と、を含み、前記乾燥機からは水蒸気が回収され、その少なくとも一部が圧縮により昇温された圧縮後水蒸気として前記乾燥機に供給され、前記乾燥機に供給された前記圧縮後水蒸気の少なくとも一部は凝縮して温水となり、前記ガス圧縮機にて昇温された前記気体媒体とともに前記予熱熱交換器に供給され、前記予熱熱交換器及び前記熱回収熱交換器は、向流熱交換器であるものである。   In order to solve the above-mentioned problem, the invention of the water-containing solid material drying apparatus according to the present invention is supplied with water-containing solid material, hot water and a gaseous medium, and heats the water-containing solid material using the warm water and the gaseous medium as heat sources, A preheating heat exchanger that preheats until water contained in the water-containing solid material starts to evaporate, the water-containing solid material preheated in the preheating heat exchanger, and water vapor after compression are supplied, and the water vapor after compression is used as a heat source The water-containing solid is heated, the water contained in the water-containing solid is evaporated to form water vapor, the water is separated from the water-containing solid and dried to obtain a solid, and dried in the dryer A heat recovery heat exchanger that is supplied with the solid matter and a gaseous medium, cools the solid matter using the gaseous medium as a cooling source, and recovers heat from the solid matter to the gaseous medium; and the heat recovery heat exchange The heat was recovered by the vessel A gas compressor supplied with the gas medium and heating the gas medium by compression, steam is recovered from the dryer, and at least a part of the steam is heated as a post-compression steam that has been heated by compression. Supplyed to a dryer, at least a part of the compressed water vapor supplied to the dryer is condensed into warm water, and is supplied to the preheating heat exchanger together with the gaseous medium heated by the gas compressor. The preheating heat exchanger and the heat recovery heat exchanger are countercurrent heat exchangers.

前記向流熱交換器は、向流間接熱交換器にしてもよい。前記向流熱交換器は、向流直接熱交換器にしてもよい。前記向流熱交換器は、回転式向流熱交換器又は移動層式向流熱交換器にしてもよい。   The countercurrent heat exchanger may be a countercurrent indirect heat exchanger. The countercurrent heat exchanger may be a countercurrent direct heat exchanger. The countercurrent heat exchanger may be a rotary countercurrent heat exchanger or a moving bed countercurrent heat exchanger.

前記乾燥機は、前記水蒸気にて前記含水固形物の流動層の流動化状態を形成するとともに前記圧縮後水蒸気を熱源として前記流動層にある前記含水固形物を加熱し、前記含水固形物に含まれる水を蒸発させて水蒸気とし、前記含水固形物から水を分離して乾燥した固形物とする流動層乾燥機にしてもよい。   The dryer forms a fluidized state of the fluidized bed of the hydrated solid with the steam and heats the hydrated solid in the fluidized bed with the steam after compression as a heat source and is contained in the hydrated solid. It is also possible to use a fluidized bed dryer that evaporates the water to be water vapor and separates the water from the hydrated solid to obtain a dried solid.

前記流動層乾燥機から回収された水蒸気の一部を前記流動層乾燥機に供給するブロワと、前記流動層乾燥機から回収された水蒸気の残りを圧縮により昇温した圧縮後水蒸気を前記流動層乾燥機に供給する蒸気圧縮機と、をさらに含み、前記流動層乾燥機は伝熱管をさらに含み、前記圧縮後水蒸気は前記伝熱管に供給され、前記伝熱管を介して放熱し、凝縮して温水になるようにしてもよい。   A blower for supplying a part of the water vapor recovered from the fluidized bed dryer to the fluidized bed dryer; and the compressed water vapor obtained by compressing the remainder of the water vapor recovered from the fluidized bed dryer by compression. A steam compressor to be supplied to the dryer, the fluidized bed dryer further includes a heat transfer tube, and the compressed steam is supplied to the heat transfer tube, dissipates heat through the heat transfer tube, and is condensed. You may make it become warm water.

前記乾燥機は、向流熱交換器にしてもよい。前記向流熱交換器は、向流間接熱交換器または向流直接熱交換器にしてもよい。   The dryer may be a countercurrent heat exchanger. The countercurrent heat exchanger may be a countercurrent indirect heat exchanger or a countercurrent direct heat exchanger.

前記予熱熱交換器にて前記含水固形物を予熱した前記気体媒体が供給され、前記気体媒体の圧力によって駆動される圧力回収タービンをさらに含むようにしてもよい。前記圧力回収タービンにて回収された動力を前記ガス圧縮機に供給する動力回収機構をさらに含むようにしてもよい。前記動力回収機構は、前記ガス圧縮機及び前記圧力回収タービンを同軸上で連結するようにしてもよい。   The preheating heat exchanger may further include a pressure recovery turbine that is supplied with the gaseous medium preheated with the hydrated solid and is driven by the pressure of the gaseous medium. A power recovery mechanism that supplies power recovered by the pressure recovery turbine to the gas compressor may be further included. The power recovery mechanism may connect the gas compressor and the pressure recovery turbine coaxially.

この発明によると、予熱熱交換器と熱回収熱交換器に向流熱交換器を使用しているので、含水固形物との熱交換の熱効率を高めることができ、ひいてはエネルギー消費を低減することができる。また、熱回収熱交換器にて乾燥した固形物から熱を回収して予熱熱交換器における予熱に再利用しているので、さらにエネルギー消費を低減することができる。   According to the present invention, since the countercurrent heat exchanger is used for the preheating heat exchanger and the heat recovery heat exchanger, the heat efficiency of the heat exchange with the water-containing solid can be increased, thereby reducing the energy consumption. Can do. Moreover, since heat is recovered from the solid material dried by the heat recovery heat exchanger and reused for preheating in the preheating heat exchanger, energy consumption can be further reduced.

乾燥装置の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of a drying apparatus. 乾燥装置の変形例1を示すブロック図である。It is a block diagram which shows the modification 1 of a drying apparatus. 乾燥装置の変形例2を示すブロック図である。It is a block diagram which shows the modification 2 of a drying apparatus. 乾燥装置の変形例3を示すブロック図である。It is a block diagram which shows the modification 3 of a drying apparatus. 乾燥装置の変形例4を示すブロック図である。It is a block diagram which shows the modification 4 of a drying apparatus. 乾燥装置の比較例を示すブロック図である。It is a block diagram which shows the comparative example of a drying apparatus. 本実施の形態の乾燥装置と比較例の乾燥装置のエネルギー消費量を示す図である。It is a figure which shows the energy consumption of the drying apparatus of this Embodiment, and the drying apparatus of a comparative example.

以下、この発明に係る含水固形物乾燥装置の実施の形態について図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a water-containing solid material drying apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、この発明の実施の形態の乾燥装置の構成を示す図である。この実施の形態の乾燥装置は、含水固形物を乾燥物にするものであって、その過程において含水固形物に供給した潜熱と顕熱をともに回収して再利用することにより、エネルギー消費を低減するものである。   FIG. 1 is a diagram showing a configuration of a drying apparatus according to an embodiment of the present invention. The drying apparatus according to this embodiment converts the hydrated solid material into a dried product, and reduces energy consumption by recovering and reusing both latent heat and sensible heat supplied to the hydrated solid material in the process. To do.

この乾燥装置で処理する含水固形物には、汚泥、褐炭、バイオマスが含まれ、バイオマスには麦、ゴマ、米が含まれるが、これらに限定されない。また、以下の乾燥装置の説明において、構成要素等に関連して温度を例示するが、これらの温度は一例を示すものであって、これらに限定されない。   The water-containing solids to be treated by this drying apparatus include sludge, lignite, and biomass, and the biomass includes, but is not limited to, wheat, sesame, and rice. Moreover, in the following description of the drying apparatus, temperatures are exemplified in relation to components and the like, but these temperatures are merely examples, and are not limited to these.

この乾燥装置は、原料の被乾燥体として供給される含水固形物を予熱する予熱熱交換器11、予熱熱交換器11にて予熱された含水固形物に含まれる水を蒸発させて乾燥体の固形物とする流動層乾燥機12、流動層乾燥機12から供給された固形物から熱を回収する熱回収熱交換器15を有している。予熱熱交換器11と熱回収熱交換器15は、回転式の向流間接熱交換器である。   This drying apparatus preheats a water-containing solid material supplied as a raw material to be dried, a preheating heat exchanger 11, and evaporates water contained in the water-containing solid material preheated by the preheating heat exchanger 11, thereby A fluidized bed dryer 12 that is a solid material and a heat recovery heat exchanger 15 that recovers heat from the solid material supplied from the fluidized bed dryer 12 are provided. The preheating heat exchanger 11 and the heat recovery heat exchanger 15 are rotary countercurrent indirect heat exchangers.

また、この乾燥装置は、流動層乾燥機12から回収された水蒸気の一部を流動層乾燥機12に供給して流動層の流動化状態を確保するブロワ14、回収された水蒸気の残りを断熱圧縮により圧縮後水蒸気として流動層乾燥機12に供給する蒸気圧縮機13を有している。   In addition, the drying apparatus supplies a part of the steam recovered from the fluidized bed dryer 12 to the fluidized bed dryer 12 to ensure the fluidized state of the fluidized bed, and insulates the remainder of the recovered steam. A vapor compressor 13 is supplied to the fluidized bed dryer 12 as water vapor after compression by compression.

さらに、この乾燥装置は、熱回収熱交換器15にて熱を回収した気体媒体を断熱圧縮により加熱して予熱熱交換器11に供給するガス圧縮機16、予熱熱交換器11から供給された気体媒体の圧力にて駆動される圧力回収タービン17、圧力回収タービン17にて回収された動力をガス圧縮機16に供給する動力回収機構18を有している。   Furthermore, this drying apparatus was supplied from the gas compressor 16 and the preheating heat exchanger 11 that supply the preheating heat exchanger 11 by heating the gaseous medium whose heat has been recovered by the heat recovery heat exchanger 15 by adiabatic compression. A pressure recovery turbine 17 driven by the pressure of the gas medium, and a power recovery mechanism 18 for supplying the power recovered by the pressure recovery turbine 17 to the gas compressor 16 are provided.

予熱熱交換器11には、室温の30℃の含水固形物が供給される。予熱熱交換器11において、30℃の含水固形物は、流動層乾燥機12から供給された110℃の温水、ガス圧縮機16から供給された110℃の気体媒体を熱源として吸熱し、この含水固形物に含まれる水が蒸発を始める100℃まで昇温される。   The preheating heat exchanger 11 is supplied with water-containing solid at 30 ° C. at room temperature. In the preheating heat exchanger 11, the 30 ° C. water-containing solid absorbs heat using the 110 ° C. hot water supplied from the fluidized bed dryer 12 and the 110 ° C. gas medium supplied from the gas compressor 16 as a heat source. The water contained in the solid is heated to 100 ° C. at which evaporation begins.

この予熱熱交換器11に供給された110℃の温水は放熱して45℃まで降温して排水として排出され、同じく供給された110℃の気体媒体も放熱して45℃まで降温されて圧力回収タービン17に送られる。   The 110 ° C. hot water supplied to the preheating heat exchanger 11 is dissipated and cooled down to 45 ° C. and discharged as waste water. Similarly, the 110 ° C. gaseous medium also dissipated and lowered to 45 ° C. to recover pressure. It is sent to the turbine 17.

図2は、この実施の形態の予熱熱交換器11に用いる回転式の向流間接熱交換器の概略を示す図である。この向流間接熱交換器は、水平方向から傾斜して設置されて軸Pの周りに回転駆動される、熱交換の対象物101を格納する円筒形の胴体21を有し、この胴体21の内部に軸P方向に向けた伝熱管22が設けられている。伝熱管22には、胴体21の下部の他端26から上部の一端25に向けて流体の熱媒が供給されている。なお、この向流間接熱交換器は、ロータリー式または回転ドラム式と称されることもある。   FIG. 2 is a diagram showing an outline of a rotary counter-current indirect heat exchanger used in the preheating heat exchanger 11 of this embodiment. This counter-current indirect heat exchanger has a cylindrical body 21 for storing an object 101 for heat exchange, which is installed inclined from a horizontal direction and is driven to rotate around an axis P. A heat transfer tube 22 facing in the direction of the axis P is provided inside. A fluid heat medium is supplied to the heat transfer tube 22 from the lower end 26 of the body 21 toward the upper end 25. In addition, this countercurrent indirect heat exchanger may be called a rotary type or a rotary drum type.

この向流間接熱交換器には、上部の一端25から対象物101である固体の含水固形物が投入され、含水固形物は胴体21の回転とともに胴体21内を下部の他端26に向けて撹拌されつつ搬送される。含水固形物は、胴体21内を搬送される間に伝熱管22をこの含水固形物の進む方向とは逆方向に流れる流体の熱媒によって間接的に加熱される。   The countercurrent indirect heat exchanger is charged with a solid hydrated solid, which is the object 101, from one end 25 at the upper part, and the hydrated solid is directed toward the other end 26 at the lower part of the body 21 as the body 21 rotates. It is conveyed while being stirred. The water-containing solid is indirectly heated by the fluid heat medium flowing in the heat transfer tube 22 in the direction opposite to the direction in which the water-containing solid travels while being transported through the body 21.

この向流間接熱交換器において、熱媒の流体には、供給された110℃の温水と110℃の気体媒体が混合された混合流体が用いられる。110℃の混合流体は、伝熱管22を通じて含水固形物に放熱し、45℃まで降温されて排出される。この45℃の混合流体は、気体成分と液体成分に分離され、気体成分は気体媒体として圧力回収タービン17に送られ、液体成分は排水として排出される。   In this countercurrent indirect heat exchanger, a mixed fluid in which the supplied hot water of 110 ° C. and a gaseous medium of 110 ° C. are mixed is used as the fluid of the heat medium. The mixed fluid at 110 ° C. dissipates heat to the water-containing solid matter through the heat transfer tube 22 and is cooled down to 45 ° C. and discharged. The 45 ° C. mixed fluid is separated into a gas component and a liquid component, the gas component is sent to the pressure recovery turbine 17 as a gaseous medium, and the liquid component is discharged as waste water.

予熱熱交換器11にて100℃まで昇温された含水固形物は、流動層乾燥機12に供給される。流動層乾燥機12には、この流動層乾燥機12から回収された100℃の水蒸気の一部が、ブロワ14によりこの流動層乾燥機12において含水固形物の流動層の流動化状態を形成するために供給されている。回収された水蒸気の残りは、蒸気圧縮機13により断熱圧縮された150℃の圧縮後水蒸気としてこの流動層乾燥機12に配された伝熱管に供給されている。   The water-containing solid heated to 100 ° C. in the preheating heat exchanger 11 is supplied to the fluidized bed dryer 12. In the fluidized bed dryer 12, a part of 100 ° C. water vapor recovered from the fluidized bed dryer 12 forms a fluidized state of the fluidized bed of water-containing solids in the fluidized bed dryer 12 by the blower 14. Has been supplied for. The remainder of the recovered steam is supplied to a heat transfer tube disposed in the fluidized bed dryer 12 as compressed steam at 150 ° C. adiabatically compressed by the steam compressor 13.

流動層乾燥機12において、予熱熱交換器11から供給された100℃の含水固形物は、ブロワ14から供給された100℃の水蒸気によって流動層に形成され、流動化状態にある含水固形物は伝熱管を介して150℃の圧縮後水蒸気を熱源として加熱される。そして、この含水固形物に含まれる水が蒸発して水蒸気として分離され、100℃の乾燥体の固形物とされる。   In the fluidized bed dryer 12, the 100 ° C. water-containing solid supplied from the preheating heat exchanger 11 is formed in the fluidized bed by the 100 ° C. water vapor supplied from the blower 14, and the water-containing solid in a fluidized state is After compression at 150 ° C. through the heat transfer tube, the steam is heated using the steam as a heat source. And the water contained in this hydrous solid substance evaporates, and is isolate | separated as water vapor | steam, and it is set as a solid body of a 100 degreeC dry body.

流動層乾燥機12にブロワ14から供給された100℃の水蒸気は、この流動層乾燥機12において含水固形物から蒸発した100℃の水蒸気とともに回収されて蒸気圧縮機13とブロワ14に送られる。流動層乾燥機12の伝熱管に蒸気圧縮機13から供給された150℃の水蒸気は、伝熱管において放熱し、凝縮して110℃の温水となり予熱熱交換器11に送られる。   The 100 ° C. water vapor supplied from the blower 14 to the fluidized bed dryer 12 is collected together with the 100 ° C. water vapor evaporated from the water-containing solids in the fluidized bed dryer 12 and sent to the steam compressor 13 and the blower 14. The 150 ° C. water vapor supplied from the steam compressor 13 to the heat transfer tube of the fluidized bed dryer 12 dissipates heat in the heat transfer tube, condenses into 110 ° C. warm water, and is sent to the preheating heat exchanger 11.

流動層乾燥機12にて乾燥された100℃の固形物は、熱回収熱交換器15に供給される。熱回収熱交換器15において、100℃の固形物は、室温の30℃の空気などの気体媒体を冷熱源として冷却されて放熱し、室温近くの40度まで降温される。そして、最終的な乾燥体の固形物としてこの乾燥装置から提供される。   The solid material at 100 ° C. dried by the fluidized bed dryer 12 is supplied to the heat recovery heat exchanger 15. In the heat recovery heat exchanger 15, the solid at 100 ° C. is cooled by using a gaseous medium such as air at 30 ° C. at room temperature as a cold heat source to dissipate heat, and the temperature is lowered to 40 degrees near the room temperature. And it provides from this drying apparatus as a solid substance of a final dry body.

この実施の形態の熱回収熱交換器15には、予熱熱交換器11と同様に、図2に示したような回転式の向流間接熱交換器が用いられる。この向流間接熱交換器には、上部の一端25から対象物101である固体の固形物が投入され、固形物は胴体21の回転とともに胴体21内を下部の他端26に向けて撹拌されつつ搬送される。固形物は、胴体21内を搬送される間に伝熱管22をこの固形物の進む方向とは逆方向に流れる流体の気体媒体によって冷却される。   As the heat recovery heat exchanger 15 of this embodiment, a rotary countercurrent indirect heat exchanger as shown in FIG. The countercurrent indirect heat exchanger is charged with a solid solid material, which is the object 101, from one end 25 at the upper part, and the solid substance is stirred toward the other end 26 at the lower part as the body 21 rotates. It is conveyed while. The solid matter is cooled by the gaseous medium of the fluid flowing in the heat transfer tube 22 in the direction opposite to the direction in which the solid matter proceeds while being transported in the body 21.

この向流間接熱交換器において、30℃の気体媒体は、伝熱管22を通じて100℃の固形物から吸熱し、90℃まで昇温されて排出される。一方、この向流間接熱交換器に供給された100℃の固形物は、40℃まで降温されて提供される。   In this countercurrent indirect heat exchanger, the gas medium at 30 ° C. absorbs heat from the solid at 100 ° C. through the heat transfer tube 22, and is heated to 90 ° C. and discharged. On the other hand, the solid material at 100 ° C. supplied to the countercurrent indirect heat exchanger is provided after being cooled to 40 ° C.

この熱回収熱交換器15にて吸熱して90℃まで昇温された気体媒体は、ガス圧縮機16に送られる。ガス圧縮機16において、熱回収熱交換器15から供給された90℃の気体媒体は、断熱圧縮されて110℃まで昇温され、予熱熱交換器11に送られる。   The gaseous medium that has absorbed heat in the heat recovery heat exchanger 15 and has been heated to 90 ° C. is sent to the gas compressor 16. In the gas compressor 16, the 90 ° C. gaseous medium supplied from the heat recovery heat exchanger 15 is adiabatically compressed, heated to 110 ° C., and sent to the preheating heat exchanger 11.

予熱熱交換器11に送られた110℃の気体媒体は、放熱して45℃まで降温され、圧力回収タービン17に送られる。圧力回収タービン17において、気体媒体は断熱膨張によりこの圧力回収タービン17を駆動し、35℃まで降温された排気として排出される。   The 110 ° C. gaseous medium sent to the preheating heat exchanger 11 releases heat to 45 ° C. and is sent to the pressure recovery turbine 17. In the pressure recovery turbine 17, the gaseous medium drives the pressure recovery turbine 17 by adiabatic expansion and is discharged as exhaust gas that has been cooled to 35 ° C.

圧力回収タービン17は動力回収機構18によってガス圧縮機16に連結されている。ガス圧縮機16は、この動力回収機構18を通じて、圧力回収タービン17にて回収された動力によって駆動されている。動力回収機構18は、圧力回収タービン17とガス圧縮機16の両者を同軸上に連結するものであってもよいが、これに限られない。動力回収機構18は、圧力回収タービン17で得られた回収された動力によって圧力回収タービン17を駆動することができる適当な機構であればよい。   The pressure recovery turbine 17 is connected to the gas compressor 16 by a power recovery mechanism 18. The gas compressor 16 is driven by the power recovered by the pressure recovery turbine 17 through the power recovery mechanism 18. The power recovery mechanism 18 may connect both the pressure recovery turbine 17 and the gas compressor 16 on the same axis, but is not limited thereto. The power recovery mechanism 18 may be any suitable mechanism that can drive the pressure recovery turbine 17 by the recovered power obtained by the pressure recovery turbine 17.

この実施の形態の乾燥装置においては、予熱熱交換器11と熱回収熱交換器15に回転式の向流間接熱交換器を使用している。この回転式の向流間接熱交換器は高い熱交換の効率を有するので、予熱熱交換器11と熱回収熱交換器15の熱効率の向上とエネルギー消費の低減を達成することができ、ひいては乾燥装置全体の熱効率の向上と消費エネルギーの低減を図ることができる。   In the drying apparatus of this embodiment, a rotary countercurrent indirect heat exchanger is used for the preheating heat exchanger 11 and the heat recovery heat exchanger 15. Since this rotary counter-current indirect heat exchanger has a high heat exchange efficiency, it is possible to improve the heat efficiency and reduce the energy consumption of the preheating heat exchanger 11 and the heat recovery heat exchanger 15 and to dry the heat exchanger. It is possible to improve the thermal efficiency of the entire apparatus and reduce the energy consumption.

この乾燥装置においては、流動層乾燥機12から排出された水蒸気を断熱圧縮した圧縮後水蒸気を流動層乾燥機12に熱源として供給することにより、この流動層乾燥機12において含水固形物に含まれる水が蒸発する際に吸収した潜熱を含水固形物の水分を蒸発させるために供給する潜熱に再利用している。流動層乾燥機12に熱源として供給する圧縮後水蒸気は空気などのガスと比べると熱容量が大きく、熱交換の熱効率を高め、ひいてはエネルギー消費を低減することができる。   In this drying apparatus, the water vapor discharged from the fluidized bed dryer 12 is adiabatically compressed and supplied to the fluidized bed dryer 12 by supplying compressed water vapor as a heat source to the fluidized bed dryer 12 so that it is contained in the hydrated solid matter. The latent heat absorbed when water evaporates is reused as latent heat supplied to evaporate the water content of the water-containing solid. The compressed water vapor supplied as a heat source to the fluidized bed dryer 12 has a larger heat capacity than a gas such as air, and can increase the heat efficiency of heat exchange and thus reduce energy consumption.

また、この乾燥装置においては、熱回収熱交換器15にて熱を回収した気体媒体を断熱圧縮して予熱熱交換器11の熱源として供給することにより、熱回収熱交換器15にて回収した含水固形物の顕熱を予熱熱交換器11にて含水固形物を予熱するために供給する顕熱に再利用している。さらに、予熱熱交換器11の熱源として流動層乾燥機12から供給された温水を使用し、予熱熱交換器11から供給された気体媒体を圧力回収タービン17にて動力として回収することによって熱の再利用を図っている。   Further, in this drying apparatus, the heat recovery heat exchanger 15 recovers the gaseous medium recovered from the heat by adiabatic compression and supplies it as a heat source of the preheating heat exchanger 11. The sensible heat of the hydrated solid is reused for the sensible heat supplied to preheat the hydrated solid in the preheating heat exchanger 11. Furthermore, the hot water supplied from the fluidized bed dryer 12 is used as a heat source for the preheating heat exchanger 11, and the gas medium supplied from the preheating heat exchanger 11 is recovered as power by the pressure recovery turbine 17 to generate heat. We are trying to reuse.

このように、この乾燥装置においては、予熱熱交換器11と熱回収熱交換器15に高い熱交換の効率を有する回転式の向流間接熱交換器を採用するとともに、蒸気再圧縮、温水熱回収、乾燥体熱回収及び気体媒体圧縮の各工程により熱を回収して再利用している。したがって、この乾燥装置においては、熱効率の向上とともに消費エネルギーの低減が達成されている。   As described above, in this drying apparatus, a rotary counter-current indirect heat exchanger having high heat exchange efficiency is adopted for the preheating heat exchanger 11 and the heat recovery heat exchanger 15, and steam recompression, hot water heat is used. Heat is recovered and reused in each step of recovery, dry body heat recovery, and gas medium compression. Therefore, in this drying apparatus, reduction of energy consumption is achieved with improvement in thermal efficiency.

(変形例1)
この変形例1は、この実施の形態の乾燥装置の予熱熱交換器11と熱回収熱交換器15において、回転式の向流間接熱交換器に代わって移動層式の向流間接熱交換器を採用するものである。これら予熱熱交換器11と熱回収熱交換器15を除く他の構成、各部の温度などは、この実施の形態と同様であるので説明を省略する。
(Modification 1)
This modified example 1 is a moving bed type countercurrent indirect heat exchanger in place of the rotary countercurrent indirect heat exchanger in the preheating heat exchanger 11 and the heat recovery heat exchanger 15 of the drying apparatus of this embodiment. Is adopted. Since the other configurations excluding the preheating heat exchanger 11 and the heat recovery heat exchanger 15 and the temperatures of the respective parts are the same as in this embodiment, the description thereof is omitted.

図3は、移動層式の向流間接熱交換器の概略を示す図である。この向流間接熱交換器は、熱交換の対象物101を格納する、垂直方向に延びた円筒形の胴体31を有し、この胴体31の内部に垂直方向に向けた伝熱管32が設けられている。伝熱管32には、胴体31の下端36から上端35に向けて流体の熱媒が供給されている。   FIG. 3 is a diagram showing an outline of a moving bed type countercurrent indirect heat exchanger. This countercurrent indirect heat exchanger has a cylindrical body 31 extending in the vertical direction for storing the object 101 for heat exchange, and a heat transfer tube 32 oriented in the vertical direction is provided inside the body 31. ing. A fluid heat medium is supplied to the heat transfer tube 32 from the lower end 36 to the upper end 35 of the body 31.

この向流間接熱交換器は、予熱熱交換器11として使用されるとき、対象物101である固体の含水固形物が上端35から投入され、含水固形物は胴体31の内部に下端36から上端35近くまで積層して堆積する。胴体31内の含水固形物は、下端36から所定の割合が所定速度で排出され、これに伴い含水固形物は胴体内31を下端36に向けて所定の速度で移動される。含水固形物は、胴体31内を移動する間に伝熱管32をこの含水固形物の進む方向とは逆方向に流れる流体の熱媒によって間接的に加熱される。   When this counter-current indirect heat exchanger is used as the preheating heat exchanger 11, a solid hydrated solid as the object 101 is introduced from the upper end 35, and the hydrated solid is placed inside the body 31 from the lower end 36 to the upper end. Stack up to nearly 35. A predetermined proportion of the hydrated solid in the body 31 is discharged from the lower end 36 at a predetermined speed, and accordingly, the hydrated solid is moved at a predetermined speed toward the lower end 36 toward the body 31. The water-containing solid is indirectly heated by the fluid heat medium flowing in the heat transfer tube 32 in the direction opposite to the direction in which the water-containing solid travels while moving in the body 31.

この向流間接熱交換器は、熱回収熱交換器15として使用されるとき、対象物101である固形物が上端35から投入され、固形物は胴体31内を移動する間に伝熱管32を含水固形物の進む方向とは逆方向に流れる流体を冷熱媒として間接的に冷却される。   When this countercurrent indirect heat exchanger is used as the heat recovery heat exchanger 15, the solid material as the object 101 is introduced from the upper end 35, and the solid material moves through the body 31 while passing through the heat transfer tube 32. The fluid flowing in the direction opposite to the direction in which the hydrated solid material travels is indirectly cooled as a cooling medium.

この変形例1の移動層式の向流間接熱交換器は、例えば従来の流動層熱交換器などと対比すると高い熱交換の効率を有している。したがって、予熱熱交換器11と熱回収熱交換器15の熱効率、ひいてはこの変形例1の乾燥装置の熱効率の向上と消費エネルギーの低減を図ることができる。   The moving bed type countercurrent indirect heat exchanger of the first modification has high heat exchange efficiency as compared with, for example, a conventional fluidized bed heat exchanger. Therefore, it is possible to improve the thermal efficiency of the preheating heat exchanger 11 and the heat recovery heat exchanger 15, and consequently to improve the thermal efficiency of the drying apparatus of the first modification and reduce the energy consumption.

変形例1の移動層式の向流間接熱交換器は、回転式の向流間接熱交換器よりも対象物101の移動に大きなエネルギーを要する。したがって、この変形例1の消費エネルギーは、この実施の形態の消費エネルギーより大きいものとなる。   The moving bed type countercurrent indirect heat exchanger of Modification 1 requires a larger amount of energy to move the object 101 than the rotary type countercurrent indirect heat exchanger. Therefore, the energy consumption of this modification 1 is larger than the energy consumption of this embodiment.

(変形例2)
この変形例2は、この実施の形態の乾燥装置の予熱熱交換器11と熱回収熱交換器15において、回転式の向流間接熱交換器に代わって回転式の向流直接熱交換器を採用するものである。これら予熱熱交換器11と熱回収熱交換器15を除く他の構成、各部の温度などは、この実施の形態と同様であるので説明を省略する。
(Modification 2)
In this modified example 2, in the preheating heat exchanger 11 and the heat recovery heat exchanger 15 of the drying apparatus of this embodiment, a rotary countercurrent direct heat exchanger is used instead of the rotary countercurrent indirect heat exchanger. Adopted. Since the other configurations excluding the preheating heat exchanger 11 and the heat recovery heat exchanger 15 and the temperatures of the respective parts are the same as in this embodiment, the description thereof is omitted.

図4は、回転式の向流直接熱交換器の概略を示す図である。この向流直接熱交換器は、熱交換の対象物101を格納する、水平に設置され円筒形の胴体41を有し、胴体41内部に回転駆動されるスクリューフィーダーが設けられている。このスクリューフィーダーのシャフト42には伝熱管が設けられ、スクリューの羽根43を介した熱交換を可能にしている。この伝熱管には胴体41の他端46から一端45に向けて液体の熱媒が供給されている。また、胴体41の他端46から一端45に向けて気体の熱媒が供給されている。なお、この向流直接熱交換器は、ロータリー式またはスクリューフィーダー式と称されることもある。   FIG. 4 is a diagram showing an outline of a rotary counter-current direct heat exchanger. This counter-current direct heat exchanger has a horizontally installed cylindrical body 41 for storing an object 101 for heat exchange, and a screw feeder that is rotationally driven inside the body 41 is provided. A heat transfer tube is provided on the shaft 42 of the screw feeder to enable heat exchange via the blades 43 of the screw. The heat transfer tube is supplied with a liquid heat medium from the other end 46 of the body 41 toward the one end 45. Further, a gaseous heat medium is supplied from the other end 46 of the body 41 toward the one end 45. In addition, this counterflow direct heat exchanger may be called a rotary type or a screw feeder type.

この向流直接熱交換器は、予熱熱交換器11として使用されるとき、対象物101である固体の含水固形物が一端45から投入され、含水固形物はスクリューフィーダーの回転により胴体41内を他端46に向けて撹拌されつつ搬送される。含水固形物は、胴体41内を搬送される間にスクリューフィーダーのシャフト42に設けられた伝熱管をこの含水固形物の進む方向とは逆方向に流れる液体の温水により伝熱管を介して間接的に加熱され、胴体41内を同様に逆方向に流れる気体媒体により直接に加熱される。   When this counter-current direct heat exchanger is used as the preheating heat exchanger 11, a solid hydrated solid material as the object 101 is introduced from one end 45, and the hydrated solid material passes through the body 41 by the rotation of the screw feeder. It is conveyed toward the other end 46 while being stirred. The water-containing solids are indirectly transferred through the heat transfer tubes by the hot water of the liquid flowing in the direction opposite to the direction in which the water-containing solids travel through the heat transfer tube provided on the shaft 42 of the screw feeder while being conveyed in the body 41. And heated directly by the gaseous medium flowing in the opposite direction in the body 41 as well.

この向流直接熱交換器は、熱回収熱交換器15として使用されるとき、対象物101である固体の固形物が一端45から投入され、固形物は胴体41内を搬送される間に胴体41内をこの含水固形物の進む方向とは逆方向に流れる気体媒体を冷熱媒として直接に冷却される。熱回収熱交換器15においては、液体の熱媒は使用されていないので、スクリューフィーダーのシャフト42に伝熱管を設ける必要はない。   When this countercurrent direct heat exchanger is used as the heat recovery heat exchanger 15, a solid solid material as the object 101 is introduced from one end 45, and the solid material is conveyed while being transported through the body 41. The gas medium flowing in the direction opposite to the direction in which the water-containing solid material proceeds in 41 is directly cooled as a cooling medium. In the heat recovery heat exchanger 15, since a liquid heat medium is not used, it is not necessary to provide a heat transfer tube on the shaft 42 of the screw feeder.

この変形例2の回転式の向流直接熱交換器は、例えば従来の流動層熱交換器などと対比すると高い熱交換の効率を有している。したがって、予熱熱交換器11と熱回収熱交換器15の熱効率、ひいてはこの変形例2の乾燥装置の熱効率の向上と消費エネルギーの低減を図ることができる。   The rotary counter-current direct heat exchanger according to Modification 2 has high heat exchange efficiency as compared with, for example, a conventional fluidized bed heat exchanger. Therefore, it is possible to improve the thermal efficiency of the preheating heat exchanger 11 and the heat recovery heat exchanger 15, and consequently improve the thermal efficiency of the drying device of the second modification and reduce the energy consumption.

この回転式の向流直接熱交換器は、この実施の形態の回転式の向流間接熱交換器とは異なり、含水固形物または固形物が気体の熱媒と直接に接触するため、高い熱交換の効率が達成できる。一方、予熱熱交換器11においては、この予熱熱交換器11から排出される気体媒体に含水固形物から発生した蒸気が混入しないように湿度管理をする必要がある。   This rotary counter-current direct heat exchanger is different from the rotary counter-current indirect heat exchanger of this embodiment, because the hydrated solid or solid is in direct contact with the gaseous heat medium, Exchange efficiency can be achieved. On the other hand, in the preheating heat exchanger 11, it is necessary to manage the humidity so that the vapor generated from the hydrated solid does not enter the gaseous medium discharged from the preheating heat exchanger 11.

(変形例3)
この変形例3は、この実施の形態の乾燥装置の予熱熱交換器11と熱回収熱交換器15において、回転式の向流間接熱交換器に代わって移動層式の向流直接熱交換器を採用するものである。これら予熱熱交換器11と熱回収熱交換器15を除く他の構成、各部の温度などは、この実施の形態と同様であるので説明を省略する。
(Modification 3)
This modification 3 is a moving bed type countercurrent direct heat exchanger in place of the rotary countercurrent indirect heat exchanger in the preheating heat exchanger 11 and the heat recovery heat exchanger 15 of the drying apparatus of this embodiment. Is adopted. Since the other configurations excluding the preheating heat exchanger 11 and the heat recovery heat exchanger 15 and the temperatures of the respective parts are the same as in this embodiment, the description thereof is omitted.

図5は、移動層式の向流直接熱交換器の概略を示す図である。この向流直接熱交換器は、熱交換の対象物101を格納する、垂直方向に延びる円筒形の胴体51を有している。この向流直接熱交換器は、胴体51の内部に下端56から上端55に向けて流体の熱媒が供給されている。   FIG. 5 is a diagram showing an outline of a moving bed type countercurrent direct heat exchanger. This counter-current direct heat exchanger has a cylindrical body 51 extending in the vertical direction in which an object 101 for heat exchange is stored. In this counterflow direct heat exchanger, a fluid heat medium is supplied into the body 51 from the lower end 56 toward the upper end 55.

この向流直接熱交換器は、予熱熱交換器11として使用されるとき、対象物101である固体の含水固形物が上端55から投入され、含水固形物は胴体51の内部に下端56から上端55近くまで積層して堆積する。胴体51内の含水固形物は、下端56から所定の割合が所定速度で排出され、これに伴いて含水固形物は胴体内51を下端56に向けて所定の速度で移動される。含水固形物は、胴体51内を移動する間にこの胴体51内を含水固形物の進む方向とは逆方向に流れる流体の熱媒により直接に加熱される。   When this countercurrent direct heat exchanger is used as the preheating heat exchanger 11, a solid hydrated solid as the object 101 is introduced from the upper end 55, and the hydrated solid is introduced into the body 51 from the lower end 56 to the upper end. Stack up to near 55. A predetermined percentage of the hydrated solid in the body 51 is discharged from the lower end 56 at a predetermined speed, and the hydrated solid is moved at a predetermined speed toward the lower end 56 along the body 51. The water-containing solid is directly heated by the fluid heat medium flowing in the body 51 in the direction opposite to the direction in which the water-containing solid travels while moving in the body 51.

この向流直接熱交換器は、熱回収熱交換器15として使用されるとき、対象物101である固体の固形物が上端55から投入され、固形物は胴体51内を移動する間にこの胴体51内を含水固形物の進む方向とは逆方向に流れる流体を冷熱媒として直接に冷却される。   When the countercurrent direct heat exchanger is used as the heat recovery heat exchanger 15, a solid solid material as the object 101 is introduced from the upper end 55, and the solid material moves while moving through the body 51. The fluid flowing in the direction opposite to the direction in which the water-containing solids travel in 51 is directly cooled as a cooling medium.

この変形例3の移動層式の向流直接熱交換器は、例えば従来の流動層熱交換器などと対比すると高い熱交換の効率を有している。したがって、予熱熱交換器11と熱回収熱交換器15の熱効率、ひいてはこの変形例3の乾燥装置の熱効率の向上と消費エネルギーの低減を図ることができる。   The moving bed type countercurrent direct heat exchanger of the third modification has high heat exchange efficiency as compared with, for example, a conventional fluidized bed heat exchanger. Therefore, it is possible to improve the thermal efficiency of the preheating heat exchanger 11 and the heat recovery heat exchanger 15 and, consequently, the thermal efficiency of the drying device of this modification 3 and reduce the energy consumption.

変形例3の移動層式の向流直接熱交換器は、回転式の向流間接熱交換器よりも対象物101などの移動に大きなエネルギーを要する。したがって、この変形例3の消費エネルギーは、この実施の形態の消費エネルギーより大きいものとなる。   The moving bed type countercurrent direct heat exchanger of Modification 3 requires a larger amount of energy to move the object 101 and the like than the rotary type countercurrent indirect heat exchanger. Therefore, the energy consumption of Modification 3 is greater than the energy consumption of this embodiment.

この移動層式の向流直接熱交換器は、この実施の形態の移動層式の向流間接熱交換器とは異なり、含水固形物または固形物が流体の熱媒と直接に接触するため、高い熱交換の効率が達成できる。一方、予熱熱交換器11においては、この予熱熱交換器11から排出される気体媒体に含水固形物から発生した蒸気が混入しないように湿度管理をする必要がある。   Unlike the moving bed type countercurrent indirect heat exchanger of this embodiment, this moving bed type countercurrent direct heat exchanger is in direct contact with the fluid heat medium because the hydrated solids or solids are in direct contact with the fluid heat medium. High heat exchange efficiency can be achieved. On the other hand, in the preheating heat exchanger 11, it is necessary to manage the humidity so that the vapor generated from the hydrated solid does not enter the gaseous medium discharged from the preheating heat exchanger 11.

なお、この実施の形態と変形例1〜3においては、予熱熱交換器11と熱回収熱交換器15に回転式の向流間接熱交換器、移動層式の向流間接熱交換器、回転式の向流直接熱交換器、移動層式の向流直接熱交換器の内で同一の種類の向流熱交換器を採用したが、これら同一の組み合わせに限定されない。予熱熱交換器11と熱回収熱交換器15には、これら回転式の向流間接熱交換器、移動層式の向流間接熱交換器、回転式の向流直接熱交換器、移動層式の向流直接熱交換器から異なる種類の向流熱交換器を採用することもできる。   In this embodiment and Modifications 1 to 3, the preheating heat exchanger 11 and the heat recovery heat exchanger 15 include a rotary countercurrent indirect heat exchanger, a moving bed type countercurrent indirect heat exchanger, a rotation The same type of counter-current heat exchanger is adopted among the counter-current direct heat exchanger of the type and the moving-bed type counter-current direct heat exchanger, but it is not limited to the same combination. The preheating heat exchanger 11 and the heat recovery heat exchanger 15 include a rotary countercurrent indirect heat exchanger, a moving bed type countercurrent indirect heat exchanger, a rotary countercurrent direct heat exchanger, and a moving bed type. Different types of counter-current heat exchangers can be employed instead of the counter-current direct heat exchanger.

また、この実施の形態と変形例1〜3においては、回転式の向流間接熱交換器、移動層式の向流間接熱交換器、回転式の向流直接熱交換器、移動層式の向流直接熱交換器を例示したが、予熱熱交換器11と熱回収熱交換器15に使用できる熱交換器はこれらに限定されない。回転式または移動層式ではなくても向流直接熱交換器または向流間接熱交換器であれば使用することができる。   Moreover, in this embodiment and the modifications 1-3, a rotary countercurrent indirect heat exchanger, a moving bed type countercurrent indirect heat exchanger, a rotary countercurrent direct heat exchanger, a moving bed type Although the counterflow direct heat exchanger was illustrated, the heat exchanger which can be used for the preheating heat exchanger 11 and the heat recovery heat exchanger 15 is not limited thereto. Even if it is not a rotary type or a moving bed type, it can be used if it is a countercurrent direct heat exchanger or a countercurrent indirect heat exchanger.

さらに、この実施の形態と変形例1〜3においては、流動層乾燥機12を使用したが、これに限定されない。流動層乾燥機12に代わって、回転式または移動層式の向流直接熱交換器または向流間接熱交換器を使用することもできる。また、これらに限られず、向流直接熱交換器または向流間接熱交換器であれば使用することができる。   Furthermore, in this Embodiment and the modifications 1-3, although the fluidized bed dryer 12 was used, it is not limited to this. Instead of the fluidized bed dryer 12, a rotary or moving bed type countercurrent direct heat exchanger or countercurrent indirect heat exchanger may be used. Moreover, it is not restricted to these, If it is a countercurrent direct heat exchanger or a countercurrent indirect heat exchanger, it can be used.

(比較例)
この比較例は、この実施の形態の乾燥装置の予熱熱交換器11と熱回収熱交換器15において、回転式の向流間接熱交換器に代わって流動層熱交換器を採用するものである。これら予熱熱交換器11と熱回収熱交換器15を除く他の構成、各部の温度などは、この実施の形態と同様であるので説明を省略する。
(Comparative example)
In this comparative example, in the preheating heat exchanger 11 and the heat recovery heat exchanger 15 of the drying apparatus according to this embodiment, a fluidized bed heat exchanger is employed instead of the rotary countercurrent indirect heat exchanger. . Since the other configurations excluding the preheating heat exchanger 11 and the heat recovery heat exchanger 15 and the temperatures of the respective parts are the same as in this embodiment, the description thereof is omitted.

図6は、流動層熱交換器の概略を示す図である。この移動層熱交換器は、液体の熱媒を供給する伝熱管62を配した容器61内に対象物101を格納し、容器61の底部の配管63から気体の熱媒を供給して対象物101を流動化状態の流動層に形成している。そして、流動化状態にある対象物101と気体の熱媒との間で直接に熱交換を可能とするとともに、対象物101と伝熱管62を流れる液体の媒体との間で間接的に熱交換を行う。   FIG. 6 is a diagram showing an outline of a fluidized bed heat exchanger. This moving bed heat exchanger stores an object 101 in a container 61 provided with a heat transfer tube 62 for supplying a liquid heat medium, and supplies a gaseous heat medium from a pipe 63 at the bottom of the container 61 to thereby detect the object. 101 is formed in a fluidized fluidized bed. Then, heat exchange can be performed directly between the fluidized object 101 and the gas heat medium, and heat exchange can be performed indirectly between the object 101 and the liquid medium flowing through the heat transfer pipe 62. I do.

この流動層熱交換器は、予熱熱交換器11として使用されるとき、対象物101として固体の含水固形物が容器61内に格納され、この含水固形物は底部の配管63から供給される気体媒体によって流動化状態の流動層に形成されるとともに、この気体媒体によって直接に加熱される。同時に、流動化状態にある含水固形物は伝熱管62を介して温水によって間接的に加熱される。   When this fluidized bed heat exchanger is used as the preheating heat exchanger 11, a solid hydrated solid is stored in the container 61 as the object 101, and this hydrated solid is a gas supplied from a pipe 63 at the bottom. A fluidized bed is formed by the medium and heated directly by the gaseous medium. At the same time, the water-containing solid material in the fluidized state is indirectly heated by the hot water via the heat transfer tube 62.

この流動層熱交換器は、熱回収熱交換器15として使用されるとき、対象物101として固体の含水固形物が容器61内に格納され、この含水固形物は底部の配管63から供給される気体媒体によって流動化状態の流動層に形成されるとともに、この気体媒体によって直接に冷却される。熱回収熱交換器15においては、液体の熱媒は使用されていないので、容器61に伝熱管62を設ける必要はない。   When this fluidized bed heat exchanger is used as the heat recovery heat exchanger 15, a solid hydrated solid is stored in the container 61 as the object 101, and the hydrated solid is supplied from a pipe 63 at the bottom. A fluidized bed is formed by the gaseous medium and is cooled directly by the gaseous medium. In the heat recovery heat exchanger 15, since no liquid heat medium is used, it is not necessary to provide the heat transfer tube 62 in the container 61.

流動層熱交換器は、流動化状態の流動層に形成された対象物101と熱媒が直接にまたは伝熱管62を通じて熱交換をするので、熱交換の効率がよい。しかしながら、対象物101を流動層に形成するために大きなエネルギーを必要とし、熱効率の低下と消費エネルギーの増加を招くことがある。   In the fluidized bed heat exchanger, since the object 101 formed in the fluidized fluidized bed and the heat medium exchange heat directly or through the heat transfer pipe 62, heat exchange efficiency is high. However, a large amount of energy is required to form the object 101 in the fluidized bed, which may cause a decrease in thermal efficiency and an increase in energy consumption.

(実施の形態と比較例の対比)
図7は、この実施の形態、変形例1〜3と比較例の消費エネルギーを対比する図である。図中において、予熱熱交換器11と熱回収熱交換器15に流動層熱交換器を採用した比較例の場合をエネルギー消費量の基準値として100%とした。
(Contrast of embodiment and comparative example)
FIG. 7 is a diagram comparing the energy consumption of this embodiment, Modifications 1 to 3 and Comparative Example. In the figure, the case of the comparative example which employ | adopted the fluidized-bed heat exchanger as the preheating heat exchanger 11 and the heat recovery heat exchanger 15 was made into 100% as a reference value of energy consumption.

回転式または移動層式の向流直接熱交換器または向流間接熱交換器を採用したこの実施の形態、変形例1〜3のエネルギー消費は、ほぼ30%であった。換言すると、予熱熱交換器11と熱回収熱交換器15に流動層熱交換器に代わって回転式または移動層式の向流直接熱交換器または向流間接熱交換器を採用することにより、ほぼ70%の消費エネルギーを削減することが可能になった。   The energy consumption of this embodiment, which employs a rotary or moving bed type countercurrent direct heat exchanger or countercurrent indirect heat exchanger, and variations 1 to 3, was approximately 30%. In other words, by adopting a rotary or moving bed type countercurrent direct heat exchanger or countercurrent indirect heat exchanger instead of the fluidized bed heat exchanger in the preheating heat exchanger 11 and the heat recovery heat exchanger 15, It has become possible to reduce energy consumption by almost 70%.

11 予熱熱交換器
12 流動層乾燥機
13 蒸気圧縮機
14 ブロワ
15 熱回収熱交換器
16 ガス圧縮機
17 圧力回収タービン
18 動力回収機構
11 Preheating Heat Exchanger 12 Fluidized Bed Dryer 13 Steam Compressor 14 Blower 15 Heat Recovery Heat Exchanger 16 Gas Compressor 17 Pressure Recovery Turbine 18 Power Recovery Mechanism

Claims (11)

含水固形物、温水及び気体媒体が供給され、前記温水及び前記気体媒体を熱源として前記含水固形物を加熱し、前記含水固形物に含まれる水が蒸発を始めるまで予熱する予熱熱交換器と、
前記予熱熱交換器にて予熱された前記含水固形物、圧縮後水蒸気が供給され、前記圧縮後水蒸気を熱源として前記含水固形物を加熱し、前記含水固形物に含まれる水を蒸発させて水蒸気とし、前記含水固形物から水を分離して乾燥した固形物とする乾燥機と、
前記乾燥機にて乾燥された前記固形物、及び気体媒体が供給され、前記気体媒体を冷熱源として前記固形物を冷却し、前記固形物から前記気体媒体に熱を回収する熱回収熱交換器と、
前記熱回収熱交換器にて熱を回収した前記気体媒体が供給され、この気体媒体を圧縮により昇温するガス圧縮機と、
を含み、前記乾燥機からは水蒸気が回収され、その少なくとも一部が圧縮により昇温された圧縮後水蒸気として前記乾燥機に供給され、前記乾燥機に供給された前記圧縮後水蒸気の少なくとも一部は凝縮して温水となり、前記ガス圧縮機にて昇温された前記気体媒体とともに前記予熱熱交換器に供給され、
前記予熱熱交換器及び前記熱回収熱交換器は、向流熱交換器である含水固形物乾燥装置。
A preheat heat exchanger that is supplied with hydrous solids, hot water and a gaseous medium, heats the hydrous solids using the hot water and the gaseous medium as a heat source, and preheats until the water contained in the hydrous solids starts to evaporate;
The water-containing solids preheated by the preheating heat exchanger and the steam after compression are supplied, the water-containing solids are heated using the water vapor after compression as a heat source, and the water contained in the water-containing solids is evaporated to steam. And a drier that separates water from the hydrated solid to form a dried solid,
A heat recovery heat exchanger that is supplied with the solid matter dried by the dryer and a gaseous medium, cools the solid matter using the gaseous medium as a cold heat source, and recovers heat from the solid matter to the gaseous medium. When,
A gas compressor that is supplied with the gaseous medium from which heat has been recovered by the heat recovery heat exchanger and raises the temperature of the gaseous medium by compression; and
Steam is recovered from the dryer, at least a portion of which is supplied to the dryer as compressed steam whose temperature has been raised by compression, and at least a portion of the compressed steam supplied to the dryer Is condensed into warm water, and is supplied to the preheating heat exchanger together with the gaseous medium heated by the gas compressor,
The said preheating heat exchanger and the said heat | fever recovery heat exchanger are the water-containing solid substance drying apparatuses which are countercurrent heat exchangers.
前記向流熱交換器は、向流間接熱交換器である請求項1に記載の含水固形物乾燥装置。   The hydrous solid matter drying apparatus according to claim 1, wherein the countercurrent heat exchanger is a countercurrent indirect heat exchanger. 前記向流熱交換器は、向流直接熱交換器である請求項1に記載の含水固形物乾燥装置。   The water-containing solid matter drying device according to claim 1, wherein the countercurrent heat exchanger is a countercurrent direct heat exchanger. 前記向流熱交換器は、回転式向流熱交換器又は移動層式向流熱交換器である請求項2または3に記載の含水固形物乾燥装置。   The hydrated solid matter drying device according to claim 2 or 3, wherein the countercurrent heat exchanger is a rotary countercurrent heat exchanger or a moving bed type countercurrent heat exchanger. 前記乾燥機は、前記水蒸気にて前記含水固形物の流動層の流動化状態を形成するとともに前記圧縮後水蒸気を熱源として前記流動層にある前記含水固形物を加熱し、前記含水固形物に含まれる水を蒸発させて水蒸気とし、前記含水固形物から水を分離して乾燥した固形物とする流動層乾燥機である請求項1〜4のいずれか一項に記載の含水固形物乾燥装置。   The dryer forms a fluidized state of the fluidized bed of the hydrated solid with the steam and heats the hydrated solid in the fluidized bed with the steam after compression as a heat source and is contained in the hydrated solid. The water-containing solid material drying apparatus according to any one of claims 1 to 4, wherein the water-containing solid material drying apparatus is a fluidized bed drier that separates water from the water-containing solid material to dry the water. 前記流動層乾燥機から回収された水蒸気の一部を前記流動層乾燥機に供給するブロワと、
前記流動層乾燥機から回収された水蒸気の残りを圧縮により昇温した圧縮後水蒸気を前記流動層乾燥機に供給する蒸気圧縮機と、をさらに含み、
前記流動層乾燥機は伝熱管をさらに含み、前記圧縮後水蒸気は前記伝熱管に供給され、前記伝熱管を介して放熱し、凝縮して温水になる請求項5に記載の含水固形物乾燥装置。
A blower for supplying a part of the steam recovered from the fluidized bed dryer to the fluidized bed dryer;
A steam compressor that supplies post-compression steam to the fluidized bed dryer, the temperature of the remaining steam recovered from the fluidized bed dryer being increased by compression, and
The hydrous solid matter drying apparatus according to claim 5, wherein the fluidized bed dryer further includes a heat transfer tube, and the compressed water vapor is supplied to the heat transfer tube, dissipates heat through the heat transfer tube, and condenses to become hot water. .
前記乾燥機は、向流熱交換器である請求項1〜4のいずれか一項に記載の含水固形物乾燥装置。   The water-containing solid matter drying apparatus according to any one of claims 1 to 4, wherein the dryer is a countercurrent heat exchanger. 前記向流熱交換器は、向流間接熱交換器または向流直接熱交換器である請求項7に記載の含水固形物乾燥装置。   The hydrous solid matter drying apparatus according to claim 7, wherein the countercurrent heat exchanger is a countercurrent indirect heat exchanger or a countercurrent direct heat exchanger. 前記予熱熱交換器にて前記含水固形物を予熱した前記気体媒体が供給され、前記気体媒体の圧力によって駆動される圧力回収タービンをさらに含む請求項1〜8のいずれか一項に記載の含水固形物乾燥装置。   The water content according to any one of claims 1 to 8, further comprising a pressure recovery turbine that is supplied with the gaseous medium preheated with the preheated heat exchanger and driven by the pressure of the gaseous medium. Solid matter drying equipment. 前記圧力回収タービンにて回収された動力を前記ガス圧縮機に供給する動力回収機構をさらに含む請求項9に記載の含水固形物乾燥装置。   The water-containing solid material drying device according to claim 9, further comprising a power recovery mechanism that supplies power recovered by the pressure recovery turbine to the gas compressor. 前記動力回収機構は、前記ガス圧縮機及び前記圧力回収タービンを同軸上で連結する請求項10に記載の含水固形物乾燥装置。   The water-containing solid matter drying device according to claim 10, wherein the power recovery mechanism connects the gas compressor and the pressure recovery turbine on the same axis.
JP2013241455A 2013-11-22 2013-11-22 Hydrous solids drying equipment Active JP6364753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241455A JP6364753B2 (en) 2013-11-22 2013-11-22 Hydrous solids drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241455A JP6364753B2 (en) 2013-11-22 2013-11-22 Hydrous solids drying equipment

Publications (2)

Publication Number Publication Date
JP2015102255A true JP2015102255A (en) 2015-06-04
JP6364753B2 JP6364753B2 (en) 2018-08-01

Family

ID=53378097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241455A Active JP6364753B2 (en) 2013-11-22 2013-11-22 Hydrous solids drying equipment

Country Status (1)

Country Link
JP (1) JP6364753B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222528A (en) * 2015-10-23 2016-01-06 天华化工机械及自动化研究设计院有限公司 A kind of fluidized bed coal drying and water recovery method
JP2016056991A (en) * 2014-09-09 2016-04-21 川崎重工業株式会社 High temperature heat air drier
CN105716380A (en) * 2016-04-15 2016-06-29 山西大学 Thermal compensation type superheated steam coal drying system
CN107478050A (en) * 2017-08-10 2017-12-15 阜阳华润电力有限公司 A kind of coal slime drying means and system
JP2019063688A (en) * 2017-09-28 2019-04-25 株式会社Ihi Drying device and drying method
CN110906299A (en) * 2019-12-05 2020-03-24 东莞市新伟节能环保技术有限公司 Heating system applied to washing industry

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134161A (en) * 1976-05-06 1977-11-10 Hitachi Zosen Corp Drying process using waste heat by globular thermal mediums
JPS5763199A (en) * 1980-10-01 1982-04-16 Mitsubishi Electric Corp Dehydrating device for organic sludge
JPS61250097A (en) * 1985-04-26 1986-11-07 Westinghouse Electric Corp Method and apparatus for drying low grade coal
JPH02217777A (en) * 1989-02-17 1990-08-30 Ube Ind Ltd Method and device for drying granular body
JP2002069458A (en) * 2000-08-28 2002-03-08 Kawasaki Heavy Ind Ltd Apparatus for drying powdery and particulate material
JP2010276259A (en) * 2009-05-28 2010-12-09 Mitsubishi Heavy Ind Ltd Drying device and drying method for water-containing solid fuel
JP2011167648A (en) * 2010-02-19 2011-09-01 Toshiba Corp Heating system of bioreactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134161A (en) * 1976-05-06 1977-11-10 Hitachi Zosen Corp Drying process using waste heat by globular thermal mediums
JPS5763199A (en) * 1980-10-01 1982-04-16 Mitsubishi Electric Corp Dehydrating device for organic sludge
JPS61250097A (en) * 1985-04-26 1986-11-07 Westinghouse Electric Corp Method and apparatus for drying low grade coal
JPH02217777A (en) * 1989-02-17 1990-08-30 Ube Ind Ltd Method and device for drying granular body
JP2002069458A (en) * 2000-08-28 2002-03-08 Kawasaki Heavy Ind Ltd Apparatus for drying powdery and particulate material
JP2010276259A (en) * 2009-05-28 2010-12-09 Mitsubishi Heavy Ind Ltd Drying device and drying method for water-containing solid fuel
JP2011167648A (en) * 2010-02-19 2011-09-01 Toshiba Corp Heating system of bioreactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056991A (en) * 2014-09-09 2016-04-21 川崎重工業株式会社 High temperature heat air drier
CN105222528A (en) * 2015-10-23 2016-01-06 天华化工机械及自动化研究设计院有限公司 A kind of fluidized bed coal drying and water recovery method
CN105716380A (en) * 2016-04-15 2016-06-29 山西大学 Thermal compensation type superheated steam coal drying system
CN105716380B (en) * 2016-04-15 2017-12-29 山西大学 Thermal compensation formula superheated steam coal drying system
CN107478050A (en) * 2017-08-10 2017-12-15 阜阳华润电力有限公司 A kind of coal slime drying means and system
JP2019063688A (en) * 2017-09-28 2019-04-25 株式会社Ihi Drying device and drying method
CN110906299A (en) * 2019-12-05 2020-03-24 东莞市新伟节能环保技术有限公司 Heating system applied to washing industry

Also Published As

Publication number Publication date
JP6364753B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6364753B2 (en) Hydrous solids drying equipment
EP2436978B1 (en) Drying unit and method for drying solid fuel containing water
CA2655281C (en) Process and plant for treatment of wet material
CN103288314B (en) System for substance separation and energy recovery by thermal treatment
Liu et al. A novel exergy recuperative drying module and its application for energy-saving drying with superheated steam
JP5535112B2 (en) Coal thermal power generation facility and coal thermal power generation method
CN106574441B (en) Method and apparatus, industrial plants, paper mill and control device for dry goods to be dried
BR112013009954A2 (en) DEHUMIDIFYING SYSTEM AND METHOD OF DEHUMIDIFYING AN AIR FLOW
JP6063257B2 (en) Operation method of drying system comprising heat pump unit and exhaust heat recovery mechanism
JP2012202607A5 (en)
JP6183173B2 (en) Hydrous solids drying equipment
JP6068826B2 (en) Drying system with dehumidifying mechanism for dry air
JP5601164B2 (en) Heat supply system and control method thereof
JP5568838B2 (en) Industrial drying system
KR101512423B1 (en) Drying system for high water content material using organ rankine cycle and drying method using the same
JP6064550B2 (en) Hydrous solids drying equipment
JP5511702B2 (en) Hydrous solid fuel drying equipment
JP6064551B2 (en) Hydrous solids drying method and apparatus
CN105674689B (en) Multi-stage series drying process is got wet using the alternating temperature of industrial smoke waste heat
US20180209737A1 (en) Drying Machine and Control Method Thereof
TWI756135B (en) Sludge dryer capable of dehumidifying circulating air in stages
KR102126462B1 (en) Hybrid drying system and drying method using the same
JP5822504B2 (en) Fluidized bed drying equipment
JP2015017741A (en) Fluid bed drying device
BR112019010151A2 (en) drying system and method for integrating a heat pump assembly that operates with a primary fluid in a drying plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6364753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151