JP2015101701A - Method for producing expandable polystyrene-based resin particle - Google Patents

Method for producing expandable polystyrene-based resin particle Download PDF

Info

Publication number
JP2015101701A
JP2015101701A JP2013245156A JP2013245156A JP2015101701A JP 2015101701 A JP2015101701 A JP 2015101701A JP 2013245156 A JP2013245156 A JP 2013245156A JP 2013245156 A JP2013245156 A JP 2013245156A JP 2015101701 A JP2015101701 A JP 2015101701A
Authority
JP
Japan
Prior art keywords
particles
flame retardant
resin particles
polystyrene
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245156A
Other languages
Japanese (ja)
Other versions
JP6349697B2 (en
Inventor
田口 雄基
Takemoto Taguchi
雄基 田口
智彌 坂本
Tomoya Sakamoto
智彌 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2013245156A priority Critical patent/JP6349697B2/en
Publication of JP2015101701A publication Critical patent/JP2015101701A/en
Application granted granted Critical
Publication of JP6349697B2 publication Critical patent/JP6349697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an expandable polystyrene-based resin particle that can produce a polystyrene-based resin expansion molded article having an excellent fire retardant property as well as that is excellent in expansion moldability and has a high product yield.SOLUTION: A method for producing an expandable polystyrene-based resin particle comprising fire retardant, includes: first, mixing a fire retardant comprising brominated butadiene-styrene copolymer, and a polystyrene-based resin by kneading to produce a polystyrene-based resin seed particle and dispersing the same in an aqueous medium; then, feeding a styrenic monomer into the aqueous medium to impregnate the styrenic monomer into the polystyrene-based resin seed particle and polymerizing the same; and impregnating a physical blowing agent into the resin particle during or after the polymerization to produce an expandable polystyrene-based resin particle.

Description

本発明は、難燃剤を含有する発泡性ポリスチレン系樹脂粒子の製造方法に関する。   The present invention relates to a method for producing expandable polystyrene resin particles containing a flame retardant.

ポリスチレン系樹脂発泡成形体は、その優れた断熱性能により建築物用断熱材や保冷箱等に使用されている。ポリスチレン系樹脂発泡成形体は、発泡性ポリスチレン系樹脂粒子を用いて作製される。具体的には、まず、発泡性ポリスチレン系樹脂粒子を発泡させることにより、ポリスチレン系樹脂発泡粒子が得られる。次いで、成形型内においてポリスチレン系樹脂粒子同士を相互に融着させることにより、ポリスチレン系樹脂発泡成形体が得られる。   Polystyrene resin foam moldings are used for heat insulating materials for buildings, cold storage boxes, and the like due to their excellent heat insulation performance. The polystyrene-based resin foam molding is produced using expandable polystyrene-based resin particles. Specifically, first, foamed polystyrene-based resin particles are obtained by foaming expandable polystyrene-based resin particles. Next, a polystyrene resin foam molded article is obtained by fusing the polystyrene resin particles to each other in the mold.

難燃性が求められる建築物用断熱材等の用途においては、難燃剤を含有するポリスチレン系樹脂発泡成形体が使用されている。このようなポリスチレン系樹脂発泡成形体は、難燃剤を含有する発泡性ポリスチレン系樹脂粒子から上述のように製造される。従来、難燃剤としてはヘキサブロモシクロドデカン(以下、適宜「HBCD」ともいう。)が使用されてきた。しかし、HBCDはスチレン系単量体の重合を阻害することが知られている。即ち、HBCDの存在下でスチレン系単量体を懸濁重合すると、得られる発泡性ポリスチレン系樹脂粒子中に多くのスチレン系単量体が残存してしまうという問題があった。また、ポリスチレン系樹脂の分子量を高くすることができなくなり、十分な機械的強度を有する発泡粒子成形体が得られなくなるという問題があった。   In applications such as heat insulating materials for buildings that require flame retardancy, polystyrene-based resin foam moldings containing flame retardants are used. Such a polystyrene-based resin foamed molded article is produced as described above from expandable polystyrene-based resin particles containing a flame retardant. Conventionally, hexabromocyclododecane (hereinafter also referred to as “HBCD” as appropriate) has been used as a flame retardant. However, HBCD is known to inhibit the polymerization of styrenic monomers. That is, when suspension polymerization of a styrene monomer in the presence of HBCD, there is a problem that many styrene monomers remain in the resulting expandable polystyrene resin particles. Further, the molecular weight of the polystyrene resin cannot be increased, and there is a problem that a foamed particle molded body having sufficient mechanical strength cannot be obtained.

そこで、予め作製したポリスチレン系樹脂粒子にHBCDを含浸させることにより、難燃剤を含有する発泡性ポリスチレン系樹脂粒子を作製する方法(特許文献1参照)が開発されている。また、テトラブロモシクロオクタン等の難燃剤を溶解させたスチレンモノマーをポリスチレン系樹脂粒子に含浸、重合させることにより、難燃剤を含有する発泡性ポリスチレン系樹脂粒子を作製する方法(シード重合法、特許文献2参照)が開発されている。また、特定の構造を有する臭素化ビスフェノールA系の難燃剤を溶解させたスチレンモノマーの懸濁重合により、難燃剤を含有する発泡性ポリスチレン系樹脂粒子を作製する方法(懸濁重合法、特許文献3参照)が開発されている。   Then, the method (refer patent document 1) which produces the expandable polystyrene resin particle containing a flame retardant by impregnating the polystyrene resin particle produced previously with HBCD is developed. Also, a method of producing expandable polystyrene resin particles containing a flame retardant by impregnating and polymerizing polystyrene resin particles with a styrene monomer in which a flame retardant such as tetrabromocyclooctane is dissolved (seed polymerization method, patent Reference 2) has been developed. Also, a method of producing expandable polystyrene resin particles containing a flame retardant by suspension polymerization of a styrene monomer in which a brominated bisphenol A flame retardant having a specific structure is dissolved (suspension polymerization method, patent document) 3) has been developed.

特開平4−132746号公報JP-A-4-132746 特開2008−239709号公報JP 2008-239709 A 特開2007−9018号公報Japanese Patent Laid-Open No. 2007-9018

しかしながら、上述の特許文献1及び2の方法においては、難燃剤が樹脂粒子の内部まで含浸し難い。そこで、難燃剤の均一な含浸のためには、難燃剤をトルエン等の溶剤と共に含浸させる必要がある。しかし、環境面における影響を考慮すると、発泡性ポリスチレン系樹脂粒子におけるトルエン等の揮発性有機化合物の含有量が増大することは好ましくない。これに対し、溶剤を用いなければ、上述のように難燃剤が樹脂粒子の内部まで均一に含浸された発泡性ポリスチレン系樹脂粒子が得られなくなる。このような発泡性ポリスチレン系樹脂粒子を用いて得られるポリスチレン系樹脂発泡成形体には、融着性が悪くなるという問題や、表面のボイドが多くなるという問題がある。また、ポリスチレン系樹脂発泡成形体の表面が溶融してしまうという問題がある。一方、特許文献3の方法によれば、上述の問題を解決することが可能となる。しかし、この方法により得られる発泡性ポリスチレン系樹脂粒子は粒度分布が広くなりやすいため、発泡性ポリスチレン系樹脂粒子の製品収率という点で改良の余地がある。   However, in the methods of Patent Documents 1 and 2 described above, it is difficult for the flame retardant to impregnate the resin particles. Therefore, in order to uniformly impregnate the flame retardant, it is necessary to impregnate the flame retardant with a solvent such as toluene. However, in consideration of environmental influences, it is not preferable that the content of volatile organic compounds such as toluene in the expandable polystyrene resin particles is increased. On the other hand, if no solvent is used, expandable polystyrene resin particles in which the flame retardant is uniformly impregnated into the resin particles as described above cannot be obtained. The polystyrene resin foam molded article obtained by using such expandable polystyrene resin particles has a problem that the fusibility deteriorates and a problem that the number of voids on the surface increases. Moreover, there exists a problem that the surface of a polystyrene-type resin foaming molding will fuse | melt. On the other hand, according to the method of Patent Document 3, the above-described problem can be solved. However, since the expandable polystyrene resin particles obtained by this method tend to have a wide particle size distribution, there is room for improvement in terms of product yield of the expandable polystyrene resin particles.

本発明は、かかる背景に鑑みてなされたものであり、難燃性に優れたポリスチレン系樹脂発泡成形体を得ることができると共に、発泡成形性に優れ、製品収率の高い発泡性ポリスチレン系樹脂粒子の製造方法を提供しようとするものである。   The present invention has been made in view of such a background, and is capable of obtaining a polystyrene-based resin foam molded article having excellent flame retardancy, and is excellent in foam moldability and having a high product yield. An object is to provide a method for producing particles.

本発明の一態様は、難燃剤を含む発泡性ポリスチレン系樹脂粒子の製造方法であって、
難燃剤としての臭素化ブタジエン−スチレン共重合体と、ポリスチレン系樹脂とを混練してなるポリスチレン系樹脂種粒子を水性媒体中に分散させる分散工程と、
上記水性媒体中にスチレン系単量体を供給し、該スチレン系単量体を上記ポリスチレン系樹脂種粒子に含浸、重合させる重合工程と、
該重合工程における重合中又は重合後に物理発泡剤を樹脂粒子に含浸させて上記発泡性ポリスチレン系樹脂粒子を得る発泡剤含浸工程とを有することを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法にある。
One aspect of the present invention is a method for producing expandable polystyrene resin particles containing a flame retardant,
A dispersion step of dispersing polystyrene-based resin seed particles obtained by kneading a brominated butadiene-styrene copolymer as a flame retardant and a polystyrene-based resin in an aqueous medium;
A polymerization step of supplying a styrene monomer into the aqueous medium, impregnating and polymerizing the polystyrene resin seed particles with the styrene monomer; and
A foaming agent impregnation step of impregnating a physical foaming agent into resin particles during or after the polymerization in the polymerization step to obtain the expandable polystyrene resin particles. is there.

上記製造方法は、上記のように、分散工程と重合工程と発泡剤含浸工程とを有する。即ち、上記製造方法においては、まず、特定の難燃剤とポリスチレン系樹脂(以下、適宜「PS系樹脂」という)とを混練することにより、ポリスチレン系樹脂種粒子(以下、適宜「種粒子」という)が作製される。次いで、該種粒子にスチレン系単量体を含浸、重合させ、さらに物理発泡剤を含浸させることにより、発泡性ポリスチレン系樹脂粒子(以下、適宜「発泡性樹脂粒子)という)が得られる。   As described above, the production method includes a dispersion step, a polymerization step, and a blowing agent impregnation step. That is, in the above production method, first, a specific flame retardant and a polystyrene resin (hereinafter referred to as “PS resin” as appropriate) are kneaded to thereby prepare polystyrene resin seed particles (hereinafter referred to as “seed particles” as appropriate). ) Is produced. Next, the seed particles are impregnated with a styrene monomer, polymerized, and further impregnated with a physical foaming agent to obtain expandable polystyrene resin particles (hereinafter referred to as “expandable resin particles” as appropriate).

上記製造方法においては、上記のごとく特定の難燃剤が種粒子中に練り込まれている。そのため、上記製造方法によって得られる発泡性樹脂粒子を用いることにより、難燃剤の添加量を少なくしても優れた難燃性を発揮できるポリスチレン系樹脂発泡成形体(以下、適宜「発泡成形体)という)が得られる。また、上記製造方法においては、上記重合工程を行うことにより、スチレン系単量体を上記種粒子に含浸、重合させている。そのため、発泡性樹脂粒子の粒度分布が狭くなり、発泡性樹脂粒子の製品収率が向上する。   In the above production method, the specific flame retardant is kneaded into the seed particles as described above. Therefore, by using the foamable resin particles obtained by the above production method, a polystyrene-based resin foam molded article that can exhibit excellent flame retardancy even if the amount of flame retardant added is reduced (hereinafter, appropriately referred to as “foam molded article”). In the above production method, the seeding particles are impregnated and polymerized by performing the polymerization step, so that the particle size distribution of the expandable resin particles is narrow. Thus, the product yield of the expandable resin particles is improved.

また、難燃剤として、臭素化ブタジエン−スチレン共重合体が用いられている。臭素化ブタジエン−スチレン共重合体は、スチレン系単量体の重合を阻害し難いため、発泡成形性に優れた発泡性樹脂粒子が得られる。そのため、該発泡性樹脂粒子を用いることにより、融着率が高く、表面のボイドが少なく、表面の溶融がほとんどない発泡成形体が得られる。また、上記特定の難燃剤が用いられているため、発泡性樹脂粒子の水分量を少なくすることができる。   In addition, brominated butadiene-styrene copolymers are used as flame retardants. Since the brominated butadiene-styrene copolymer hardly inhibits the polymerization of the styrene monomer, expandable resin particles having excellent foam moldability can be obtained. Therefore, by using the foamable resin particles, it is possible to obtain a foamed molded article having a high fusion rate, few surface voids, and almost no surface melting. Moreover, since the said specific flame retardant is used, the moisture content of an expandable resin particle can be decreased.

実施例1における発泡成形体の外観のデジタル写真を示す写真代用図。FIG. 3 is a photographic substitute diagram showing a digital photograph of the appearance of the foam molded article in Example 1; 比較例1における発泡成形体の外観のデジタル写真を示す写真代用図。The photograph substitute figure which shows the digital photograph of the external appearance of the foaming molding in the comparative example 1. FIG. 比較例3における発泡成形体の外観のデジタル写真を示す写真代用図。The photograph substitute figure which shows the digital photograph of the external appearance of the foaming molding in the comparative example 3. FIG. 比較例4における発泡成形体の外観のデジタル写真を示す写真代用図。The photograph substitute figure which shows the digital photograph of the external appearance of the foaming molding in the comparative example 4. FIG.

次に、上記発泡性樹脂粒子の製造方法における好ましい実施形態について説明する。
上記発泡性樹脂粒子は、これを発泡させることにより、ポリスチレン系樹脂発泡粒子(以下、適宜「発泡粒子」という)を製造し、さらにこれらの発泡粒子を型内成形することにより、発泡成形体を製造するために用いられる。発泡性樹脂粒子は、上述のように、分散工程、重合工程、及び発泡剤含浸工程を行うことにより製造される。
Next, a preferred embodiment in the method for producing the expandable resin particles will be described.
The foamable resin particles are foamed to produce polystyrene-based resin foamed particles (hereinafter referred to as “foamed particles” as appropriate), and these foamed particles are molded in-mold to obtain a foamed molded product. Used for manufacturing. As described above, the expandable resin particles are produced by performing a dispersion step, a polymerization step, and a blowing agent impregnation step.

上記分散工程においては、PS系樹脂及び難燃剤を混練してなる種粒子が用いられる。種粒子は、PS系樹脂と難燃剤とを混合し、これらを溶融混練してから細粒化することにより製造される。溶融混練時の温度は、200℃〜250℃が好ましく、より好ましくは210℃〜230℃である。難燃剤とPS系樹脂との混合においては、難燃剤を直接PS系樹脂に混合してもよいが、難燃剤をPS系樹脂に溶融混練してなるマスターバッチをPS系樹脂に混合してもよい。また、難燃剤とPS系樹脂との混合においては、後述の安定剤を難燃剤に練り込むことにより得られる難燃剤組成物をPS系樹脂に混合してもよい。溶融混練は、例えば押出機により行われる。   In the dispersion step, seed particles obtained by kneading a PS resin and a flame retardant are used. The seed particles are produced by mixing a PS resin and a flame retardant, melting and kneading them, and then refining. The temperature at the time of melt kneading is preferably 200 ° C to 250 ° C, more preferably 210 ° C to 230 ° C. In mixing the flame retardant and the PS resin, the flame retardant may be directly mixed with the PS resin, or a master batch obtained by melting and kneading the flame retardant into the PS resin may be mixed with the PS resin. Good. Further, in mixing the flame retardant and the PS resin, a flame retardant composition obtained by kneading a stabilizer described later into the flame retardant may be mixed with the PS resin. Melt kneading is performed by, for example, an extruder.

発泡性樹脂粒子中への難燃剤の配合量は、所望の難燃性に応じて適宜調整することができる。例えば、JIS A9511(2006R)の5.13.1の燃焼性の規格を満足するような高度な難燃性を発泡樹脂成形体に付与するという観点から、発泡性樹脂粒子のPS系樹脂100質量部に対する難燃剤の配合割合が0.3質量部以上となるように、種粒子に難燃剤を配合することが好ましい。一方、所望の型内成形性や機械的物性を得るという観点からは、発泡性樹脂粒子のPS系樹脂100質量部に対する難燃剤の配合割合が3質量部以下となるように、種粒子に難燃剤を配合することが好ましい。同様の観点から、難燃剤の配合量は、発泡性樹脂粒子のPS樹脂100質量部に対して0.4〜2.5質量部であることがより好ましい。   The blending amount of the flame retardant in the expandable resin particles can be appropriately adjusted according to the desired flame retardancy. For example, from the viewpoint of imparting high flame retardancy that satisfies the flammability standard of 5.13.1 of JIS A9511 (2006R) to the foamed resin molded product, 100 mass of PS resin of the foamable resin particles It is preferable to blend the flame retardant with the seed particles so that the blending ratio of the flame retardant with respect to the part is 0.3 parts by mass or more. On the other hand, from the viewpoint of obtaining desired in-mold moldability and mechanical properties, it is difficult for the seed particles so that the blending ratio of the flame retardant with respect to 100 parts by mass of the PS resin of the expandable resin particles is 3 parts by mass or less. It is preferable to add a flame retardant. From the same viewpoint, the blending amount of the flame retardant is more preferably 0.4 to 2.5 parts by mass with respect to 100 parts by mass of the PS resin of the expandable resin particles.

種粒子中の難燃剤の配合量は0.4〜10質量%であることが好ましい。この場合には、難燃性に優れた発泡成形体をより確実に得ることができる。また、発泡成形性に優れた発泡性樹脂粒子をより確実に得ることができる。種粒子中の難燃剤の配合量は0.5〜5質量%であることがより好ましく、0.6〜3質量%であることがさらに好ましい。   The blending amount of the flame retardant in the seed particles is preferably 0.4 to 10% by mass. In this case, a foamed molded article excellent in flame retardancy can be obtained more reliably. Further, it is possible to more reliably obtain expandable resin particles having excellent foam moldability. The blending amount of the flame retardant in the seed particles is more preferably 0.5 to 5% by mass, and further preferably 0.6 to 3% by mass.

難燃剤としては、臭素化ブタジエン−スチレン共重合体が用いられる。臭素化ブタジエン−スチレン共重合体は、例えばスチレン−ブタジエン共重合体を臭素化することにより製造される。臭素化ブタジエン−スチレン共重合体におけるスチレン系単量体としては、スチレン、臭素化スチレン、塩素化スチレン、2−メチルスチレン、4−メチルスチレン、2,4−ジメチルスチレン、α−メチルスチレン等が例示できる。これらの中でも、スチレン、臭素化スチレン、4−メチルスチレン、α−メチルスチレン、又はこれらの混合物が好ましく、スチレンがより好ましい。臭素化ブタジエン−スチレン共重合体は、ブロック共重合体、ランダム共重合体、又はグラフト共重合体のいずれでもよい。好ましくは、臭素化ブタジエン−スチレン共重合体は、ブロック共重合体であることがよい。   A brominated butadiene-styrene copolymer is used as the flame retardant. The brominated butadiene-styrene copolymer is produced, for example, by brominating a styrene-butadiene copolymer. Examples of the styrene monomer in the brominated butadiene-styrene copolymer include styrene, brominated styrene, chlorinated styrene, 2-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, α-methylstyrene, and the like. It can be illustrated. Among these, styrene, brominated styrene, 4-methylstyrene, α-methylstyrene, or a mixture thereof is preferable, and styrene is more preferable. The brominated butadiene-styrene copolymer may be a block copolymer, a random copolymer, or a graft copolymer. Preferably, the brominated butadiene-styrene copolymer is a block copolymer.

臭素化ブタジエン−スチレンブロック共重合体は、下記の一般式(1)により表される。なお、一般式(1)において、X、Y、Zは、正の整数である。また、一般式(1)におけるブロック共重合体は、トリブロック共重合体であるが、ジブロック共重合体であってもよい。   The brominated butadiene-styrene block copolymer is represented by the following general formula (1). In the general formula (1), X, Y, and Z are positive integers. The block copolymer in the general formula (1) is a triblock copolymer, but may be a diblock copolymer.

臭素化ブタジエン−スチレンブロック共重合体の好ましい例としては、Chemtura社製の「Emerald3000」、ICL−IP社の「FR122P」等の市販品が挙げられる。
臭素化ブタジエン−スチレンブロック共重合体のポリスチレン換算平均分子量は、1000以上、300000以下であることが好ましく、10000以上、200000以下であることがより好ましく、100000以上、150000以下であることがさらに好ましい。
Preferable examples of the brominated butadiene-styrene block copolymer include commercially available products such as “Emerald 3000” manufactured by Chemtura and “FR122P” manufactured by ICL-IP.
The average molecular weight in terms of polystyrene of the brominated butadiene-styrene block copolymer is preferably 1,000 or more and 300,000 or less, more preferably 10,000 or more and 200,000 or less, and further preferably 100,000 or more and 150,000 or less. .

本発明の効果を損なわない限り、臭素化ブタジエン−スチレンブロック共重合体の他に、他の難燃剤を併用することも可能である。他の難燃剤としては、臭素化有機化合物、臭素化重合体等が用いられる。臭素化有機化合物としては、例えば2,2−ビス[4’−(2”,3”−ジブロモ−2”−メチルプロポキシ)−3’,5’−ジブロモフェニル]プロパン、2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]プロパン、2,2−ビス[4’−(2”,3”−ジブロモ−2−メチルプロポキシ)−3’,5’−ジブロモフェニル]スルホン、2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]スルホン、1,3,5−トリス(2’,3’−ジブロモ−2’−メチルプロピル)イソシアヌレート、1,3,5−トリス(2’,3’−ジブロモプロピル)イソシアヌレート、2,4,6−トリブロモフェノール−2’,3’−ジブロモ−2’−メチルプロピルエーテル、2,4,6−トリブロモフェノール−2’,3’−ジブロモプロピルエーテル、1,2,5,6,9,10−ヘキサブロモシクロドデカン、1,2,5,6−テトラブロモシクロオクタン等が用いられる。また、臭素化重合体としては、例えば臭素化ポリスチレン、臭素化エポキシ樹脂等が用いられる。難燃剤としては、これらの物質のうちの1種又は2種以上が用いられる。   As long as the effects of the present invention are not impaired, other flame retardants can be used in combination with the brominated butadiene-styrene block copolymer. Examples of other flame retardants include brominated organic compounds and brominated polymers. Examples of the brominated organic compound include 2,2-bis [4 ′-(2 ″, 3 ″ -dibromo-2 ″ -methylpropoxy) -3 ′, 5′-dibromophenyl] propane, 2,2-bis [ 4 ′-(2 ″, 3 ″ -dibromopropoxy) -3 ′, 5′-dibromophenyl] propane, 2,2-bis [4 ′-(2 ″, 3 ″ -dibromo-2-methylpropoxy) -3 ', 5'-dibromophenyl] sulfone, 2,2-bis [4'-(2 ", 3" -dibromopropoxy) -3 ', 5'-dibromophenyl] sulfone, 1,3,5-tris (2 ', 3'-dibromo-2'-methylpropyl) isocyanurate, 1,3,5-tris (2', 3'-dibromopropyl) isocyanurate, 2,4,6-tribromophenol-2 ', 3 '-Dibromo-2'-methylpropi Ether, 2,4,6-tribromophenol-2 ′, 3′-dibromopropyl ether, 1,2,5,6,9,10-hexabromocyclododecane, 1,2,5,6-tetrabromocyclo For example, brominated polystyrene, brominated epoxy resin, etc. are used as the brominated polymer, and one or more of these substances are used as the flame retardant.

少ない添加量でより高い難燃性を付与することができるという観点から、難燃剤中の臭素含有量は、60質量%以上であることが好ましく、63質量%以上であることがより好ましい。なお、上記臭素含有量は、JIS K7392(2009年)に基づき求めることができる。
また、種粒子の製造時における難燃剤の分解を抑制するという観点から、難燃剤の5%重量減少温度は、250〜280℃であることが好ましく、255〜270℃であることがより好ましい。難燃剤の5%減少温度は、熱重量測定法(TG法)により求めることができる。
From the viewpoint that higher flame retardancy can be imparted with a small addition amount, the bromine content in the flame retardant is preferably 60% by mass or more, and more preferably 63% by mass or more. The bromine content can be determined based on JIS K7392 (2009).
Further, from the viewpoint of suppressing decomposition of the flame retardant during the production of seed particles, the 5% weight reduction temperature of the flame retardant is preferably 250 to 280 ° C, and more preferably 255 to 270 ° C. The 5% reduction temperature of the flame retardant can be determined by a thermogravimetric method (TG method).

また、種粒子の製造時における難燃剤の熱安定性を向上させるために、エポキシ化合物、酸化防止剤等の安定剤を難燃剤と併用することができる。   Moreover, in order to improve the thermal stability of the flame retardant during the production of seed particles, a stabilizer such as an epoxy compound or an antioxidant can be used in combination with the flame retardant.

エポキシ化合物は、種粒子の押出加工時に難燃剤から脱離した臭素に由来するHBrを捕捉する性質を有する。この性質を利用して、エポキシ化合物は、HBrによるPS系樹脂の分解を抑制することができる。エポキシ化合物としては、例えばビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物等が挙げられる。より具体的には、例えばICL−IP社製の「F2200HM」、DIC社製の「EPICLONシリーズ」、HUNTUMAN社製の「Araldaite ECN1280」等の市販品が挙げられる。これらのエポキシ化合物としては、1種又は2種以上を併用することができる。エポキシ化合物の使用量は、難燃剤100質量部に対して1〜30質量部であることが好ましく、5〜20質量部であることがより好ましい。   The epoxy compound has a property of capturing HBr derived from bromine released from the flame retardant when the seed particles are extruded. Utilizing this property, the epoxy compound can suppress the decomposition of the PS resin by HBr. Examples of the epoxy compound include a bisphenol type epoxy compound and a novolac type epoxy compound. More specifically, for example, commercially available products such as “F2200HM” manufactured by ICL-IP, “EPICLON series” manufactured by DIC, and “Araldite ECN1280” manufactured by HUNTUMAN are listed. As these epoxy compounds, 1 type (s) or 2 or more types can be used together. It is preferable that the usage-amount of an epoxy compound is 1-30 mass parts with respect to 100 mass parts of flame retardants, and it is more preferable that it is 5-20 mass parts.

また、酸化防止剤としては、例えばフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、ホスファイト系酸化防止剤等が挙げられる。これらの酸化防止剤は、1種又は2種以上を併用することができる。酸化防止剤は、種粒子の押出加工時に臭素化ブタジエン−スチレン共重合体が分解して発生するハロゲンラジカルやハロゲンイオンを補足する性質を有する。この性質を利用して、酸化防止剤は、PS系樹脂の分子量の低下や着色を抑制することができる。このような観点から、酸化防止剤としてはフェノール系酸化防止剤とホスファイト系酸化防止剤とを併用することが好ましい。酸化防止剤の使用量は、難燃剤100質量部に対して0.2〜20質量部であることが好ましく、1〜15質量部であることがより好ましい。   Examples of the antioxidant include a phenolic antioxidant, a hindered amine antioxidant, and a phosphite antioxidant. These antioxidants can be used alone or in combination of two or more. The antioxidant has a property of capturing halogen radicals or halogen ions generated by decomposition of the brominated butadiene-styrene copolymer during the extrusion process of the seed particles. Utilizing this property, the antioxidant can suppress a decrease in molecular weight and coloring of the PS resin. From such a viewpoint, it is preferable to use a phenol-based antioxidant and a phosphite-based antioxidant in combination as the antioxidant. It is preferable that the usage-amount of antioxidant is 0.2-20 mass parts with respect to 100 mass parts of flame retardants, and it is more preferable that it is 1-15 mass parts.

また、上述のエポキシ化合物、酸化防止剤に加えて、他の安定剤を併用することもできる。このような安定剤としては、金属石鹸、有機スズ化合物、鉛化合物、ハイドロタルサイト、多価アルコール、β−ケトン、イオウ系化合物などが挙げられる。   In addition to the above-described epoxy compound and antioxidant, other stabilizers can be used in combination. Examples of such stabilizers include metal soaps, organotin compounds, lead compounds, hydrotalcite, polyhydric alcohols, β-ketones, and sulfur compounds.

発泡性樹脂粒子から得られる発泡成形体の難燃性をより向上させるという観点から、種粒子のポリスチレン系樹脂中に難燃剤を均一に分散させることが好ましい。そのためには、例えばダルメージタイプ、マドックタイプ、ユニメルトタイプ等の高混練タイプのスクリュを有する単軸押出機あるいは二軸押出機を用いて溶融混練を行うことが好ましい。また、種粒子の細粒化は、溶融混練後に、例えばストランドカット方式、ホットカット方式、水中カット方式等により混練物を切断することにより行われる。種粒子の細粒化方法は、所望の粒子径が得られる方法であれば、他の方法でもよい。   From the viewpoint of further improving the flame retardancy of the foamed molded article obtained from the expandable resin particles, it is preferable to uniformly disperse the flame retardant in the polystyrene resin of the seed particles. For that purpose, it is preferable to perform melt-kneading using a single-screw extruder or a twin-screw extruder having a high kneading type screw such as a dull image type, a Maddock type, or a unimelt type. Further, the seed particles are made fine by cutting the kneaded material by, for example, a strand cut method, a hot cut method, an underwater cut method or the like after melt kneading. The seed particle refining method may be other methods as long as a desired particle diameter can be obtained.

種粒子の生産性、種粒子から得られる発泡粒子の金型内への充填性の向上という観点から、種粒子の粒子重量は、0.1〜3mgであることが好ましく、0.3〜1.5mgであることがより好ましい。なお、押出機を用いる場合には、例えば0.5〜2mm程度の口径を有する孔から樹脂を押出し、押出時のカットスピードを変えることにより、種粒子の重量の調整が可能である。   From the viewpoint of improving the productivity of seed particles and improving the filling properties of the foamed particles obtained from the seed particles into the mold, the particle weight of the seed particles is preferably 0.1 to 3 mg, and 0.3 to 1 More preferably, it is 5 mg. In the case of using an extruder, the weight of seed particles can be adjusted by extruding a resin from a hole having a diameter of, for example, about 0.5 to 2 mm and changing the cutting speed at the time of extrusion.

種粒子には、本発明の効果を損なわない限り、例えば気泡調整剤、可塑剤、熱線遮蔽剤、顔料、スリップ剤、帯電防止剤等の添加剤がさらに添加されうる。
気泡調整剤としては、例えばエチレンビス脂肪酸アマイド、脂肪酸モノアマイド、脂肪酸ビスアマイド、タルク、シリカ、ポリエチレンワックス、メチレンビスステアリン酸、メタクリル酸メチル系共重合体、シリコーン等が用いられる。好ましくは、エチレンビス脂肪酸アマイドが用いられる。気泡調整剤は、種粒子に練り込まれていてもよいが、重合工程の途中で水性媒体に添加させてもよい。また、気泡調整剤は、スチレンと共に種粒子に含浸させてもよい。気泡調整剤の添加量は、例えば発泡性ポリスチレン系樹脂粒子100重量部に対して0.01〜1重量部となるように調整される。これにより、発泡成形体の気泡径を充分に安定化させることができる。
As long as the effects of the present invention are not impaired, additives such as a bubble adjusting agent, a plasticizer, a heat ray shielding agent, a pigment, a slip agent, and an antistatic agent may be further added to the seed particles.
Examples of the air conditioner include ethylene bis fatty acid amide, fatty acid mono amide, fatty acid bis amide, talc, silica, polyethylene wax, methylene bis stearic acid, methyl methacrylate copolymer, and silicone. Preferably, ethylene bis fatty acid amide is used. The bubble regulator may be kneaded into the seed particles, but may be added to the aqueous medium during the polymerization process. In addition, the bubble regulator may be impregnated into the seed particles together with styrene. The addition amount of the cell regulator is adjusted to be 0.01 to 1 part by weight with respect to 100 parts by weight of the expandable polystyrene resin particles, for example. Thereby, the bubble diameter of a foaming molding can fully be stabilized.

可塑剤としては、例えばグリセリントリステアレート、グリセリントリオクタノエート、グリセリントリラウレート、ソルビタントリステアレート、ソルビタンモノステアレート、ブチルステアレート、グリセリンジアセトモノラウレート等の脂肪酸エステルが用いられる。また、例えばシクロヘキサン、流動パラフィン等の有機化合物も用いられる。
熱線遮蔽剤としては、例えば黒鉛粉、カーボンブラック、グラフェン、カーボンナノチューブ等の炭素粒子が用いられる。熱線遮蔽剤としては、アルミニウム粉等の金属粒子も用いられる。さらに、熱線遮蔽剤としては、例えば酸化チタン、酸化鉄、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化ケイ素等の無機粒子も用いられる。熱遮蔽剤は、黒鉛粉であることが好ましい。熱線遮蔽剤の添加量は、発泡性ポリスチレン系樹脂粒子100質量部に対して、0.1〜6質量部であることが好ましい。これにより、発泡性樹脂粒子から得られる発泡粒子成形体の断熱性を向上させることができる。また、顔料、スリップ剤、帯電防止剤としては、市販品や公知品を用いることができる。
Examples of the plasticizer include fatty acid esters such as glycerin tristearate, glycerin trioctanoate, glycerin trilaurate, sorbitan tristearate, sorbitan monostearate, butyl stearate, and glycerin diacetomonolaurate. In addition, organic compounds such as cyclohexane and liquid paraffin are also used.
Examples of the heat ray shielding agent include carbon particles such as graphite powder, carbon black, graphene, and carbon nanotube. As the heat ray shielding agent, metal particles such as aluminum powder are also used. Furthermore, as the heat ray shielding agent, inorganic particles such as titanium oxide, iron oxide, silicon oxide, aluminum oxide, aluminum nitride, and silicon nitride are also used. The heat shielding agent is preferably graphite powder. It is preferable that the addition amount of a heat ray shielding agent is 0.1-6 mass parts with respect to 100 mass parts of expandable polystyrene resin particles. Thereby, the heat insulation of the foaming particle molded object obtained from an expandable resin particle can be improved. As the pigment, slip agent, and antistatic agent, commercially available products and known products can be used.

分散工程においては、種粒子が水性媒体中に分散される。水性媒体中への分散は、例えば撹拌機を備えた、オートクレーブ等の密閉容器を用いて行われる。水性媒体としては、例えば脱イオン水等が用いられる。また、分散工程においては、懸濁剤を含有する水性媒体中に種粒子を分散させることが好ましい。懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリビニルピロリドン等の親水性高分子が用いられる。また、懸濁剤としては、例えば第三リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性無機塩も用いられる。さらに必要に応じて、懸濁剤と共に界面活性剤を併用しても良い。なお、懸濁剤として難水溶性無機塩を使用する場合は、アニオン系界面活性剤を併用することが好ましい。アニオン系界面活性剤としては、例えばアルキルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルジフェニルエーテルスルホン酸二ナトリウム、α−オレフィンスルホン酸ナトリウム等から選ばれる少なくとも1種が用いられる。   In the dispersion step, seed particles are dispersed in an aqueous medium. Dispersion in an aqueous medium is performed using a closed container such as an autoclave equipped with a stirrer, for example. As the aqueous medium, for example, deionized water or the like is used. In the dispersing step, it is preferable to disperse seed particles in an aqueous medium containing a suspending agent. As the suspending agent, for example, hydrophilic polymers such as polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone and the like are used. Further, as the suspending agent, for example, poorly water-soluble inorganic salts such as tricalcium phosphate and magnesium pyrophosphate are also used. Further, if necessary, a surfactant may be used in combination with the suspending agent. In addition, when using a poorly water-soluble inorganic salt as a suspending agent, it is preferable to use an anionic surfactant together. As the anionic surfactant, for example, at least one selected from sodium alkyl sulfonate, sodium dodecylbenzene sulfonate, disodium dodecyl diphenyl ether sulfonate, sodium α-olefin sulfonate and the like is used.

懸濁剤の使用量は、種粒子100質量部に対して0.01〜5質量部であることが好ましい。上述のように難水溶性無機塩とアニオン性界面活性剤とを併用する場合は、種粒子100質量部に対して、難水溶性無機塩の使用量が0.05〜3質量部であり、アニオン性界面活性剤の使用量が0.0001〜0.5質量部であることが好ましい。界面活性剤は、炭素数8〜20のアルキルスルホン酸アルカリ金属塩であることが好ましい。これにより、より安定な懸濁が実現できる。また、アルキルスルホン酸アルカリ金属塩はナトリウム塩であることがさらに好ましい。また、種粒子を分散させる水性媒体中には、必要に応じて、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、コハク酸ナトリウム等の電解質が添加される。   It is preferable that the usage-amount of a suspending agent is 0.01-5 mass parts with respect to 100 mass parts of seed particles. When using a sparingly water-soluble inorganic salt and an anionic surfactant in combination as described above, the amount of sparingly water-soluble inorganic salt used is 0.05 to 3 parts by weight with respect to 100 parts by weight of the seed particles. The amount of the anionic surfactant used is preferably 0.0001 to 0.5 parts by mass. The surfactant is preferably an alkali metal alkyl sulfonate having 8 to 20 carbon atoms. Thereby, a more stable suspension can be realized. Further, the alkali metal alkyl sulfonate is more preferably a sodium salt. In the aqueous medium in which the seed particles are dispersed, an electrolyte such as lithium chloride, potassium chloride, sodium chloride, sodium sulfate, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium acetate, sodium succinate, etc. Is added.

次に、上記重合工程においては、種粒子を分散させた水性媒体中にスチレン系単量体が供給される。そして、スチレン系単量体が種粒子に含浸され、重合する。
スチレン系単量体としては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−フェニルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4−ジクロロスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−オクチルスチレン、ジビニルベンゼン、スチレンスルホン酸、スチレンスルホン酸ナトリウム等から選ばれる少なくとも1種が用いられる。これらの中でもスチレンが好ましい。
Next, in the polymerization step, a styrene monomer is supplied into an aqueous medium in which seed particles are dispersed. Then, the styrene monomer is impregnated into the seed particles and polymerized.
Examples of the styrene monomer include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, p- At least one selected from octyl styrene, divinylbenzene, styrene sulfonic acid, sodium styrene sulfonate and the like is used. Of these, styrene is preferred.

また、スチレン系単量体と共重合可能なビニル単量体をスチレン系単量体と併用することも可能である。このようなビニル単量体としては、例えばアクリル酸エステル、メタクリル酸エステル、水酸基を含有するビニル化合物、ニトリル基を含有するビニル化合物、有機酸ビニル化合物、オレフィン化合物、ジエン化合物、ハロゲン化ビニル化合物、ハロゲン化ビニリデン化合物、マレイミド化合物等が挙げられる。
アクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル等がある。
メタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル等がある。
水酸基を含有するビニル化合物としては、例えばヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート等がある。
ニトリル基を含有するビニル化合物としては、例えばアクリロニトリル、メタクリロニトリル等がある。
有機酸ビニル化合物としては、例えば酢酸ビニル、プロピオン酸ビニル等がある。
オレフィン化合物としては、例えばエチレン、プロピレン、1−ブテン、2−ブテン等がある。
ジエン化合物としては、例えばブタジエン、イソプレン、クロロプレン等がある。
ハロゲン化ビニル化合物としては、例えば塩化ビニル、臭化ビニル等がある。
ハロゲン化ビニリデン化合物としては、例えば塩化ビニリデン等がある。
マレイミド化合物としては、例えばN−フェニルマレイミド、N−メチルマレイミド等がある。
これらのビニル単量体としては、単独の物質を用いることもできるが、2種類以上の混合物を用いることもできる。
It is also possible to use a vinyl monomer copolymerizable with the styrene monomer in combination with the styrene monomer. Examples of such vinyl monomers include acrylic acid esters, methacrylic acid esters, vinyl compounds containing hydroxyl groups, vinyl compounds containing nitrile groups, organic acid vinyl compounds, olefin compounds, diene compounds, halogenated vinyl compounds, Examples thereof include vinylidene halide compounds and maleimide compounds.
Examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate.
Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate.
Examples of the vinyl compound containing a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate.
Examples of the vinyl compound containing a nitrile group include acrylonitrile and methacrylonitrile.
Examples of the organic acid vinyl compound include vinyl acetate and vinyl propionate.
Examples of the olefin compound include ethylene, propylene, 1-butene, and 2-butene.
Examples of the diene compound include butadiene, isoprene, chloroprene and the like.
Examples of the vinyl halide compound include vinyl chloride and vinyl bromide.
Examples of the vinylidene halide compound include vinylidene chloride.
Examples of maleimide compounds include N-phenylmaleimide and N-methylmaleimide.
As these vinyl monomers, a single substance can be used, but a mixture of two or more kinds can also be used.

PS系樹脂は、上記スチレン系単量体成分単位が50質量%以上の樹脂をいう。即ち、PS系樹脂は、スチレン系単量体の単独重合体、2種以上のスチレン系単量体の共重合体だけでなく、1種以上のスチレン系単量体及びこれと共重合可能なビニル単量体との共重合体を含む概念である。PS系樹脂におけるスチレン系単量体成分単位は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。   The PS resin refers to a resin having the styrene monomer component unit of 50% by mass or more. That is, the PS resin is not only a homopolymer of a styrene monomer, but a copolymer of two or more styrene monomers, as well as one or more styrene monomers and copolymerizable therewith. It is a concept including a copolymer with a vinyl monomer. The styrene monomer component unit in the PS resin is preferably 80% by mass or more, and more preferably 90% by mass or more.

種粒子はPS系樹脂から構成される。種粒子のPS系樹脂としては、発泡性を高めるという観点から、ポリスチレンが特に好ましい。また、種粒子中には、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂などのポリスチレン系樹脂以外のその他の熱可塑性樹脂や、スチレン系エラストマー、オレフィン系エラストマーなどの熱可塑性エラストマーを含有させることができる。これらの熱可塑性樹脂や熱可塑性エラストマーを配合する場合には、その配合量は、種粒子のPS系樹脂100質量部に対して20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。   The seed particles are composed of PS resin. As the PS-based resin for seed particles, polystyrene is particularly preferable from the viewpoint of enhancing foamability. The seed particles may contain other thermoplastic resins other than polystyrene resins such as polyethylene resins, polypropylene resins and polyester resins, and thermoplastic elastomers such as styrene elastomers and olefin elastomers. it can. When these thermoplastic resins and thermoplastic elastomers are blended, the blending amount is preferably 20 parts by mass or less with respect to 100 parts by mass of the PS-based resin of the seed particles, and is 10 parts by mass or less. Is more preferable, and it is further more preferable that it is 5 mass parts or less.

発泡性樹脂粒子を構成するPS系樹脂の重量平均分子量は、10万〜60万であることが好ましい。
この場合には、発泡性樹脂粒子を発泡させる際に、発泡粒子の収縮を防止することができる。さらに発泡後に得られる発泡粒子の型内成形時に、発泡粒子同士の融着性を向上させることができる。その結果、発泡成形体の寸法安定性を向上させることができる。同様の観点からPS系樹脂の重量平均分子量は15万以上であることがより好ましく、20万以上であることがさらに好ましい。また、PS系樹脂の重量平均分子量は、50万以下であることがより好ましく、40万以下であることがさらに好ましい。PS系樹脂の重量平均分子量の範囲は、上述の上限及び下限の好ましい範囲、より好ましい範囲、及びさらに好ましい範囲の全ての組み合わせから決定することができる。
The weight average molecular weight of the PS resin constituting the expandable resin particles is preferably 100,000 to 600,000.
In this case, when foaming resin particles are foamed, shrinkage of the foamed particles can be prevented. Furthermore, it is possible to improve the fusibility between the foamed particles during molding of the foamed particles obtained after foaming. As a result, the dimensional stability of the foamed molded product can be improved. From the same viewpoint, the PS-based resin preferably has a weight average molecular weight of 150,000 or more, and more preferably 200,000 or more. The weight average molecular weight of the PS resin is more preferably 500,000 or less, and further preferably 400,000 or less. The range of the weight average molecular weight of the PS-based resin can be determined from all combinations of the above preferred upper and lower preferred ranges, more preferred ranges, and even more preferred ranges.

上記種粒子にスチレン系単量体を含浸させて重合させるにあたっては、使用量の全量のスチレン系単量体を一括して添加することができる。また、使用量の全量のスチレン系単量体を複数に分割し、これらを異なるタイミングで添加することもできる。後者のように、スチレン系単量体を複数回に分割して添加することにより、重合時における樹脂粒子同士の凝結を十分に抑制することが可能になる。   When the seed particles are impregnated with a styrene monomer and polymerized, the entire amount of the styrene monomer used can be added at once. Moreover, the styrene-type monomer of the whole usage-amount can be divided | segmented into plurality, and these can also be added at a different timing. As in the latter case, by adding the styrene monomer divided into a plurality of times, it becomes possible to sufficiently suppress the condensation of the resin particles during the polymerization.

重合工程におけるスチレン系単量体の添加量は、種粒子100質量部に対して30〜300質量部であることが好ましい。この場合には、発泡性樹脂粒子の発泡成形性をより向上させることができる。スチレン系単量体の添加量は、種粒子100質量部に対して100〜250質量部であることがより好ましい。また、スチレン系単量体を上述のように分割して添加する場合には、初期に添加するスチレン量は、種粒子100重量部に対して15〜50重量部であることが好ましい。この場合には、重合中における種粒子の互着を抑制することができ、球状のポリスチレン系樹脂粒子を得ることができる。初期に添加するスチレン量は、種粒子100重量部に対して20〜40質量部であることがより好ましい。   It is preferable that the addition amount of the styrene-type monomer in a superposition | polymerization process is 30-300 mass parts with respect to 100 mass parts of seed particles. In this case, the foam moldability of the expandable resin particles can be further improved. As for the addition amount of a styrene-type monomer, it is more preferable that it is 100-250 mass parts with respect to 100 mass parts of seed particles. Moreover, when adding a styrene-type monomer separately as mentioned above, it is preferable that the amount of styrene added initially is 15-50 weight part with respect to 100 weight part of seed particles. In this case, mutual adhesion of seed particles during polymerization can be suppressed, and spherical polystyrene resin particles can be obtained. The amount of styrene added initially is more preferably 20 to 40 parts by mass with respect to 100 parts by weight of the seed particles.

また、重合工程においては、種粒子中でスチレンを均一に重合させるために、スチレンと共に重合開始剤を種粒子に含浸させることが好ましい。重合開始剤は、スチレンに溶解させて添加してもよいし、重合開始剤を単独で添加してもよい。重合開始剤の使用量は、スチレン系単量体100質量部に対して0.01〜3質量部であることが好ましい。   In the polymerization step, in order to uniformly polymerize styrene in the seed particles, it is preferable to impregnate the seed particles with a polymerization initiator together with styrene. The polymerization initiator may be added after being dissolved in styrene, or the polymerization initiator may be added alone. It is preferable that the usage-amount of a polymerization initiator is 0.01-3 mass parts with respect to 100 mass parts of styrene-type monomers.

重合開始剤としては、例えばスチレンに可溶であり、10時間半減期温度が50〜120℃である有機過酸化物、アゾ化合物等が用いられる。有機過酸化物としては、例えばt−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルモノカーボネート、t−アミルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、ヘキシルパーオキシ−2−エチルヘキシルカーボネート、ラウロイルパーオキサイド、ジクミルパーオキサイド、2,5−t−ブチルパーベンゾエート、1,1−ビス−t−ブチルパーオキシシクロヘキサン、クメンヒドロキシパーオキサイド等が用いられる。また、アゾ化合物としては、アゾビスイソブチロニトリル等が用いられる。重合開始剤としては、これらの物質のうちの1種または2種以上が用いられる。   Examples of the polymerization initiator include organic peroxides and azo compounds that are soluble in styrene and have a 10-hour half-life temperature of 50 to 120 ° C. Examples of the organic peroxide include t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, benzoyl peroxide, t-butylperoxyisopropyl monocarbonate, t-amylperoxy-2-ethylhexyl. Monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, hexylperoxy-2-ethylhexyl carbonate, lauroyl peroxide, dicumyl peroxide, 2,5-t-butylperbenzoate, 1,1-bis-t -Butylperoxycyclohexane, cumene hydroxyperoxide, etc. are used. As the azo compound, azobisisobutyronitrile or the like is used. As the polymerization initiator, one or more of these substances are used.

次に、発泡剤含浸工程においては、物理発泡剤(以下、適宜「発泡剤」という)を樹脂粒子中に含浸させる。発泡剤の含浸は、スチレン系単量体の重合中又は重合後に行うことができる。具体的には、重合中又は重合後の樹脂粒子を収容する容器内に発泡剤を圧入し、樹脂粒子中に発泡剤を含浸させる。なお、上述の樹脂粒子は、種粒子におけるスチレン系単量体の含浸重合途中の粒子や、含浸重合後の粒子を含む概念である。   Next, in the foaming agent impregnation step, the resin particles are impregnated with a physical foaming agent (hereinafter referred to as “foaming agent” as appropriate). Impregnation with the foaming agent can be performed during or after the polymerization of the styrenic monomer. Specifically, a foaming agent is press-fitted into a container that accommodates resin particles during or after polymerization, and the resin particles are impregnated with the foaming agent. In addition, the above-mentioned resin particle is the concept containing the particle | grains in the middle of the impregnation polymerization of the styrene-type monomer in a seed particle, and the particle | grains after an impregnation polymerization.

発泡剤としては、例えば炭素数3〜6の飽和炭化水素化合物、炭素数5以下の低級アルコール、エーテル化合物等を用いることができる。具体的には、飽和炭化水素化合物としては、例えばプロパン、n−ブタン、イソブタン、シクロブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、n−ヘキサン、シクロヘキサンなどを用いることができる。また、低級アルコールとしては、メタノール、エタノールなどを用いることができる。また、エーテル化合物としては、ジメチルエーテル、ジエチルエーテルなどを用いることができる。これらの発泡剤は、単独で又は2種以上の混合物で用いることができる。なお、エーテル化合物としては、例えば炭素数6以下のものを用いることができる。好ましくは、発泡剤としては、炭素数3〜6の飽和炭化水素化合物から選ばれる1種又は2種以上を用いることがよい。   As the blowing agent, for example, a saturated hydrocarbon compound having 3 to 6 carbon atoms, a lower alcohol having 5 or less carbon atoms, an ether compound, or the like can be used. Specifically, as the saturated hydrocarbon compound, for example, propane, n-butane, isobutane, cyclobutane, n-pentane, isopentane, neopentane, cyclopentane, n-hexane, cyclohexane and the like can be used. As the lower alcohol, methanol, ethanol or the like can be used. Moreover, as an ether compound, dimethyl ether, diethyl ether, etc. can be used. These foaming agents can be used alone or in a mixture of two or more. In addition, as an ether compound, a C6 or less thing can be used, for example. Preferably, as a foaming agent, it is good to use 1 type, or 2 or more types chosen from a C3-C6 saturated hydrocarbon compound.

また、発泡性樹脂粒子中の発泡剤の含有量は、所望の見掛け密度に応じて適宜調整することができるが、発泡剤の含有量が少なすぎる場合には、例えば16kg/m3以下という低密度まで発泡性樹脂粒子を発泡させることが困難になる虞がある。一方、発泡剤の含有量が多すぎる場合には、発泡後に得られる発泡粒子の気泡径が粗大になり、成形体の強度が低下する虞がある。また、この場合には断熱性に悪影響を及ぼす虞もある。したがって、上記発泡性樹脂粒子中の発泡剤の含有量は、2〜15質量%であることが好ましく、3〜10質量%であることがより好ましい。発泡剤の含有量は、ジメチルホルムアミド(DMF)に発泡性樹脂粒子を溶解させて得られる溶解物のガスクロマトグラフィ分析によって求められる。   Further, the content of the foaming agent in the foamable resin particles can be appropriately adjusted according to the desired apparent density, but when the content of the foaming agent is too small, for example, a low density of 16 kg / m3 or less. It may be difficult to foam the expandable resin particles. On the other hand, when there is too much content of a foaming agent, the bubble diameter of the foaming particle obtained after foaming will become coarse, and there exists a possibility that the intensity | strength of a molded object may fall. In this case, there is a possibility that the heat insulating property may be adversely affected. Therefore, the content of the foaming agent in the expandable resin particles is preferably 2 to 15% by mass, and more preferably 3 to 10% by mass. Content of a foaming agent is calculated | required by the gas-chromatography analysis of the melt | dissolution thing obtained by melt | dissolving a foamable resin particle in dimethylformamide (DMF).

また、発泡剤含浸工程後には、発泡性樹脂粒子を脱水乾燥し、必要に応じて表面被覆剤を発泡性樹脂粒子に被覆させることができる。表面被覆剤としては、金属石鹸、多価アルコールの脂肪酸エステル、帯電防止剤等が用いられる。金属石鹸としては、例えばステアリン酸亜鉛等が用いられる。多価アルコールの脂肪酸エステルとしては、例えばステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油等が用いられる。帯電防止剤としては、例えばジエタノールアルキルアミン等が用いられる。表面被覆剤の添加量は、発泡性樹脂粒子100質量部に対して0.01〜2質量部であることが好ましい。   In addition, after the foaming agent impregnation step, the foamable resin particles can be dehydrated and dried, and if necessary, the surface coating agent can be coated on the foamable resin particles. As the surface coating agent, metal soap, fatty acid ester of polyhydric alcohol, antistatic agent and the like are used. For example, zinc stearate is used as the metal soap. Examples of the fatty acid ester of polyhydric alcohol include stearic acid triglyceride, stearic acid monoglyceride, castor oil and the like. As the antistatic agent, for example, diethanol alkylamine is used. It is preferable that the addition amount of a surface coating agent is 0.01-2 mass parts with respect to 100 mass parts of expandable resin particles.

発泡性樹脂粒子は、次のようにして発泡成形体を得るために用いられる。まず、発泡性樹脂粒子を加熱して発泡させることにより、発泡粒子が得られる。次いで、得られた複数の発泡粒子を型内にて相互に融着させることにより、発泡粒子成形体が得られる。発泡性樹脂粒子を加熱して発泡させる方法としては、例えば水蒸気(スチーム)等の加熱媒体を発泡性樹脂粒子に供給する方法がある。これにより、発泡性樹脂粒子を発泡させて発泡粒子が得られる。なお、得られる発泡粒子の嵩密度は10〜100kg/m3であることが好ましく、12〜30kg/m3であることがより好ましい。 Expandable resin particles are used to obtain a foamed molded article as follows. First, foamed particles are obtained by heating and foaming the expandable resin particles. Subsequently, the foamed particle molded body is obtained by fusing the obtained foamed particles to each other in a mold. As a method of heating and foaming the expandable resin particles, for example, there is a method of supplying a heating medium such as steam to the expandable resin particles. Thereby, expandable resin particles are expanded to obtain expanded particles. Incidentally, it is preferable that the bulk density of the resulting expanded beads is 10 to 100 kg / m 3, more preferably 12~30kg / m 3.

(実施例1)
次に、実施例にかかる発泡性樹脂粒子の製造方法を説明する。
(1)種粒子の作製
まず、φ30mm単軸押出機を用いて、ポリスチレン樹脂(PSジャパン社製の「680」)98.5質量部と、難燃剤組成物1.5質量部とを温度210〜230℃で溶融混練した。次いで、押出機の穴径1.4mmのダイスから溶融混練物をストランド状に押し出した。押出物を直ちに水槽へ導入して冷却した後、押出物をストランドカットにより切断した。これにより、0.9mg/個のペレットが得られた。このペレットが本例の種粒子(以下、本例の種粒子を「種粒子A」という)である。なお、本例における難燃剤組成物は、臭素含有量64質量%、5%重量減少温度262℃の難燃剤である臭素化ブタジエン−スチレンブロック共重合体(ケムチュラ社製の「エメラルド3000」)80質量部と、安定剤(エポキシ化合物)としてのノボラック型エポキシ樹脂(DIC社製の「EPICLON N680」)10質量部と、安定剤(フェノール系酸化防止剤)としてのペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](BASF社製の「Irganox1010」)5質量部と、安定剤(ホスファイト系酸化防止剤)としてのビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジホスファイト(ADEKA社製の「PEP36」5質量部とを溶融混練してなる。本例において用いた難燃剤を、以下適宜「難燃剤a」という。
Example 1
Next, the manufacturing method of the expandable resin particle concerning an Example is demonstrated.
(1) Preparation of seed particles First, using a φ30 mm single screw extruder, 98.5 parts by mass of a polystyrene resin (“680” manufactured by PS Japan) and 1.5 parts by mass of a flame retardant composition were heated to 210 ° C. Melt-kneaded at ~ 230 ° C. Next, the melt-kneaded product was extruded in a strand form from a die having a hole diameter of 1.4 mm of an extruder. The extrudate was immediately introduced into a water bath and cooled, and then the extrudate was cut by strand cutting. As a result, 0.9 mg / pellet was obtained. This pellet is the seed particle of this example (hereinafter, the seed particle of this example is referred to as “seed particle A”). In addition, the flame retardant composition in this example is a brominated butadiene-styrene block copolymer ("Emerald 3000" manufactured by Chemtura), which is a flame retardant having a bromine content of 64 mass% and a 5% weight reduction temperature of 262 ° C. 10 parts by mass of a novolak type epoxy resin (“EPICLON N680” manufactured by DIC) as a stabilizer (epoxy compound) and pentaerythritol tetrakis [3- (3 as a stabilizer (phenolic antioxidant) , 5-di-t-butyl-4-hydroxyphenyl) propionate] ("Irganox 1010" manufactured by BASF) and bis (2,6-di-) as a stabilizer (phosphite antioxidant). t-Butyl-4-methylphenyl) pentaerythritol diphosphite (“PEP36” 5 product made by ADEKA) The flame retardant used in this example is hereinafter appropriately referred to as “flame retardant a”.

(2)発泡性樹脂粒子の作製
まず、撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水580g、ピロリン酸ナトリウム4.6g、硝酸マグネシウム11.4gを投入し、塩交換を行うことにより、オートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。次いで、この懸濁剤に、界面活性剤としてのアルキルスルホン酸ナトリウム0.09g、種粒子A345gを投入した。このようにして、種粒子Aを水性媒体中に分散させた。
(2) Production of expandable resin particles First, 580 g of deionized water, 4.6 g of sodium pyrophosphate, and 11.4 g of magnesium nitrate are charged into an autoclave having a 3 L internal volume equipped with a stirrer to perform salt exchange. Thus, magnesium pyrophosphate as a suspending agent was synthesized in an autoclave. Next, 0.09 g of sodium alkyl sulfonate as a surfactant and 345 g of seed particles A were added to the suspension. In this way, seed particles A were dispersed in the aqueous medium.

次に、オートクレーブ内の空気を窒素にて置換した後、オートクレーブ内を密閉した。次いで、オートクレーブ内の分散液を350rpmで撹拌しながら、分散液を温度72℃まで昇温させた。また、脱イオン水145gと、アルキルスルホン酸ナトリウム0.12gと、スチレン35gと、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(化薬アクゾ社製の「トリゴノックス117」、10時間半減期温度:98℃)2.6gと、ジクミルパーオキサイド(日油社製の「パークミルD」、10時間半減期温度:116℃)3.5gとの混合物をホモジナイザーにより混合することにより、乳化液Aを作製した。   Next, after the air in the autoclave was replaced with nitrogen, the autoclave was sealed. Next, the dispersion was heated to a temperature of 72 ° C. while stirring the dispersion in the autoclave at 350 rpm. In addition, 145 g of deionized water, 0.12 g of sodium alkyl sulfonate, 35 g of styrene, t-butylperoxy-2-ethylhexyl monocarbonate (“Trigonox 117” manufactured by Kayaku Akzo Co., Ltd., 10 hour half-life temperature: A mixture of 2.6 g of 98 ° C.) and 3.5 g of dicumyl peroxide (“PARK Mill D” manufactured by NOF Corporation, 10 hour half-life temperature: 116 ° C.) was mixed with a homogenizer to obtain an emulsion A. Produced.

そして、オートクレーブ内の分散液の温度が上述の72℃に到達した後、オートクレーブ内に乳化液Aを投入した。また、脱イオン水145gと、アルキルスルホン酸ナトリウム0.12gと、スチレン35gと、ベンゾイルパーオキサイド(日油社製の「ナイパーBW」、10時間半減期温度:74℃)1.7gとの混合物をホモジナイザーにより混合することにより、乳化液Bを作製した。オートクレーブ内の分散液の温度が上述の72℃に到達してから1時間後に、オートクレーブ内に乳化液Bを投入した。   And after the temperature of the dispersion liquid in an autoclave reached the above-mentioned 72 degreeC, the emulsion A was thrown into the autoclave. Also, a mixture of 145 g of deionized water, 0.12 g of sodium alkyl sulfonate, 35 g of styrene, and 1.7 g of benzoyl peroxide (“NIPER BW” manufactured by NOF Corporation, 10 hour half-life temperature: 74 ° C.) Was mixed with a homogenizer to prepare an emulsion B. One hour after the temperature of the dispersion in the autoclave reached 72 ° C., the emulsion B was charged into the autoclave.

オートクレーブ内を温度72℃で2時間保持した後、4時間かけて93℃まで昇温させた。温度93℃到達後、この温度93℃で4時間保持し、さらに温度112℃まで3時間かけて昇温させた。次いで、この温度112℃で3時間保持し、その後室温まで冷却した。そして、上述の温度72℃に到達してから2時間後に、スチレン276gを4時間かけてオートクレーブ内に連続的に添加した。また、上述の温度93℃到達時に、オートクレーブ内にペンタン(n−ペンタン80%,i−ペンタン20%)46gを30分かけて添加し、次いでブタン(n−ブタン60%、i−ブタン40%)10gを10分かけて添加した。これにより、樹脂粒子中に発泡剤を含浸させた。   The inside of the autoclave was held at a temperature of 72 ° C. for 2 hours, and then heated to 93 ° C. over 4 hours. After reaching the temperature of 93 ° C., the temperature was maintained at 93 ° C. for 4 hours, and the temperature was further increased to 112 ° C. over 3 hours. Next, this temperature was maintained at 112 ° C. for 3 hours, and then cooled to room temperature. Then, 2 hours after reaching the temperature of 72 ° C., 276 g of styrene was continuously added into the autoclave over 4 hours. When the temperature reached 93 ° C., 46 g of pentane (n-pentane 80%, i-pentane 20%) was added to the autoclave over 30 minutes, and then butane (n-butane 60%, i-butane 40%). ) 10 g was added over 10 minutes. Thereby, the foaming agent was impregnated in the resin particles.

オートクレーブ内を室温まで冷却した後、オートクレーブ内から発泡性樹脂粒子を取り出した。発泡性樹脂粒子を希硝酸で洗浄して表面に付着した懸濁剤を溶解させて除去した。次いで、発泡性樹脂粒子を水で洗い、さらに遠心分離機を用いて発泡性樹脂粒子を脱水した。次に、発泡性樹脂粒子100質量部に対して、帯電防止剤としてのアルキルジエタノールアミン0.01質量部を添加し、発泡性樹脂粒子の表面を帯電防止剤により被覆させた。その後、室温の空気を用いて流動乾燥を10分間行うことにより発泡性樹脂粒子の表面の水分を除去した。得られた発泡性樹脂粒子100質量部に、ブロッキング防止剤としてのステアリン酸亜鉛0.1質量部と、帯電防止剤としてのグリセリンモノステアレート0.05質量部とを添加し、発泡性樹脂粒子の表面をこれらのブロッキング防止剤及び帯電防止剤で被覆させた。このようにして、発泡性樹脂粒子(発泡性ポリスチレン系樹脂粒子)を得た。   After the inside of the autoclave was cooled to room temperature, the expandable resin particles were taken out from the autoclave. The foamable resin particles were washed with dilute nitric acid to dissolve and remove the suspending agent attached to the surface. Next, the foamable resin particles were washed with water, and the foamable resin particles were dehydrated using a centrifuge. Next, 0.01 parts by mass of alkyldiethanolamine as an antistatic agent was added to 100 parts by mass of the expandable resin particles, and the surface of the expandable resin particles was coated with the antistatic agent. Then, the water | moisture content on the surface of the expandable resin particle was removed by performing fluid drying for 10 minutes using the air of room temperature. To 100 parts by mass of the obtained expandable resin particles, 0.1 part by mass of zinc stearate as an antiblocking agent and 0.05 parts by mass of glycerin monostearate as an antistatic agent are added, and the expandable resin particles The surface of was coated with these antiblocking agents and antistatic agents. Thus, expandable resin particles (expandable polystyrene resin particles) were obtained.

(3)発泡成形体の作製
上記のようにして得られた発泡性樹脂粒子500gを容積30Lの常圧バッチ発泡機内に投入した。次いで、この発泡機内にスチームを供給することにより発泡性樹脂粒子を加熱して発泡させ、嵩密度が約16kg/m3の発泡粒子を得た。得られた発泡粒子を室温で1日間熟成させた。その後、発泡粒子を型物成形機(DABO社製の「DSM−0705VS」)に取り付けた金型のキャビティ内に充填した。金型は、300mm×75mm×25mmの直方体状のキャビティを有している。そして、ゲージ圧0.07MPaのスチームで金型内に充填した多数の発泡粒子を10秒間加熱した。これにより、発泡粒子を金型内にて相互に融着させた。次いで、冷却後、発泡粒子が相互に融着してなる発泡成形体(ポリスチレン系樹脂発泡成形体)を金型から取り出した。このようにして発泡成形体を得た。
(3) Production of Foam Molded Body 500 g of the expandable resin particles obtained as described above was charged into a 30 L atmospheric pressure batch foaming machine. Next, by supplying steam into the foaming machine, the foamable resin particles were heated and foamed to obtain foamed particles having a bulk density of about 16 kg / m 3 . The obtained expanded particles were aged at room temperature for 1 day. Thereafter, the expanded particles were filled into a mold cavity attached to a mold molding machine (“DSM-0705VS” manufactured by DABO). The mold has a rectangular parallelepiped cavity of 300 mm × 75 mm × 25 mm. A large number of foam particles filled in the mold with steam having a gauge pressure of 0.07 MPa were heated for 10 seconds. Thereby, the expanded particles were fused to each other in the mold. Subsequently, after cooling, a foamed molded product (polystyrene resin foamed molded product) in which the foamed particles were fused to each other was taken out from the mold. In this way, a foamed molded product was obtained.

(実施例2)
本例は、種粒子中に含まれる難燃剤の含有量、種粒子とスチレンとの配合比を実施例1とは変更して発泡性樹脂粒子を作製した例である。
具体的には、まず、ポリスチレン系樹脂97質量部と、難燃剤組成物3質量部とを溶融混練した点を除いては、実施例1と同様にして種粒子(以下、本例の種粒子を「種粒子B」という)を作製した。ポリスチレン系樹脂及び難燃剤組成物は、実施例1と同様である。次に、この種粒子用いて、ピロリン酸ナトリウムの使用量を5.5gに変更し、硝酸マグネシウムの使用量を13.7gに変更し、種粒子の使用量を207gに変更し、温度72℃に到達してから2時間後に添加するスチレンの量を414gに変更した点を除いては、実施例1と同様にして発泡性樹脂粒子、及び発泡成形体を作製した。
(Example 2)
In this example, the content of the flame retardant contained in the seed particles and the blending ratio of the seed particles and styrene were changed from those in Example 1 to produce expandable resin particles.
Specifically, first, seed particles (hereinafter referred to as seed particles of this example) were used in the same manner as in Example 1 except that 97 parts by mass of polystyrene resin and 3 parts by mass of the flame retardant composition were melt-kneaded. (Referred to as “seed particles B”). The polystyrene resin and the flame retardant composition are the same as in Example 1. Next, using the seed particles, the amount of sodium pyrophosphate used was changed to 5.5 g, the amount of magnesium nitrate used was changed to 13.7 g, the amount of seed particles used was changed to 207 g, and the temperature was 72 ° C. Expandable resin particles and a foam-molded article were produced in the same manner as in Example 1 except that the amount of styrene added after 2 hours was reached to 414 g.

(比較例1)
本例は、難燃剤の添加方法を実施例1とは変更して発泡性樹脂粒子を作製した例である。
具体的には、まず、難燃剤組成物を添加せずに、ポリスチレン樹脂(PSジャパン社製,680)100質量部を用いた点を除いては、実施例1と同様にして種粒子(以下、本例の種粒子を「種粒子C」という)を作製した。この種粒子Cは、難燃剤を含有していない。また、この種粒子Cを用い、乳化液Aの代わりに下記の乳化液Cを用いた点を除いては、実施例1と同様にして発泡性樹脂粒子、及び発泡成形体を作製した。なお、乳化液Cは、脱イオン水145gと、アルキルスルホン酸ナトリウム0.12gと、難燃剤a4.14gと、スチレン35gと、t−ブチルパーオキシ−2−エチルヘキサノエート(化薬アクゾ社製の「トリゴノックス117」)2.6gと、ジクミルパーオキサイド(日油社製の「パークミルD」)3.5gとの混合物をホモジナイザーにより混合することにより得られた。
(Comparative Example 1)
In this example, the method for adding a flame retardant is different from that in Example 1, and foamable resin particles are produced.
Specifically, first, seed particles (hereinafter, referred to as Example 1) were used except that 100 parts by mass of polystyrene resin (PS Japan, 680) was used without adding the flame retardant composition. The seed particles of this example were prepared as “seed particles C”). This seed particle C does not contain a flame retardant. Further, using the seed particles C, expandable resin particles and a foamed molded product were produced in the same manner as in Example 1 except that the following emulsion C was used instead of the emulsion A. Emulsion C is 145 g of deionized water, 0.12 g of sodium alkyl sulfonate, 4.14 g of flame retardant a, 35 g of styrene, t-butylperoxy-2-ethylhexanoate (Kayaku Akzo) It was obtained by mixing a mixture of 2.6 g of “Trigonox 117” manufactured by the company and 3.5 g of dicumyl peroxide (“Park Mill D” manufactured by NOF Corporation) with a homogenizer.

(比較例2)
本例は、実施例1とは重合方法及び難燃剤の添加方法を変更して発泡性樹脂粒子を作製した例である。本例においては、種粒子を用いずに、懸濁重合により発泡性樹脂粒子を作製した。
具体的には、まず、撹拌装置の付いた内容積が3Lのオートクレーブに、脱イオン水761g、ピロリン酸ナトリウム2.7g、硝酸マグネシウム5gを投入した。次いで、オートクレーブ内を撹拌しながら、オートクレーブ内にスチレン単量体を含む組成物を投入した。なお、この組成物は、ポリスチレン99gと、難燃剤a5gと、ジクミルパーオキサイド(日油社製の「パークミルD」)2.3gと、ベンゾイルパーオキサイド(日油社製の「ナイパーBW」)0.8gとをスチレン661gに溶解させることにより得られた。
(Comparative Example 2)
This example is an example in which expandable resin particles were produced by changing the polymerization method and the addition method of the flame retardant from Example 1. In this example, expandable resin particles were prepared by suspension polymerization without using seed particles.
Specifically, first, 761 g of deionized water, 2.7 g of sodium pyrophosphate, and 5 g of magnesium nitrate were charged into an autoclave having a 3 L internal volume equipped with a stirrer. Next, a composition containing a styrene monomer was added to the autoclave while stirring the autoclave. This composition is composed of 99 g of polystyrene, 5 g of flame retardant a, 2.3 g of dicumyl peroxide (“Park Mill D” manufactured by NOF Corporation), and benzoyl peroxide (“NIPER BW” manufactured by NOF Corporation). It was obtained by dissolving 0.8 g in 661 g of styrene.

次に、オートクレーブ内の空気を窒素ガスで置換した後、オートクレーブ内を密閉した。次いで、1時間40分間かけてオートクレーブの内容物を温度80℃まで昇温させた。この温度80℃到達時に、アルキルスルホン酸ナトリウム0.14gを添加した。次いで、20分間かけて、オートクレーブの内容物を温度90℃まで昇温させた後、4時間かけて温度134℃までさらに昇温させた。そして、この温度134℃で内容物を4時間保持し、その後室温まで冷却した。そして、内容物の温度が上述の90℃に到達してから2時間後に、発泡剤としてのイソブタン65gを添加し、樹脂粒子中に発泡剤を含浸させた。その後、実施例1と同様の操作を行うことにより、発泡性樹脂粒子、及び発泡成形体を作製した。   Next, after the air in the autoclave was replaced with nitrogen gas, the autoclave was sealed. Next, the contents of the autoclave were heated to 80 ° C. over 1 hour and 40 minutes. When this temperature reached 80 ° C., 0.14 g of sodium alkyl sulfonate was added. Next, the content of the autoclave was heated to 90 ° C. over 20 minutes, and then further heated to 134 ° C. over 4 hours. The contents were held at this temperature of 134 ° C. for 4 hours, and then cooled to room temperature. Then, 2 hours after the temperature of the contents reached 90 ° C., 65 g of isobutane as a blowing agent was added, and the resin particles were impregnated with the blowing agent. Thereafter, the same operation as in Example 1 was performed to produce expandable resin particles and a foamed molded product.

(比較例3)
本例は、難燃剤の種類を実施例1とは変更して発泡性樹脂粒子を作製した例である。
具体的には、ポリスチレン樹脂(PSジャパン社製の「680」)98.7質量部と、実施例1とは組成が異なる難燃剤組成物1.3質量部とを溶融混練した点を除いては、実施例1と同様にして種粒子(種粒子D)を作製した。本例の難燃剤組成物は、臭素含有量65.8質量%、5%重量減少温度260℃の難燃剤(難燃剤b)である2,2−ビス[4’−(2”,3”−ジブロモ−2”−メチルプロポキシ)−3’,5’−ジブロモフェニル]プロパン(第一工業製薬(株)製の「SR130」)60質量部と、臭素含有量67.8質量%、5%重量減少温度296℃の難燃剤(難燃剤c)である2,2−ビス[4’−(2”,3”−ジブロモプロポキシ)−3’,5’−ジブロモフェニル]プロパン(第一工業製薬(株)製の「SR720」)40質量部と、安定剤(ヒンダードアミン系酸化防止剤)としてのビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(チバジャパン社製の「TINUVIN770DF」)0.2質量部との混合物である。また、種粒子Dを用いた点を除いては、実施例1と同様にして発泡性樹脂粒子及び発泡成形体を作製した。
(Comparative Example 3)
In this example, the type of flame retardant was changed from that in Example 1 to produce expandable resin particles.
Specifically, 98.7 parts by mass of polystyrene resin (“680” manufactured by PS Japan) and 1.3 parts by mass of a flame retardant composition having a composition different from that of Example 1 were melt-kneaded. Produced seed particles (seed particles D) in the same manner as in Example 1. The flame retardant composition of this example is 2,2-bis [4 ′-(2 ″, 3 ″), which is a flame retardant (flame retardant b) having a bromine content of 65.8 mass% and a 5% weight reduction temperature of 260 ° C. -Dibromo-2 "-methylpropoxy) -3 ', 5'-dibromophenyl] propane (" SR130 "manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), bromine content 67.8% by mass, 5% 2,2-bis [4 ′-(2 ″, 3 ″ -dibromopropoxy) -3 ′, 5′-dibromophenyl] propane (Daiichi Kogyo Seiyaku), a flame retardant having a weight loss temperature of 296 ° C. (flame retardant c) "SR720" manufactured by Co., Ltd.) 40 parts by mass and bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (manufactured by Ciba Japan Co., Ltd.) as a stabilizer (hindered amine antioxidant) TINUVIN770DF ") and 0.2 parts by mass. Also, except that the seed particles D were used, expandable resin particles and a foamed molded product were produced in the same manner as in Example 1.

(比較例4)
本例は、難燃剤の種類と添加方法を実施例1とは変更して発泡性樹脂粒子を作製した例である。具体的には、比較例1における乳化液C中の難燃剤aの代わりに、難燃剤b(2,2−ビス[4’−(2”,3”−ジブロモ−2”−メチルプロポキシ)−3’,5’−ジブロモフェニル]プロパン)を用いた点を除いては、比較例1と同様にして発泡性樹脂粒子、及び発泡成形体を作製した。
(Comparative Example 4)
In this example, expandable resin particles were produced by changing the type and addition method of the flame retardant from Example 1. Specifically, in place of flame retardant a in emulsion C in Comparative Example 1, flame retardant b (2,2-bis [4 ′-(2 ″, 3 ″ -dibromo-2 ″ -methylpropoxy)- Except for the point of using 3 ′, 5′-dibromophenyl] propane), expandable resin particles and an expanded molded article were produced in the same manner as in Comparative Example 1.

(実験例)
実施例1、実施例2、比較例1、比較例3、及び比較例4の種粒子について、使用した種粒子の種類(種粒子A〜D)を後述の表1及び2に示す。また、実施例1、実施例2、比較例3について、種中子中に含まれる難燃剤の種類(難燃剤a〜c)、種粒子中の難燃剤の配合量(質量%)を表1及び表2に示す。また、実施例1、実施例2、比較例1〜4について、重合条件(重合方法、難燃剤の添加方法、スチレン系単量体の添加量)を表1及び表2に示す。また、実施例1、実施例2、比較例1〜4の発泡性樹脂粒子について、難燃剤の種類(難燃剤a〜c)及びPS系樹脂100質量部に対する難燃剤の配合量(質量部)を表1及び表2に示す。
(Experimental example)
Regarding the seed particles of Example 1, Example 2, Comparative Example 1, Comparative Example 3, and Comparative Example 4, the types of seed particles (seed particles A to D) used are shown in Tables 1 and 2 described later. Moreover, about Example 1, Example 2, and the comparative example 3, the kind (flame retardants ac) of the flame retardant contained in a seed core and the compounding quantity (mass%) of the flame retardant in a seed particle are shown in Table 1. And in Table 2. Moreover, about Example 1, Example 2, and Comparative Examples 1-4, polymerization conditions (The polymerization method, the addition method of a flame retardant, the addition amount of a styrene-type monomer) are shown in Table 1 and Table 2. Moreover, about the expandable resin particle of Example 1, Example 2, and Comparative Examples 1-4, the compounding quantity (mass part) of the flame retardant with respect to 100 mass parts of flame retardant types (flame retardants ac) and PS resin. Are shown in Tables 1 and 2.

また、実施例1、実施例2、比較例1〜4の発泡性樹脂粒子について、粒度分布、発泡剤の含有量(質量%)、水分量(質量%)、及び分子量を以下のようにして測定し、さらに発泡性の評価を行った。また、実施例1、実施例2、比較例1〜4の発泡成形体について、見かけ密度(kg/m3)、融着率(%)を測定し、さらに表面のボイド、表面の溶融、難燃性の評価を行った。これらの結果を表1及び表2に示す。なお、実施例1、比較例1、比較例3、及び比較例4の発泡成形体については、その外観をデジタルカメラで撮影し、その結果を図1〜図4にそれぞれ示す。 Moreover, about the expandable resin particle of Example 1, Example 2, and Comparative Examples 1-4, a particle size distribution, content (mass%) of a foaming agent, water content (mass%), and molecular weight are as follows. Measured and evaluated for foamability. In addition, the apparent density (kg / m 3 ) and the fusion rate (%) of the foamed molded products of Example 1, Example 2, and Comparative Examples 1 to 4 were measured, and surface voids, surface melting, difficulty Flammability was evaluated. These results are shown in Tables 1 and 2. In addition, about the foaming molding of Example 1, Comparative Example 1, Comparative Example 3, and Comparative Example 4, the external appearance was image | photographed with the digital camera, and the result is shown in FIGS. 1-4, respectively.

「粒度分布」
日機装株式会社の粒度分布測定装置「ミリトラック JPA」を用いて、各実施例及び比較例において得られた発泡性樹脂粒子の粒度分布を調べた。具体的には、まず、測定装置の試料供給フィーダーから発泡性樹脂粒子40gを自由落下させた。このときの投影像をCCDカメラにより撮像した。次いで、撮像した画像情報に対して演算・結合処理を順次行い、粒度分布・形状指数結果を出力する画像解析方式の条件で測定を行った。これにより、粒度分布における体積積算値90%での粒径(d90)、体積積算値63%での粒径(d63)、体積積算値50%における粒径(d50)、体積積算値10%での粒径(d10)を求めた。そして、粒径比((d90−d10)/d50)を算出した。
`` Particle size distribution ''
The particle size distribution of the expandable resin particles obtained in each of Examples and Comparative Examples was examined using a particle size distribution measuring apparatus “Millitrack JPA” manufactured by Nikkiso Co., Ltd. Specifically, first, 40 g of the expandable resin particles were freely dropped from the sample supply feeder of the measuring apparatus. The projected image at this time was taken with a CCD camera. Next, calculation / combination processing was sequentially performed on the captured image information, and measurement was performed under conditions of an image analysis method for outputting a particle size distribution / shape index result. Thereby, in the particle size distribution, the particle size (d90) at the volume integrated value 90%, the particle size (d63) at the volume integrated value 63%, the particle size (d50) at the volume integrated value 50%, and the volume integrated value 10%. The particle size (d10) was determined. And particle size ratio ((d90-d10) / d50) was computed.

「発泡剤の含有量」
まず、各実施例及び比較例において得られた発泡性樹脂粒子をジメチルホルムアミド(DMF)に溶解させた。得られた溶解物についてガスクロマトグラフィーを行うことにより、添加した各発泡剤成分の含有量を測定した。発泡剤の含有量は、各発泡剤成分の含有量を合計することにより求めた。ガスクロマトグラフによる定量は、具体的には以下の手順で行った。
"Content of foaming agent"
First, the expandable resin particles obtained in each Example and Comparative Example were dissolved in dimethylformamide (DMF). The content of each added blowing agent component was measured by performing gas chromatography on the obtained dissolved matter. The content of the foaming agent was determined by summing the content of each foaming agent component. Specifically, the gas chromatograph was quantified by the following procedure.

まず、100mLのメスフラスコ内でシクロペンタノール約5gを正確に小数点以下第3位まで秤量した。この重量がWiである。次いで、メスフラスコ内のシクロペンタノールにDMFを加えて全体の容量を100mLに調整した。このDMF溶液をさらにDMFで100倍に希釈することにより、内部標準溶液を作製した。次いで、測定対象となる発泡性樹脂粒子約1gを小数点以下第3位まで正確に秤量した。この重量がWs(g)である。秤量した発泡性樹脂粒子を約18mLのDMFに溶解させた。得られた溶解物に、ホールピペットを用いて内部標準溶液2mLを加えた。この溶液1μLをマイクロシリンジにて採集し、ガスクロマトグラフィー装置に導入し、クロマトグラムを得た。得られたクロマトグラムから各発泡剤成分及び内部標準のピーク面積を求め、下式により各成分濃度を求めた。
各成分濃度(質量%)=[(Wi/10000)×2]×[An/Ai]×Fn÷Ws×100
Wi:内部標準溶液の作製に用いたシクロペンタノール重量(g)
Ws:DMFに溶解させた発泡性樹脂粒子の重量(g)
An:ガスクロマトグラフ測定時の各発泡剤成分のピーク面積
Ai:ガスクロマトグラフ測定時の内部標準物質のピーク面積
Fn:あらかじめ作成した検量線より求めた各発泡剤成分の補正係数
First, about 5 g of cyclopentanol was accurately weighed to the third decimal place in a 100 mL volumetric flask. This weight is Wi. Next, DMF was added to cyclopentanol in the volumetric flask to adjust the total volume to 100 mL. This DMF solution was further diluted 100 times with DMF to prepare an internal standard solution. Next, about 1 g of the expandable resin particles to be measured was accurately weighed to the third decimal place. This weight is Ws (g). The weighed expandable resin particles were dissolved in about 18 mL of DMF. To the obtained lysate, 2 mL of an internal standard solution was added using a whole pipette. 1 μL of this solution was collected with a microsyringe and introduced into a gas chromatography apparatus to obtain a chromatogram. From the obtained chromatogram, the peak area of each foaming agent component and internal standard was determined, and the concentration of each component was determined by the following equation.
Concentration of each component (mass%) = [(Wi / 10000) × 2] × [An / Ai] × Fn ÷ Ws × 100
Wi: Weight of cyclopentanol used for preparation of internal standard solution (g)
Ws: Weight of expandable resin particles dissolved in DMF (g)
An: Peak area of each foaming agent component at the time of gas chromatographic measurement Ai: Peak area of the internal standard substance at the time of gas chromatographic measurement Fn: Correction coefficient of each foaming agent component obtained from a calibration curve prepared in advance

また、上記ガスクロマトグラフ分析の条件は以下の通りとした。
使用機器:(株)島津製作所製のガスクロマトグラフGC−6AM
検出器:FID(水素炎イオン化検出器)
カラム材質:内径3mm、長さ5000mmのガラスカラム
カラム充填剤:[液相名]FFAP(遊離脂肪酸)、[液相含浸率]10質量%、[担体名]ガスクロマトグラフ用珪藻土Chomasorb W、[担体粒度]60/80メッシュ、[担体処理方法]AW−DMCS(水洗・焼成・酸処理・シラン処理)、[充填量]90mL
注入口温度:250℃
カラム温度:120℃
検出部温度:250℃
キャリヤーガス:N2、流量40ml/分
The conditions for the gas chromatograph analysis were as follows.
Equipment used: Gas chromatograph GC-6AM manufactured by Shimadzu Corporation
Detector: FID (hydrogen flame ionization detector)
Column material: Glass column with an inner diameter of 3 mm and a length of 5000 mm Column filler: [Liquid phase name] FFAP (free fatty acid), [Liquid phase impregnation rate] 10 mass%, [Carrier name] Diatomaceous earth Comasorb W for gas chromatography, [Carrier Particle size] 60/80 mesh, [carrier treatment method] AW-DMCS (washing, baking, acid treatment, silane treatment), [filling amount] 90 mL
Inlet temperature: 250 ° C
Column temperature: 120 ° C
Detector temperature: 250 ° C
Carrier gas: N 2 , flow rate 40 ml / min

「水分量」
カールフィッシャー水分計を用いて、各実施例及び比較例の発泡性樹脂粒子の水分量を求めた。
"amount of water"
Using a Karl Fischer moisture meter, the moisture content of the expandable resin particles of each Example and Comparative Example was determined.

「分子量」
各実施例及び比較例の発泡性樹脂粒子の平均分子量(数平均分子量、重量平均分子量、Z平均分子量)は、ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィー(GPC)法により測定した。具体的には、東ソー(株)製のHLC−8320GPC EcoSECを用いて、溶離液:テトラヒドロフラン(THF)、THF流量:0.6ml/分、試料濃度:0.1wt%という測定条件で測定した。GPC用のカラムとしては、TSKguardcolumn SuperH−H×1本、TSK−GEL SuperHM−H×2本を直列に接続したカラムを用いた。即ち、発泡性樹脂粒子をテトラヒドロフラン(THF)に溶解させ、ゲルパーミエーションクロマトグラフィ(GPC)で分子量を測定した。そして、測定値を標準ポリスチレンで校正することにより、数平均分子量、重量平均分子量、Z平均分子量をそれぞれ求めた。
"Molecular weight"
The average molecular weight (number average molecular weight, weight average molecular weight, Z average molecular weight) of the expandable resin particles of each Example and Comparative Example was measured by a gel permeation chromatography (GPC) method using polystyrene as a standard substance. Specifically, using HLC-8320GPC EcoSEC manufactured by Tosoh Corporation, measurement was performed under the measurement conditions of eluent: tetrahydrofuran (THF), THF flow rate: 0.6 ml / min, and sample concentration: 0.1 wt%. As a column for GPC, a column in which TSK guard column Super H-H × 1 and TSK-GEL Super HM-H × 2 were connected in series was used. That is, expandable resin particles were dissolved in tetrahydrofuran (THF), and the molecular weight was measured by gel permeation chromatography (GPC). And the number average molecular weight, the weight average molecular weight, and the Z average molecular weight were calculated | required by calibrating a measured value with standard polystyrene, respectively.

「発泡性の評価」
発泡性の評価は、発泡性樹脂粒子を棚式発泡機により発泡させて得られる発泡粒子の嵩密度を測定することによって行った。具体的には、まず、各実施例及び比較例において得られた発泡性樹脂粒子を棚式発泡機内で発泡させて発泡粒子を得た。発泡は、ゲージ圧3kPaのスチームを発泡機内に270秒間供給して発泡性樹脂粒子を加熱することにより行った。得られた発泡粒子を1日間風乾させた。その後、1Lのメスシリンダーにおける1Lの標線まで発泡粒子を充填した。そして、この体積1Lの発泡粒子の質量(g)を小数点1位まで秤量した。次いで、体積1Lの質量を単位換算することにより、発泡粒子の嵩密度(kg/m3)を算出した。
"Evaluation of foamability"
Evaluation of foamability was performed by measuring the bulk density of foamed particles obtained by foaming foamable resin particles with a shelf-type foaming machine. Specifically, first, expandable resin particles obtained in each of the examples and comparative examples were expanded in a shelf-type foaming machine to obtain expanded particles. Foaming was performed by supplying steam with a gauge pressure of 3 kPa into the foaming machine for 270 seconds and heating the foamable resin particles. The obtained expanded particles were air-dried for 1 day. Thereafter, the expanded particles were filled to a 1 L mark in a 1 L graduated cylinder. The mass (g) of the 1 L volume of expanded particles was weighed to the first decimal place. Subsequently, the bulk density (kg / m 3 ) of the expanded particles was calculated by converting the mass of the volume of 1 L into units.

「見かけ密度」
各実施例及び比較例において得られた発泡成形体の外形寸法から体積を求め、次いで発泡粒子成形体の質量を測定した。そして、質量を体積で除することにより、発泡成形体の見かけ密度(kg/m3)を算出した。
"Apparent density"
Volume was calculated | required from the external dimension of the foaming molding obtained in each Example and the comparative example, and the mass of the foaming particle molding was then measured. And the apparent density (kg / m < 3 >) of the foaming molding was computed by remove | dividing mass by volume.

「融着率」
各実施例及び比較例において得られた直方体形状の発泡成形体を割り、その破断面を目視により観察した。そして、発泡成形体の表面から剥離した発泡粒子の個数Aと、発泡成形体の内部から剥離した発泡粒子の個数Bを計測した。融着率は、剥離した発泡粒子の総数(A+B)に対する内部から剥離した発泡粒子の個数(B)の割合(100×B/(A+B))から求められる。
"Fusion rate"
The rectangular parallelepiped foam molded body obtained in each of the examples and comparative examples was divided, and the fractured surface was visually observed. Then, the number A of foam particles peeled from the surface of the foam molded body and the number B of foam particles peeled from the inside of the foam molded body were measured. The fusion rate is obtained from the ratio (100 × B / (A + B)) of the number (B) of the foam particles peeled from the inside to the total number (A + B) of the peeled foam particles.

「表面のボイド」
各実施例及び比較例において得られた発泡成形体の外観を目視にて観察した。そして、下記の判定基準に基づいて、発泡成形体の表面における発泡粒子間の間隙(ボイド)を評価した。
○:発泡成形体の表面における発泡粒子間の間隙がほとんどなく、表面が平滑である場合
△:発泡成形体の表面における発泡粒子間の間隙は少ないが、表面が平滑でない場合
×:発泡成形体の表面における発泡粒子間の間隙が多く、表面が平滑でない場合
"Surface void"
The appearance of the foamed molded product obtained in each example and comparative example was visually observed. And based on the following criteria, the space | gap (void) between the foaming particles in the surface of a foaming molding was evaluated.
◯: When there are almost no gaps between the foamed particles on the surface of the foamed molded product and the surface is smooth Δ: When there are few gaps between the foamed particles on the surface of the foamed molded product but the surface is not smooth ×: Foamed molded product When there are many gaps between expanded particles on the surface of the surface, and the surface is not smooth

「表面の溶融」
各実施例及び比較例において得られた発泡成形体の外観を目視にて観察した。そして、下記の判定基準に基づいて、発泡成形体の表面における溶融状態を評価した。
○:発泡成形体の表面において、発泡粒子の融解がない場合
△:発泡成形体の表面において、発泡粒子の融解が少ない場合
×:発泡成形体の表面において、発泡粒子の融解が多い場合
"Surface melting"
The appearance of the foamed molded product obtained in each example and comparative example was visually observed. And based on the following criteria, the molten state in the surface of a foaming molding was evaluated.
○: When the foamed particles do not melt on the surface of the foamed molded product Δ: When the foamed particles have little melted on the surface of the foamed molded product ×: When the foamed particles melt much on the surface of the foamed molded product

「難燃性」
難燃性の評価は、JIS A 9511(2006R)の燃焼試験(A法)に準拠して行った。まず、各実施例及び比較例における発泡成形体を温度40℃で3日間静置した。次いで、各発泡成形体を室温で1日間養生させた。その後、各発泡成形体から200mm×25mm×10mmの板状の試験片を切り出した。次いで、ろうそくを用いて、着火限界指示線及び燃焼限界指示線まで試験片を着火させた後、ろうそくをすばやく試験片から後退させた。ろうそくを後退させた時点から、試験片の炎が消火するまでの時間(消火時間)を計測した。この計測をそれぞれ5つの試験片について行い、平均値を算出した。
"Flame retardance"
The evaluation of flame retardancy was performed according to the combustion test (Method A) of JIS A 9511 (2006R). First, the foamed molded products in each Example and Comparative Example were allowed to stand at a temperature of 40 ° C. for 3 days. Next, each foamed molded product was cured at room temperature for 1 day. Thereafter, a plate-shaped test piece of 200 mm × 25 mm × 10 mm was cut out from each foamed molded body. Next, using the candle, the test piece was ignited to the ignition limit indicator line and the combustion limit indicator line, and then the candle was quickly retracted from the test piece. The time (extinguishing time) from when the candle was retracted until the flame of the test piece extinguished was measured. This measurement was performed for each of five test pieces, and an average value was calculated.

実施例1及び2においては、特定の難燃剤が樹脂粒子中に混練された種粒子を用いて、発泡性樹脂粒子を作製した。かかる発泡性樹脂粒子においては、表1より知られるごとく、粒度分布が狭く、発泡性樹脂粒子の製品収率が向上した。また、水分量の発泡性樹脂粒子少ない発泡性樹脂粒子が得られた。
また、実施例1及び2においては、発泡成形性に優れた発泡性樹脂粒子を得られた。即ち、これらの発泡性樹脂粒子を用いることにより、融着率が高く、表面のボイドが少なく、表面の溶融がほとんどない発泡成形体が得られた(表1、及び図1参照)。また、実施例1及び2においては、少ない難燃剤添加量でも、難燃性に優れた発泡成形体が得られた。
In Examples 1 and 2, expandable resin particles were produced using seed particles in which a specific flame retardant was kneaded in resin particles. In such expandable resin particles, as known from Table 1, the particle size distribution was narrow, and the product yield of the expandable resin particles was improved. In addition, expandable resin particles with a small amount of water were obtained.
In Examples 1 and 2, expandable resin particles having excellent foam moldability were obtained. That is, by using these expandable resin particles, a foamed molded article having a high fusion rate, few surface voids and almost no surface melting was obtained (see Table 1 and FIG. 1). Moreover, in Examples 1 and 2, a foamed molded article excellent in flame retardancy was obtained even with a small flame retardant addition amount.

これに対し、難燃剤の添加方法を実施例とは変更した比較例1においては、発泡成形体の融着率が低下し、さらに発泡粒子間にボイドが観察された(表2及び図2参照)。これは、比較例1の発泡性樹脂粒子においては、難燃剤が発泡性樹脂粒子の表面に偏在していたためであると推察される。即ち、比較例1の発泡性樹脂粒子は、発泡成形性に問題があった。また、種粒子を用いずに作製した比較例2においては、発泡性ポリスチレン系樹脂粒子の粒度分布が広く、発泡性ポリスチレン系樹脂粒子の製品収率が低下していた(表2参照)。また、難燃剤の種類を実施例1とは変更した比較例3、並びに難燃剤の添加方法及び種類を実施例1とは変更した比較例4においては、発泡成形体の融着率が低下し、発泡粒子間のボイドや表面における溶融が観察された(表2、図3、図4参照)。   On the other hand, in Comparative Example 1 in which the method of adding the flame retardant was changed from that of the example, the fusion rate of the foamed molded product was lowered, and voids were observed between the foamed particles (see Table 2 and FIG. 2). ). This is presumably because the flame retardant was unevenly distributed on the surface of the expandable resin particles in the expandable resin particles of Comparative Example 1. That is, the foamable resin particles of Comparative Example 1 had a problem with foam moldability. Moreover, in the comparative example 2 produced without using a seed particle, the particle size distribution of the expandable polystyrene-type resin particle was wide, and the product yield of the expandable polystyrene-type resin particle was falling (refer Table 2). Moreover, in Comparative Example 3 in which the type of flame retardant was changed from Example 1, and in Comparative Example 4 in which the method and type of addition of the flame retardant were changed from Example 1, the fusion rate of the foamed molded product was reduced. Further, voids between the expanded particles and melting at the surface were observed (see Table 2, FIG. 3 and FIG. 4).

Claims (3)

難燃剤を含む発泡性ポリスチレン系樹脂粒子の製造方法であって、
難燃剤としての臭素化ブタジエン−スチレン共重合体と、ポリスチレン系樹脂とを混練してなるポリスチレン系樹脂種粒子を水性媒体中に分散させる分散工程と、
上記水性媒体中にスチレン系単量体を供給し、該スチレン系単量体を上記ポリスチレン系樹脂種粒子に含浸、重合させる重合工程と、
該重合工程における重合中又は重合後に物理発泡剤を樹脂粒子に含浸させて上記発泡性ポリスチレン系樹脂粒子を得る発泡剤含浸工程とを有することを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法。
A method for producing expandable polystyrene resin particles containing a flame retardant,
A dispersion step of dispersing polystyrene-based resin seed particles obtained by kneading a brominated butadiene-styrene copolymer as a flame retardant and a polystyrene-based resin in an aqueous medium;
A polymerization step of supplying a styrene monomer into the aqueous medium, impregnating and polymerizing the polystyrene resin seed particles with the styrene monomer; and
And a foaming agent impregnation step of impregnating the resin particles with a physical foaming agent during or after the polymerization in the polymerization step to obtain the expandable polystyrene resin particles.
上記スチレン系単量体の添加量が、上記ポリスチレン系樹脂種粒子100重量部に対して30〜300重量部であることを特徴とする請求項1に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 1, wherein the addition amount of the styrene monomer is 30 to 300 parts by weight with respect to 100 parts by weight of the polystyrene resin seed particles. . 上記ポリスチレン系樹脂種粒子中の上記難燃剤の配合量が0.4〜10質量%であることを特徴とする請求項1又は2に記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles according to claim 1 or 2, wherein a blending amount of the flame retardant in the polystyrene resin seed particles is 0.4 to 10% by mass.
JP2013245156A 2013-11-27 2013-11-27 Method for producing expandable polystyrene resin particles Active JP6349697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245156A JP6349697B2 (en) 2013-11-27 2013-11-27 Method for producing expandable polystyrene resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245156A JP6349697B2 (en) 2013-11-27 2013-11-27 Method for producing expandable polystyrene resin particles

Publications (2)

Publication Number Publication Date
JP2015101701A true JP2015101701A (en) 2015-06-04
JP6349697B2 JP6349697B2 (en) 2018-07-04

Family

ID=53377688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245156A Active JP6349697B2 (en) 2013-11-27 2013-11-27 Method for producing expandable polystyrene resin particles

Country Status (1)

Country Link
JP (1) JP6349697B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002236A (en) * 2015-06-12 2017-01-05 株式会社ジェイエスピー Expandable composite resin particle
JP2017071669A (en) * 2015-10-05 2017-04-13 株式会社カネカ Manufacturing method of expandable styrene resin particle to which flame retardancy is added
JP2020164582A (en) * 2019-03-28 2020-10-08 積水化成品工業株式会社 Flame-retardant composite resin foam particle, method for producing the same, and foam molding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516019A (en) * 2005-11-12 2009-04-16 ダウ グローバル テクノロジーズ インコーポレイティド Brominated butadiene-vinyl aromatic hydrocarbon copolymer, blend of the copolymer and vinyl aromatic hydrocarbon polymer, and polymer foam formed from the blend
JP2011093954A (en) * 2009-10-27 2011-05-12 Jsp Corp Expandable styrenic resin particle and method for producing the same, and molded product of styrenic resin expanded particle
JP2012188634A (en) * 2011-03-14 2012-10-04 Sekisui Plastics Co Ltd Polystyrene based expandable resin particle, polystyrene based expanded resin particle and polystyrene based expanded resin molded article
JP2013514397A (en) * 2009-12-18 2013-04-25 ビーエーエスエフ ソシエタス・ヨーロピア Flame retardant polymer foam
JP2013199600A (en) * 2012-03-26 2013-10-03 Jsp Corp Impact absorption member for vehicle
JP2013209608A (en) * 2012-02-29 2013-10-10 Sekisui Plastics Co Ltd Styrene-based resin particle, method for producing the same, expandable particle, foamed particle, and foamed molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516019A (en) * 2005-11-12 2009-04-16 ダウ グローバル テクノロジーズ インコーポレイティド Brominated butadiene-vinyl aromatic hydrocarbon copolymer, blend of the copolymer and vinyl aromatic hydrocarbon polymer, and polymer foam formed from the blend
JP2011093954A (en) * 2009-10-27 2011-05-12 Jsp Corp Expandable styrenic resin particle and method for producing the same, and molded product of styrenic resin expanded particle
JP2013514397A (en) * 2009-12-18 2013-04-25 ビーエーエスエフ ソシエタス・ヨーロピア Flame retardant polymer foam
JP2012188634A (en) * 2011-03-14 2012-10-04 Sekisui Plastics Co Ltd Polystyrene based expandable resin particle, polystyrene based expanded resin particle and polystyrene based expanded resin molded article
JP2013209608A (en) * 2012-02-29 2013-10-10 Sekisui Plastics Co Ltd Styrene-based resin particle, method for producing the same, expandable particle, foamed particle, and foamed molded article
JP2013199600A (en) * 2012-03-26 2013-10-03 Jsp Corp Impact absorption member for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002236A (en) * 2015-06-12 2017-01-05 株式会社ジェイエスピー Expandable composite resin particle
JP2017071669A (en) * 2015-10-05 2017-04-13 株式会社カネカ Manufacturing method of expandable styrene resin particle to which flame retardancy is added
JP2020164582A (en) * 2019-03-28 2020-10-08 積水化成品工業株式会社 Flame-retardant composite resin foam particle, method for producing the same, and foam molding

Also Published As

Publication number Publication date
JP6349697B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP4316305B2 (en) Method for producing styrene resin foam containing graphite powder
JP6263987B2 (en) Method for producing expandable polystyrene resin particles
JP5565240B2 (en) Composite resin foamed particles and method for producing the same, and method for producing foamable composite resin particles
JP6156060B2 (en) Method for producing expandable composite resin particles
JP6555251B2 (en) Styrenic resin foam molding and method for producing the same
JP2013514397A (en) Flame retardant polymer foam
JP6036646B2 (en) Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body
JP5750221B2 (en) Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP5371036B2 (en) Expandable styrene resin particles and method for producing the same
JP6349697B2 (en) Method for producing expandable polystyrene resin particles
JP6500619B2 (en) Expandable composite resin particles
JP6323242B2 (en) Method for producing expandable composite resin particles
JP6409642B2 (en) Expandable composite resin particles
JP2011093954A (en) Expandable styrenic resin particle and method for producing the same, and molded product of styrenic resin expanded particle
JP6133150B2 (en) Method for producing polystyrene resin foam using flame retardant melt kneaded material
JP5690632B2 (en) Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body
JP6036347B2 (en) Expandable styrene-based resin particles, method for producing the same, and styrene-based resin expanded particle molded body
JP5798950B2 (en) Building materials and manufacturing method thereof
JP6657883B2 (en) Method for producing composite resin particles
JP2020033446A (en) Foamable composite resin particle
JP6013905B2 (en) Foam molded body and method for producing foam molded body
JP7078849B2 (en) Effervescent composite resin particles
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP2011093953A (en) Foamable polystyrene-based resin particle for manufacturing heat insulation material for floor heating and manufacturing method therefor, pre-foamed particle for manufacturing heat insulation material for floor heating, heat insulation material for floor heating, and floor-heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6349697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250