JP2011167648A - Heating system of bioreactor - Google Patents

Heating system of bioreactor Download PDF

Info

Publication number
JP2011167648A
JP2011167648A JP2010035324A JP2010035324A JP2011167648A JP 2011167648 A JP2011167648 A JP 2011167648A JP 2010035324 A JP2010035324 A JP 2010035324A JP 2010035324 A JP2010035324 A JP 2010035324A JP 2011167648 A JP2011167648 A JP 2011167648A
Authority
JP
Japan
Prior art keywords
sludge
heat
heat exchanger
biological reaction
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010035324A
Other languages
Japanese (ja)
Inventor
Hironobu Abe
裕宣 安部
Koji Hayashi
幸司 林
Yoshio Nakayama
芳夫 中山
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP2010035324A priority Critical patent/JP2011167648A/en
Publication of JP2011167648A publication Critical patent/JP2011167648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2833Anaerobic digestion processes using fluidized bed reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating system of a bioreactor configured such that a total amount of a digestion gas generated in a digestion tank can be effectively used for generating electricity or the like and thereby, promoting the energy saving. <P>SOLUTION: The heating system of bioreactor includes: a digestion tank 3 performing anaerobic treatment of discharged water and organic sludge charged thereinto by digestant; a sludge storage tank 5 primarily storing the digestion sludge discharged from the digestion tank 3; a first heat exchanger 15 recovering the heat from the digestion sludge by exchanging heat with the sludge storage tank 5; and a second heat exchanger 19 constituting a heat pump cycle with the first heat exchanger 15 and heating the digestion sludge in the digestion tank 3 at the predetermined temperature by the recovered heat in the first heat exchanger 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、生物処理を行う廃水処理や汚泥処理において生物反応を活性化させるために生物反応槽を加温する加温システムに関する。   The present invention relates to a heating system for heating a biological reaction tank in order to activate a biological reaction in wastewater treatment or sludge treatment for biological treatment.

下水汚泥や排水の嫌気性処理を行う際に、嫌気性菌は通常35〜36℃程度で最も活性が高くなることが知られている。このため、汚泥や排水を処理する嫌気性処理槽(消化槽)が35〜36℃程度を保持するように加温するようにしている。加温方法として、ヒータ線を消化槽内または消化槽の周囲に配設して電気加熱する方法がある。   It is known that anaerobic bacteria usually have the highest activity at about 35 to 36 ° C. when anaerobic treatment of sewage sludge or waste water is performed. For this reason, it is made to heat so that the anaerobic processing tank (digestion tank) which processes sludge and waste_water | drain keeps about 35-36 degreeC. As a heating method, there is a method in which a heater wire is disposed in or around the digestion tank and electrically heated.

また、嫌気性処理では、嫌気性菌であるメタン菌による嫌気性発酵によって汚泥や排水中に含まれる有機物が分解して消化ガスを発生させる。消化ガスはメタンガスを主成分としており、発生したメタンガスを回収、燃焼させて嫌気性処理槽の加温に使用する技術もある(例えば、特許文献1,2)。   Further, in the anaerobic treatment, organic substances contained in sludge and waste water are decomposed by anaerobic fermentation by methane bacteria, which are anaerobic bacteria, to generate digestion gas. Digestion gas contains methane gas as a main component, and there is a technique for recovering and burning the generated methane gas and using it for heating an anaerobic treatment tank (for example, Patent Documents 1 and 2).

特開昭57−42400号公報JP 57-42400 A 特開昭60−216899号公報JP 60-216899 A

しかしながら、メタンガスの発生量は被処理物の有機物濃度とメタン菌による有機物の分解率で決まるので、回収されるメタンガスの量は不安定となる。このため、一般的な下水汚泥の消化槽でのメタン発酵では発生した消化ガスの7割程度が消化槽の加温に使用されているに過ぎない。その結果、消化槽によるメタン発酵では、エネルギー消費が少なくてメタンガスエネルギーが得られるという長所があるにも拘わらず、従来、得られたメタンガスを他のエネルギー源として有効活用することは困難であった。   However, since the amount of methane gas generated is determined by the organic matter concentration of the object to be treated and the decomposition rate of the organic matter by methane bacteria, the amount of methane gas recovered becomes unstable. For this reason, only about 70% of the digested gas generated in methane fermentation in a general sewage sludge digester is used for heating the digester. As a result, in methane fermentation using digesters, despite the advantages of low energy consumption and methane gas energy, it has been difficult to effectively use the obtained methane gas as another energy source. .

本発明は、上記のような実情に鑑みて、消化槽内で発生する消化ガス全量を発電等に有効活用でき、省エネルギーを推進可能に構成した生物反応槽の加温システムを提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a heating system for a biological reaction tank that can effectively use the total amount of digestion gas generated in the digestion tank for power generation and the like and can promote energy saving. It is said.

上記の課題を解決するために、本発明は、投入された排水や有機汚泥を消化菌によって嫌気性処理を行う生物反応槽と、前記生物反応槽から排出される消化汚泥中から熱回収する第1の熱交換器と、前記第1の熱交換器との間でヒートポンプサイクルを構成し、第1の熱交換器で回収された熱により前記生物反応槽内の汚泥を所定温度に加温する第2の熱交換器と、を備えたことを特徴としている。   In order to solve the above problems, the present invention provides a biological reaction tank that performs anaerobic treatment of input wastewater and organic sludge with digestive bacteria, and heat recovery from the digested sludge discharged from the biological reaction tank. A heat pump cycle is configured between the heat exchanger 1 and the first heat exchanger, and the sludge in the biological reaction tank is heated to a predetermined temperature by the heat recovered by the first heat exchanger. And a second heat exchanger.

また、本発明の他の態様では、前記生物反応槽から排出される消化汚泥を一次貯留する汚泥貯留槽を備え、前記第1の熱交換器は前記汚泥貯留槽との間で熱交換して消化汚泥中から熱回収することを特徴としている。   In another aspect of the present invention, a sludge storage tank that primarily stores the digested sludge discharged from the biological reaction tank is provided, and the first heat exchanger exchanges heat with the sludge storage tank. It is characterized by heat recovery from digested sludge.

さらに本発明の他の態様では、前記消化槽から排出される脱離液から熱を回収する第3の熱交換器を備え、前記第2の熱交換器は、前記第1の熱交換器および/または第3の熱交換器との間でヒートポンプサイクルを構成し、第1の熱交換器および/または第3の熱交換器で回収された熱により前記生物反応槽内の汚泥を所定温度に加温することを特徴としている。   Furthermore, in another aspect of the present invention, a third heat exchanger that recovers heat from the desorbed liquid discharged from the digester is provided, wherein the second heat exchanger includes the first heat exchanger and A heat pump cycle is configured with the third heat exchanger, and the sludge in the biological reaction tank is brought to a predetermined temperature by the heat recovered by the first heat exchanger and / or the third heat exchanger. It is characterized by heating.

さらに本発明の他の態様では、前記第1の熱交換器により熱回収された後の消化汚泥を脱水する脱水機と、前記脱水機から排出される脱水汚泥を乾燥させる乾燥機と、前記生物反応槽で発生する消化ガスを燃焼させ、前記乾燥機の脱水汚泥を乾燥させるための蒸気を発生させる消化ガスボイラと、を備えたことを特徴としている。   Furthermore, in another aspect of the present invention, a dehydrator for dewatering the digested sludge after heat recovery by the first heat exchanger, a dryer for drying the dewatered sludge discharged from the dehydrator, and the organism And a digestion gas boiler for burning the digestion gas generated in the reaction tank and generating steam for drying the dewatered sludge of the dryer.

本発明における生物反応槽の加温システムによれば、生物反応槽の加熱は消化汚泥からヒートポンプサイクルによって回収した熱を使用することができる。その結果、生物反応槽(メタン発酵槽)で発生する消化ガス(メタンガス)を発電用エンジンや後段プロセスの汚泥乾燥や汚泥焼却等のエネルギーとして有効活用することが可能となり、嫌気性発酵の省エネルギー性を生かしつつ、さらにメタンガスエネルギーを汚泥乾燥や汚泥焼却のエネルギーとして有効活用することで化石燃料の消費を抑え、バイオマス由来のエネルギーを活用することで環境負荷を削減できるという効果を奏する。   According to the heating system of the biological reaction tank in the present invention, the heat recovered from the digested sludge by the heat pump cycle can be used for the heating of the biological reaction tank. As a result, the digestion gas (methane gas) generated in the biological reaction tank (methane fermentation tank) can be effectively used as energy for the engine for power generation, sludge drying and sludge incineration in the subsequent process, and energy saving of anaerobic fermentation In addition, the methane gas energy can be effectively utilized as the energy for sludge drying and sludge incineration, while reducing the consumption of fossil fuels, and the environmental load can be reduced by using biomass-derived energy.

本発明に係る生物反応槽の加温システムの第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the heating system of the biological reaction tank which concerns on this invention. 従来の消化槽加温方法による実施例のエネルギー収支を示す。The energy balance of the Example by the conventional digester heating method is shown. 本発明による実施例のエネルギー収支を示す。2 shows the energy balance of an embodiment according to the present invention. 本発明に係る生物反応槽の加温システムの第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the heating system of the biological reaction tank which concerns on this invention. 本発明に係る生物反応槽の加温システムの第3実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the heating system of the biological reaction tank which concerns on this invention. 本発明に係る生物反応槽の加温システムの第4実施形態を示す構成図。The block diagram which shows 4th Embodiment of the heating system of the biological reaction tank which concerns on this invention. 本発明に係る生物反応槽の加温システムの第5実施形態を示す構成図。The block diagram which shows 5th Embodiment of the heating system of the biological reaction tank which concerns on this invention. 本発明に係る生物反応槽の加温システムの第6実施形態を示す構成図。The block diagram which shows 6th Embodiment of the heating system of the biological reaction tank which concerns on this invention. 本発明に係る生物反応槽の加温システムの第7実施形態を示す構成図。The block diagram which shows 7th Embodiment of the heating system of the biological reaction tank which concerns on this invention.

図1は本発明に係る生物反応槽の加温システムの第1実施形態を示している。   FIG. 1 shows a first embodiment of a biological reaction tank heating system according to the present invention.

本発明に係る第1実施形態は、下水等の配水中の余剰汚泥を取り込んで嫌気性微生物処理を実行して消化させる消化槽3と、消化槽3で生成された消化汚泥を貯留する汚泥貯留槽5と、汚泥貯留槽5に一旦貯留された消化汚泥中から水分を取り除く脱水機7と、脱水された脱水汚泥を乾燥させる乾燥機9と、消化槽3で発生した消化ガスを燃焼させて乾燥機9で脱水汚泥を乾燥させるための蒸気を発生させる消化ガスボイラ11とを備えている。   1st Embodiment which concerns on this invention is the sludge storage which stores the digestion sludge produced | generated by the digestion tank 3 which takes in the excess sludge in distribution waters, such as sewage, performs anaerobic microbial treatment, and digests, and the digestion tank 3 The combustion gas generated in the digestion tank 3 is combusted by the tank 5, the dehydrator 7 that removes moisture from the digested sludge once stored in the sludge storage tank 5, the dryer 9 that dries the dehydrated dehydrated sludge, and the digestion gas generated in the digestion tank 3. A digester gas boiler 11 that generates steam for drying the dewatered sludge by the dryer 9 is provided.

一方、ヒートポンプサイクルを構成する熱循環システムとして、循環する冷媒を膨張させる膨張弁13と、汚泥貯留槽5の消化汚泥が循環するコイル15bを備え消化汚泥中から熱を回収する第1の熱交換器15と、第1の熱交換器15で回収された熱により加温された冷媒を圧縮させる圧縮機17と、消化槽3との間で温水を循環させるコイル19a,19bを備え圧縮された冷媒により温水を加温する第2の熱交換器19と、汚泥貯留槽5と第1の熱交換器15との間で汚泥を循環させる汚泥循環ポンプ21と、消化槽3と第2の熱交換器19との間で温水を循環させる温水ポンプ23とを備えている。   On the other hand, as a heat circulation system constituting the heat pump cycle, a first heat exchange for recovering heat from the digested sludge is provided with an expansion valve 13 for expanding the circulating refrigerant and a coil 15b for circulating the digested sludge in the sludge storage tank 5. The compressor 15 for compressing the refrigerant heated by the heat recovered by the first heat exchanger 15 and the coils 19a and 19b for circulating the hot water between the digester tank 3 and compressed. The second heat exchanger 19 for warming the hot water with the refrigerant, the sludge circulation pump 21 for circulating the sludge between the sludge storage tank 5 and the first heat exchanger 15, the digester tank 3 and the second heat A hot water pump 23 that circulates hot water with the exchanger 19 is provided.

次に、第1実施形態の作用を説明する。   Next, the operation of the first embodiment will be described.

消化槽3では、投入された余剰汚泥が嫌気性細菌であるメタン発酵菌の働きにより生物処理される。このように、余剰汚泥が消化槽3内で嫌気性消化処理されることにより、余剰汚泥中の有機物が分解し、メタンガスを主成分とする消化ガスと、投入された余剰汚泥の固形物が体積比で半分程度まで減量された消化汚泥とに分離される。 In the digestion tank 3, the input excess sludge is biologically treated by the action of methane fermentation bacteria that are anaerobic bacteria. Thus, the surplus sludge is subjected to the anaerobic digestion treatment in the digestion tank 3, so that the organic matter in the surplus sludge is decomposed, and the digested gas mainly composed of methane gas and the solid matter of the surplus sludge that has been added are in volume. It is separated into digested sludge that has been reduced to about half the ratio.

嫌気性消化処理後の汚泥は消化汚泥として汚泥貯留槽5に一旦貯留される。貯留された消化汚泥は、第1の熱交換器15内に配設されたコイル15bと汚泥貯留槽5の間を汚泥循環ポンプ21によって循環する。熱交換器15内では、膨張弁13を開けることで循環する冷媒が蒸発し、循環される消化汚泥から熱を奪い、消化汚泥の温度が低下する。こうして、第1の熱交換器15内で消化汚泥中の熱が回収される。   The sludge after the anaerobic digestion treatment is temporarily stored in the sludge storage tank 5 as digested sludge. The stored digested sludge is circulated between the coil 15 b disposed in the first heat exchanger 15 and the sludge storage tank 5 by a sludge circulation pump 21. In the heat exchanger 15, the circulating refrigerant evaporates by opening the expansion valve 13, takes heat from the circulating digested sludge, and the temperature of the digested sludge decreases. Thus, the heat in the digested sludge is recovered in the first heat exchanger 15.

蒸発した冷媒は圧縮機17で圧縮されて液化し、その際に熱を放出する。放出された熱によって第2の熱交換器19と消化槽3とを循環する温水が加温され、これによって消化槽3内の余剰汚泥が加熱されて嫌気性消化処理を行うために必要な35〜36℃程度の温度に保持される。例えば、第2の熱交換器19では、温水が75℃程度まで加熱され、温水ポンプ23によって75℃の温水がコイル19aを介して消化槽3内の余剰汚泥を加熱して消化を促進させる。加熱に供した温水は55℃程度まで温度が低下しているが、第2の熱交換器19に戻され、コイル19bを介して再び75℃程度に加熱される。このような温度循環を繰り返して消化槽3内の余剰汚泥がほぼ36℃程度の温度に維持される。一方、液化した冷媒は再び膨張弁13で膨張蒸発し消化汚泥から熱を奪い、以下同じ動作を繰り返す。   The evaporated refrigerant is compressed and liquefied by the compressor 17 and releases heat at that time. The warm water circulating through the second heat exchanger 19 and the digestion tank 3 is heated by the released heat, thereby heating the excess sludge in the digestion tank 3 and performing 35 anaerobic digestion treatment. It is kept at a temperature of about ~ 36 ° C. For example, in the 2nd heat exchanger 19, warm water is heated to about 75 degreeC, and 75 degreeC warm water heats the excess sludge in the digestion tank 3 via the coil 19a by the warm water pump 23, and promotes digestion. Although the temperature of the hot water used for heating has decreased to about 55 ° C., it is returned to the second heat exchanger 19 and heated again to about 75 ° C. via the coil 19b. By repeating such temperature circulation, the excess sludge in the digester 3 is maintained at a temperature of about 36 ° C. On the other hand, the liquefied refrigerant expands and evaporates again by the expansion valve 13 and takes heat from the digested sludge, and thereafter repeats the same operation.

汚泥貯留槽5内で熱交換された後の消化汚泥は、脱水機7に送られて脱水処理される。脱水後の脱水汚泥は乾燥機9に送られ、乾燥された後、乾燥汚泥として排出される。   The digested sludge after heat exchange in the sludge storage tank 5 is sent to the dehydrator 7 and dehydrated. The dewatered sludge after dehydration is sent to the dryer 9, and after being dried, it is discharged as dry sludge.

嫌気性消化処理で発生したメタンガスを主成分とする消化ガスは、消化ボイラ11の燃料として使用される。なお、消化ガスボイラ11には、補助燃料として重油も使用されている。   Digestion gas mainly composed of methane gas generated in the anaerobic digestion process is used as fuel for the digestion boiler 11. The digestion gas boiler 11 also uses heavy oil as auxiliary fuel.

このように、本発明の実施形態では、消化槽3から引き抜かれた消化汚泥を一旦汚泥貯留槽5で受け、汚泥貯留槽5と第1の熱交換器15との間で消化汚泥を循環させる。第1の熱交換器15では汚泥から汚泥の保有する熱を吸収し、ヒートポンプサイクルで温度を上げ、消化槽3内の汚泥を第2の熱交換器19で加温するようにしている。   Thus, in the embodiment of the present invention, the digested sludge extracted from the digestion tank 3 is once received by the sludge storage tank 5, and the digested sludge is circulated between the sludge storage tank 5 and the first heat exchanger 15. . In the first heat exchanger 15, the heat retained by the sludge is absorbed from the sludge, the temperature is raised by a heat pump cycle, and the sludge in the digestion tank 3 is heated by the second heat exchanger 19.

ヒートポンプの仕事係数(COP)は最近の技術進歩により概ね3〜6程度あり、本発明のように回収熱源すなわち消化汚泥の温度は35℃前後と高温の熱源を用いるためCOPは6近くなる。   The work coefficient (COP) of the heat pump is about 3 to 6 due to recent technological advances, and the temperature of the recovered heat source, that is, the digested sludge is about 35 ° C. as in the present invention, so the COP is close to 6.

COPが6と言うことは、1kWの電力をヒートポンプに与えることで6kWの熱エネルギーが得られることになり大変効率の良い加温が実現できる。   A COP of 6 means that a heat energy of 6 kW can be obtained by applying a power of 1 kW to the heat pump, so that very efficient heating can be realized.

ちなみに重油を燃焼させて加温する場合の燃料費と本発明によるヒートポンプの電力費を比較すると本発明による電力費は重油を用いた場合の1/2〜1/3に低減させることが可能となる。   By the way, comparing the fuel cost when heating by burning heavy oil and the power cost of the heat pump according to the present invention, the power cost according to the present invention can be reduced to 1/2 to 1/3 when using heavy oil. Become.

図2は従来の消化槽加温方法によるエネルギー収支を、図3は本発明の実施形態によるエネルギー収支をそれぞれ示している。   FIG. 2 shows an energy balance according to a conventional digester heating method, and FIG. 3 shows an energy balance according to an embodiment of the present invention.

図2に示すように、従来では、消化ガスは消化槽3を加温するボイラ燃料としてのみ使用されている。消化槽加温ボイラはフィードバック制御により運転されているので、発生する消化ガスの量の変動によって不安定な運転となる。このため、使用される消化ガスの量に余裕を持たせた運転をせざるを得ず、余剰な消化ガスが多く発生する。この余剰な消化ガスは全て廃棄されていた。また、消化汚泥を乾燥させるための乾燥機用ボイラは、重油を燃料として運転されていた。   As shown in FIG. 2, conventionally, the digestion gas is used only as boiler fuel for heating the digestion tank 3. Since the digester heating boiler is operated by feedback control, it becomes unstable due to fluctuations in the amount of digestion gas generated. For this reason, the operation must be performed with a sufficient amount of digestion gas used, and a large amount of excess digestion gas is generated. All of this excess digestion gas was discarded. In addition, a dryer boiler for drying digested sludge has been operated using heavy oil as fuel.

一方、図3に示すように、本発明の実施形態では、消化ガスは全て、乾燥機用ボイラの燃料として使用されており、消化槽3の加温はヒートポンプサイクルの利用によって賄っている。従って、消費エネルギーとしては、ヒートポンプサイクルを稼働させるだけの電力と、乾燥機用ボイラの運転に補助的に使用される重油だけで良い。図2と図3を比較すると、従来例と本発明の例とでは、消費エネルギーが半分以下に減少されていることが分かる。また、消化ガスを全量利用し消化ガス発生量の変動は重油を補助として賄うため消化ガスの余剰分を廃棄する無駄を省くこともできる。   On the other hand, as shown in FIG. 3, in the embodiment of the present invention, all the digestion gas is used as fuel for the boiler for the dryer, and the heating of the digestion tank 3 is provided by using a heat pump cycle. Therefore, as the energy consumption, only the electric power for operating the heat pump cycle and the heavy oil used as an auxiliary for the operation of the dryer boiler are sufficient. Comparing FIG. 2 and FIG. 3, it can be seen that the energy consumption is reduced to less than half in the conventional example and the example of the present invention. Moreover, since all the digestion gas is used and the change in the digestion gas generation amount is covered with heavy oil as an auxiliary, waste of surplus digestion gas can be eliminated.

図4は本発明に係る生物反応槽の加温システムの第2実施形態を示している。なお、図1と同一部材には同一番号を付している。   FIG. 4 shows a second embodiment of the biological reaction tank heating system according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals.

図4に示す第2実施形態は、汚泥貯留槽5内に配設されたコイル15a内に冷媒を通過させ、コイル15aを介して直接、消化汚泥中の熱を回収する点で図1に示す第1実施形態と相違する。   The second embodiment shown in FIG. 4 is shown in FIG. 1 in that the refrigerant is passed through the coil 15a disposed in the sludge storage tank 5 and the heat in the digested sludge is recovered directly through the coil 15a. This is different from the first embodiment.

図5は本発明に係る生物反応槽の加温システムの第3実施形態を示している。なお、図1と同一部材には同一番号を付している。   FIG. 5 shows a third embodiment of the biological reaction tank heating system according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals.

図5に示す第3実施形態は、汚泥貯留槽5内に配設されたコイル15a内に冷媒を通過させ、コイル15aを介して直接、消化汚泥中の熱を回収する点、および消化槽3内に配設されたコイル19a内に冷媒を通過させ、コイル19aを介して直接、消化槽3内の消化汚泥を加温する点で図1に示す第1実施形態と相違する。   In the third embodiment shown in FIG. 5, the refrigerant is passed through a coil 15a disposed in the sludge storage tank 5, and the heat in the digested sludge is recovered directly through the coil 15a. 1 is different from the first embodiment shown in FIG. 1 in that the refrigerant is passed through the coil 19a disposed therein and the digested sludge in the digester 3 is directly heated via the coil 19a.

図6は本発明に係る生物反応槽の加温システムの第4実施形態を示している。なお、図1と同一部材には同一番号を付している。   FIG. 6 shows a fourth embodiment of the biological reaction tank heating system according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals.

図6に示す第4実施形態は、消化槽3の入口側配管に熱交換器25を配設し、余剰汚泥が消化槽3に投入される前段階で加温するようにしたものである。この場合、熱交換器25としては、中心部分を冷媒が通過し、周辺部分を余剰汚泥が通過する二重配管25aで構成することができる。圧縮機17で圧縮されて液化した冷媒は熱交換器25で熱を放出し、放出された熱によって2重配管を通過する余剰汚泥は36℃程度まで加温された後、消化槽3内に投入される。なお、汚泥貯留槽5内に配設されたコイル15a内に冷媒を通過させ、コイル15aを介して直接、消化汚泥中の熱を回収する点は第2の実施形態と同様である。   In the fourth embodiment shown in FIG. 6, a heat exchanger 25 is disposed in the inlet side piping of the digestion tank 3, and the excess sludge is heated before being introduced into the digestion tank 3. In this case, the heat exchanger 25 can be constituted by a double pipe 25a through which the refrigerant passes through the central portion and excess sludge passes through the peripheral portion. The refrigerant compressed and liquefied by the compressor 17 releases heat by the heat exchanger 25, and the excess sludge passing through the double pipe by the released heat is heated to about 36 ° C. It is thrown. In addition, the point which makes a refrigerant pass through the coil 15a arrange | positioned in the sludge storage tank 5, and collect | recovers the heat | fever in digested sludge directly via the coil 15a is the same as that of 2nd Embodiment.

上述した各実施形態においても第1実施形態と同様、消化槽3で発生する消化ガスを後段プロセスの汚泥乾燥のエネルギーとして有効活用することが可能となり、嫌気性発酵の省エネルギー性を生かしつつ、さらに消化ガスエネルギーを汚泥乾燥や汚泥焼却のエネルギーとして有効活用することで重油等の化石燃料の消費を抑え、バイオマス由来のエネルギーを活用することで環境負荷を削減できるという効果を奏する。   In each embodiment described above, as in the first embodiment, the digestion gas generated in the digestion tank 3 can be effectively used as the energy for drying the sludge in the subsequent process, and while making use of the energy-saving property of anaerobic fermentation, By effectively using digestion gas energy as sludge drying and sludge incineration, the consumption of fossil fuels such as heavy oil can be suppressed, and the environmental load can be reduced by using biomass-derived energy.

図7は本発明に係る生物反応槽の加温システムの第5実施形態を示している。なお、図1と同一部材には同一番号を付している。   FIG. 7 shows a fifth embodiment of the biological reaction tank heating system according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals.

図7に示す第5実施形態は、消化槽3の出口側配管に汚泥貯留槽5を配置することなく、直接、熱交換器27を配設し、この熱交換器27により消化槽3から排出される消化汚泥から熱を吸収して回収するようにしている。この場合、熱交換器27としては、中心部分を冷媒が通過し、周辺部分を消化汚泥が通過する二重配管27aで構成することができる。これによって、簡単な設備によって消化汚泥中から熱を回収することが可能になる。なお、その他の構成は図1や図4に示した実施形態と同様であるため、その説明は省略する。   In the fifth embodiment shown in FIG. 7, the heat exchanger 27 is directly arranged without arranging the sludge storage tank 5 in the outlet side pipe of the digestion tank 3, and the heat exchanger 27 discharges from the digestion tank 3. The heat is absorbed and recovered from the digested sludge. In this case, the heat exchanger 27 can be constituted by a double pipe 27a through which the refrigerant passes through the central part and the digested sludge passes through the peripheral part. This makes it possible to recover heat from the digested sludge with simple equipment. Other configurations are the same as those of the embodiment shown in FIG. 1 and FIG.

図8は本発明に係る生物反応槽の加温システムの第6実施形態を示している。なお、図1と同一部材には同一番号を付している。   FIG. 8 shows a sixth embodiment of the biological reaction tank heating system according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals.

上述した各実施形態では、熱回収は消化汚泥のみを対象としたが、図8に示す第6実施形態は、消化汚泥と共に消化槽3から排出される脱離液からも熱を回収するように構成したものである。   In each of the embodiments described above, heat recovery is intended only for digested sludge, but the sixth embodiment shown in FIG. 8 recovers heat from the desorbed liquid discharged from the digestion tank 3 together with the digested sludge. It is composed.

すなわち、脱離液排出配管に熱交換器29を配設し、この熱交換器29のコイル29aを汚泥貯留槽5内に配置されたコイル15aに接続して構成する。この場合、コイル29aとしては、コイル15aと同様、中心部分を冷媒が通過し、周辺部分を脱離液が通過する二重配管で構成することができる。   That is, the heat exchanger 29 is disposed in the desorbed liquid discharge pipe, and the coil 29 a of the heat exchanger 29 is connected to the coil 15 a disposed in the sludge storage tank 5. In this case, like the coil 15a, the coil 29a can be constituted by a double pipe through which the refrigerant passes through the central portion and the desorbed liquid passes through the peripheral portion.

脱離液は消化汚泥と同様、およそ35℃程度の熱を帯びており、従来はそのまま、水処理設備に排出されていた。本実施形態によれば、脱離液からも熱を吸収することができるので、より一層の省エネルギーを達成することができる。   Like the digested sludge, the desorbed liquid has a heat of about 35 ° C., and has been discharged to the water treatment facility as it is. According to the present embodiment, heat can be absorbed also from the desorbed liquid, so that further energy saving can be achieved.

図9は本発明に係る生物反応槽の加温システムの第7実施形態を示している。なお、図1と同一部材には同一番号を付している。   FIG. 9 shows a seventh embodiment of the biological reaction tank heating system according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals.

図9に示す第7実施形態は、消化槽3の出口側配管に汚泥貯留槽5を配置することなく、直接、熱交換器31を配設して消化汚泥から熱を吸収して回収すると共に、この熱交換器31は、図8に示した第6実施形態と同様、脱離液の排出配管からも熱を回収するようにしている。すなわち、熱交換器31としては、中心部分を冷媒が通過し、周辺部分を消化汚泥が通過する二重配管で構成されたコイル31aと、このコイル31aと接続され、中心部分を冷媒が通過し、周辺部分を脱離液が通過する二重配管で構成されたコイル31bで構成することができる。これによって、簡単な設備によって消化汚泥のみならず脱離液中からも熱を回収することが可能になり、さらなる省エネルギー効果を達成することが可能となる。   In the seventh embodiment shown in FIG. 9, the heat exchanger 31 is directly arranged to absorb and recover heat from the digested sludge without arranging the sludge storage tank 5 in the outlet side pipe of the digester 3. As in the sixth embodiment shown in FIG. 8, the heat exchanger 31 also recovers heat from the discharge pipe for the desorbed liquid. That is, the heat exchanger 31 is connected to the coil 31a composed of a double pipe through which the refrigerant passes through the central part and the digested sludge passes through the peripheral part, and the refrigerant passes through the central part. The coil 31b can be configured by a double pipe through which the desorbed liquid passes through the peripheral portion. This makes it possible to recover heat not only from digested sludge but also from the desorbed liquid with simple equipment, and to achieve further energy saving effects.

以上、上述した実施形態は、本発明を実現するための一例に過ぎない。図示は省略するが、第1実施形態〜第4実施形態において、汚泥貯留槽5は必ずしも必須の構成ではなく、消化汚泥中から熱交換器により熱が回収できる構成であれば良い。また、第1実施形態〜第4実施形態の構成に対して、消化槽3から排出される脱離液から熱を回収するように構成することも可能である。なお、上述した各実施形態は、一般的な下水汚泥の消化槽に本発明を適用した例を示したが、必ずしも下水汚泥の消化槽だけでなく、例えばUASBやダイジェスター等のメタン発酵槽であっても良い。   As mentioned above, embodiment mentioned above is only an example for implement | achieving this invention. Although illustration is omitted, in the first to fourth embodiments, the sludge storage tank 5 is not necessarily an indispensable configuration, and may be any configuration that can recover heat from the digested sludge by a heat exchanger. Moreover, it is also possible to collect | recover heat | fever from the desorption liquid discharged | emitted from the digestion tank 3 with respect to the structure of 1st Embodiment-4th Embodiment. In addition, although each embodiment mentioned above showed the example which applied this invention to the digestive tank of a general sewage sludge, it is not necessarily a digester of a sewage sludge, For example, in methane fermentation tanks, such as UASB and digester There may be.

3 消化槽
5 汚泥貯留槽
7 脱水機
9 乾燥機
11 消化ガスボイラ
13 膨張弁
15 第1の熱交換器
17 圧縮機
19 第2の熱交換器
21 汚泥循環ポンプ
23 温水ポンプ
25,27,29,31 熱交換器
DESCRIPTION OF SYMBOLS 3 Digestion tank 5 Sludge storage tank 7 Dehydrator 9 Dryer 11 Digestion gas boiler 13 Expansion valve 15 1st heat exchanger 17 Compressor 19 2nd heat exchanger 21 Sludge circulation pump 23 Hot water pumps 25, 27, 29, 31 Heat exchanger

Claims (4)

投入された排水や有機汚泥を消化菌によって嫌気性処理を行う生物反応槽と、
前記生物反応槽から排出される消化汚泥中から熱回収する第1の熱交換器と、
前記第1の熱交換器との間でヒートポンプサイクルを構成し、第1の熱交換器で回収された熱により前記生物反応槽内の汚泥を所定温度に加温する第2の熱交換器と、
を備えたことを特徴とする生物反応槽の加温システム。
A biological reaction tank that performs anaerobic treatment of the input wastewater and organic sludge with digestive bacteria,
A first heat exchanger that recovers heat from the digested sludge discharged from the biological reaction tank;
A second heat exchanger that constitutes a heat pump cycle with the first heat exchanger, and heats the sludge in the biological reaction tank to a predetermined temperature by heat recovered by the first heat exchanger; ,
A biological reaction tank heating system comprising:
請求項1に記載の生物反応槽の加温システムにおいて、
前記生物反応槽から排出される消化汚泥を一次貯留する汚泥貯留槽を備え、
前記第1の熱交換器は前記汚泥貯留槽との間で熱交換して消化汚泥中から熱回収することを特徴とする生物反応槽の加温システム。
In the heating system of the biological reaction tank of Claim 1,
A sludge storage tank that primarily stores digested sludge discharged from the biological reaction tank,
The heating system for a biological reaction tank, wherein the first heat exchanger exchanges heat with the sludge storage tank to recover heat from the digested sludge.
請求項1または2に記載の生物反応槽の加温システムにおいて、
前記消化槽から排出される脱離液から熱を回収する第3の熱交換器を備え、
前記第2の熱交換器は、前記第1の熱交換器および/または第3の熱交換器との間でヒートポンプサイクルを構成し、第1の熱交換器および/または第3の熱交換器で回収された熱により前記生物反応槽内の汚泥を所定温度に加温することを特徴とする生物反応槽の加温システム。
In the heating system of the biological reaction tank of Claim 1 or 2,
A third heat exchanger for recovering heat from the desorbed liquid discharged from the digester,
The second heat exchanger constitutes a heat pump cycle with the first heat exchanger and / or the third heat exchanger, and the first heat exchanger and / or the third heat exchanger. A biological reaction tank heating system, wherein the sludge in the biological reaction tank is heated to a predetermined temperature by the heat recovered in step (b).
請求項1乃至3のいずれか1項に記載の生物反応槽の加温システムにおいて、
前記第1の熱交換器により熱回収された後の消化汚泥を脱水する脱水機と、
前記脱水機から排出される脱水汚泥を乾燥させる乾燥機と、
前記生物反応槽で発生する消化ガスを燃焼させ、前記乾燥機の脱水汚泥を乾燥させるための蒸気を発生させる消化ガスボイラと、
を備えたことを特徴とする生物反応槽の加温システム。
In the heating system of the biological reaction tank of any one of Claims 1 thru | or 3,
A dehydrator for dewatering the digested sludge after heat recovery by the first heat exchanger;
A dryer for drying the dewatered sludge discharged from the dehydrator;
A digestion gas boiler for burning the digestion gas generated in the biological reaction tank and generating steam for drying the dewatered sludge of the dryer;
A biological reaction tank heating system comprising:
JP2010035324A 2010-02-19 2010-02-19 Heating system of bioreactor Pending JP2011167648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035324A JP2011167648A (en) 2010-02-19 2010-02-19 Heating system of bioreactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010035324A JP2011167648A (en) 2010-02-19 2010-02-19 Heating system of bioreactor
KR20110013630A KR20110095816A (en) 2010-02-19 2011-02-16 Bioreactor heating system
TW100105258A TW201130747A (en) 2010-02-19 2011-02-17 Bioreactor heating system
CN2011100422724A CN102190372A (en) 2010-02-19 2011-02-18 Heating system for biological reaction tank

Publications (1)

Publication Number Publication Date
JP2011167648A true JP2011167648A (en) 2011-09-01

Family

ID=44599367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035324A Pending JP2011167648A (en) 2010-02-19 2010-02-19 Heating system of bioreactor

Country Status (4)

Country Link
JP (1) JP2011167648A (en)
KR (1) KR20110095816A (en)
CN (1) CN102190372A (en)
TW (1) TW201130747A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105980A (en) * 2012-11-30 2014-06-09 Ihi Corp Water-containing solid matter drying device
JP2014105981A (en) * 2012-11-30 2014-06-09 Ihi Corp Water-containing solid matter drying method and device
WO2014088138A1 (en) * 2012-12-06 2014-06-12 한국건설기술연구원 Waste treatment system connected to sewage treatment plant
GB2509312A (en) * 2012-12-26 2014-07-02 Andrew Richard Walsh Pathogen reduction in anaerobic digestate
CN104291545A (en) * 2014-11-04 2015-01-21 武汉都市环保工程技术股份有限公司 Sludge heat exchanger
JP2015102255A (en) * 2013-11-22 2015-06-04 株式会社Ihi Hydrate solid drying device
JP2015213881A (en) * 2014-05-12 2015-12-03 三菱化工機株式会社 Sludge digestion treatment system
WO2015194573A1 (en) * 2014-06-17 2015-12-23 日本臓器製薬株式会社 Sludge treatment method and sludge treatment system
JP2016016351A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Heating system for digestion tank and sludge digestion system
CN112321114A (en) * 2020-10-30 2021-02-05 上海市政工程设计研究总院(集团)有限公司 Anaerobic digestion tank and sewage treatment plant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103652806B (en) * 2012-09-04 2015-09-30 李锦记(新会)食品有限公司 A kind of making leaven of soy sauce device of recyclable respiration heat
KR101436212B1 (en) * 2012-10-08 2014-09-01 농업회사법인 에버그린팜 주식회사 Heat recovery system of sewage treatment plant
CN102927685A (en) * 2012-11-28 2013-02-13 北京天一众合环境工程有限公司 Waste sewage heat recycling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156091A (en) * 1981-03-23 1982-09-27 Kurita Water Ind Ltd Treating device for organic waste
JPH081198A (en) * 1994-06-20 1996-01-09 Mitsui Mining Co Ltd Anaerobic digestion treatment of organic matter sludge
JP2008036560A (en) * 2006-08-08 2008-02-21 Fuji Electric Holdings Co Ltd Methane fermentation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201186892Y (en) * 2008-03-14 2009-01-28 清华大学 Water source heat pump and sludge anaerobic digestion integrated system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156091A (en) * 1981-03-23 1982-09-27 Kurita Water Ind Ltd Treating device for organic waste
JPH081198A (en) * 1994-06-20 1996-01-09 Mitsui Mining Co Ltd Anaerobic digestion treatment of organic matter sludge
JP2008036560A (en) * 2006-08-08 2008-02-21 Fuji Electric Holdings Co Ltd Methane fermentation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105980A (en) * 2012-11-30 2014-06-09 Ihi Corp Water-containing solid matter drying device
JP2014105981A (en) * 2012-11-30 2014-06-09 Ihi Corp Water-containing solid matter drying method and device
WO2014088138A1 (en) * 2012-12-06 2014-06-12 한국건설기술연구원 Waste treatment system connected to sewage treatment plant
GB2509312A (en) * 2012-12-26 2014-07-02 Andrew Richard Walsh Pathogen reduction in anaerobic digestate
GB2509312B (en) * 2012-12-26 2017-09-06 Richard Walsh Andrew Apparatus for achieving pathogen reduction in solid state anaerobic digestate utilising process heat
JP2015102255A (en) * 2013-11-22 2015-06-04 株式会社Ihi Hydrate solid drying device
JP2015213881A (en) * 2014-05-12 2015-12-03 三菱化工機株式会社 Sludge digestion treatment system
WO2015194573A1 (en) * 2014-06-17 2015-12-23 日本臓器製薬株式会社 Sludge treatment method and sludge treatment system
US9822026B2 (en) 2014-06-17 2017-11-21 Nippon Zoki Pharmaceutical Co., Ltd. Method and system for sludge treatment
JP2016016351A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Heating system for digestion tank and sludge digestion system
CN104291545B (en) * 2014-11-04 2016-08-24 武汉都市环保工程技术股份有限公司 Mud heat exchanger
CN104291545A (en) * 2014-11-04 2015-01-21 武汉都市环保工程技术股份有限公司 Sludge heat exchanger
CN112321114A (en) * 2020-10-30 2021-02-05 上海市政工程设计研究总院(集团)有限公司 Anaerobic digestion tank and sewage treatment plant

Also Published As

Publication number Publication date
KR20110095816A (en) 2011-08-25
CN102190372A (en) 2011-09-21
TW201130747A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP2011167648A (en) Heating system of bioreactor
EP2436978B1 (en) Drying unit and method for drying solid fuel containing water
Lee et al. Thermo-environ-economic modeling and optimization of an integrated wastewater treatment plant with a combined heat and power generation system
EP1767257A1 (en) Installation for the treatment of liquid
JP2008284544A (en) High-speed fermentation and drying apparatus
KR101493731B1 (en) Apparatus for removing rapidly moisture from biogas
JP2011036781A (en) Sludge digestion system
CN201186892Y (en) Water source heat pump and sludge anaerobic digestion integrated system
KR20090105608A (en) The way recovery and use heat of waste water of sludge in fire-extinguishing tank of the sewage disposal plant and heat of squeezed water in sludge
KR100817622B1 (en) integrated circulation energy recycling system for waste water treatment system and cogeneration system
KR101013577B1 (en) Apparatus for disposing organic waste to utilize methane gas
KR101364491B1 (en) Treatment device of sludge using oxidation dewatering and dry combustion
KR101577863B1 (en) Drying sludge apparatus
JP4886798B2 (en) Anaerobic treatment method combined with heat solubilization drying
JP2011020060A (en) Garbage disposal system
KR20140101099A (en) Drying system for high water content material using organ rankine cycle and drying method using the same
JP2006150158A (en) Method for treating digestive liquid in methane fermentation treatment system for organic waste such as livestock waste and apparatus therefor
KR20180025326A (en) Apparatus for treating sewage sludge and method using the same
RU2303145C1 (en) Thermal power station
JP5802582B2 (en) Sludge drying carbonization system
Di Maria et al. The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility
US20180012672A1 (en) System for Reducing Volume of Low-level Radioactive Wastes by Using Superheated Vapor
CN211496991U (en) MVR evaporation leachate preheating device
CN215162091U (en) Semi-solid waste drying treatment device
JPH081198A (en) Anaerobic digestion treatment of organic matter sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417