JP2015100227A - Rotary electric machine rotor - Google Patents

Rotary electric machine rotor Download PDF

Info

Publication number
JP2015100227A
JP2015100227A JP2013239752A JP2013239752A JP2015100227A JP 2015100227 A JP2015100227 A JP 2015100227A JP 2013239752 A JP2013239752 A JP 2013239752A JP 2013239752 A JP2013239752 A JP 2013239752A JP 2015100227 A JP2015100227 A JP 2015100227A
Authority
JP
Japan
Prior art keywords
rotor
rotor core
rotor shaft
outer diameter
screw structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013239752A
Other languages
Japanese (ja)
Inventor
石田 岳志
Takashi Ishida
岳志 石田
悠 平井
Yu Hirai
悠 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013239752A priority Critical patent/JP2015100227A/en
Priority to PCT/JP2014/005617 priority patent/WO2015075886A2/en
Publication of JP2015100227A publication Critical patent/JP2015100227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/028Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots for fastening to casing or support, respectively to shaft or hub
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets

Abstract

PROBLEM TO BE SOLVED: To fix a rotor core on a rotor shaft by a predetermined fastening force independently of dimensional variation of an axial direction of the rotor core in a rotary electric machine rotor.SOLUTION: A rotary electric machine rotor 10 includes: a rotor core 20 having a center hole pierced into a contour of a rotor shaft 30 composed of a laminated magnetic substance thin plate; the rotor shaft 30 including a catching part 32 abutted on an axial-direction one-end face of the rotor core 20 on the one-end side and an outer diameter screw structure 44 on the other end side; a nut part 50 to be engaged with the outer diameter structure 44 of the rotor shaft 30; and a washer 70 arranged between the other end of the rotor core 20 and one end of the nut part 50. In a state where the rotor core 20 is fixed on the rotor shaft 30 by fastening the nut part 50 on the outer diameter screw structure 44 of the rotor shaft 30, a position of a contact face between the washer 70 and the rotor core 20 in the rotor shaft 30 is located on the axial-direction one-end side with respect to the outer diameter screw structure 44.

Description

本発明は、回転電機ロータに係り、特に、積層された磁性体薄板で構成されるロータコアがロータシャフトに固定される回転電機ロータに関する。   The present invention relates to a rotating electrical machine rotor, and more particularly, to a rotating electrical machine rotor in which a rotor core composed of laminated magnetic thin plates is fixed to a rotor shaft.

回転電機ロータについて、特許文献1には、電磁鋼板を積層したロータコアにロータシャフトを圧入して固定する方法は、電気鋼板に変形を与えることを指摘している。ここでは、圧入でなく隙間嵌めとし、(1)接着する、(2)ブッシュを隙間に圧入する、(3)シャフトにネジを切りナットで押圧する等の方法が開示されている。   Regarding a rotating electrical machine rotor, Patent Document 1 points out that the method of press-fitting and fixing a rotor shaft to a rotor core in which electromagnetic steel sheets are laminated gives deformation to the electrical steel sheet. Here, there are disclosed methods such as (1) bonding, (2) press-fitting a bush into the gap, and (3) cutting a screw into a shaft and pressing it with a nut, etc. instead of press-fitting.

特許文献2には、鋼板に抜き穴を設けたロータ抜き板を積層して、ネジ部を有するつば付き芯金とナットとで固定することが述べられている。   Patent Document 2 describes that a rotor punched plate provided with a punched hole in a steel plate is stacked and fixed with a cored bar with a flange and a nut.

特許文献3には、積層された電磁鋼板の両側にエンドプレートを配置したロータコアについて、ネジ構造を用いない固定方法が述べられている。ここでは、ロータシャフトに第2プレート側を押し付ける段差を設け、第1エンドプレートの内周側に突起を設け、その突起を受け入れる溝をロータシャフトに設ける。そして、第1エンドプレートを第1エンドプレート側に押すことで積層された電磁鋼板を圧縮し、第1エンドプレートの突起をロータシャフトの溝に嵌め込み、積層された電磁鋼板のスプリングバックによって両側のエンドプレートで挟まれた電磁鋼板をロータシャフトに固定している。   Patent Document 3 describes a fixing method that does not use a screw structure for a rotor core in which end plates are arranged on both sides of laminated electromagnetic steel sheets. Here, a step for pressing the second plate side is provided on the rotor shaft, a protrusion is provided on the inner peripheral side of the first end plate, and a groove for receiving the protrusion is provided on the rotor shaft. Then, the laminated electromagnetic steel plates are compressed by pushing the first end plate toward the first end plate, the protrusions of the first end plate are fitted into the grooves of the rotor shaft, and the springs of the laminated electromagnetic steel plates are pressed on both sides. An electromagnetic steel plate sandwiched between end plates is fixed to the rotor shaft.

特開2002−095197号公報JP 2002-095197 A 特開2001−045724号公報JP 2001-045724 A 特開2013−106406号公報JP 2013-106406 A

ロータシャフトにネジ構造を設け、ロータシャフトにロータコアをナットで固定する方法において、従来は、ロータシャフトに設けられるネジ構造の端部をロータコアの端部と一致させている。これにより、ロータコアの内径穴はロータシャフトの外形に嵌め込まれたときに、ネジ構造とは重なることがないので、嵌め込みが安定する。ところで、ロータコアに軸方向の寸法ばらつきがあると、ネジ構造の端部とロータコアの端部との間に隙間ができ、その隙間にはネジ構造がないので、ナットによる締め付けが足りず、ロータコアを軸方向に確実に固定することができない。特に、磁性体薄板の積層構造でロータコアが構成されていると、積層隙間によるロータコアの軸方向の寸法ばらつきが大きく、所定の締付力でロータコアをロータシャフトに締め付け固定することが難しくなる。   In a method of providing a screw structure on the rotor shaft and fixing the rotor core to the rotor shaft with a nut, conventionally, an end portion of the screw structure provided on the rotor shaft is matched with an end portion of the rotor core. Thereby, when the inner diameter hole of the rotor core is fitted into the outer shape of the rotor shaft, it does not overlap with the screw structure, so that the fitting is stable. By the way, if there is dimensional variation in the axial direction of the rotor core, there will be a gap between the end of the screw structure and the end of the rotor core, and since there is no screw structure in the gap, the tightening with the nut is not sufficient. It cannot be securely fixed in the axial direction. In particular, if the rotor core is configured with a laminated structure of magnetic thin plates, the axial dimensional variation of the rotor core due to the lamination gap is large, and it becomes difficult to fasten and fix the rotor core to the rotor shaft with a predetermined fastening force.

本発明の目的は、ロータコアの軸方向の寸法ばらつきに関係なく所定の締付力でロータコアをロータシャフトに固定することができる回転電機ロータを提供することである。   An object of the present invention is to provide a rotating electrical machine rotor that can fix a rotor core to a rotor shaft with a predetermined tightening force regardless of variations in the axial dimension of the rotor core.

本発明に係る回転電機ロータは、積層された磁性体薄板で構成されロータシャフトの外形を通す中心穴を有するロータコアと、一方端側にロータコアの軸方向一方端面と当接する受止部を有し、他方端側に外径ネジ構造を有するロータシャフトと、ロータシャフトの外径ネジ構造と噛みあうナット部と、ロータコアの他方端とナット部の一方端との間に配置されるワッシャと、を備える回転電機ロータにおいて、ナット部をロータシャフトの外径ネジ構造に締結してロータコアをロータシャフトに固定した状態において、ロータシャフトにおける、ワッシャとロータコアの接触面の位置が外径ネジ構造よりも軸方向一方端側に位置することを特徴とする。   A rotating electrical machine rotor according to the present invention includes a rotor core having a center hole that is formed of laminated magnetic thin plates and passes through the outer shape of a rotor shaft, and a receiving portion that contacts one end surface in the axial direction of the rotor core on one end side. A rotor shaft having an outer diameter screw structure on the other end side, a nut portion meshing with the outer diameter screw structure of the rotor shaft, and a washer disposed between the other end of the rotor core and one end of the nut portion. In the rotating electrical machine rotor provided, the position of the contact surface between the washer and the rotor core in the rotor shaft is more axial than the outer diameter screw structure when the nut portion is fastened to the outer diameter screw structure of the rotor shaft and the rotor core is fixed to the rotor shaft. It is located in the direction one end side.

本発明に係る回転電機ロータにおいて、ナット部は、軸方向に沿って他方端側に延びるカシメ用薄肉部を有することが好ましい。   In the rotating electrical machine rotor according to the present invention, it is preferable that the nut portion has a caulking thin portion extending toward the other end side along the axial direction.

本発明に係る回転電機ロータにおいて、ワッシャの厚さは、ロータコアの軸方向の寸法ばらつきに基づいて設定されることが好ましい。   In the rotating electrical machine rotor according to the present invention, it is preferable that the thickness of the washer is set based on a dimensional variation in the axial direction of the rotor core.

本発明に係る回転電機ロータにおいて、受止部は、ロータシャフトの一方端側に設けられる段差部であることが好ましい。   In the rotating electrical machine rotor according to the present invention, the receiving portion is preferably a stepped portion provided on one end side of the rotor shaft.

本発明に係る回転電機ロータは、ロータシャフトの一方端部の受止部にロータコアを当接させ、ロータシャフトの他方端部の外径ネジ構造に噛みあうナット部を用い、ワッシャを介してロータコアをロータシャフトに固定する。その状態において、ロータシャフトにおける、ワッシャとロータコアの接触面の位置が外径ネジ構造よりも軸方向一方端側に位置する。例えば、ロータコアの軸方向の寸法が短い方にばらついて、ロータシャフトの外径ネジ構造の範囲におけるナットの締結では所定の締付力が得られない場合でも、ワッシャがナットの代わりにロータコアを押えるため、所定の締付力を得ることができる。このように、ロータコアに軸方向の寸法ばらつきがあっても、外径ネジ構造の範囲外においてワッシャがロータコアを押さえることができる。したがって、ロータコアの軸方向の寸法ばらつきに関係なく所定の締付力でロータコアをロータシャフトに固定することができる。   A rotating electrical machine rotor according to the present invention uses a nut portion that abuts a rotor core against a receiving portion at one end portion of a rotor shaft, and meshes with an outer diameter screw structure at the other end portion of the rotor shaft. Is fixed to the rotor shaft. In this state, the position of the contact surface between the washer and the rotor core in the rotor shaft is located on the one end side in the axial direction with respect to the outer diameter screw structure. For example, even if the axial dimension of the rotor core varies toward the shorter side and a predetermined tightening force cannot be obtained by tightening the nut in the range of the outer diameter screw structure of the rotor shaft, the washer presses the rotor core instead of the nut. Therefore, a predetermined tightening force can be obtained. Thus, even if the rotor core has dimensional variations in the axial direction, the washer can hold the rotor core outside the range of the outer diameter screw structure. Therefore, the rotor core can be fixed to the rotor shaft with a predetermined tightening force regardless of the dimensional variation in the axial direction of the rotor core.

本発明に係る回転電機ロータにおいて、ナット部は、カシメ用薄肉部を用いて、ロータシャフトの外径ネジ構造にカシメて固定されるので、緩むことなく所定の締付力の下でロータコアをロータシャフトに固定することができる。   In the rotating electrical machine rotor according to the present invention, the nut portion is caulked and fixed to the outer diameter screw structure of the rotor shaft using the caulking thin-walled portion, so that the rotor core is rotated under a predetermined tightening force without loosening. Can be fixed to the shaft.

本発明に係る回転電機ロータにおいて、ワッシャの厚さは、ロータコアの軸方向の寸法ばらつきに基づいて設定される。これにより、ロータコアの軸方向の寸法ばらつきをワッシャで吸収できる。したがって、ロータコアの軸方向の寸法ばらつきに関係なく所定の締付力でロータコアをロータシャフトに固定することができる。   In the rotating electrical machine rotor according to the present invention, the thickness of the washer is set based on the dimensional variation in the axial direction of the rotor core. Thereby, the dimensional variation in the axial direction of the rotor core can be absorbed by the washer. Therefore, the rotor core can be fixed to the rotor shaft with a predetermined tightening force regardless of the dimensional variation in the axial direction of the rotor core.

本発明に係る回転電機ロータにおいて、受止部は、ロータシャフトの一方端側に設けられる段差部であるので、簡単な構造で、ロータコアの軸方向の寸法ばらつきに関係なく所定の締付力でロータコアをロータシャフトに固定することができる。   In the rotating electrical machine rotor according to the present invention, the receiving portion is a stepped portion provided on one end side of the rotor shaft, and thus has a simple structure and a predetermined tightening force regardless of variations in the axial dimension of the rotor core. The rotor core can be fixed to the rotor shaft.

本発明に係る実施の形態における回転電機ロータの構成図である。It is a block diagram of the rotary electric machine rotor in embodiment which concerns on this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 本発明に係る実施の形態における回転電機ロータに用いられるナット部を示す図で、(a)は、断面図を示し、(b)は、上面図を示し、(c)は、カシメ用薄肉部のカシメ処理前を示し、(d)はカシメ用薄肉部のカシメ処理後を示す。It is a figure which shows the nut part used for the rotary electric machine rotor in embodiment which concerns on this invention, (a) shows sectional drawing, (b) shows a top view, (c) is a thin part for crimping (D) shows after the caulking process of the thin portion for caulking.

以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。以下に述べる寸法、形状、材質等は、説明のための例示であって、回転電機ロータの仕様等により、適宜変更が可能である。また、以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The dimensions, shapes, materials, and the like described below are illustrative examples, and can be appropriately changed depending on the specifications of the rotating electrical machine rotor. In the following description, the same elements are denoted by the same reference symbols in all the drawings, and redundant description is omitted.

図1は、車両に搭載される回転電機に用いられる回転電機ロータ10の構造を示す図である。以下では、回転電機ロータ10を特に断らない限り、ロータ10と呼ぶ。図2は、図1の部分拡大図である。   FIG. 1 is a diagram showing a structure of a rotating electrical machine rotor 10 used for a rotating electrical machine mounted on a vehicle. Hereinafter, the rotating electrical machine rotor 10 is referred to as the rotor 10 unless otherwise specified. FIG. 2 is a partially enlarged view of FIG.

ロータ10が用いられる回転電機は、車両が力行するときは電動機として機能し、車両が制動時にあるときは発電機として機能するモータ・ジェネレータで、三相同期型回転電機である。回転電機は、図1に示されるロータ10と、ロータ10の外周側に所定の隙間を隔てて配置されて巻線コイルが巻回される円環状のステータとで構成される。図1ではステータの図示を省略した。なお、図1に、ロータ10の軸方向と、その一方端側と他方端側を示した。   The rotating electrical machine using the rotor 10 is a three-phase synchronous rotating electrical machine that functions as an electric motor when the vehicle is powered and functions as a generator when the vehicle is braking. The rotating electrical machine includes a rotor 10 shown in FIG. 1 and an annular stator that is disposed on the outer peripheral side of the rotor 10 with a predetermined gap and is wound with a winding coil. In FIG. 1, the illustration of the stator is omitted. FIG. 1 shows the axial direction of the rotor 10 and one end side and the other end side thereof.

ロータ10は、ロータコア20と、ロータコア20が嵌め込まれるロータシャフト30と、ロータシャフト30に設けられた外径ネジ構造44に噛みあうナット部50を含み、ロータコア20に軸方向の寸法ばらつきがあっても所定の締付力でロータコア20をロータシャフト30に固定することができる構造を有する。   The rotor 10 includes a rotor core 20, a rotor shaft 30 into which the rotor core 20 is fitted, and a nut portion 50 that meshes with an outer diameter screw structure 44 provided on the rotor shaft 30, and the rotor core 20 has dimensional variations in the axial direction. Also, the rotor core 20 can be fixed to the rotor shaft 30 with a predetermined tightening force.

ロータコア20は、所定枚数の磁性体薄板を積層した積層体22と、積層体22に埋め込んで配置される複数の磁石24を含んで構成される。   The rotor core 20 includes a laminated body 22 in which a predetermined number of magnetic thin plates are laminated, and a plurality of magnets 24 that are embedded in the laminated body 22.

磁性体薄板を積層した積層体22は、ロータシャフト30の外形を通す中心穴と、複数の磁石24が挿入される複数の磁石孔を有する。磁性体薄板としては、電磁鋼板を用いることができる。積層方向は、ロータ10の軸方向に沿った方向である。積層体22において、中心穴、磁石孔は、軸方向に平行な方向に延びて貫通する。   The laminated body 22 in which the magnetic thin plates are laminated has a center hole through which the outer shape of the rotor shaft 30 passes and a plurality of magnet holes into which the plurality of magnets 24 are inserted. An electromagnetic steel plate can be used as the magnetic thin plate. The stacking direction is a direction along the axial direction of the rotor 10. In the laminated body 22, the center hole and the magnet hole extend in a direction parallel to the axial direction and penetrate therethrough.

ロータコア20は、磁性体薄板を積層した積層体22で構成されるので、その軸方向の寸法は、積層体22の軸方向の寸法となる。磁性体薄板の積層は、所定の形状に打ち抜かれた所定枚数の磁性体薄板をカシメ等で一体化して行われるので、隣接する磁性体薄板の間に僅かな積層隙間を有する。各磁性体薄板の板厚のばらつき、積層時における積層隙間のばらつき等によって、積層体22およびロータコア20には、軸方向の寸法ばらつきが生じる。この軸方向の寸法ばらつきをどのように吸収してロータコア20をロータシャフト30に固定するかについては後述する。   Since the rotor core 20 is composed of a laminated body 22 in which magnetic thin plates are laminated, the axial dimension thereof is the axial dimension of the laminated body 22. Lamination of the magnetic thin plates is performed by integrating a predetermined number of magnetic thin plates punched into a predetermined shape by caulking or the like, so that there is a slight stacking gap between adjacent magnetic thin plates. The laminated body 22 and the rotor core 20 have dimensional variations in the axial direction due to variations in the thickness of each magnetic thin plate, variations in the stacking gap during stacking, and the like. How to absorb this dimensional variation in the axial direction and fix the rotor core 20 to the rotor shaft 30 will be described later.

磁石24は、ロータコア20の外周側に所定の配置で複数配置され、ロータ10の各磁極を形成する永久磁石である。磁石24は、図示されていない回転電機のステータに巻回される巻線コイルに所定の通電を行うことで発生する回転磁界と協働してトルクを発生し、これによってロータ10が回転する。かかる磁石24としては、ネオジムと鉄とホウ素を主成分とするネオジム磁石、サマリウムとコバルトを主成分とするサマリウムコバルト磁石等の希土類磁石が用いられる。これ以外にフェライト磁石等を用いてもよい。   The magnets 24 are permanent magnets that are arranged in a predetermined arrangement on the outer peripheral side of the rotor core 20 and form the magnetic poles of the rotor 10. The magnet 24 generates torque in cooperation with a rotating magnetic field generated by applying a predetermined energization to a winding coil wound around a stator of a rotating electrical machine (not shown), whereby the rotor 10 rotates. As the magnet 24, rare earth magnets such as neodymium magnets mainly composed of neodymium, iron and boron, and samarium cobalt magnets mainly composed of samarium and cobalt are used. Besides this, a ferrite magnet or the like may be used.

ロータシャフト30は、一方端側にロータコア20の軸方向一方端面と当接する受止部32を有し、他方端側に外径ネジ構造44を有し、他方端側から受止部32に向かってロータコア20が嵌め込まれる軸である。ロータシャフト30は、ロータ10が回転電機に用いられるときには、軸方向の両端が軸受によって回転自在に支持され、図示されていないステータと協働して回転する。このように、回転電機においては、ロータシャフト30がトルクを出力する出力軸となる。かかるロータシャフト30は、鋼材を所定の形状に加工したものを用いることができる。   The rotor shaft 30 has a receiving portion 32 that contacts one end surface in the axial direction of the rotor core 20 on one end side, has an outer diameter screw structure 44 on the other end side, and faces the receiving portion 32 from the other end side. The shaft into which the rotor core 20 is fitted. When the rotor 10 is used in a rotating electrical machine, the rotor shaft 30 is rotatably supported by bearings at both ends in the axial direction, and rotates in cooperation with a stator (not shown). Thus, in the rotating electrical machine, the rotor shaft 30 serves as an output shaft that outputs torque. The rotor shaft 30 may be a steel material processed into a predetermined shape.

受止部32は、ロータシャフト30の一方端側に設けられる段差部である。段差の他方端側の面は、軸方向に垂直な面である。段差の大きさは、ロータコア20の一方端面が当接してナット部50によって所定の締結力で締結されたときに、締結力を十分に受け止められる受止面積を確保できる程度に設定される。   The receiving portion 32 is a step portion provided on one end side of the rotor shaft 30. The surface on the other end side of the step is a surface perpendicular to the axial direction. The size of the step is set to such an extent that a receiving area capable of sufficiently receiving the fastening force can be secured when the one end surface of the rotor core 20 abuts and is fastened by the nut portion 50 with a predetermined fastening force.

外径ネジ構造44は、ロータシャフト30の他方端側から一方端側に延びて設けられるオネジである。外径ネジ構造44のオネジの外径は、ロータコア20の中心穴の直径よりもやや小さめに設定される。この寸法差が、ロータコア20の中心穴にロータシャフト30を通すときの隙間量になる。図1,2に、外径ネジ構造の他方端側の位置33と一方端側の位置34を示した。位置33と位置34の間が、外径ネジ構造44が設けられる範囲である。   The outer diameter screw structure 44 is a male screw that extends from the other end side of the rotor shaft 30 to the one end side. The outer diameter of the male screw of the outer diameter screw structure 44 is set to be slightly smaller than the diameter of the center hole of the rotor core 20. This dimensional difference is the gap amount when the rotor shaft 30 is passed through the center hole of the rotor core 20. 1 and 2 show the position 33 on the other end side and the position 34 on the one end side of the outer diameter screw structure. Between the position 33 and the position 34 is a range in which the outer diameter screw structure 44 is provided.

外径ネジ構造44の一方端側の位置33は、軸方向の寸法が標準的な値のロータコア20をロータシャフト30に組付けてロータコア20の軸方向一方端面を受止部32に当接させたときのロータコア20の他方端面の位置28となるように設定される。すなわち、ロータコア20が標準的な寸法のときは、外径ネジ構造44とロータコア20とが重なり合わないようにされる。これは、外径ネジ構造44のオネジの外径がロータコア20の中心穴の直径よりも小さいので、外径ネジ構造44とロータコア20とが重なり合うと、ロータシャフト30とロータコア20との間に径方向隙間が生じ嵌め込みが安定しないので、これを避けるためである。   The position 33 on one end side of the outer diameter screw structure 44 is such that the rotor core 20 having a standard axial dimension is assembled to the rotor shaft 30 and the one end face in the axial direction of the rotor core 20 is brought into contact with the receiving portion 32. It is set to be the position 28 of the other end face of the rotor core 20 at that time. That is, when the rotor core 20 has a standard size, the outer diameter screw structure 44 and the rotor core 20 are not overlapped. This is because the outer diameter of the male screw of the outer diameter screw structure 44 is smaller than the diameter of the center hole of the rotor core 20, so that when the outer diameter screw structure 44 and the rotor core 20 overlap, the diameter between the rotor shaft 30 and the rotor core 20 is increased. This is to avoid directional gaps and the fitting is not stable.

ナット部50は、ロータシャフト30の外径ネジ構造44と噛みあう内径ネジ54を有する。ナット部50は、ロータシャフト30にロータコア20を嵌め込み、ロータコア20の一方側端面をロータシャフト30の受止部32に当接させて押し付けて締結し、ロータシャフト30にロータコア20を固定する。   The nut portion 50 has an inner diameter screw 54 that meshes with the outer diameter screw structure 44 of the rotor shaft 30. The nut portion 50 fits the rotor core 20 into the rotor shaft 30, presses and fastens one end surface of the rotor core 20 against the receiving portion 32 of the rotor shaft 30, and fixes the rotor core 20 to the rotor shaft 30.

上記のように、ロータコア20の軸方向の寸法ばらつきを考えない標準的な軸方向の寸法に合わせて、ロータシャフト30の外径ネジ構造44が設けられる。そこで、ロータコア20の軸方向の寸法がばらつくと、外径ネジ構造44の一方端側の位置33とロータコア20の他方端面の位置28に食い違いが出る。ロータコア20の軸方向の寸法が標準的な値よりも短い場合には、ロータコア20の他方端面と外径ネジ構造44の端部との間に隙間が生じる。外径ネジ構造44とナット部50を用いる締結は、外径ネジ構造44の範囲でしか行えないので、ロータコア20をロータシャフト30に固定するのに十分な締結力が得られない。そこで、ロータコア20の軸方向の寸法ばらつきがあっても、十分な締結力が得られるように、ワッシャ70が用いられる。   As described above, the outer diameter screw structure 44 of the rotor shaft 30 is provided in accordance with the standard axial dimension that does not allow for variations in the axial dimension of the rotor core 20. Therefore, if the axial dimension of the rotor core 20 varies, there is a discrepancy between the position 33 on one end side of the outer diameter screw structure 44 and the position 28 on the other end face of the rotor core 20. When the axial dimension of the rotor core 20 is shorter than a standard value, a gap is generated between the other end surface of the rotor core 20 and the end of the outer diameter screw structure 44. Since the fastening using the outer diameter screw structure 44 and the nut portion 50 can be performed only within the range of the outer diameter screw structure 44, a fastening force sufficient to fix the rotor core 20 to the rotor shaft 30 cannot be obtained. Therefore, the washer 70 is used so that a sufficient fastening force can be obtained even if the axial dimension of the rotor core 20 varies.

ワッシャ70は、ロータコア20の積層体22の積層ばらつき量や締結時のつぶれ量等によるロータコア20の軸方向の寸法ばらつきの大きさに基づいて設定される厚さtと、ナット部50のフランジ部56の外径より大きな外径と、ロータシャフト30の外径よりやや大きな内径を有するリング状の部材である。ワッシャ70は、ロータコア20の他方端とナット部50の一方端との間に、ロータシャフト30の外形に沿って嵌め込まれて配置される。ワッシャ70の厚さtは、ロータコア20における軸方向の寸法ばらつきの大きさについて予め想定された値よりも大きめに設定される。かかるワッシャ70としては、適当な材料を所定の形状に成形したものを用いることができる。材料としては、金属材料を用いることができる。場合によっては、適当な強度と耐熱性を有するプラスチック材料を用いることができる。   The washer 70 has a thickness t set based on the size variation in the axial direction of the rotor core 20 due to the stacking variation amount of the laminate 22 of the rotor core 20 and the crushing amount at the time of fastening, and the flange portion of the nut portion 50. A ring-shaped member having an outer diameter larger than the outer diameter of 56 and an inner diameter slightly larger than the outer diameter of the rotor shaft 30. The washer 70 is fitted and disposed along the outer shape of the rotor shaft 30 between the other end of the rotor core 20 and one end of the nut portion 50. The thickness t of the washer 70 is set to be larger than a value assumed in advance for the size variation in the axial direction of the rotor core 20. As such a washer 70, an appropriate material formed into a predetermined shape can be used. As the material, a metal material can be used. In some cases, a plastic material having appropriate strength and heat resistance can be used.

ナット部50は、ワッシャ70を介して、ロータシャフト30に嵌め込まれたロータコア20を一方端側に押し付けて固定する。   The nut portion 50 presses and fixes the rotor core 20 fitted in the rotor shaft 30 to one end side through the washer 70.

押し付けは、以下のようにして行われる。すなわち、ロータシャフト30の他方端側からロータコア20を嵌め込み、次いでワッシャ70をロータシャフト30の他方端側から挿入し、ナット部50の内径ネジ54を外径ネジ構造44に噛み合わせて軸周りに回す。これによって、ナット部50の一方端側の面をワッシャ70の他方端側の面に当接させ、ワッシャ70の一方端側の面をロータコア20の他方端側の面に当接させる。そして、ナット部50をさらに軸周りに回して、ロータコア20をロータシャフト30の受止部32に当接させながら押し付け、締付力が所定の大きさとなったところで止める。図1,2は、そのようにナット部50をロータシャフト30の外径ネジ構造44に締結してロータコア20がロータシャフト30に固定された状態を示している。その状態においては、ロータシャフト30の軸方向に沿ったワッシャ70とロータコア20の接触面の位置28が、外径ネジ構造44の一方端側の位置34よりも軸方向一方端側に位置している。   The pressing is performed as follows. That is, the rotor core 20 is fitted from the other end side of the rotor shaft 30, and then the washer 70 is inserted from the other end side of the rotor shaft 30, and the inner diameter screw 54 of the nut portion 50 is engaged with the outer diameter screw structure 44 to rotate around the axis. turn. Accordingly, the one end surface of the nut portion 50 is brought into contact with the other end surface of the washer 70, and the one end surface of the washer 70 is brought into contact with the other end surface of the rotor core 20. Then, the nut portion 50 is further rotated around the axis, and the rotor core 20 is pressed while being brought into contact with the receiving portion 32 of the rotor shaft 30, and is stopped when the tightening force reaches a predetermined magnitude. 1 and 2 show a state in which the nut 50 is fastened to the outer diameter screw structure 44 of the rotor shaft 30 and the rotor core 20 is fixed to the rotor shaft 30. In this state, the position 28 of the contact surface between the washer 70 and the rotor core 20 along the axial direction of the rotor shaft 30 is located on the one end side in the axial direction from the position 34 on the one end side of the outer diameter screw structure 44. Yes.

押し付け処理によってナット部50の位置が決まると、その位置でナット部50がロータシャフト30に対して固定される。固定は、ナット部50のカシメ用薄肉部をロータシャフト30の外径ネジ構造44にカシメることで行われる。なお、図1,2では、カシメ処理後のカシメ用薄肉部59が示されている。   When the position of the nut portion 50 is determined by the pressing process, the nut portion 50 is fixed to the rotor shaft 30 at that position. Fixing is performed by crimping the caulking thin portion of the nut portion 50 to the outer diameter screw structure 44 of the rotor shaft 30. 1 and 2 show the caulking thin portion 59 after the caulking process.

図3は、ナット部50の詳細図である。(a)から(c)はカシメ処理を行う前を示す図で、(a)は断面図、(b)は上面図、(c)は(a)のB部の拡大図である。(d)は、カシメ処理後のB部の拡大図である。ナット部50は、内径側に内径ネジ54を有し、外径が六角形であるネジ軸部52と、ネジ軸部52の六角形の包絡形状となる円形のフランジ部56と、ネジ軸部52から軸方向に沿って他方端側に延びるカシメ用薄肉部58を有する。かかるナット部50は、適当な強度を有する金属材料を加工したものを用いることができる。金属材料としては、鋼材等を用いることができる。   FIG. 3 is a detailed view of the nut portion 50. (A) to (c) are diagrams showing a state before caulking, (a) is a cross-sectional view, (b) is a top view, and (c) is an enlarged view of a portion B in (a). (D) is an enlarged view of the B section after the caulking process. The nut portion 50 has an inner diameter screw 54 on the inner diameter side, an outer diameter of a screw shaft portion 52 having a hexagonal shape, a circular flange portion 56 having a hexagonal envelope shape of the screw shaft portion 52, and a screw shaft portion. The caulking thin portion 58 extends from 52 to the other end side along the axial direction. As the nut portion 50, a material obtained by processing a metal material having an appropriate strength can be used. As the metal material, steel or the like can be used.

カシメ用薄肉部58は、カシメ処理によって変形可能で、かつ、所定のカシメ強度を有するカシメができる薄さを有する張出部である。カシメ強度としては、カシメ処理後にナット部50を緩み方向に所定のトルクを与えて破断しないことが必要である。この条件を満たすように、ナット部50の材質の強度に基づき、カシメ用薄肉部58の肉厚と軸方向長さと、周方向に沿ったカシメ幅、カシメ箇所数等が設定される。   The caulking thin-walled portion 58 is an overhanging portion that is deformable by caulking and has a thickness that allows caulking with a predetermined caulking strength. As the caulking strength, it is necessary that the nut portion 50 is not broken by applying a predetermined torque in the loosening direction after the caulking process. In order to satisfy this condition, the thickness and axial length of the caulking thin portion 58, the caulking width along the circumferential direction, the number of caulking locations, and the like are set based on the strength of the material of the nut portion 50.

カシメ用薄肉部58の寸法、カシメ長さとカシメ個数等は、ロータシャフト30の外径ネジ構造44のネジ形状、必要なカシメ強度等によって異なる。一例を挙げると、カシメ用薄肉部58の肉厚を約1mmから約2mm、軸方向長さを約2mmから約5mmとすることができる。カシメ箇所数は、図3(b)の例では周方向に2か所である。周方向に沿ったカシメ幅は、約2mmから約5mmとすることができる。   The dimensions, the caulking length, the number of caulking, and the like of the caulking thin portion 58 vary depending on the screw shape of the outer diameter screw structure 44 of the rotor shaft 30 and the necessary caulking strength. As an example, the thickness of the caulking thin portion 58 can be about 1 mm to about 2 mm, and the axial length can be about 2 mm to about 5 mm. The number of caulking locations is two in the circumferential direction in the example of FIG. The caulking width along the circumferential direction can be about 2 mm to about 5 mm.

図1から図3の構成によれば、ロータシャフト30の外径ネジ構造44にナット部50を噛み合わせ、ワッシャ70を介して、ロータコア20を受止部32側に当接させて押し付け、締結して固定する。ワッシャ70の厚さtはロータコア20の軸方向の寸法ばらつきに基づいて設定されるので、ロータコア20の軸方向の寸法が標準的な値よりも短い方にばらついても、所定の締付力でロータコア20をロータシャフト30に固定することができる。   1 to 3, the nut portion 50 is engaged with the outer diameter screw structure 44 of the rotor shaft 30, and the rotor core 20 is brought into contact with the receiving portion 32 side through the washer 70 to be pressed and fastened. And fix. Since the thickness t of the washer 70 is set based on the dimensional variation in the axial direction of the rotor core 20, even if the axial dimension of the rotor core 20 varies shorter than a standard value, a predetermined tightening force is used. The rotor core 20 can be fixed to the rotor shaft 30.

また、ロータコア20と外径ネジ構造44とが重ならないので、ロータコア20とロータシャフト30の間で径方向の隙間が生じない。そこで、例えば、焼き嵌め構造を取ることで、ロータコア20とロータシャフト30の間の固定力をさらに向上させることが可能になる。   Further, since the rotor core 20 and the outer diameter screw structure 44 do not overlap, there is no radial gap between the rotor core 20 and the rotor shaft 30. Therefore, for example, by taking a shrink-fit structure, it is possible to further improve the fixing force between the rotor core 20 and the rotor shaft 30.

また、ナット部50とロータコア20の間にワッシャ70を配置することで、締結時にナット部50からロータコア20に及ぼされる押付応力をワッシャ70によって緩和することができる。   Further, by disposing the washer 70 between the nut part 50 and the rotor core 20, the pressing stress exerted on the rotor core 20 from the nut part 50 at the time of fastening can be relieved by the washer 70.

厚さtの異なるワッシャ70を複数準備し、ロータコア20の軸方向の寸法ばらつきの大きさに応じて、適当な厚さtのワッシャ70を選択することで、ロータコア20の軸方向の寸法ばらつきの広い範囲に渡って、ネジ締め法によって、ロータシャフト30にロータコア20を所定の締付力で固定することができる。   A plurality of washers 70 having different thicknesses t are prepared, and by selecting a washer 70 having an appropriate thickness t in accordance with the size variation of the rotor core 20 in the axial direction, the size variation in the axial direction of the rotor core 20 can be reduced. The rotor core 20 can be fixed to the rotor shaft 30 with a predetermined tightening force by a screw tightening method over a wide range.

上記では、ロータコア20の一方端面が当接する受止部32として、ロータシャフト30の段差部を説明したが、上記で説明した外径ネジ構造部とナット部によるネジ締め構造をロータシャフト30の一方端側に設けて、そのナット部の他方端の面にロータコア20の一方端面を当接させてもよい。   In the above description, the step portion of the rotor shaft 30 has been described as the receiving portion 32 with which one end surface of the rotor core 20 abuts. However, the screw tightening structure using the outer diameter screw structure portion and the nut portion described above is one of the rotor shafts 30. It may be provided on the end side, and one end surface of the rotor core 20 may be brought into contact with the other end surface of the nut portion.

10 (回転電機)ロータ、20 ロータコア、22 積層体、24 磁石、28 (ロータコアの他方側端面の)位置、30 ロータシャフト、32 受止部、33 (外径ネジ構造の他方端側の)位置、34 (外径ネジ構造の一方端側の)位置、44 外径ネジ構造、50 ナット部、52 ネジ軸部、54 内径ネジ、56 フランジ部、58,59 カシメ用薄肉部、70 ワッシャ。   10 (rotary electric machine) rotor, 20 rotor core, 22 laminated body, 24 magnet, 28 position (on the other end surface of the rotor core), 30 rotor shaft, 32 receiving portion, 33 (on the other end side of the outer diameter screw structure) , 34 (on one end side of the outer diameter screw structure), 44 outer diameter screw structure, 50 nut portion, 52 screw shaft portion, 54 inner diameter screw, 56 flange portion, 58, 59 caulking thin wall portion, 70 washer.

Claims (4)

積層された磁性体薄板で構成されロータシャフトの外形を通す中心穴を有するロータコアと、
一方端側にロータコアの軸方向一方端面と当接する受止部を有し、他方端側に外径ネジ構造を有するロータシャフトと、
ロータシャフトの外径ネジ構造と噛みあうナット部と、
ロータコアの他方端とナット部の一方端との間に配置されるワッシャと、
を備える回転電機ロータにおいて、
ナット部をロータシャフトの外径ネジ構造に締結してロータコアをロータシャフトに固定した状態において、ロータシャフトにおける、ワッシャとロータコアの接触面の位置が外径ネジ構造よりも軸方向一方端側に位置することを特徴とする回転電機ロータ。
A rotor core having a central hole that is composed of laminated magnetic thin plates and passes through the outer shape of the rotor shaft;
A rotor shaft having a receiving portion in contact with one end surface in the axial direction of the rotor core on one end side, and an outer diameter screw structure on the other end side;
A nut portion that meshes with the outer diameter screw structure of the rotor shaft;
A washer disposed between the other end of the rotor core and one end of the nut portion;
In a rotating electrical machine rotor comprising:
In a state where the nut portion is fastened to the outer diameter screw structure of the rotor shaft and the rotor core is fixed to the rotor shaft, the position of the contact surface between the washer and the rotor core on the rotor shaft is positioned on one axial end side than the outer diameter screw structure. A rotating electrical machine rotor characterized in that:
請求項1に記載の回転電機ロータにおいて、
ナット部は、
軸方向に沿って他方端側に延びるカシメ用薄肉部を有することを特徴とする回転電機ロータ。
In the rotating electrical machine rotor according to claim 1,
The nut part
A rotating electrical machine rotor having a caulking thin portion extending toward the other end side along the axial direction.
請求項1に記載の回転電機ロータにおいて、
ワッシャの厚さは、
ロータコアの軸方向の寸法ばらつきに基づいて設定されることを特徴とする回転電機ロータ。
In the rotating electrical machine rotor according to claim 1,
The thickness of the washer is
A rotating electrical machine rotor, characterized in that it is set based on dimensional variations in the axial direction of the rotor core.
請求項1に記載の回転電機ロータにおいて、
受止部は、ロータシャフトの一方端側に設けられる段差部であることを特徴とする回転電機ロータ。
In the rotating electrical machine rotor according to claim 1,
The receiving part is a stepped part provided on one end side of the rotor shaft.
JP2013239752A 2013-11-20 2013-11-20 Rotary electric machine rotor Pending JP2015100227A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013239752A JP2015100227A (en) 2013-11-20 2013-11-20 Rotary electric machine rotor
PCT/JP2014/005617 WO2015075886A2 (en) 2013-11-20 2014-11-07 Rotary electric machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239752A JP2015100227A (en) 2013-11-20 2013-11-20 Rotary electric machine rotor

Publications (1)

Publication Number Publication Date
JP2015100227A true JP2015100227A (en) 2015-05-28

Family

ID=52004020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239752A Pending JP2015100227A (en) 2013-11-20 2013-11-20 Rotary electric machine rotor

Country Status (2)

Country Link
JP (1) JP2015100227A (en)
WO (1) WO2015075886A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116022A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Rotary electric machine rotor
JP2017005818A (en) * 2015-06-05 2017-01-05 トヨタ自動車株式会社 Manufacturing method of rotor for motor
JP2017051020A (en) * 2015-09-03 2017-03-09 トヨタ自動車株式会社 Rotor for rotary electric machine
EP3293860A1 (en) * 2016-09-08 2018-03-14 Toyota Jidosha Kabushiki Kaisha Rotary electric rotor and method of manufacturing rotary electric rotor
EP3376641A1 (en) * 2017-03-16 2018-09-19 Toyota Jidosha Kabushiki Kaisha Rotor for rotary electric machine
JP2019075877A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Method of manufacturing rotary electric machine rotor and rotary electric machine rotor
WO2019098809A1 (en) * 2017-11-20 2019-05-23 한국전기연구원 Rotor for electric motor, electric motor comprising same, supercharger comprising same, and assembly method for electric motor
WO2021200708A1 (en) 2020-03-31 2021-10-07 アイシン・エィ・ダブリュ株式会社 Rotor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617513B1 (en) * 2017-04-25 2021-09-01 Mitsubishi Electric Corporation Compressor and refrigeration cycle device
KR101967648B1 (en) * 2017-12-15 2019-04-10 엘지전자 주식회사 Rotor assembly for electric motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977105A (en) * 1972-12-01 1974-07-25
JPS5370257A (en) * 1976-12-03 1978-06-22 Rhythm Motor Parts Mfg Method of preventing nut from turning
JPS6216034A (en) * 1985-07-12 1987-01-24 Hitachi Ltd Closed type motor compressor
JPH0641928U (en) * 1992-11-13 1994-06-03 日野自動車工業株式会社 Nut crimping tool
JPH06335210A (en) * 1993-05-11 1994-12-02 Atlas Copco Tools Ab Synchronous motor
JP2009225584A (en) * 2008-03-17 2009-10-01 Komatsu Ltd Rotor structure of electric motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239754C2 (en) * 1992-07-31 1995-01-19 Baumueller Nuernberg Gmbh Runner for an electrical machine
US6437474B1 (en) * 2000-04-11 2002-08-20 Ming Tsong Chu Rotor of synchronous motor
US20060022541A1 (en) * 2004-07-30 2006-02-02 Raymond Ong Rotor hub and assembly for a permanent magnet power electric machine
CN202384862U (en) * 2011-12-23 2012-08-15 西安盾安电气有限公司 Axial locking structure for rotor core of motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977105A (en) * 1972-12-01 1974-07-25
JPS5370257A (en) * 1976-12-03 1978-06-22 Rhythm Motor Parts Mfg Method of preventing nut from turning
JPS6216034A (en) * 1985-07-12 1987-01-24 Hitachi Ltd Closed type motor compressor
JPH0641928U (en) * 1992-11-13 1994-06-03 日野自動車工業株式会社 Nut crimping tool
JPH06335210A (en) * 1993-05-11 1994-12-02 Atlas Copco Tools Ab Synchronous motor
JP2009225584A (en) * 2008-03-17 2009-10-01 Komatsu Ltd Rotor structure of electric motor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116022A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Rotary electric machine rotor
JP2017005818A (en) * 2015-06-05 2017-01-05 トヨタ自動車株式会社 Manufacturing method of rotor for motor
JP2017051020A (en) * 2015-09-03 2017-03-09 トヨタ自動車株式会社 Rotor for rotary electric machine
PH12017050047A1 (en) * 2016-09-08 2019-01-21 Toyota Motor Co Ltd Rotary electric rotor and method of manufacturing rotary electric rotor
EP3293860A1 (en) * 2016-09-08 2018-03-14 Toyota Jidosha Kabushiki Kaisha Rotary electric rotor and method of manufacturing rotary electric rotor
CN107809146A (en) * 2016-09-08 2018-03-16 丰田自动车株式会社 The manufacture method of rotary motor rotor and rotary motor rotor
RU2658661C1 (en) * 2016-09-08 2018-06-22 Тойота Дзидося Кабусики Кайся Rotating electric rotor and rotating electric rotor manufacturing method
CN107809146B (en) * 2016-09-08 2019-07-26 丰田自动车株式会社 The manufacturing method of rotary motor rotor and rotary motor rotor
RU2685244C1 (en) * 2017-03-16 2019-04-17 Тойота Дзидося Кабусики Кайся Rotor for electric rotating machine
KR20180106922A (en) * 2017-03-16 2018-10-01 도요타 지도샤(주) Rotor for rotary electric machine
JP2018157669A (en) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 Rotary electric machine rotor
EP3376641A1 (en) * 2017-03-16 2018-09-19 Toyota Jidosha Kabushiki Kaisha Rotor for rotary electric machine
KR102006362B1 (en) 2017-03-16 2019-08-01 도요타 지도샤(주) Rotor for rotary electric machine
US10916996B2 (en) 2017-10-13 2021-02-09 Toyota Jtdosha Kabushiki Kaisha Method of manufacturing rotational electric machine rotor
JP2019075877A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Method of manufacturing rotary electric machine rotor and rotary electric machine rotor
US11271460B2 (en) 2017-10-13 2022-03-08 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a rotational electric machine rotor
US11258341B2 (en) 2017-10-13 2022-02-22 Toyota Jidosha Kabushiki Kaisha Rotational electric machine rotor
WO2019098809A1 (en) * 2017-11-20 2019-05-23 한국전기연구원 Rotor for electric motor, electric motor comprising same, supercharger comprising same, and assembly method for electric motor
CN111373639A (en) * 2017-11-20 2020-07-03 韩国电气研究院 Rotor of electric motor, electric motor having the same, supercharger having the electric motor, and method of assembling the electric motor
KR20190058339A (en) * 2017-11-20 2019-05-29 한국전기연구원 Rotor for elecric motor, electric motor having the same, supercharger having electric motor, and assembling method for electric motor
KR102632406B1 (en) * 2017-11-20 2024-02-02 한국전기연구원 Rotor for elecric motor, electric motor having the same, supercharger having electric motor, and assembling method for electric motor
WO2021200708A1 (en) 2020-03-31 2021-10-07 アイシン・エィ・ダブリュ株式会社 Rotor

Also Published As

Publication number Publication date
WO2015075886A3 (en) 2015-10-01
WO2015075886A2 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP2015100227A (en) Rotary electric machine rotor
JP2015116022A (en) Rotary electric machine rotor
US10284061B2 (en) Rotor of permanent magnet-type rotary electric machine
JP6249389B2 (en) Method for manufacturing rotational position detection device
WO2011114594A1 (en) Permanent magnet-type rotary generator
JP5737068B2 (en) Shaft body with core part for rotating electrical machine and method for manufacturing shaft body with core part for rotating electrical machine
US20130285500A1 (en) Rotor for a motor and a motor
WO2013084614A1 (en) Rotating electric machine and method for manufacturing rotating electric machine
JP2011254677A (en) Rotor for motor and method for manufacturing the same
US20140062245A1 (en) Rotor for rotating electric machine
JP2008086187A (en) End plate of electric motor
JP6080654B2 (en) Rotating electrical machine rotor, rotating electrical machine, and method for manufacturing rotor laminated core
JP2012235652A (en) Rotor and rotating electric machine
WO2018163319A1 (en) Rotor and rotating electric machine provided with said rotor
KR101657938B1 (en) Method for producing a rotor
JP5899683B2 (en) Rotor and rotating electric machine equipped with rotor
JP5864839B2 (en) Method for manufacturing left-right rotation type brushless motor for electric power steering device
JP2014204495A (en) Rotary electric machine and manufacturing method thereof
JP2016077149A (en) Rotating electric machine and method for manufacturing rotating electric machine
JP6515322B2 (en) Stator of rotating electric machine
JP6947015B2 (en) Rotor core mounting structure
JP2014166095A (en) Stator, sealed compressor and motor equipped with the same, and mold
JP2015061374A (en) Stator
JP2019047657A (en) Rotary electric machine
JP6173407B2 (en) Brushless motor manufacturing method for electric power steering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315