JP2015086462A - Copper alloy sheet excellent in conductivity and stress relaxation property - Google Patents

Copper alloy sheet excellent in conductivity and stress relaxation property Download PDF

Info

Publication number
JP2015086462A
JP2015086462A JP2013228519A JP2013228519A JP2015086462A JP 2015086462 A JP2015086462 A JP 2015086462A JP 2013228519 A JP2013228519 A JP 2013228519A JP 2013228519 A JP2013228519 A JP 2013228519A JP 2015086462 A JP2015086462 A JP 2015086462A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
copper
conductivity
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013228519A
Other languages
Japanese (ja)
Other versions
JP6270417B2 (en
Inventor
知亮 ▲高▼橋
知亮 ▲高▼橋
Tomoaki Takahashi
波多野 隆紹
Takaaki Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013228519A priority Critical patent/JP6270417B2/en
Publication of JP2015086462A publication Critical patent/JP2015086462A/en
Application granted granted Critical
Publication of JP6270417B2 publication Critical patent/JP6270417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet having high strength, high conductivity and excellent stress relaxation property, a manufacturing method of the copper alloy sheet and an electronic component for large current and an electronic component for heat release using the copper alloy sheet.SOLUTION: There is provided a copper alloy sheet containing one or more kind of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn nd Zr of total 0 to 20 mass% and the balance copper with its inevitable impurities, and having 30%IACS or more of conductivity and 290 MPa or more of 0.2% yield strength, and thermal shrinkage rate in a rolling direction by heating for 30 minutes at 200°C of 50 ppm or less.

Description

本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板及びその製造方法、並びに該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及びその製造方法、並びに該銅合金板を用いた電子部品に関するものである。   TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles, etc. The present invention relates to a copper alloy plate used as a raw material, a manufacturing method thereof, and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate, a manufacturing method thereof, and an electronic component using the copper alloy plate.

電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。   Electrical and electronic equipment, automobiles, etc. have built-in parts for conducting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. These parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.

近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。   In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.

コネクタ等の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。   In an electrical contact such as a connector, the copper alloy plate is deflected, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy is required to be more excellent in conductivity so that the amount of heat generation is reduced, and is also required to be superior in stress relaxation characteristics so that the contact force does not decrease even if heat is generated.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される、等の効果を期待できる。このため、放熱用途の銅合金板においても、応力緩和特性に優れることが望まれている。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when stress relaxation characteristics are enhanced, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. disposed around the heat sink is improved. , Etc. can be expected. For this reason, it is desired that the copper alloy plate for heat dissipation also has excellent stress relaxation characteristics.

例えば、特開2012−177197号公報には、Cube方位が発達し、比較的良好な応力緩和特性を有する銅合金が開示されている。(特許文献1)。   For example, Japanese Patent Application Laid-Open No. 2012-177197 discloses a copper alloy in which the Cube orientation is developed and has relatively good stress relaxation characteristics. (Patent Document 1).

特開2012−177197号公報JP 2012-177197 A

しかしながら、銅合金の特性改善を結晶方位の制御により行う場合、ヤング率の低下等の必要としない特性変化が同時に生じることが多い。また、その製造プロセスにおいては、特殊な熱処理や加工を付加する必要があり、製造コストが増大することが多い。   However, when improving the characteristics of a copper alloy by controlling the crystal orientation, unnecessary characteristic changes such as a decrease in Young's modulus often occur simultaneously. In the manufacturing process, it is necessary to add special heat treatment and processing, and the manufacturing cost often increases.

したがって、結晶方位の制御に頼らず、軽微な製造プロセスの調整により、銅合金の応力緩和特性を改善できれば、工業的に極めて意義深いといえる。   Therefore, it can be said that it is extremely significant industrially if the stress relaxation characteristics of the copper alloy can be improved by adjusting the minor manufacturing process without depending on the control of the crystal orientation.

そこで、本発明は、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板を提供することを目的とする。さらには、該銅合金板の製造方法、及び大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。   Then, an object of this invention is to provide the copper alloy board which has high intensity | strength, high electroconductivity, and the outstanding stress relaxation characteristic. Furthermore, it aims at providing the electronic component suitable for the manufacturing method of this copper alloy plate, and a large current use or a heat dissipation use.

本発明者らは、鋭意検討を重ねた結果、銅合金板の圧延平行方向の熱伸縮率を所定の値に調整することにより、銅合金板の応力緩和特性が向上することを見出した。   As a result of intensive studies, the present inventors have found that the stress relaxation characteristics of the copper alloy sheet are improved by adjusting the thermal expansion / contraction rate in the rolling parallel direction of the copper alloy sheet to a predetermined value.

以上の知見を基礎として完成した本発明は一側面において、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜20質量%含有し、残部が銅およびその不可避的不純物からなり、30%IACS以上の導電率および290MPa以上の0.2%耐力を有し、200℃で30分加熱した際の圧延方向の熱伸縮率が50ppm以下である銅合金板である。   The present invention completed on the basis of the above knowledge is, in one aspect, a total of one or more of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn, and Zr. The rolling direction when it is heated at 200 ° C. for 30 minutes, containing 0 to 20% by mass, the balance being copper and its inevitable impurities, having a conductivity of 30% IACS or higher and a 0.2% proof stress of 290 MPa or higher. This is a copper alloy plate having a thermal expansion / contraction rate of 50 ppm or less.

本発明に係る銅合金板は別の一実施態様において、Ag、P、Sn、FeおよびNiの一種以上を合計で0.005〜1質量%含有し、残部が銅およびその不可避的不純物からなり、80〜102%IACSの導電率を有する。   In another embodiment, the copper alloy plate according to the present invention contains 0.005 to 1% by mass in total of one or more of Ag, P, Sn, Fe and Ni, and the balance is made of copper and its inevitable impurities. , 80-102% IACS conductivity.

本発明に係る銅合金板は更に別の一実施態様において、Crを0.1〜0.5質量%、Snを0.1〜0.5質量%、Znを0.1〜0.5質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、70〜90%IACSの導電率を有する。   In another embodiment, the copper alloy plate according to the present invention is 0.1 to 0.5% by mass of Cr, 0.1 to 0.5% by mass of Sn, and 0.1 to 0.5% by mass of Zn. %, Ag, B, Co, Fe, Mg, Mn, Ni, P, Si, Ti and Zr are contained in a total of 0 to 0.2% by mass, with the balance being made of copper and its inevitable impurities And has a conductivity of 70-90% IACS.

本発明に係る銅合金板は更に別の一実施態様において、Feを1〜3質量%、Pを0.01〜0.2質量%、Znを0.05〜0.5質量%、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、60〜80%IACSの導電率を有する。   In another embodiment, the copper alloy plate according to the present invention is 1 to 3% by mass of Fe, 0.01 to 0.2% by mass of P, 0.05 to 0.5% by mass of Zn, Ag, B, Co, Cr, Mg, Mn, Ni, Si, Sn, Ti and Zr are contained in a total of 0 to 0.2% by mass, with the balance being copper and its inevitable impurities, It has a conductivity of 80% IACS.

本発明に係る銅合金板は更に別の一実施態様において、Niを0.5〜3質量%、Snを0.2〜2質量%、Pを0.02〜0.2質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、30〜60%IACSの導電率を有する。   In still another embodiment, the copper alloy plate according to the present invention is 0.5 to 3% by mass of Ni, 0.2 to 2% by mass of Sn, 0.02 to 0.2% by mass of P, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, Zn and Zr are contained in a total of 0 to 0.2% by mass, with the balance consisting of copper and its inevitable impurities, 30 to It has a conductivity of 60% IACS.

本発明に係る銅合金板は更に別の一実施態様において、Mgを0.2〜1質量%、Pを0.001〜0.1質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、50〜70%IACSの導電率を有する。   In yet another embodiment, the copper alloy plate according to the present invention is 0.2 to 1% by mass of Mg, 0.001 to 0.1% by mass of P, Ag, B, Co, Cr, Fe, Mn, One or more of Ni, Si, Sn, Ti, Zn and Zr are contained in a total amount of 0 to 0.2% by mass, the balance is made of copper and its inevitable impurities, and has a conductivity of 50 to 70% IACS. .

本発明に係る銅合金板は更に別の一実施態様において、Niを0.1〜5質量%、Pを0.01〜0.3質量%、Feを0.01〜0.3質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、50〜90%IACSの導電率を有する。   In yet another embodiment, the copper alloy plate according to the present invention is 0.1 to 5% by mass of Ni, 0.01 to 0.3% by mass of P, 0.01 to 0.3% by mass of Fe, Containing at least one of Ag, B, Co, Cr, Mg, Mn, Si, Sn, Ti, Zn and Zr in a total amount of 0 to 0.2% by mass, with the balance consisting of copper and its inevitable impurities, It has a conductivity of 50-90% IACS.

本発明に係る銅合金板は更に別の一実施態様において、150℃で1000時間保持後の応力緩和率が30%以下である。   In yet another embodiment, the copper alloy sheet according to the present invention has a stress relaxation rate of 30% or less after being held at 150 ° C. for 1000 hours.

本発明に係る銅合金板は更に別の一実施態様において、インゴットを、800〜1000℃で厚み3〜30mmまで熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造方法であって、
(A)前記最終の冷間圧延前の再結晶焼鈍において、炉内温度を250〜800℃として、銅合金板の平均結晶粒径を50μm以下に調整し、
(B)前記最終の冷間圧延において、総加工度を25〜99%、1パスあたりの圧延加工度を20%以下とし、
(C)前記歪取焼鈍において、連続焼鈍炉を用い、炉内温度を300〜700℃、炉内で銅合金板に付加される張力を1〜5MPaとして、銅合金板を通板し、0.2%耐力を10〜50MPa低下させる、
ことを含む。
In yet another embodiment, the copper alloy sheet according to the present invention is, after hot rolling the ingot at 800 to 1000 ° C. to a thickness of 3 to 30 mm, repeating cold rolling and recrystallization annealing to obtain the final cold A method for producing a copper alloy sheet that is subjected to strain relief annealing after rolling,
(A) In the recrystallization annealing before the final cold rolling, the furnace temperature is 250 to 800 ° C., the average crystal grain size of the copper alloy plate is adjusted to 50 μm or less,
(B) In the final cold rolling, the total workability is 25 to 99%, the rolling work per pass is 20% or less,
(C) In the strain relief annealing, using a continuous annealing furnace, the furnace temperature is 300 to 700 ° C., the tension applied to the copper alloy sheet in the furnace is 1 to 5 MPa, and the copper alloy sheet is passed through, 0 .2% yield strength is reduced by 10-50 MPa,
Including that.

本発明は別の一側面において、上記銅合金板を用いた大電流用電子部品である。   Another aspect of the present invention is an electronic component for large current using the copper alloy plate.

本発明は更に別の一側面において、上記銅合金板を用いた放熱用電子部品である。   In another aspect of the present invention, there is provided a heat dissipating electronic component using the copper alloy plate.

本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板及びその製造方法、並びに大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy board which has high intensity | strength, high electroconductivity, and the outstanding stress relaxation characteristic, its manufacturing method, and an electronic component suitable for a large current use or a heat dissipation use. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. It is useful as a material for electronic parts that dissipate heat.

実施例で熱伸縮率の測定に用いた試験片を示す平面図である。It is a top view which shows the test piece used for the measurement of the thermal expansion-contraction rate in the Example. 実施例の応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of the stress relaxation rate of an Example. 実施例の応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of the stress relaxation rate of an Example.

以下、本発明について説明する。
(目標特性)
本発明の実施の形態に係る銅合金板は、30%IACS以上の導電率を有し、且つ290MPa以上の0.2%耐力を有する。導電率が30%IACS以上であれば、通電時の発熱量が抑制される。また、0.2%耐力が290MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
The present invention will be described below.
(Target characteristics)
The copper alloy plate according to the embodiment of the present invention has a conductivity of 30% IACS or more and a 0.2% proof stress of 290 MPa or more. If the electrical conductivity is 30% IACS or higher, the amount of heat generated during energization is suppressed. Further, if the 0.2% proof stress is 290 MPa or more, it can be said that the material has the strength required as a material for parts that conduct a large current or a material for parts that dissipate a large amount of heat.

本発明の実施の形態に係る銅合金板の応力緩和特性については、0.2%耐力の80%の応力を付加し、150℃で1000時間保持した時の銅合金板の応力緩和率(以下、単に応力緩和率と記す)が30%以下であり、より好ましくは25%以下、さらに好ましくは20%以下である。応力緩和率を30%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。   Regarding the stress relaxation characteristics of the copper alloy plate according to the embodiment of the present invention, the stress relaxation rate of the copper alloy plate (hereinafter referred to as “80% stress of 0.2% proof stress”) is maintained at 150 ° C. for 1000 hours. , Simply referred to as stress relaxation rate) is 30% or less, more preferably 25% or less, and still more preferably 20% or less. By reducing the stress relaxation rate to 30% or less, even if a large current is applied after being processed into a connector, it is difficult for the contact electric resistance to increase due to a decrease in contact force. Creep deformation is unlikely to occur even when is added simultaneously.

(合金成分濃度)
本発明の作用効果は、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜20質量%含有し、残部が銅およびその不可避的不純物からなる銅合金において良好に発揮され、また、例えば下記のA〜Fの銅合金において特に高い効果が発揮される。
(Alloy component concentration)
The effects of the present invention include one or more of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn and Zr in a total amount of 0 to 20% by mass, The balance is satisfactorily exhibited in a copper alloy composed of copper and its inevitable impurities, and particularly high effects are exhibited in, for example, the following A to F copper alloys.

(合金A)
Ag、P、Sn、FeおよびNiの一種以上を合計で0.005〜1質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は80〜102%IACSである。より好ましい成分は、Ag、P、Sn、FeおよびNiの一種以上を合計で0.01〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、このときの導電率は83〜97%IACSである。
(Alloy A)
It is a copper alloy containing 0.005 to 1% by mass in total of one or more of Ag, P, Sn, Fe and Ni, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 80 to 102% IACS. A more preferred component is a copper alloy containing 0.01 to 0.2% by mass in total of one or more of Ag, P, Sn, Fe and Ni, with the balance being copper and unavoidable impurities thereof. The conductivity is 83-97% IACS.

(合金B)
Crを0.1〜0.5質量%、Snを0.1〜0.5質量%、Znを0.1〜0.5質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は70〜90%IACSである。より好ましい成分は、Crを0.2〜0.4質量%、Snを0.2〜0.3質量%、Znを0.2〜0.3質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は70〜80%IACSである。
(Alloy B)
Cr is 0.1 to 0.5% by mass, Sn is 0.1 to 0.5% by mass, Zn is 0.1 to 0.5% by mass, Ag, B, Co, Fe, Mg, Mn, Ni, It is a copper alloy containing at least one of P, Si, Ti and Zr in a total of 0 to 0.2 mass%, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 70-90% IACS. More preferable components are 0.2 to 0.4% by mass of Cr, 0.2 to 0.3% by mass of Sn, 0.2 to 0.3% by mass of Zn, Ag, B, Co, Fe, Mg , Mn, Ni, P, Si, Ti and Zr in a total of 0 to 0.2% by mass, with the balance being copper and its inevitable impurities, a copper alloy, the conductivity of this copper alloy The rate is 70-80% IACS.

(合金C)
Feを1〜3質量%、Pを0.01〜0.2質量%、Znを0.05〜0.5質量%、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は60〜80%IACSである。より好ましい成分は、Feを2〜2.5質量%、Pを0.02〜0.15質量%、Znを0.1〜0.2質量、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は60〜75%IACSである。
(Alloy C)
Fe 1 to 3 mass%, P 0.01 to 0.2 mass%, Zn 0.05 to 0.5 mass%, Ag, B, Co, Cr, Mg, Mn, Ni, Si, Sn, It is a copper alloy containing at least one of Ti and Zr in a total amount of 0 to 0.2 mass%, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 60-80% IACS. More preferable components are Fe to 2 to 2.5 mass%, P to 0.02 to 0.15 mass%, Zn to 0.1 to 0.2 mass, Ag, B, Co, Cr, Mg, Mn, One or more of Ni, Si, Sn, Ti and Zr is contained in a total of 0 to 0.2% by mass, and the balance is copper and an inevitable impurity thereof. The copper alloy has a conductivity of 60 ~ 75% IACS.

(合金D)
Niを0.5〜3質量%、Snを0.2〜2質量%、Pを0.02〜0.2質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有する銅合金である。この銅合金の導電率は30〜60%IACSである。より好ましい成分範囲は、Niを0.8〜1.2質量%、Snを0.4〜0.6質量%、Pを0.05〜0.15質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金、およびNiを0.8〜1.2質量%、Snを0.8〜1.0質量%、Pを0.05〜0.15質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、それぞれの銅合金の導電率は45〜55%IACSおよび35〜45%IACSである。
(Alloy D)
Ni: 0.5-3 mass%, Sn: 0.2-2 mass%, P: 0.02-0.2 mass%, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, It is a copper alloy containing 0 to 0.2 mass% in total of one or more of Zn and Zr. The conductivity of this copper alloy is 30-60% IACS. More preferable component ranges are 0.8 to 1.2% by mass of Ni, 0.4 to 0.6% by mass of Sn, 0.05 to 0.15% by mass of P, Ag, B, Co, Cr, A copper alloy containing at least one of Fe, Mg, Mn, Si, Ti, Zn and Zr in a total amount of 0 to 0.2% by mass, the balance being copper and its inevitable impurities, and Ni of 0.8 -1.2 mass%, Sn 0.8-1.0 mass%, P 0.05-0.15 mass%, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, Zn And one or more of Zr in a total of 0 to 0.2% by mass, the balance being copper alloy consisting of copper and its inevitable impurities, and the conductivity of each copper alloy is 45 to 55% IACS and 35 to 45 % IACS.

(合金E)
Mgを0.2〜1質量%、Pを0.001〜0.1質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は50〜70%IACSである。より好ましい成分は、Mgを0.5〜0.9質量%、Pを0.001〜0.02質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は50〜65%IACSである。
(Alloy E)
0.2 to 1% by mass of Mg, 0.001 to 0.1% by mass of P, one or more of Ag, B, Co, Cr, Fe, Mn, Ni, Si, Sn, Ti, Zn and Zr Is a copper alloy containing 0 to 0.2% by mass in total with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 50-70% IACS. More preferable components are 0.5 to 0.9% by mass of Mg, 0.001 to 0.02% by mass of P, Ag, B, Co, Cr, Fe, Mn, Ni, Si, Sn, Ti, Zn One or more of Zr and Zr are contained in a total of 0 to 0.2% by mass, and the balance is copper and its inevitable impurities. The copper alloy has a conductivity of 50 to 65% IACS.

(合金F)
Niを0.1〜5質量%、Pを0.01〜0.3質量%、Feを0.01〜0.3質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は50〜90%IACSである。より好ましい成分範囲は、Niを0.5〜0.9質量%、Pを0.02〜0.2質量%、Feを0.05〜0.15質量%、Znを0.03〜0.2質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は60〜80%IACSである。
(Alloy F)
0.1 to 5% by mass of Ni, 0.01 to 0.3% by mass of P, 0.01 to 0.3% by mass of Fe, Ag, B, Co, Cr, Mg, Mn, Si, Sn, It is a copper alloy containing at least one of Ti, Zn, and Zr in a total amount of 0 to 0.2 mass%, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 50-90% IACS. More preferable component ranges are 0.5 to 0.9 mass% for Ni, 0.02 to 0.2 mass% for P, 0.05 to 0.15 mass% for Fe, and 0.03 to 0.3 mass for Zn. 2% by mass, Ag, B, Co, Cr, Mg, Mn, Si, Sn, Ti and Zr are contained in a total of 0 to 0.2% by mass, with the balance being made of copper and its inevitable impurities The copper alloy has a conductivity of 60 to 80% IACS.

合金成分の濃度が高くなるに従い、引張強さが上昇する半面、導電率が低下する。   As the concentration of the alloy component increases, the electrical conductivity decreases while the tensile strength increases.

(熱伸縮率)
銅合金板に熱を加えると、極微小な寸法変化が生じる。この寸法変化の割合を熱伸縮率と称する。本発明者らは、熱伸縮率を指標とし、銅合金板の金属組織を調質することにより、応力緩和率を著しく改善できることを見出した。
(Thermal expansion and contraction rate)
When heat is applied to a copper alloy plate, a very small dimensional change occurs. The ratio of this dimensional change is referred to as the thermal expansion / contraction rate. The present inventors have found that the stress relaxation rate can be remarkably improved by refining the metal structure of the copper alloy sheet using the thermal expansion / contraction rate as an index.

本発明では、熱伸縮率として、200℃で30分加熱した時の圧延方向の寸法変化率を用いる。この熱伸縮率の絶対値(以下、単に熱伸縮率と記す)を50ppm以下、好ましくは30ppm以下に調整することにより、応力緩和率が30%以下となる。熱伸縮率の下限値については、銅合金板の特性の点からは制限されないが、熱伸縮率が1ppm以下になることは少ない。   In the present invention, a dimensional change rate in the rolling direction when heated at 200 ° C. for 30 minutes is used as the thermal expansion / contraction rate. By adjusting the absolute value of this thermal expansion / contraction rate (hereinafter simply referred to as thermal expansion / contraction rate) to 50 ppm or less, preferably 30 ppm or less, the stress relaxation rate becomes 30% or less. The lower limit value of the thermal expansion / contraction rate is not limited in terms of the characteristics of the copper alloy sheet, but the thermal expansion / contraction rate is rarely 1 ppm or less.

ここで、熱伸縮率を測定する際の加熱条件を200℃で30分とした理由は、この条件で測定したときに、応力緩和特性との間に最も良好な相関が得られたためである。   Here, the reason for setting the heating condition at the time of measuring the thermal expansion / contraction rate at 200 ° C. for 30 minutes is that the best correlation was obtained with the stress relaxation characteristics when measured under this condition.

(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a material for connectors that carry large currents, and because it will deform with a slight external force, Also unsuitable as a material. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.

(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high-current electronic components such as connectors and terminals for large currents used in electric vehicles, hybrid vehicles, etc., or uses of electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs Useful for.

(製造方法)
以下、本発明に係る銅合金板の好適な製造方法の一例について説明する。
(Production method)
Hereinafter, an example of the suitable manufacturing method of the copper alloy plate which concerns on this invention is demonstrated.

純銅原料として電気銅等を溶解し、合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。ここで、熱伸縮率を前記範囲に調整する手段は、特定の方法に制限されないが、例えば、最終冷間圧延および歪取焼鈍の両条件を、後述するように制御することで可能となる。   As a pure copper material, electrolytic copper or the like is melted, an alloy element is added, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling, cold rolling and recrystallization annealing are repeated to finish to a predetermined product thickness by final cold rolling, and finally strain relief annealing is performed. Here, the means for adjusting the thermal expansion / contraction ratio to the above range is not limited to a specific method, but for example, it is possible to control both conditions of final cold rolling and strain relief annealing as described later.

再結晶焼鈍では、圧延組織の一部又は全てを再結晶化させる。最終冷間圧延前の再結晶焼鈍(最終再結晶焼鈍)では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、0.2%耐力を290MPa以上に調整することが難しくなる。   In recrystallization annealing, part or all of the rolling structure is recrystallized. In recrystallization annealing (final recrystallization annealing) before final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it is difficult to adjust the 0.2% yield strength to 290 MPa or more.

最終再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径に基づき決定する。具体的には、バッチ炉又は連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。   The conditions for final recrystallization annealing are determined based on the target crystal grain size after annealing. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 250 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 250 to 600 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の総加工度と1パスあたりの加工度を制御する。
総加工度R(%)は、R=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。また、1パスあたりの加工度r(%)とは、圧延ロールを1回通過したときの板厚減少率であり、r=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
総加工度Rは25〜99%とするのが好ましい。Rが小さすぎると、0.2%耐力を290MPa以上に調整することが難しくなる。Rが大きすぎると、圧延材のエッジが割れることがある。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The total workability of final cold rolling and the workability per pass are controlled.
The total workability R (%) is given by R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: plate thickness after final cold rolling). Further, the processing degree r (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (T 0 −T) / T 0 × 100 (T 0 : rolling roll) Thickness before passing, T: Thickness after passing the rolling roll).
The total processing degree R is preferably 25 to 99%. When R is too small, it becomes difficult to adjust the 0.2% proof stress to 290 MPa or more. When R is too large, the edge of the rolled material may be broken.

1パスあたりの加工度rは20%以下とすることが好ましい。全パスの中にrが20%を超えるパスが一つでも含まれると、後述の条件で歪取焼鈍を行ったとしても、熱伸縮率を50ppm以下に調整することが難しくなる。   The processing degree r per pass is preferably 20% or less. If at least one of the passes in which r exceeds 20% is included, it is difficult to adjust the thermal expansion / contraction rate to 50 ppm or less even if strain relief annealing is performed under the conditions described later.

本発明の歪取焼鈍は連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace. In the case of a batch furnace, since the material is heated in a state of being wound in a coil shape, the material is deformed during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力を歪取焼鈍前の0.2%耐力に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。さらに、連続焼鈍炉内において材料に付加される張力を1〜5MPa、より好ましくは1〜4MPaに調整する。この条件で歪取焼鈍を行うことにより、熱伸縮率が低減する。   In a continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and the 0.2% proof stress after the stress relief annealing is 0.2% before the stress relief annealing. The value is adjusted to a value 10-50 MPa lower than the proof stress, preferably 15-45 MPa lower. Further, the tension applied to the material in the continuous annealing furnace is adjusted to 1 to 5 MPa, more preferably 1 to 4 MPa. By performing strain relief annealing under these conditions, the thermal expansion / contraction rate is reduced.

0.2%耐力の低下量が小さすぎても大きすぎても、歪取焼鈍による熱伸縮率の低減が不十分となり、熱伸縮率を50ppm以下に調整することが難しくなる。また、張力が大きすぎても、歪取焼鈍による熱伸縮率の低減が不十分となり、熱伸縮率を50ppm以下に調整することが難しくなる。一方、張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。   If the 0.2% yield strength decrease is too small or too large, the reduction in thermal expansion / contraction due to strain relief annealing becomes insufficient, and it becomes difficult to adjust the thermal expansion / contraction to 50 ppm or less. Moreover, even if tension is too large, reduction of the thermal expansion / contraction rate due to strain relief annealing becomes insufficient, and it becomes difficult to adjust the thermal expansion / contraction rate to 50 ppm or less. On the other hand, if the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。   After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the hot rolled plate, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by the final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を250〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。   For annealing before final cold rolling (final recrystallization annealing), a batch furnace is used, the heating time is 5 hours, the furnace temperature is adjusted in the range of 250 to 700 ° C, and the crystal grain size and conductivity after annealing are adjusted. Changed.

最終冷間圧延では、総加工度および1パスあたりの加工度を制御した。   In the final cold rolling, the total workability and the workability per pass were controlled.

連続焼鈍炉を用いた歪取り焼鈍では、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、歪取焼鈍による0.2%耐力の低下量を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。   In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 15 minutes, and the amount of 0.2% proof stress reduction due to strain relief annealing was variously changed. In addition, various tensions were added to the material in the furnace.

製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。   The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.

(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(最終再結晶焼鈍後の平均結晶粒径)
圧延方向と直交する断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、JIS H0501(1999年)の切断法に従い測定し、平均結晶粒径を求めた。
(Average grain size after final recrystallization annealing)
After the cross section perpendicular to the rolling direction was finished to a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. On this metal structure, the average crystal grain size was determined by measuring according to the cutting method of JIS H0501 (1999).

(0.2%耐力)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. Tests were performed to determine 0.2% yield strength.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(熱伸縮率)
歪取焼鈍後の材料から、幅20mm、長さ210mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取し、図1に示すようにL0(=200mm)の間隔を空け二点の打痕を刻印した。その後、200℃で30分加熱し、加熱後の打痕間隔(L)を測定した。そして、熱伸縮率(ppm)として、(L−L0)/L0×106の式で算出される値の絶対値を求めた。
(Thermal expansion and contraction rate)
A strip-shaped test piece having a width of 20 mm and a length of 210 mm was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and L 0 (= 200 mm) as shown in FIG. ) Were stamped at two points. Then, it heated at 200 degreeC for 30 minutes, and measured the dent space | interval (L) after a heating. Then, the absolute value of the value calculated by the formula of (L−L 0 ) / L 0 × 10 6 was obtained as the thermal expansion / contraction rate (ppm).

(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図2に示すように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図3に示す永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, with the position of l = 50 mm as the working point, the test piece was given a deflection of y 0 and a stress (s) corresponding to 80% of the 0.2% proof stress in the rolling direction was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height) y shown in FIG. 3 was measured, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%)} Was calculated.

表1、2、3、4、5および6は、それぞれ合金A、合金B、合金C、合金D、合金Eおよび合金Fに関する実施例である。表7には、表1〜6に記載した以外の合金の発明例を示す。これらの実施例、比較例において、最終冷間圧延では複数のパスを実施したが、これら各パスの加工度の中での最大値を示してある。また、最終再結晶焼鈍後の結晶粒径における「<10μm」の表記は、圧延組織の全てが再結晶化しその平均結晶粒径が10μm未満であった場合、および圧延組織の一部のみが再結晶化した場合の双方を含んでいる。   Tables 1, 2, 3, 4, 5 and 6 are examples relating to Alloy A, Alloy B, Alloy C, Alloy D, Alloy E and Alloy F, respectively. Table 7 shows examples of alloys other than those described in Tables 1-6. In these examples and comparative examples, a plurality of passes were carried out in the final cold rolling, and the maximum value in the working degree of each of these passes is shown. In addition, the expression “<10 μm” in the crystal grain size after the final recrystallization annealing indicates that all of the rolling structure is recrystallized and the average crystal grain size is less than 10 μm, and that only a part of the rolling structure is recrystallized. Both cases of crystallization are included.

表1〜表7の発明例の銅合金板では、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜20質量%に調整し、最終冷間圧延前の再結晶焼鈍において、結晶粒径を50μm以下に調整し、最終冷間圧延において、総加工度を25〜99%に、1パスあたりの加工度を20%以下に調整し、歪取焼鈍において、材料を連続焼鈍炉に張力1〜5MPaで通板して0.2%耐力を10〜50MPa低下させた。その結果、熱伸縮率が50ppm以下となり、30%IACS以上の導電率、290MPa以上の0.2%耐力、30%以下の応力緩和率が得られた。   In the copper alloy plates of the inventive examples in Tables 1 to 7, one or more of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn, and Zr are 0 in total. In the recrystallization annealing before the final cold rolling, the crystal grain size is adjusted to 50 μm or less, and in the final cold rolling, the total workability is 25 to 99%, and processing per pass The degree was adjusted to 20% or less, and in strain relief annealing, the material was passed through a continuous annealing furnace with a tension of 1 to 5 MPa to reduce the 0.2% yield strength by 10 to 50 MPa. As a result, the thermal expansion / contraction rate was 50 ppm or less, and a conductivity of 30% IACS or more, a 0.2% proof stress of 290 MPa or more, and a stress relaxation rate of 30% or less were obtained.

比較例1は歪取焼鈍を行わなかったものであり、熱伸縮率が50ppmを超え、応力緩和率が30%を超えた。
比較例2では歪取焼鈍における0.2%耐力の低下量が過小であり、比較例3、4では歪取焼鈍における0.2%耐力の低下量が過大であった。このため、熱伸縮率が50ppmを超え、応力緩和率が30%を超えた。
比較例5〜7では、歪取焼鈍を行ったものの、炉内での材料張力が5MPaを超えたため、熱伸縮率が50ppmを超え、応力緩和率が30%を超えた。
比較例8、9では、最終冷間圧延における1パス当たりの加工度が20%を超えたため、熱伸縮率が50ppmを超え、応力緩和率が30%を超えた。
In Comparative Example 1, the strain relief annealing was not performed, the thermal expansion / contraction rate exceeded 50 ppm, and the stress relaxation rate exceeded 30%.
In Comparative Example 2, the amount of decrease in 0.2% yield strength in strain relief annealing was excessively small, and in Comparative Examples 3 and 4, the amount of decrease in 0.2% yield strength in strain relief annealing was excessive. For this reason, the thermal expansion / contraction rate exceeded 50 ppm and the stress relaxation rate exceeded 30%.
In Comparative Examples 5 to 7, although strain relief annealing was performed, the material tension in the furnace exceeded 5 MPa, so the thermal expansion / contraction rate exceeded 50 ppm and the stress relaxation rate exceeded 30%.
In Comparative Examples 8 and 9, since the degree of work per pass in the final cold rolling exceeded 20%, the thermal expansion / contraction rate exceeded 50 ppm and the stress relaxation rate exceeded 30%.

比較例10では最終冷間圧延における総加工度が25%に満たなかったため、また比較例11では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、歪取焼鈍後の0.2%耐力が290MPaに満たなかった。   In Comparative Example 10, the total degree of work in the final cold rolling was less than 25%, and in Comparative Example 11, the crystal grain size after recrystallization annealing before the final cold rolling exceeded 50 μm. The 0.2% proof stress was less than 290 MPa.

Claims (11)

Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜20質量%含有し、残部が銅およびその不可避的不純物からなり、30%IACS以上の導電率および290MPa以上の0.2%耐力を有し、200℃における30分間の加熱による圧延方向の熱伸縮率が50ppm以下である銅合金板。   Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn, and Zr are contained in a total of 0 to 20% by mass, with the balance being copper and its inevitable A copper alloy sheet comprising impurities, having a conductivity of 30% IACS or more and a 0.2% proof stress of 290 MPa or more, and a thermal expansion / contraction ratio in the rolling direction by heating at 200 ° C. for 30 minutes of 50 ppm or less. Ag、P、Sn、FeおよびNiの一種以上を合計で0.005〜1質量%含有し、残部が銅およびその不可避的不純物からなり、80〜102%IACSの導電率を有することを特徴とする請求項1に記載の銅合金板。   One or more of Ag, P, Sn, Fe and Ni are contained in a total amount of 0.005 to 1% by mass, the balance is made of copper and its inevitable impurities, and has a conductivity of 80 to 102% IACS. The copper alloy plate according to claim 1. Crを0.1〜0.5質量%、Snを0.1〜0.5質量%、Znを0.1〜0.5質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、70〜90%IACSの導電率を有することを特徴とする請求項1に記載の銅合金板。   Cr is 0.1 to 0.5% by mass, Sn is 0.1 to 0.5% by mass, Zn is 0.1 to 0.5% by mass, Ag, B, Co, Fe, Mg, Mn, Ni, It is characterized by containing at least one of P, Si, Ti and Zr in a total of 0 to 0.2% by mass, the balance being made of copper and its inevitable impurities and having a conductivity of 70 to 90% IACS. The copper alloy plate according to claim 1. Feを1〜3質量%、Pを0.01〜0.2質量%、Znを0.05〜0.5質量%、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、60〜80%IACSの導電率を有することを特徴とする請求項1に記載の銅合金板。   Fe 1 to 3 mass%, P 0.01 to 0.2 mass%, Zn 0.05 to 0.5 mass%, Ag, B, Co, Cr, Mg, Mn, Ni, Si, Sn, The total content of one or more of Ti and Zr is 0 to 0.2% by mass, and the balance is made of copper and its inevitable impurities and has a conductivity of 60 to 80% IACS. The copper alloy plate described in 1. Niを0.5〜3質量%、Snを0.2〜2質量%、Pを0.02〜0.2質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、30〜60%IACSの導電率を有することを特徴とする請求項1に記載の銅合金板。   Ni: 0.5-3 mass%, Sn: 0.2-2 mass%, P: 0.02-0.2 mass%, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, The total content of one or more of Zn and Zr is 0 to 0.2% by mass, and the balance is made of copper and its inevitable impurities and has a conductivity of 30 to 60% IACS. The copper alloy plate described in 1. Mgを0.2〜1質量%、Pを0.001〜0.1質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、50〜70%IACSの導電率を有することを特徴とする請求項1に記載の銅合金板。   0.2 to 1% by mass of Mg, 0.001 to 0.1% by mass of P, one or more of Ag, B, Co, Cr, Fe, Mn, Ni, Si, Sn, Ti, Zn and Zr The copper alloy plate according to claim 1, wherein 0 to 0.2 mass% in total is contained, the balance is made of copper and its inevitable impurities, and has a conductivity of 50 to 70% IACS. Niを0.1〜5質量%、Pを0.01〜0.3質量%、Feを0.01〜0.3質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、50〜90%IACSの導電率を有することを特徴とする請求項1に記載の銅合金板。   0.1 to 5% by mass of Ni, 0.01 to 0.3% by mass of P, 0.01 to 0.3% by mass of Fe, Ag, B, Co, Cr, Mg, Mn, Si, Sn, One or more of Ti, Zn and Zr are contained in a total amount of 0 to 0.2% by mass, the balance is made of copper and its inevitable impurities, and has a conductivity of 50 to 90% IACS. Item 4. The copper alloy sheet according to Item 1. 150℃で1000時間保持後の応力緩和率が30%以下である、請求項1〜7の何れか1項に記載の銅合金板。   The copper alloy plate according to any one of claims 1 to 7, wherein a stress relaxation rate after holding at 150 ° C for 1000 hours is 30% or less. インゴットを、800〜1000℃で厚み3〜30mmまで熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造方法であって、
(A)前記最終の冷間圧延前の再結晶焼鈍において、炉内温度を250〜800℃として、銅合金板の平均結晶粒径を50μm以下に調整し、
(B)前記最終の冷間圧延において、総加工度を25〜99%、1パスあたりの圧延加工度を20%以下とし、
(C)前記歪取焼鈍において、連続焼鈍炉を用い、炉内温度を300〜700℃、炉内で銅合金板に付加される張力を1〜5MPaとして、銅合金板を通板し、0.2%耐力を10〜50MPa低下させる、
ことを含む請求項1〜8の何れか1項に記載の銅合金板の製造方法。
In the method of manufacturing a copper alloy plate, after ingot is hot rolled at 800 to 1000 ° C. to a thickness of 3 to 30 mm, cold rolling and recrystallization annealing are repeated, and after final cold rolling, strain relief annealing is performed. There,
(A) In the recrystallization annealing before the final cold rolling, the furnace temperature is 250 to 800 ° C., the average crystal grain size of the copper alloy plate is adjusted to 50 μm or less,
(B) In the final cold rolling, the total workability is 25 to 99%, the rolling work per pass is 20% or less,
(C) In the strain relief annealing, using a continuous annealing furnace, the furnace temperature is 300 to 700 ° C., the tension applied to the copper alloy sheet in the furnace is 1 to 5 MPa, and the copper alloy sheet is passed through, 0 .2% yield strength is reduced by 10-50 MPa,
The manufacturing method of the copper alloy plate of any one of Claims 1-8 containing this.
請求項1〜8の何れか1項に記載の銅合金板を用いた大電流用電子部品。   The electronic component for large currents using the copper alloy plate of any one of Claims 1-8. 請求項1〜8の何れか1項に記載の銅合金板を用いた放熱用電子部品。   The electronic component for heat dissipation using the copper alloy plate of any one of Claims 1-8.
JP2013228519A 2013-11-01 2013-11-01 Copper alloy sheet with excellent conductivity and stress relaxation properties Active JP6270417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228519A JP6270417B2 (en) 2013-11-01 2013-11-01 Copper alloy sheet with excellent conductivity and stress relaxation properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228519A JP6270417B2 (en) 2013-11-01 2013-11-01 Copper alloy sheet with excellent conductivity and stress relaxation properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016162873A Division JP2017002407A (en) 2016-08-23 2016-08-23 Copper alloy sheet excellent in conductivity and stress relaxation characteristic

Publications (2)

Publication Number Publication Date
JP2015086462A true JP2015086462A (en) 2015-05-07
JP6270417B2 JP6270417B2 (en) 2018-01-31

Family

ID=53049583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228519A Active JP6270417B2 (en) 2013-11-01 2013-11-01 Copper alloy sheet with excellent conductivity and stress relaxation properties

Country Status (1)

Country Link
JP (1) JP6270417B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101773A (en) * 2013-11-26 2015-06-04 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation property
JP2017002407A (en) * 2016-08-23 2017-01-05 Jx金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation characteristic
KR20190105574A (en) * 2017-01-10 2019-09-17 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance materials and manufacturing method thereof, and resistor
CN110923503A (en) * 2019-12-31 2020-03-27 厦门火炬特种金属材料有限公司 Low-temperature resistance alloy and preparation method thereof
WO2021107093A1 (en) * 2019-11-29 2021-06-03 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical equipment, terminal, busbar, and heat-diffusing substrate
CN114645152A (en) * 2022-03-14 2022-06-21 红河学院 High-strength high-conductivity copper-magnesium alloy and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527866B (en) * 2019-09-29 2021-02-05 广东和润新材料股份有限公司 High-conductivity and high-strength copper strip and preparation method thereof
JP2023005017A (en) 2021-06-28 2023-01-18 Dowaメタルテック株式会社 Copper alloy sheet material and method for producing copper alloy sheet material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128292A (en) * 1982-01-26 1983-07-30 Furukawa Electric Co Ltd:The Thin strip of phosphorus copper brazing filler metal
JP2002275563A (en) * 2001-03-21 2002-09-25 Kobe Steel Ltd Hot-rollable phosphor bronze
JP2006206988A (en) * 2005-01-31 2006-08-10 Nikko Kinzoku Kk Copper alloy for electronic appliance
JP2007107087A (en) * 2005-09-16 2007-04-26 Kobe Steel Ltd Copper alloy plate having excellent stress relaxation resistance, and process for producing the same
JP2007169741A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd Copper alloy having superior stress relaxation resistance
WO2009098810A1 (en) * 2008-02-08 2009-08-13 Mitsui Mining & Smelting Co., Ltd. Process for producing precipitation-hardened copper alloy strip
JP2010031339A (en) * 2008-07-30 2010-02-12 Kobe Steel Ltd COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP2012177197A (en) * 2010-08-27 2012-09-13 Furukawa Electric Co Ltd:The Copper alloy sheet material and method for producing the same
JP2012207261A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy sheet for electric and electronic part
JP2013129889A (en) * 2011-12-22 2013-07-04 Furukawa Electric Co Ltd:The Copper alloy material and method for producing the same
JP2013139623A (en) * 2011-12-09 2013-07-18 Kobe Steel Ltd Copper alloy for lead frame excellent in bare bondability
JP2013213236A (en) * 2012-03-30 2013-10-17 Jx Nippon Mining & Metals Corp Cu-Zn-Sn-Ni-P-BASED ALLOY

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128292A (en) * 1982-01-26 1983-07-30 Furukawa Electric Co Ltd:The Thin strip of phosphorus copper brazing filler metal
JP2002275563A (en) * 2001-03-21 2002-09-25 Kobe Steel Ltd Hot-rollable phosphor bronze
JP2006206988A (en) * 2005-01-31 2006-08-10 Nikko Kinzoku Kk Copper alloy for electronic appliance
JP2007107087A (en) * 2005-09-16 2007-04-26 Kobe Steel Ltd Copper alloy plate having excellent stress relaxation resistance, and process for producing the same
JP2007169741A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd Copper alloy having superior stress relaxation resistance
WO2009098810A1 (en) * 2008-02-08 2009-08-13 Mitsui Mining & Smelting Co., Ltd. Process for producing precipitation-hardened copper alloy strip
JP2010031339A (en) * 2008-07-30 2010-02-12 Kobe Steel Ltd COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP2012177197A (en) * 2010-08-27 2012-09-13 Furukawa Electric Co Ltd:The Copper alloy sheet material and method for producing the same
JP2012207261A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy sheet for electric and electronic part
JP2013139623A (en) * 2011-12-09 2013-07-18 Kobe Steel Ltd Copper alloy for lead frame excellent in bare bondability
JP2013129889A (en) * 2011-12-22 2013-07-04 Furukawa Electric Co Ltd:The Copper alloy material and method for producing the same
JP2013213236A (en) * 2012-03-30 2013-10-17 Jx Nippon Mining & Metals Corp Cu-Zn-Sn-Ni-P-BASED ALLOY

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101773A (en) * 2013-11-26 2015-06-04 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation property
JP2017002407A (en) * 2016-08-23 2017-01-05 Jx金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation characteristic
KR20190105574A (en) * 2017-01-10 2019-09-17 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance materials and manufacturing method thereof, and resistor
KR102463644B1 (en) 2017-01-10 2022-11-07 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance material, manufacturing method thereof, and resistor
WO2021107093A1 (en) * 2019-11-29 2021-06-03 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical equipment, terminal, busbar, and heat-diffusing substrate
JPWO2021107093A1 (en) * 2019-11-29 2021-12-09 三菱マテリアル株式会社 Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
CN114761589A (en) * 2019-11-29 2022-07-15 三菱综合材料株式会社 Copper alloy, copper alloy plastic working material, electronic/electric device module, terminal, bus bar, and heat dissipating substrate
CN114761589B (en) * 2019-11-29 2023-05-16 三菱综合材料株式会社 Copper alloy, copper alloy plastic working material, electronic/electrical device module, terminal, bus bar, and heat dissipating substrate
CN110923503A (en) * 2019-12-31 2020-03-27 厦门火炬特种金属材料有限公司 Low-temperature resistance alloy and preparation method thereof
CN114645152A (en) * 2022-03-14 2022-06-21 红河学院 High-strength high-conductivity copper-magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP6270417B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5847787B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5427971B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6296728B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6296727B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
TW201522671A (en) Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5453565B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5352750B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017089011A (en) Copper alloy sheet excellent in conductivity and flexure deflection coefficient
JP2014198891A (en) Copper alloy sheet and electronic component for heat release having the same
JP2014205864A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP2017082338A (en) Copper alloy sheet excellent in conductivity and bending deflection coefficient
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties
JP2014208868A (en) Copper alloy and high-current connector terminal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20160823

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20170606

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20171017

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20171114

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20171205

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250