JP2007107087A - Copper alloy plate having excellent stress relaxation resistance, and process for producing the same - Google Patents

Copper alloy plate having excellent stress relaxation resistance, and process for producing the same Download PDF

Info

Publication number
JP2007107087A
JP2007107087A JP2006156395A JP2006156395A JP2007107087A JP 2007107087 A JP2007107087 A JP 2007107087A JP 2006156395 A JP2006156395 A JP 2006156395A JP 2006156395 A JP2006156395 A JP 2006156395A JP 2007107087 A JP2007107087 A JP 2007107087A
Authority
JP
Japan
Prior art keywords
copper alloy
less
stress relaxation
relaxation resistance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006156395A
Other languages
Japanese (ja)
Other versions
JP4164517B2 (en
Inventor
Yasuhiro Ariga
康博 有賀
Yukiya Nomura
幸矢 野村
Katsura Kajiwara
桂 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006156395A priority Critical patent/JP4164517B2/en
Publication of JP2007107087A publication Critical patent/JP2007107087A/en
Application granted granted Critical
Publication of JP4164517B2 publication Critical patent/JP4164517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ni-Sn-P-based alloy having high stress relaxation resistance in an orthogonal direction to the rolling direction, and jointly having high strength, high electrical conductivity and excellent bending workability. <P>SOLUTION: In the Cu-Ni-Sn-P-based alloy, when a solution obtained by dissolving the copper alloy by an extraction residue method under specified conditions is subjected to suction filtration by a filter having an opening size of 0.1 μm, the content of Ni in the extraction residue after extraction separation on the filter is not more than 40% in terms of the proportion to the content of Ni in the copper alloy. Thus, Ni compounds with a coarse size of >0.1 μm are suppressed, and further, Ni compounds with a fine size of ≤0.1 μm are increased so as to improve its stress relaxation resistance in an orthogonal direction to the rolling direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐応力緩和特性に優れた銅合金板およびその製造方法に関し、特に自動車用端子・コネクタなどの接続部品用として適する耐応力緩和特性に優れた銅合金板およびその製造方法に関する。   The present invention relates to a copper alloy plate excellent in stress relaxation resistance and a manufacturing method thereof, and more particularly to a copper alloy plate excellent in stress relaxation resistance suitable for connection parts such as automobile terminals and connectors and a manufacturing method thereof.

近年の自動車用端子・コネクタなどの接続部品には、エンジンルームのような高温環境下で信頼性を確保できる性能が求められるようになっている。この高温環境下での信頼性において最も重要な特性のひとつは、接点嵌合力の維持特性、いわゆる耐応力緩和特性である。すなわち銅合金からなるばね形状部品に定常の変位を与えた場合、例えばオス端子のタブをメス端子のばね形状をした接点で嵌合しているような場合、これらの接続部品がエンジンルームのような高温環境下に保持されていると、経時とともにその接点嵌合力を失っていくが、耐応力緩和特性とは、これに対する抵抗特性である。   In recent years, connecting parts such as automobile terminals and connectors are required to have a performance capable of ensuring reliability in a high temperature environment such as an engine room. One of the most important characteristics in reliability under this high temperature environment is a contact fitting force maintaining characteristic, so-called stress relaxation resistance characteristic. That is, when a steady displacement is applied to a spring-shaped component made of a copper alloy, for example, when a tab of a male terminal is fitted with a spring-shaped contact of a female terminal, these connecting components are like an engine room. If the contact fitting force is maintained under a high temperature environment, the contact fitting force is lost with time, and the stress relaxation resistance is a resistance characteristic against this.

耐応力緩和特性に優れる銅合金としては、従来から、Cu−Ni−Si系合金、Cu−Ti系合金、Cu−Be系合金などが広く知られている。これらはいずれも強酸化性元素(Si、Ti、Beなど)を含有するため、大気中への開口部が広く開いた大規模溶解炉では溶解できず、生産性の面から高コストは避けられない。   Conventionally, Cu-Ni-Si alloys, Cu-Ti alloys, Cu-Be alloys, and the like are widely known as copper alloys having excellent stress relaxation resistance. Since these all contain strong oxidizing elements (Si, Ti, Be, etc.), they cannot be melted in a large-scale melting furnace with a wide opening to the atmosphere, and high costs can be avoided in terms of productivity. Absent.

これに対し、添加元素量が比較的少ないCu−Ni−Sn−P系合金は、いわゆるシャフト炉造塊が可能で、その高生産性ゆえに大幅な低コスト化が可能である。このCu−Ni−Sn−P系合金でも、耐応力緩和特性の向上策などが、従来から種々提案されている。   On the other hand, a Cu—Ni—Sn—P alloy having a relatively small amount of additive element can be so-called shaft furnace ingot, and can be greatly reduced in cost because of its high productivity. For this Cu—Ni—Sn—P alloy, various measures for improving the stress relaxation resistance have been proposed.

例えば、下記特許文献1には、耐応力緩和特性に優れたコネクタ用銅基合金の製造方法が開示されている。この製造方法は、Cu−Ni−Sn−P系合金について、マトリックス中にNi−P金属間化合物を均一微細に分散させ、電気伝導度を向上させると同時に耐応力緩和特性等を向上させたものであり、同文献によれば、所望の特性を得るためには、熱間圧延の冷却開始、終了温度、その冷却速度、さらにはその後の冷間圧延工程途中で施す5〜720分の熱処理の温度と時間とを厳密に制御する必要がある。   For example, Patent Document 1 below discloses a method for producing a copper-based alloy for connectors having excellent stress relaxation resistance. This manufacturing method is a Cu-Ni-Sn-P alloy in which Ni-P intermetallic compounds are uniformly and finely dispersed in a matrix to improve electrical conductivity and at the same time improve stress relaxation resistance and the like. According to the same document, in order to obtain desired characteristics, the cooling start and end temperature of the hot rolling, the cooling rate thereof, and further the heat treatment of 5 to 720 minutes applied during the subsequent cold rolling process. It is necessary to strictly control the temperature and time.

また、下記特許文献2、3には、耐応力緩和特性に優れたCu−Ni−Sn−P合金及びその製造方法として、なるべくP含有量を下げて、Ni−P化合物の析出を抑えた固溶型銅合金とすることが開示されている。これによれば、高度な熱処理技術を必要とせず、きわめて短時間の焼鈍熱処理で製造可能であるという利点がある。
特許第2844120号公報 特開平11−293367号公報 特開2002−294368号公報
In Patent Documents 2 and 3 below, as a Cu—Ni—Sn—P alloy having excellent stress relaxation resistance and a method for producing the same, a solid content in which precipitation of Ni—P compounds is suppressed by reducing the P content as much as possible. It is disclosed that a molten copper alloy is used. According to this, there is an advantage that it can be manufactured by an extremely short annealing heat treatment without requiring an advanced heat treatment technique.
Japanese Patent No. 2844120 JP-A-11-293367 JP 2002-294368 A

社団法人自動車技術会の規格JASO−C400では、耐応力緩和特性に関して、150℃×1000hr保持後の応力緩和率が15%以下と定めている。図1(a)、(b)に、耐応力緩和特性の試験装置を示す。この試験装置を用い、短冊状に切り出した試験片1の一端を剛体試験台2に固定し、他端を片持ち梁式に持ち上げて反らせ(反りの大きさd)、これを所定の温度及び時間で保持した後、室温下で除荷し、除荷後の反りの大きさ(永久歪み)をδとして求める。応力緩和率(RS)は、RS=(δ/d)×100で表される。   In the JASO-C400 standard of the Japan Society for Automotive Engineers, regarding the stress relaxation resistance, the stress relaxation rate after holding at 150 ° C. × 1000 hr is defined as 15% or less. 1A and 1B show a stress relaxation resistance test apparatus. Using this test apparatus, one end of the test piece 1 cut into a strip shape is fixed to the rigid body test stand 2 and the other end is lifted and bent in a cantilever manner (warping magnitude d). After holding for a period of time, unloading is performed at room temperature, and the magnitude of warpage (permanent strain) after unloading is obtained as δ. The stress relaxation rate (RS) is represented by RS = (δ / d) × 100.

銅合金板の応力緩和率には異方性があり、試験片の長手方向が銅合金板の圧延方向に対しどの方向を向いているかによって異なった値となる。一般的に、圧延方向に対し平行方向の方が直角方向より応力緩和率は小さい。しかし、前記JASO規格では、この方向についての規定がなく、そのため、従来は、圧延方向に対し平行方向か直角方向のいずれか一方について、15%以下の応力緩和率が達成されていればよいとされている。しかし、近年では、銅合金板は、その圧延方向に対して直角方向に、高い耐応力緩和特性を有することが望ましいとされている。   The stress relaxation rate of the copper alloy plate has anisotropy, and takes different values depending on which direction the longitudinal direction of the test piece is oriented with respect to the rolling direction of the copper alloy plate. Generally, the stress relaxation rate is smaller in the direction parallel to the rolling direction than in the direction perpendicular to the rolling direction. However, in the JASO standard, there is no provision for this direction. Therefore, conventionally, it is sufficient that a stress relaxation rate of 15% or less is achieved in either the direction parallel to or perpendicular to the rolling direction. Has been. However, in recent years, it has been desirable for copper alloy sheets to have high stress relaxation resistance in a direction perpendicular to the rolling direction.

図2に代表的な箱形コネクタ(メス端子3)の断面構造を示す。図2において、上側ホルダー部4に押圧片5が片持ち支持され、オス端子6が挿入されると押圧片5が弾性変形し、その反力によりオス端子6が固定される。なお、図2において、7はワイヤ接続部、8は固定用舌片である。ここにおいて、銅合金板をプレス加工してメス端子3を製造する場合、メス端子3の長手方向(押圧片5の長手方向)が圧延方向に対し直角方向を向くように板取りされる。押圧片5において特に高い耐応力緩和特性が要求されるのは、押圧片5の長さ方向への曲げ(弾性変形)に対してである。したがって、銅合金板には、その圧延方向に対して直角方向に、高い耐応力緩和特性を有することが要求される。   FIG. 2 shows a cross-sectional structure of a typical box connector (female terminal 3). In FIG. 2, the pressing piece 5 is cantilevered by the upper holder portion 4, and when the male terminal 6 is inserted, the pressing piece 5 is elastically deformed, and the male terminal 6 is fixed by the reaction force. In FIG. 2, 7 is a wire connecting portion, and 8 is a fixing tongue piece. Here, when the female terminal 3 is manufactured by pressing a copper alloy plate, the female terminal 3 is cut so that the longitudinal direction of the female terminal 3 (longitudinal direction of the pressing piece 5) is perpendicular to the rolling direction. The pressing piece 5 is required to have particularly high stress relaxation resistance for bending (elastic deformation) in the length direction of the pressing piece 5. Therefore, the copper alloy sheet is required to have high stress relaxation resistance in a direction perpendicular to the rolling direction.

これに対して、前記特許文献2、3に開示された固溶型銅合金では、応力緩和率15%以下の高い耐応力緩和特性は、圧延方向に対して平行方向にはほぼ達成されているが、直角方向にはいまだ達成されていない。   In contrast, in the solid solution type copper alloys disclosed in Patent Documents 2 and 3, high stress relaxation resistance with a stress relaxation rate of 15% or less is substantially achieved in the direction parallel to the rolling direction. However, it has not yet been achieved in the perpendicular direction.

そのため、ユーザー側から、この種の固溶型銅合金に関して、圧延方向に対し平行方向よりも、圧延方向に対して直角方向に、応力緩和率15%以下の高い耐応力緩和特性が求められるようになっている。   For this reason, a high stress relaxation property with a stress relaxation rate of 15% or less is required from the user side in a direction perpendicular to the rolling direction, rather than a direction parallel to the rolling direction, with respect to this type of solid solution type copper alloy. It has become.

これらの点に鑑み、本発明は、Cu−Ni−Sn−P系合金について、圧延方向に対して直角方向に、応力緩和率15%以下の高い耐応力緩和特性を達成することを目的とする。   In view of these points, an object of the present invention is to achieve a high stress relaxation resistance with a stress relaxation rate of 15% or less in a direction perpendicular to the rolling direction for a Cu-Ni-Sn-P alloy. .

この目的を達成するための、本発明耐応力緩和特性に優れた銅合金の要旨は、質量%で、Ni:0.1〜3.0%、Sn:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部銅および不可避的不純物からなる銅合金であって、下記抽出残渣法により目開きサイズ0.1μm のフィルター上に抽出分離された抽出残渣における下記Ni量が、前記銅合金中のNi含有量に対する割合で40%以下とする。
ここで、上記抽出残渣法は、10質量%の酢酸アンモニウム濃度のメタノール溶液300mlに、10gの前記銅合金を浸漬し、この銅合金を陽極とする一方、白金を陰極として用いて、電流密度10mmA/cm2 で定電流電解を行い、この銅合金を溶解させた前記溶液を、目開きサイズ0.1μm のポリカーボネート製メンブレンフィルターによって吸引ろ過し、このフィルター上に未溶解物残渣を分離抽出するものとする。
また、上記抽出残渣中の上記Ni量は、前記フィルター上の未溶解物残渣を王水と水とを1対1の割合で混合した溶液によって溶解した後に、ICP発光分光法によって分析して求めるものとする。
In order to achieve this object, the gist of the copper alloy excellent in stress relaxation resistance of the present invention is mass%, Ni: 0.1 to 3.0%, Sn: 0.01 to 3.0%, P : A copper alloy containing 0.01 to 0.3% each and consisting of the remainder copper and inevitable impurities, in the extraction residue extracted and separated on a filter having an opening size of 0.1 μm by the following extraction residue method The following Ni amount is set to 40% or less in terms of the Ni content in the copper alloy.
Here, in the extraction residue method, 10 g of the copper alloy was immersed in 300 ml of a 10% by mass ammonium acetate concentration methanol solution, and the copper alloy was used as an anode, while platinum was used as a cathode, and a current density of 10 mmA. a constant current electrolysis at / cm 2, which the solution obtained by dissolving the copper alloy, and suction filtered through a polycarbonate membrane filter having an opening size 0.1 [mu] m, the undissolved substances residue is separated and extracted on the filter And
The amount of Ni in the extraction residue is obtained by dissolving the undissolved residue on the filter with a solution in which aqua regia and water are mixed at a ratio of 1: 1, and then analyzing by ICP emission spectroscopy. Shall.

更に、上記目的を達成するための、本発明耐応力緩和特性に優れた銅合金板の製造方法の要旨は、上記要旨乃至後述する好ましい態様の銅合金の板を製造する方法であって、銅合金の鋳造、熱間圧延、冷間圧延、仕上げ焼鈍により銅合金板を得るに際し、銅合金溶解炉での合金元素の添加完了から鋳造開始までの所要時間を1200秒以内とし、更に、鋳塊の加熱炉より鋳塊を抽出してから熱間圧延終了までの所要時間を1200秒以下とする。   Furthermore, the summary of the method for producing a copper alloy sheet excellent in stress relaxation resistance according to the present invention for achieving the above object is a method for producing a copper alloy sheet of a preferred embodiment described above or below, When obtaining a copper alloy sheet by casting, hot rolling, cold rolling, and finish annealing of the alloy, the time required from the completion of addition of the alloy element in the copper alloy melting furnace to the start of casting is set within 1200 seconds. The required time from extracting the ingot from the heating furnace to the end of hot rolling is 1200 seconds or less.

本発明によれば、Cu−Ni−Sn−P系の銅合金において、圧延方向に対して直角方向に、応力緩和率15%以下の高い耐応力緩和特性を達成することができる。また、曲げ特性に優れ、導電率(約30%IACS以上)および強度(約480MPa以上の耐力)にも優れるなど、端子・コネクタ用として優れた特性を有する銅合金を得ることができる。   According to the present invention, in a Cu—Ni—Sn—P based copper alloy, it is possible to achieve high stress relaxation resistance with a stress relaxation rate of 15% or less in a direction perpendicular to the rolling direction. Moreover, it is possible to obtain a copper alloy having excellent characteristics for terminals and connectors, such as excellent bending characteristics, electrical conductivity (about 30% IACS or more) and strength (yield strength of about 480 MPa or more).

本発明者らは、前記した従来のNi−P化合物の析出を抑えた固溶型銅合金において、応力緩和率15%以下の高い耐応力緩和特性が、圧延方向に対して平行方向にはほぼ達成されているが、直角方向にはいまだ達成されていない理由について検討した。   In the solid solution type copper alloy in which precipitation of the conventional Ni—P compound described above is suppressed, the present inventors have a high stress relaxation resistance with a stress relaxation rate of 15% or less in a direction parallel to the rolling direction. The reason why it was achieved but not yet achieved in the perpendicular direction was examined.

この結果、一定サイズ以上の粗大なNiの酸化物、晶出物、析出物を抑制してやれば、応力緩和率15%以下の高い耐応力緩和特性が、圧延方向に対して直角方向に達成されることを知見した。   As a result, if coarse Ni oxides, crystallized substances and precipitates of a certain size or larger are suppressed, a high stress relaxation resistance with a stress relaxation rate of 15% or less is achieved in a direction perpendicular to the rolling direction. I found out.

即ち、この一定サイズ以上の粗大なNiの酸化物、晶出物、析出物とは、上記本発明要旨における、目開きサイズ0.1μm のフィルター上に抽出分離された抽出残渣におけるNi量に相当する。この抽出残渣におけるNi量を上記本発明要旨のように、前記銅合金中のNi含有量に対する割合で40%以下と抑制してやれば、応力緩和率15%以下の高い耐応力緩和特性が、圧延方向に対して直角方向に達成される。また、同時に、曲げ特性、導電率および強度にも優れさせることができる。   That is, the coarse Ni oxides, crystallized substances, and precipitates of a certain size or more correspond to the amount of Ni in the extraction residue extracted and separated on the filter having a mesh size of 0.1 μm in the above-mentioned summary of the present invention. To do. If the amount of Ni in this extraction residue is suppressed to 40% or less as a percentage of the Ni content in the copper alloy as in the gist of the present invention, a high stress relaxation resistance with a stress relaxation rate of 15% or less is obtained in the rolling direction. Is achieved in a direction perpendicular to. At the same time, bending properties, conductivity and strength can be improved.

また、このように、0.1μm を越える一定サイズ以上の粗大なNiの酸化物、晶出物、析出物などのNi化合物(Ni生成物)を抑制すれば、一方で、0.1μm 以下の微細なNi化合物(ナノレベル以下の微細なNiのクラスターを含む)などの量や、Niの固溶量を確保できることに繋がる。なお、Niのクラスターとは、原子構造レベルでの、結晶化する前の原子の集団を言う。   In addition, if Ni compounds (Ni products) such as coarse Ni oxides, crystallized substances, and precipitates having a certain size exceeding 0.1 μm are suppressed in this way, on the other hand, 0.1 μm or less. This leads to ensuring the amount of fine Ni compounds (including fine Ni clusters below the nano level) and the like, and the solid solution amount of Ni. The Ni cluster is a group of atoms before crystallization at the atomic structure level.

前記した特許文献1のような、Cu−Ni−Sn−P系合金マトリックス中にNi−P金属間化合物の均一微細分散だけでは、圧延方向に対して直角方向の耐応力緩和特性を向上できず、上記0.1μm 以下の微細なNi化合物量やNiの固溶量を確保する必要がある。ただ、これら0.1μm 以下の微細なNi化合物やNiの固溶量自体は直接測定することができない。   The stress relaxation resistance in the direction perpendicular to the rolling direction cannot be improved only by uniform fine dispersion of the Ni-P intermetallic compound in the Cu-Ni-Sn-P alloy matrix as in Patent Document 1 described above. Therefore, it is necessary to secure the fine Ni compound amount of 0.1 μm or less and the solid solution amount of Ni. However, these fine Ni compounds of 0.1 μm or less and the solid solution amount of Ni cannot be directly measured.

これに対して、本発明では、上記0.1μm を越える粗大なNi化合物を抑制することで、間接的に、これら0.1μm 以下の微細なNi化合物量やNiの固溶量が確保することが特徴的である。   On the other hand, in the present invention, by suppressing the coarse Ni compound exceeding 0.1 μm, the amount of fine Ni compound of 0.1 μm or less and the solid solution amount of Ni are indirectly secured. Is characteristic.

本発明で、上記0.1μm を越える粗大なNi化合物を抑制するとともに、0.1μm 以下の微細なNi化合物量やNiの固溶量を確保するためには、常法とは異なる製造条件が必要となる。即ち、上記本発明銅合金板の製造方法の要旨の通り、銅合金の鋳造、熱間圧延、冷間圧延、仕上げ焼鈍により銅合金板を得るに際し、銅合金溶解炉での合金元素の添加完了から鋳造開始までの短時間化と、更に、鋳塊の加熱炉より鋳塊を抽出してから熱間圧延終了までの短時間化が必要である。   In the present invention, in order to suppress the coarse Ni compound exceeding 0.1 μm and to secure a fine Ni compound amount of 0.1 μm or less and a solid solution amount of Ni, production conditions different from those of the conventional method are used. Necessary. That is, as described in the summary of the method for producing a copper alloy sheet of the present invention, when the copper alloy sheet is obtained by casting, hot rolling, cold rolling, and finish annealing of the copper alloy, the addition of the alloy element in the copper alloy melting furnace is completed. It is necessary to shorten the time from the start of casting to the start of casting, and further from the extraction of the ingot from the ingot heating furnace to the end of hot rolling.

一般的なこの種銅合金板の製造工程においては、これらの所要時間が長時間化しやすい。このため、添加されたNi含有量の大部分が、溶解・鋳造時に生じた酸化物、晶出物、および鋳塊の均熱から熱延終了までに生じた粗大析出物に取られてしまい、添加されたNi含有量に応じて生成すべき0.1μm 以下の微細なNi化合物量やNiの固溶量が意外に少なくなってしまう。   In a general manufacturing process of this kind of copper alloy sheet, these required times tend to be long. For this reason, most of the added Ni content is taken up by oxides, crystallized substances generated during melting and casting, and coarse precipitates generated from the soaking of the ingot to the end of hot rolling, The amount of fine Ni compound of 0.1 μm or less to be generated according to the added Ni content and the solid solution amount of Ni are unexpectedly reduced.

通常、一般的なこの種銅合金板の製造工程においては、熱間圧延、そして冷間圧延と焼鈍の繰り返しにより最終(製品)板を得て、主に冷延条件、焼鈍条件により、0.1μm 以下の微細なNi化合物量やNiの固溶量を制御する。その際、ほどよく分散した金属間化合物への、Ni等の合金元素の拡散が、Ni等の固溶量および微細生成物の析出量を安定化させ、これによって強度レベル等の機械的特性の制御をなそうとする。   Usually, in a general manufacturing process of this kind of copper alloy sheet, a final (product) sheet is obtained by repeating hot rolling and cold rolling and annealing. Control the amount of fine Ni compound and the solid solution amount of Ni of 1 μm or less. At that time, the diffusion of alloy elements such as Ni into the moderately dispersed intermetallic compound stabilizes the solid solution amount of Ni and the precipitation amount of fine products, thereby improving the mechanical properties such as strength level. Try to control.

しかし、これら一般的な製造工程においては、上記して通り、前段の工程において、0.1μm 以下の微細なNi化合物量やNiの固溶量の絶対量が少なくなっている、このため、熱延以降の冷延条件、焼鈍条件により、前記微細生成物を多く析出させようとしても、0.1μm 以下の微細なNi化合物やNiの固溶量の絶対量が不足し、強度と耐応力緩和特性を向上させることは困難であった。   However, in these general manufacturing processes, as described above, the amount of fine Ni compounds of 0.1 μm or less and the absolute amount of Ni solid solution is reduced in the preceding process. Even when trying to precipitate a large amount of the fine product due to cold rolling conditions and annealing conditions after rolling, the absolute amount of fine Ni compound or Ni solid solution of 0.1 μm or less is insufficient, and strength and stress relaxation resistance It was difficult to improve the characteristics.

更に、上記粗大な酸化物、晶出物、および析出物(Ni化合物)が多い場合、冷延、焼鈍工程で析出した微細生成物は、この粗大生成物にトラップされてしまい、マトリックス中に独立して存在する微細生成物はますます少なくなる。このため、前記した一般的な製造方法では、Niの添加量が多い割には、十分な強度と優れた耐応力緩和特性を得ることができなかった。   Furthermore, when there are many coarse oxides, crystallized substances, and precipitates (Ni compounds), the fine products precipitated in the cold rolling and annealing processes are trapped in the coarse products and become independent in the matrix. And there are fewer and fewer fine products present. For this reason, in the general manufacturing method described above, sufficient strength and excellent stress relaxation resistance could not be obtained for a large amount of Ni added.

これに対して、本発明では、上記0.1μm を越える粗大なNi化合物を抑制することで、必要な(有用な)0.1μm 以下の微細なNi化合物量やNiの固溶量が確保できる。この結果、応力緩和率15%以下の高い耐応力緩和特性が、圧延方向に対して直角方向に達成される。また、同時に、曲げ特性、導電率および強度にも優れさせることができる。   On the other hand, in the present invention, by suppressing the coarse Ni compound exceeding 0.1 μm, the necessary (useful) fine Ni compound amount of 0.1 μm or less and the solid solution amount of Ni can be secured. . As a result, high stress relaxation resistance with a stress relaxation rate of 15% or less is achieved in a direction perpendicular to the rolling direction. At the same time, bending properties, conductivity and strength can be improved.

(銅合金成分組成)
先ず、本発明銅合金の成分組成につき、以下に説明する。本発明では、銅合金の成分組成を、前提として、前記した通り、シャフト炉造塊が可能で、その高生産性ゆえに大幅な低コスト化が可能なCu−Ni−Sn−P系合金とする。
(Copper alloy component composition)
First, the component composition of the copper alloy of the present invention will be described below. In the present invention, based on the premise of the component composition of the copper alloy, as described above, a shaft furnace ingot is possible, and a Cu—Ni—Sn—P-based alloy that can be significantly reduced in cost because of its high productivity. .

そして、自動車用端子・コネクタなどの接続部品として要求される、圧延方向に対して直角方向の高い耐応力緩和特性と、同時に、曲げ特性、導電率および強度にも優れさせるために、基本的に、Ni:0.1〜3.0%、Sn:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部銅および不可避的不純物からなる銅合金とする。なお、各元素の含有量の%表示は、全て質量%の意味である。以下に銅合金の合金元素につき、その添加理由や抑制理由について説明する。   And, in order to improve the stress relaxation properties in the direction perpendicular to the rolling direction, which are required as connecting parts such as automobile terminals and connectors, at the same time, in order to improve bending properties, conductivity and strength, basically , Ni: 0.1 to 3.0%, Sn: 0.01 to 3.0%, P: 0.01 to 0.3%, respectively, and a copper alloy composed of the remaining copper and inevitable impurities . In addition,% display of content of each element means the mass% altogether. The reasons for addition and suppression of alloy elements of copper alloy will be described below.

(Ni)
Niは、Pとの微細な析出物を形成して、強度や耐応力緩和特性を向上させるのに必要な元素である。0.1%未満の含有では、最適な本発明製造方法によっても、0.1μm 以下の微細なNi化合物量やNiの固溶量の絶対量が不足する。このため、Niの効果を有効に発揮させるには、0.1%以上の含有が必要である。
(Ni)
Ni is an element necessary for forming fine precipitates with P and improving strength and stress relaxation resistance. When the content is less than 0.1%, the amount of fine Ni compound of 0.1 μm or less and the absolute amount of solid solution of Ni are insufficient even by the optimum production method of the present invention. For this reason, in order to exhibit the effect of Ni effectively, containing 0.1% or more is required.

但し、3.0%を超えて過剰に含有させると、Niの酸化物、晶出物、析出物などの化合物が粗大化、あるいは粗大なNi化合物が増大して、上記抽出残渣におけるNi量を銅合金中のNi含有量に対する割合で40%以下とできない。この結果、0.1μm 以下の微細なNi化合物量やNiの固溶量が低下する。また、これらの粗大化したNi化合物は、破壊の起点となるため、強度や耐応力緩和特性だけでなく、曲げ加工性も低下する。したがって、Niの含有量は0.1〜3.0%の範囲とする。好ましくは、0.3〜2.0%の範囲とする。   However, if the content exceeds 3.0%, compounds such as Ni oxides, crystallization products, and precipitates become coarse, or coarse Ni compounds increase, and the amount of Ni in the extraction residue is increased. It cannot be 40% or less in terms of the Ni content in the copper alloy. As a result, the amount of fine Ni compound and the solid solution amount of Ni of 0.1 μm or less are reduced. Moreover, since these coarsened Ni compounds serve as starting points for fracture, not only strength and stress relaxation resistance but also bending workability are deteriorated. Therefore, the Ni content is in the range of 0.1 to 3.0%. Preferably, it is 0.3 to 2.0% of range.

(Sn)
Snは、銅合金中に固溶して強度を向上させる。さらに、Sn系析出物は焼鈍中の再結晶による軟化を抑制する。但し、本発明に係る銅合金において、Sn系析出物を積極的に生成させるためには、より高温での焼鈍が必要となるが、Sn含有量が0.1%未満では、焼鈍中の再結晶による軟化を抑制できず、強度が低下する。したがって、Sn含有量が0.1%未満では、焼鈍後の最終冷延の圧下率を増加するなどして、高強度化を行なう必要がある。この場合には、導電率や耐応力緩和特性の若干の低下を伴う。但し、Sn含有量が0.01%未満では、Snが少な過ぎて、焼鈍後の最終冷延の圧下率を増加しても強度が低すぎ、これら特性バランスが所望のレベルに達しない。一方、3.0%を超えると導電率が低下し、30%IACS以上を達成できない。したがって、Snの含有量は0.01〜3.0%の範囲、好ましくは0.1〜2.0%の範囲、より好ましくは0.3〜2.0%の範囲とする。
(Sn)
Sn is dissolved in the copper alloy to improve the strength. Furthermore, Sn-based precipitates suppress softening due to recrystallization during annealing. However, in order to positively produce Sn-based precipitates in the copper alloy according to the present invention, annealing at a higher temperature is required. However, if the Sn content is less than 0.1%, The softening due to crystals cannot be suppressed, and the strength decreases. Therefore, if the Sn content is less than 0.1%, it is necessary to increase the strength by increasing the rolling reduction of the final cold rolling after annealing. In this case, there is a slight decrease in conductivity and stress relaxation resistance. However, if the Sn content is less than 0.01%, Sn is too small, and even if the final cold rolling reduction after annealing is increased, the strength is too low, and the balance of these properties does not reach the desired level. On the other hand, if it exceeds 3.0%, the conductivity is lowered, and 30% IACS or more cannot be achieved. Therefore, the Sn content is in the range of 0.01 to 3.0%, preferably in the range of 0.1 to 2.0%, and more preferably in the range of 0.3 to 2.0%.

(P)
Pは、Niと微細な析出物を形成して、強度や耐応力緩和特性を向上させるのに必要な元素である。0.01%未満の含有ではP系の微細な析出物粒子が不足するため、0.01%以上の含有が必要である。但し、0.3%を超えて過剰に含有させると、Ni−P金属間化合物析出粒子が粗大化し、強度や耐応力緩和特性だけでなく、熱間加工性も低下する。したがって、Pの含有量は0.01〜0.3%の範囲とする。好ましくは、0.02〜0.2%の範囲とする。
(P)
P is an element necessary for forming fine precipitates with Ni and improving strength and stress relaxation resistance. If the content is less than 0.01%, the P-based fine precipitate particles are insufficient, so the content must be 0.01% or more. However, when it exceeds 0.3% and contains excessively, the Ni-P intermetallic compound precipitation particle | grains will coarsen and not only the intensity | strength and stress relaxation characteristics but hot workability will also fall. Therefore, the P content is in the range of 0.01 to 0.3%. Preferably, it is set as 0.02 to 0.2% of range.

(Fe、Zn、Mn、Si、Mg)
Fe、Zn、Mn、Si、Mgは、スクラップなどの溶解原料から混入しやすい。これらの元素は、各々の含有効果があるものの、総じて導電率を低下させる。また、含有量が多くなると、シャフト炉で造塊しにくくなる。したがって、30%IACS以上の導電率を得る場合には、各々、Fe:0.5%以下、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下とする。言い換えると、本発明では、これら上限値以下の含有は許容する。
(Fe, Zn, Mn, Si, Mg)
Fe, Zn, Mn, Si, and Mg are easily mixed from a melting raw material such as scrap. Although these elements have their respective effects, they generally lower the electrical conductivity. Moreover, when content increases, it will become difficult to agglomerate with a shaft furnace. Therefore, when obtaining a conductivity of 30% IACS or more, Fe: 0.5% or less, Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, Mg: 0 3% or less. In other words, in this invention, content below these upper limits is permitted.

Feは、Snと同様に、銅合金の再結晶温度を高める。しかし、0.5%を超えると導電率が低下して30%IACSを達成できない。好ましくは、0.3%以下とする。   Fe raises the recrystallization temperature of a copper alloy like Sn. However, if it exceeds 0.5%, the conductivity decreases and 30% IACS cannot be achieved. Preferably, it is 0.3% or less.

Znは、錫めっきの剥離を防止する。しかし、1%を超えると導電率が低下して30%IACSを達成できない。また、シャフト炉で造塊する場合は0.05%以下が望ましい。そして、自動車用端子として使用する温度領域(約150〜180℃)であれば、0.05%以下の含有でも錫めっきの剥離を防止できる効果がある。   Zn prevents peeling of tin plating. However, if it exceeds 1%, the conductivity decreases and 30% IACS cannot be achieved. Moreover, when ingot-making with a shaft furnace, 0.05% or less is desirable. And if it is a temperature range (about 150-180 degreeC) used as a terminal for motor vehicles, even if it contains 0.05% or less, there exists an effect which can prevent peeling of tin plating.

Mn、Siには脱酸剤としての効果がある。しかし、0.1%を超えると、導電率が低下して30%IACSを達成できない。また、シャフト炉で造塊する場合には、更に、Mn:0.001%以下、Si:0.002%以下と各々することが望ましい。   Mn and Si have an effect as a deoxidizer. However, if it exceeds 0.1%, the conductivity decreases and 30% IACS cannot be achieved. Further, when ingot forming is performed in a shaft furnace, it is further preferable to set Mn: 0.001% or less and Si: 0.002% or less.

Mgは耐応力緩和特性を向上させる作用がある。しかし、0.3%を超えると、導電率が低下して30%IACSを達成できない。また、シャフト炉で造塊する場合には、0.001%以下が望ましい。   Mg has the effect of improving the stress relaxation resistance. However, if it exceeds 0.3%, the conductivity decreases and 30% IACS cannot be achieved. Moreover, when ingot-making with a shaft furnace, 0.001% or less is desirable.

(Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Pt)
本発明銅合金は、更に、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptを、これらの元素の合計で1.0%以下含有することを許容する。これらの元素は、結晶粒の粗大化を防止する作用があるが、これらの元素の合計で1.0%を越えた場合、導電率が低下して30%IACSを達成できない。また、シャフト炉で造塊しにくくなる。
(Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, Pt)
The copper alloy of the present invention further allows Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt to be contained in a total of 1.0% or less of these elements. These elements have an effect of preventing coarsening of crystal grains. However, when the total of these elements exceeds 1.0%, the conductivity is lowered and 30% IACS cannot be achieved. Moreover, it becomes difficult to ingot in a shaft furnace.

この他、Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルは不純物であり、これらの元素の合計で0.1%以下に制限する。   In addition, Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B Misch metal is an impurity, and the total of these elements is limited to 0.1% or less.

(抽出残渣規定)
本発明では、前記した通り、0.1μm の一定サイズを越える粗大なNiの酸化物、晶出物、析出物(Ni化合物)を抑制し、応力緩和率15%以下の高い耐応力緩和特性を、圧延方向に対して直角方向に達成する。
この一定サイズ以上の粗大なNi化合物量を、本発明では、目開きサイズ0.1μm のフィルター上に抽出分離された抽出残渣におけるNi量と規定する。そして、この抽出残渣におけるNi量(粗大なNi化合物量)を、前記銅合金中のNi含有量に対する割合で40%以下に規定する。
(Extraction residue regulations)
In the present invention, as described above, coarse Ni oxides, crystallized substances and precipitates (Ni compounds) exceeding a certain size of 0.1 μm are suppressed, and high stress relaxation resistance with a stress relaxation rate of 15% or less is achieved. Achieved in a direction perpendicular to the rolling direction.
In the present invention, the amount of coarse Ni compound of a certain size or more is defined as the amount of Ni in the extraction residue extracted and separated on a filter having an opening size of 0.1 μm. And the amount of Ni (the amount of coarse Ni compound) in this extraction residue is regulated to 40% or less as a percentage of the Ni content in the copper alloy.

このように、一定サイズ以上の粗大なNi化合物量を抑制すれば、これら粗大Ni化合物の抑制効果と、0.1μm 以下の微細なNi化合物量や、Niの固溶量を確保する効果とが生じる。この結果、応力緩和率15%以下の高い耐応力緩和特性が、圧延方向に対して直角方向に達成される。また、同時に、曲げ特性、導電率および強度にも優れさせることができる。   Thus, if the amount of coarse Ni compound having a certain size or more is suppressed, the effect of suppressing these coarse Ni compounds, the amount of fine Ni compound of 0.1 μm or less, and the effect of ensuring the solid solution amount of Ni are obtained. Arise. As a result, high stress relaxation resistance with a stress relaxation rate of 15% or less is achieved in a direction perpendicular to the rolling direction. At the same time, bending properties, conductivity and strength can be improved.

上記抽出残渣におけるNi量の、前記銅合金中のNi含有量に対する割合が40%を越えた場合、上記粗大化合物量が増加する。また、これに応じて、0.1μm 以下の微細なNi化合物量やNiの固溶量が不足する。このため、圧延方向に対して直角方向の耐応力緩和特性や強度が低下する。と同時に、上記粗大化合物が破壊の起点となるため、曲げ加工性も低下する。   When the ratio of the Ni content in the extraction residue to the Ni content in the copper alloy exceeds 40%, the amount of the coarse compound increases. Further, according to this, the amount of fine Ni compound of 0.1 μm or less and the solid solution amount of Ni are insufficient. For this reason, the stress relaxation property and strength in the direction perpendicular to the rolling direction are reduced. At the same time, since the coarse compound serves as a starting point of fracture, bending workability also decreases.

(抽出残渣法)
本発明で規定する抽出残渣法は、測定に再現性をもたせるために、具体的な測定条件を規定する。即ち、10質量%の酢酸アンモニウム濃度のメタノール溶液300mlに、10gの前記銅合金を浸漬し、この銅合金を陽極とする一方、白金を陰極として用いて、電流密度10mmA/cm2 で定電流電解を行う。これによって、この銅合金を溶解させた前記溶液を、目開きサイズ0.1μm のポリカーボネート製メンブレンフィルターによって吸引ろ過し、このフィルター上に未溶解物残渣を分離抽出するものとする。なお、このフィルターの目開きサイズ0.1μm は、現状では最も小さいフィルターの目開きサイズとなる。
(Extraction residue method)
The extraction residue method defined in the present invention defines specific measurement conditions in order to provide reproducibility in measurement. That is, 10 g of the copper alloy is immersed in 300 ml of a 10% by mass ammonium acetate methanol solution, and the copper alloy is used as an anode, while platinum is used as a cathode and constant current electrolysis is performed at a current density of 10 mmA / cm 2. I do. Thus, the solution in which the copper alloy is dissolved is suction filtered through a polycarbonate membrane filter having an opening size of 0.1 μm, and undissolved residue is separated and extracted on the filter. The filter aperture size of 0.1 μm is the smallest filter aperture size at present.

前記銅合金を溶解させた溶液では、銅マトリックス中に予め固溶したNiは溶解しており、0.1μm を越える粗大なNi化合物と、0.1μm 以下の微細なNi化合物とが、溶解せずに分散している。このため、前記目開きサイズ0.1μm のフィルター上に分離抽出される未溶解物残渣は、0.1μm を越える粗大なNi化合物のみとなる。一方、予め固溶したNiと、0.1μm 以下の微細なNi化合物とは、溶液とともに前記フィルターを透過する。   In the solution in which the copper alloy is dissolved, Ni previously dissolved in the copper matrix is dissolved, and a coarse Ni compound exceeding 0.1 μm and a fine Ni compound not exceeding 0.1 μm are dissolved. Without being distributed. For this reason, the undissolved residue separated and extracted on the filter having an aperture size of 0.1 μm is only a coarse Ni compound exceeding 0.1 μm. On the other hand, Ni dissolved in advance and a fine Ni compound of 0.1 μm or less permeate the filter together with the solution.

(抽出残渣中のNi量)
また、上記分離抽出された残渣中のNi量は、前記フィルター上の未溶解物残渣を王水と水とを1対1の割合で混合した溶液によって溶解した後に、ICP発光分光法によって分析して求めるものとする。
(Ni amount in extraction residue)
The amount of Ni in the separated and extracted residue is analyzed by ICP emission spectroscopy after dissolving the undissolved residue on the filter with a solution in which aqua regia and water are mixed at a ratio of 1: 1. To ask for.

(銅合金製造方法)
次に、本発明銅合金の製造方法について以下に説明する。本発明銅合金は工程自体は常法により製造できる。即ち、成分組成を調整した銅合金溶湯の鋳造、鋳塊面削、均熱、熱間圧延、そして冷間圧延と焼鈍の繰り返しにより最終(製品)板を得る。そして、強度レベル等の機械的特性の制御も、主に冷延条件、焼鈍条件により、0.1μm 以下の微細生成物の析出を制御することによってなされる。
(Copper alloy manufacturing method)
Next, the manufacturing method of this invention copper alloy is demonstrated below. The copper alloy of the present invention can be produced by a conventional method. That is, a final (product) plate is obtained by casting a molten copper alloy with an adjusted composition, ingot chamfering, soaking, hot rolling, and repeating cold rolling and annealing. The mechanical properties such as the strength level are also controlled by controlling the precipitation of fine products of 0.1 μm or less mainly by cold rolling conditions and annealing conditions.

但し、本発明銅合金板を製造するために最適な製造方法としては、銅合金の鋳造、熱間圧延、冷間圧延、焼鈍により銅合金板を得るに際し、銅合金溶解炉での合金元素の添加完了から鋳造開始までの所要時間を1200秒以内とし、更に、鋳塊の加熱炉より鋳塊を抽出してから熱延終了までの所要時間を1200秒以下とする。   However, as an optimal manufacturing method for manufacturing the copper alloy sheet of the present invention, when obtaining a copper alloy sheet by copper alloy casting, hot rolling, cold rolling, annealing, the alloy elements in the copper alloy melting furnace The required time from the completion of addition to the start of casting is set to 1200 seconds or less, and further, the required time from the extraction of the ingot from the ingot heating furnace to the end of hot rolling is set to 1200 seconds or less.

本発明で、上記0.1μm を越える粗大なNi化合物を抑制するとともに、0.1μm 以下の微細なNi化合物量やNiの固溶量を確保するためには、このように、銅合金溶解炉での合金元素の添加完了から鋳造開始までの短時間化と、更に、鋳塊の加熱炉より鋳塊を抽出してから熱間圧延終了までの短時間化が必要である。   In the present invention, in order to suppress the coarse Ni compound exceeding 0.1 μm and to secure a fine Ni compound amount of 0.1 μm or less and a solid solution amount of Ni, in this way, a copper alloy melting furnace Therefore, it is necessary to shorten the time from the completion of the addition of the alloy element to the start of casting, and further from the extraction of the ingot from the ingot heating furnace to the end of hot rolling.

一般的なこの種銅合金板の製造工程においては、これらの所要時間が長時間化しやすい。このため、添加されたNi含有量の大部分が、溶解・鋳造時に生じた酸化物、晶出物、および鋳塊の均熱から熱延終了までに生じた粗大析出物に取られ、添加されたNi含有量に応じて生成すべき0.1μm 以下の微細なNi化合物量やNiの固溶量が少なくなってしまう。   In a general manufacturing process of this kind of copper alloy sheet, these required times tend to be long. For this reason, most of the added Ni content is taken up and added to oxides, crystals, and coarse precipitates generated from the soaking of the ingot to the end of hot rolling. Depending on the Ni content, the amount of fine Ni compounds of 0.1 μm or less and the solid solution amount of Ni are reduced.

したがって、後段の主に冷延条件、焼鈍条件により、0.1μm 以下の微細なNi化合物量やNiの固溶量を制御しようとしても、上記前段の工程において、0.1μm 以下の微細なNi化合物量やNiの固溶量の絶対量が少なくなっている。更に、上記粗大なNi化合物が多い場合、冷延、焼鈍工程で析出した微細生成物は、この粗大生成物にトラップされてしまい、マトリックス中に独立して存在する微細生成物はますます少なくなる。このため、前記した一般的な製造方法では、Niの添加量が多い割には、十分な強度と優れた耐応力緩和特性を得ることができなかった。   Therefore, even if it is attempted to control the amount of fine Ni compound of 0.1 μm or less or the solid solution amount of Ni mainly by cold rolling conditions and annealing conditions in the latter stage, in the above-mentioned process, fine Ni compounds of 0.1 μm or less The absolute amount of the compound amount and the solid solution amount of Ni is reduced. Furthermore, when there are many coarse Ni compounds, the fine products precipitated in the cold rolling and annealing processes are trapped by the coarse products, and the fine products that exist independently in the matrix become more and less. . For this reason, in the general manufacturing method described above, sufficient strength and excellent stress relaxation resistance could not be obtained for a large amount of Ni added.

このため、本発明では、上記製造工程において、より上流側で粗大Ni化合物を抑制する。即ち、特に粗大Ni化合物の抑制のために、(1)溶解炉での合金元素添加完了から鋳造開始までの時間管理、および(2)加熱炉より鋳塊を抽出してから熱延終了までの時間管理を重要とする。   For this reason, in this invention, a coarse Ni compound is suppressed more upstream in the said manufacturing process. Specifically, in order to suppress particularly large Ni compounds, (1) time management from the completion of addition of alloy elements in the melting furnace to the start of casting, and (2) from the extraction of the ingot from the heating furnace to the end of hot rolling Time management is important.

先ず、溶解・鋳造自体は、連続鋳造、半連続鋳造などの通常の方法によって行うことができる。但し、前記(1)の溶解炉での合金元素添加完了から鋳造開始までの時間管理においては、溶解炉での元素添加が完了してから1200秒以内、好ましくは1100秒以内に鋳造を行い、冷却・凝固速度を0.1℃/秒以上、好ましくは0.2℃/秒以上とすることが望ましい。   First, melting and casting itself can be performed by a normal method such as continuous casting or semi-continuous casting. However, in the time management from the completion of addition of the alloy element in the melting furnace (1) to the start of casting, the casting is performed within 1200 seconds, preferably within 1100 seconds after completion of the addition of the element in the melting furnace, It is desirable that the cooling / solidification rate is 0.1 ° C./second or more, preferably 0.2 ° C./second or more.

これにより、Niを含む酸化物や晶出物の生成や成長・粗大化を抑制し、これらを微細に分散させることができる。Niを含む酸化物の生成抑制の観点からは、真空溶解・鋳造、または酸素分圧の低い雰囲気下での溶解・鋳造を行うことがより好ましい。   Thereby, generation | occurrence | production, growth, and coarsening of the oxide and crystallized substance containing Ni can be suppressed, and these can be disperse | distributed finely. From the viewpoint of suppressing the formation of oxides containing Ni, it is more preferable to perform vacuum melting / casting or melting / casting in an atmosphere having a low oxygen partial pressure.

従来、添加元素を含むCu−Pなどの母合金を確実に溶解し、固溶した添加元素を溶湯中に均一に分散させるため、かつ原料追装後の再分析が必要なため、鋳造を開始するまでに1500秒程度以上の時間を要していた。しかし、このように鋳造までに時間をかけると、Niを含む酸化物の生成・粗大化を促進し、かつ添加元素の歩留りを低下させることが分かった。   Conventionally, casting is started because it is necessary to reliably dissolve the mother alloy such as Cu-P containing the additive element, and to uniformly disperse the dissolved additive element in the molten metal and to perform reanalysis after the raw material is added. It took about 1500 seconds or more to complete. However, it has been found that if it takes a long time to cast in this way, the production and coarsening of oxides containing Ni are promoted and the yield of additive elements is reduced.

このようなNiを含む酸化物の生成・粗大化を避けるため、本発明の銅合金の製造の際には、上記のように溶解炉での合金元素添加完了から鋳造開始までの所要時間を1200秒以内、好ましくは1100秒以内となるように短縮する。このような鋳造までの時間の短縮は、過去の溶製実績を基に原料追装後の組成を予測し、再分析に要する時間を短縮すること等によって達成することができる。   In order to avoid the formation and coarsening of the oxide containing Ni, the time required from the completion of the addition of the alloy element in the melting furnace to the start of casting as described above is 1200 when manufacturing the copper alloy of the present invention. The time is shortened to be within seconds, preferably within 1100 seconds. Such shortening of the time to casting can be achieved by predicting the composition after the raw material addition based on past melting results and shortening the time required for reanalysis.

次に、前記(2)の加熱炉より鋳塊を抽出してから熱延終了までの時間管理において、鋳塊を加熱炉にて加熱後、炉から取り出された鋳塊は熱延開始まで待ち時間が生じる。しかし、本発明のNi化合物の粗大化を抑制した銅合金を製造するには、前記溶解から鋳造開始までの時間および冷却・凝固速度の制御を行うと共に、鋳塊を加熱炉より抽出した時点から熱延終了までの所要(総経過)時間を1200秒以下、好ましくは1100秒以下に制御することが推奨される。   Next, in the time management from the extraction of the ingot from the heating furnace (2) to the end of hot rolling, after the ingot is heated in the heating furnace, the ingot taken out from the furnace waits for the start of hot rolling. Time arises. However, in order to produce a copper alloy that suppresses the coarsening of the Ni compound of the present invention, the time from the melting to the start of casting and the cooling / solidification rate are controlled and the ingot is extracted from the heating furnace. It is recommended to control the required (total elapsed time) until the end of hot rolling to 1200 seconds or less, preferably 1100 seconds or less.

従来は、この様な加熱炉抽出から熱延終了までの時間を管理することは検討されておらず、加熱炉から熱延ラインへの運搬や、生産性向上を狙ったスラブの大型化に伴う熱延時間の延長によって、1500秒を超える時間が費やされるのが一般的であった。しかし、この様に時間がかかると、その間に、Ni系の粗大析出物が析出し、また溶解・鋳造中に生じた晶出物や酸化物を核としてNiやPが析出することが分かった。これら粗大な析出粒子が増加すると、前記Ni残査量も過剰に増加するため、強度や耐応力緩和特性が低下する。   Conventionally, it has not been studied to manage the time from the extraction of the heating furnace to the end of the hot rolling, and it is accompanied by the transportation from the heating furnace to the hot rolling line and the enlargement of the slab aimed at improving the productivity. It has been common to spend more than 1500 seconds by extending the hot rolling time. However, it has been found that when such time is required, Ni-based coarse precipitates are deposited during that time, and Ni and P are precipitated with crystallized substances and oxides generated during dissolution and casting as nuclei. . When these coarse precipitate particles increase, the amount of Ni residue increases excessively, so that the strength and stress relaxation resistance decrease.

このような固溶Niの減少とNi化合物の粗大化などの作用を回避するため、本発明合金の製造に際しては、上記のように積極的に、加熱炉抽出から熱延終了までの合計所要時間を1200秒以内に管理する。このような時間管理は、加熱炉から熱延ラインへ鋳塊を迅速に運搬したり、熱延時間が長くなる大型スラブの使用を避け、あえて小型スラブを使用することなどによって達成することができる。   In order to avoid such actions as reduction of solute Ni and coarsening of Ni compounds, the total required time from extraction in the furnace to the end of hot rolling is positively produced as described above in the production of the alloy of the present invention. Are managed within 1200 seconds. Such time management can be achieved by quickly transporting the ingot from the heating furnace to the hot rolling line, avoiding the use of large slabs that increase the hot rolling time, and dare to use small slabs. .

熱間圧延については、常法に従えばよく、熱間圧延の入り側温度は600〜1000℃程度、終了温度は600〜850℃程度とされる。熱間圧延後は水冷又は放冷する。   About hot rolling, what is necessary is just to follow a usual method, the entrance temperature of hot rolling is about 600-1000 degreeC, and end temperature shall be about 600-850 degreeC. After hot rolling, it is cooled with water or allowed to cool.

その後、冷間圧延と焼鈍を行なって、製品板厚の銅合金板などとする。焼鈍と冷間圧延は、最終(製品)板厚に応じて繰り返されても良い。冷間粗圧延は最終仕上げ圧延において30〜80%程度の加工率が得られるように、加工率を選択する。冷間粗圧延の途中に適宜中間の再結晶焼鈍を挟むことができる。   Thereafter, cold rolling and annealing are performed to obtain a copper alloy plate having a product thickness. Annealing and cold rolling may be repeated depending on the final (product) plate thickness. In the cold rough rolling, the processing rate is selected so that a processing rate of about 30 to 80% is obtained in the final finish rolling. An intermediate recrystallization annealing can be appropriately interposed during the cold rough rolling.

冷間粗圧延後の銅合金板に対する仕上げ焼鈍は、連続焼鈍でもバッチ焼鈍でも良い。ただ、微細なNi−P金属間化合物の析出量を多くするためには、必然的に、連続焼鈍(短時間)では保持温度を高く、バッチ焼鈍(長時間)では保持温度を低くする。この点、処理温度(実体温度)と保持時間の目安として、連続焼鈍では500〜800℃×10〜60秒、バッチ焼鈍(長時間)では300〜600℃×2〜20時間が好ましい。なお、この仕上げ焼鈍後は10℃/秒以上の冷却速度で急冷することが望ましい。   The finish annealing for the copper alloy sheet after the cold rough rolling may be continuous annealing or batch annealing. However, in order to increase the precipitation amount of the fine Ni—P intermetallic compound, the holding temperature is inevitably increased during continuous annealing (short time) and the holding temperature is decreased during batch annealing (long time). In this respect, as a measure of the processing temperature (substance temperature) and the holding time, 500 to 800 ° C. × 10 to 60 seconds are preferable for continuous annealing, and 300 to 600 ° C. × 2 to 20 hours are preferable for batch annealing (long time). In addition, after this finish annealing, it is desirable to rapidly cool at a cooling rate of 10 ° C./second or more.

最終仕上げ冷間圧延後の歪み取り焼鈍、あるいは安定化焼鈍は、実体温度250〜450℃×20〜40秒で行うのが望ましい。これにより最終仕上げ圧延で導入された歪みが除去され、かつ材料の軟化がなく強度の低下が少ないからである。   The strain relief annealing or the stabilization annealing after the final finish cold rolling is desirably performed at an actual temperature of 250 to 450 ° C. × 20 to 40 seconds. This is because the distortion introduced in the final finish rolling is removed, the material is not softened, and the strength is hardly lowered.

以下に本発明の実施例を説明する。組織中のNi化合物の状態が異なる、Cu−Ni−Sn−P系合金の種々の銅合金薄板を製造し、強度、導電率、耐応力緩和特性などの特性を評価した。   Examples of the present invention will be described below. Various copper alloy thin plates of Cu—Ni—Sn—P based alloys having different Ni compound states in the structure were produced, and properties such as strength, conductivity, and stress relaxation resistance were evaluated.

具体的には、表1に示す各化学成分組成の銅合金をそれぞれコアレス炉にて溶製した後、半連続鋳造法で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。これら各鋳塊を、共通して、以下の条件にて圧延して銅合金薄板を製造した。各鋳塊の表面を面削して加熱後、熱間圧延を行って厚さ16mmの板とし、650℃以上の温度から水中に急冷した。   Specifically, after each copper alloy having the chemical composition shown in Table 1 was melted in a coreless furnace, it was ingoted by a semi-continuous casting method, and the ingot was 70 mm thick × 200 mm wide × 500 mm long. Got. These ingots were commonly rolled under the following conditions to produce a copper alloy sheet. The surface of each ingot was chamfered and heated, and then hot-rolled to form a plate having a thickness of 16 mm, and rapidly cooled into water from a temperature of 650 ° C. or higher.

この板を、酸化スケールを除去した後、冷延→連続焼鈍→冷延→歪み取り焼鈍を行なって、銅合金薄板を製造した。即ち、一次冷間圧延(粗冷間圧延、中延べ冷間圧延)後の板を面削し、仕上げ焼鈍を660℃の実体温度に20秒保持する連続焼鈍にて行なった後に、圧下率を50%として仕上げ冷間圧延を行った。但し、表2の発明例16と比較例19のみは、Sn含有量が0.1%未満と少なく、焼鈍による軟化(焼鈍中の再結晶)を抑制できず、強度が低下するために、仕上げ冷間圧延の圧下率を80%と比較的高くして強度向上を図った。この後、実体温度400℃×20秒の低温の歪み取り焼鈍を行って、厚さ0.25mmの銅合金薄板を得た。   After removing the oxide scale, this plate was subjected to cold rolling → continuous annealing → cold rolling → strain relief annealing to produce a copper alloy thin plate. That is, the plate after primary cold rolling (rough cold rolling, intermediate cold rolling) is face-faced, and the final annealing is performed by continuous annealing at a solid temperature of 660 ° C. for 20 seconds. Finish cold rolling was performed at 50%. However, only Invention Example 16 and Comparative Example 19 in Table 2 have a Sn content of less than 0.1% and cannot suppress softening due to annealing (recrystallization during annealing), resulting in reduced strength. The reduction in cold rolling was relatively high at 80% to improve the strength. Thereafter, low temperature strain relief annealing at an actual temperature of 400 ° C. × 20 seconds was performed to obtain a copper alloy thin plate having a thickness of 0.25 mm.

この際、表2に示すように、溶解炉での合金元素添加完了から鋳造開始までの所要時間(表2では鋳造開始までの所要時間と記載)、鋳造の際の冷却凝固速度、加熱炉抽出温度、熱延終了温度、加熱炉抽出から熱延終了までの所要時間(表2では熱延終了までの所要時間と記載)を種々変えて、銅合金薄板組織中のNi化合物の状態を制御した。   At this time, as shown in Table 2, the time required from the completion of addition of the alloy element in the melting furnace to the start of casting (in Table 2, described as the time required until the start of casting), the cooling solidification rate at the time of casting, and the heating furnace extraction The state of the Ni compound in the copper alloy sheet structure was controlled by variously changing the temperature, the end temperature of the hot rolling, and the required time from the heating furnace extraction to the end of the hot rolling (in Table 2, the time required to complete the hot rolling). .

このようにして得た各銅合金薄板から、10gの抽出残渣測定用の試験片を採取し、前記した方法により、目開き0.1μm のメッシュによって抽出分離された抽出残渣に含まれるNi量を、前記したICP発光分光分析法によって求めた。そして、前記銅合金のNi含有量に対する割合(%)を求めた。これらの結果を表2に示す。   From each copper alloy thin plate thus obtained, 10 g of a test piece for extraction residue measurement was collected, and the amount of Ni contained in the extraction residue extracted and separated by a mesh having a mesh size of 0.1 μm was obtained by the method described above. The above-mentioned ICP emission spectroscopic analysis method was used. And the ratio (%) with respect to Ni content of the said copper alloy was calculated | required. These results are shown in Table 2.

また、各例とも、得た各銅合金板から試料を切り出し、引張試験、導電率測定、応力緩和率測定、曲げ試験を行った。これらの結果も表2に示す。   In each example, a sample was cut out from each obtained copper alloy plate and subjected to a tensile test, conductivity measurement, stress relaxation rate measurement, and bending test. These results are also shown in Table 2.

(引張試験)
前記銅合金薄板から試験片を採取し、試験片長手方向が板材の圧延方向に対し直角方向となるように、機械加工にてJIS5号引張試験片を作製した。そして、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、機械的な特性を測定した。なお、耐力は永久伸び0.2%に相当する引張り強さである。
(Tensile test)
A test piece was collected from the copper alloy thin plate, and a JIS No. 5 tensile test piece was prepared by machining so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the plate. Then, mechanical characteristics were measured with a 5882 type Instron universal testing machine under the conditions of room temperature, a test speed of 10.0 mm / min, and GL = 50 mm. The proof stress is a tensile strength corresponding to a permanent elongation of 0.2%.

(導電率測定)
前記銅合金薄板から試料を採取し、導電率を測定した。銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により導電率を算出した。
(Conductivity measurement)
A sample was taken from the copper alloy thin plate and the conductivity was measured. The electrical conductivity of the copper alloy sheet sample is a double-bridge type in accordance with the nonferrous metal material conductivity measurement method specified in JIS-H0505 by processing a strip-shaped test piece of width 10 mm x length 300 mm by milling. The electrical resistance was measured with a resistance measuring device, and the conductivity was calculated by the average cross section method.

(応力緩和特性)
前記銅合金薄板の、圧延方向に対して直角方向の応力緩和率を測定し、この方向の耐応力緩和特性を評価した。具体的には、前記銅合金薄板から試験片を採取し、図1に示す片持ち梁方式を用いて測定した。幅10mmの短冊状試験片1(長さ方向が板材の圧延方向に対し直角方向になるもの)を切り出し、その一端を剛体試験台2に固定し、試験片1のスパン長Lの部分にd(=10mm)の大きさのたわみ量を与える。このとき、材料耐力の80%に相当する表面応力が材料に負荷されるようにLを決める。これを180℃のオーブン中に30時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδを測定し、RS=(δ/d)×100で応力緩和率(RS)を計算する。なお、180℃×30時間の保持は、ラーソン・ミラーパラメーターで計算すると、ほぼ150℃×1000時間の保持に相当する。
(Stress relaxation characteristics)
The stress relaxation rate in the direction perpendicular to the rolling direction of the copper alloy sheet was measured, and the stress relaxation resistance property in this direction was evaluated. Specifically, a test piece was taken from the copper alloy thin plate and measured using the cantilever method shown in FIG. A strip-shaped test piece 1 having a width of 10 mm (with the length direction perpendicular to the rolling direction of the plate material) is cut out, one end thereof is fixed to the rigid body test stand 2, and the span length L of the test piece 1 is d. A deflection amount having a size of (= 10 mm) is given. At this time, L is determined so that a surface stress corresponding to 80% of the material yield strength is applied to the material. This is held in an oven at 180 ° C. for 30 hours and then taken out. The permanent strain δ when the deflection d is removed is measured, and the stress relaxation rate (RS) is calculated by RS = (δ / d) × 100. In addition, holding | maintenance of 180 degreeC x 30 hours is equivalent to holding | maintenance of about 150 degreeC x 1000 hours, when it calculates with a Larson Miller parameter.

(曲げ加工性の評価試験)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅10mm、長さ30mmに切出し、曲げ半径0.5mmでGood Way(曲げ軸が圧延方向に直角)曲げを行い、曲げ部における割れの有無を50倍の光学顕微鏡で目視観察した。割れの無いものを○、割れが生じたものを×と評価した。
(Evaluation test for bending workability)
The bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. The plate material was cut into a width of 10 mm and a length of 30 mm, bent in a Good Way (bending axis perpendicular to the rolling direction) with a bending radius of 0.5 mm, and visually observed for cracks in the bent portion with a 50 × optical microscope. The thing without a crack was evaluated as (circle), and the thing which a crack produced evaluated as x.

表2から明らかな通り、表1の本発明組成内の銅合金(合金番号1〜13)である発明例1〜16は、溶解炉での合金元素添加完了から鋳造開始までの所要時間が1200秒以内、鋳造の際の冷却凝固速度が0.5℃/秒以上、加熱炉抽出から熱延開始までの所要時間が1200秒以内、の好ましい条件内で製造されている。また、加熱炉抽出温度、熱延終了温度ともに適切である。   As is apparent from Table 2, Invention Examples 1 to 16 which are copper alloys (alloy numbers 1 to 13) within the composition of the present invention in Table 1 have a required time of 1200 from the completion of addition of the alloy element in the melting furnace to the start of casting. The cooling solidification rate at the time of casting is 0.5 ° C./second or more, and the required time from the furnace extraction to the start of hot rolling is within 1200 seconds. Moreover, both the heating furnace extraction temperature and the hot rolling end temperature are appropriate.

このため、表2の発明例1〜16は、前記した抽出残渣法により抽出分離された抽出残渣中のNi量の、合金Ni含有量に対する割合が80%以下であるように、0.1μm を越える粗大なNiの酸化物、晶出物、析出物などのNi化合物が抑制されている。したがって、0.1μm 以下の微細なNi化合物(ナノレベル以下の微細なNiのクラスターを含む)などの量や、Niの固溶量を確保できているものと推考される。   For this reason, Invention Examples 1 to 16 in Table 2 are set to 0.1 μm so that the ratio of the Ni content in the extraction residue extracted and separated by the above-described extraction residue method to the alloy Ni content is 80% or less. Coarse Ni compounds such as oxides, crystallized substances, and precipitates are suppressed. Therefore, it is presumed that the amount of fine Ni compound of 0.1 μm or less (including fine Ni clusters of nano level or less) and the like, and the solid solution amount of Ni can be secured.

この結果、発明例1〜16は、圧延方向に対して直角方向に、応力緩和率15%以下の高い耐応力緩和特性を達成することができている。また、曲げ特性に優れ、強度にも優れるなど、端子・コネクタ用として優れた特性を有している。   As a result, Invention Examples 1 to 16 can achieve high stress relaxation resistance with a stress relaxation rate of 15% or less in the direction perpendicular to the rolling direction. In addition, it has excellent characteristics for terminals and connectors, such as excellent bending characteristics and strength.

ただ、表2の発明例1〜6の中での比較において、溶解炉での合金元素添加完了から鋳造開始までの所要時間が比較的長い発明例2、6、加熱炉抽出から熱延開始までの所要時間が比較的長い発明例3、4は、これらが比較的短い発明例1、5に比して、耐応力緩和特性が比較的低い。   However, in the comparison among Invention Examples 1 to 6 in Table 2, the time required from the completion of addition of the alloy element in the melting furnace to the start of casting is relatively long Inventive Examples 2 and 6, from extraction of the heating furnace to the start of hot rolling Inventive Examples 3 and 4 that require a relatively long time are relatively low in stress relaxation resistance compared to Inventive Examples 1 and 5 in which these are relatively short.

また、表2の発明例1〜16の中でも、その他の元素量が前記した好ましい上限を越える発明例9〜15(表1の合金番号6〜12)は、導電率が、発明例1〜8に比して、低くなっている。   Among Invention Examples 1 to 16 in Table 2, Invention Examples 9 to 15 (alloy numbers 6 to 12 in Table 1) in which the amount of other elements exceeds the above-described preferable upper limit, the conductivity is Invention Examples 1 to 8. It is lower than

発明例9〜13は、各々、Fe、Zn、Mn、Si、Mgが、表1の合金番号6〜10の通り、前記した好ましい上限を越えて高い。   In Invention Examples 9 to 13, Fe, Zn, Mn, Si, and Mg are higher than the above-described preferable upper limit as shown in Alloy Nos. 6 to 10 in Table 1.

発明例14は、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptの元素の合計が、表1の合金番号11の通り、前記した好ましい上限1.0質量%を越えて高い。   In invention example 14, the total of elements of Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt exceeded the preferable upper limit of 1.0% by mass as described in alloy number 11 in Table 1. Is expensive.

発明例15は、Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの合計が、表1の合金番号12の通り、前記した好ましい上限0.1質量%を越えて高い。   Invention Example 15 includes Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te , B, and misch metal are higher than the preferable upper limit of 0.1% by mass as shown in Alloy No. 12 in Table 1.

一方、発明例16は、表1の合金13の通り、Sn含有量が0.1%未満と低く、仕上げ冷間圧延の圧下率を前記した通り比較的高くして強度向上を図ったが、焼鈍による軟化によって、他の発明例に比して強度が比較的低い。   On the other hand, in Invention Example 16, as in Alloy 13 in Table 1, the Sn content was as low as less than 0.1%, and the reduction ratio of the finish cold rolling was relatively high as described above to improve the strength. Due to the softening by annealing, the strength is relatively low compared to other invention examples.

これに対して、表2の比較例23〜26は、表1の本発明組成内の銅合金(合金番号1)であるにもかかわらず、各々製造条件が好ましい範囲から外れる。
比較例23、24は溶解炉での合金元素添加完了から鋳造開始までの所要時間が1200秒を越えて長過ぎる。また、比較例25、26は加熱炉抽出から熱延開始までの所要時間が1200秒を越えて長過ぎる。
On the other hand, although Comparative Examples 23-26 of Table 2 are the copper alloys (alloy number 1) in this invention composition of Table 1, manufacturing conditions remove | deviate from the preferable range, respectively.
In Comparative Examples 23 and 24, the time required from the completion of addition of the alloy element in the melting furnace to the start of casting exceeds 1200 seconds and is too long. In Comparative Examples 25 and 26, the time required from extraction in the heating furnace to the start of hot rolling exceeds 1200 seconds and is too long.

このため、表2の比較例23〜26は、前記した抽出残渣法により抽出分離された抽出残渣中のNi量の、合金Ni含有量に対する割合が40%を越えており、0.1μm を越える粗大なNiの酸化物、晶出物、析出物などのNi化合物が多過ぎ、抑制されていない。したがって、0.1μm 以下の微細なNi化合物などの量や、Niの固溶量が確保できていないものと推考される。   For this reason, in Comparative Examples 23 to 26 in Table 2, the ratio of the amount of Ni in the extraction residue extracted and separated by the extraction residue method described above to the alloy Ni content exceeds 40%, and exceeds 0.1 μm. There are too many Ni compounds such as coarse Ni oxides, crystallized substances, and precipitates, which are not suppressed. Therefore, it is estimated that the amount of fine Ni compound or the like of 0.1 μm or less and the solid solution amount of Ni cannot be secured.

この結果、比較例23〜26は、圧延方向に対して直角方向の耐応力緩和特性が発明例に比して著しく低い。   As a result, Comparative Examples 23 to 26 have remarkably low stress relaxation resistance in the direction perpendicular to the rolling direction as compared with the inventive examples.

表2の比較例17〜22は、表1の合金番号14〜19の本発明組成外の銅合金を用いている。このため、製造条件が好ましい範囲内であるにもかかわらず、抽出残渣中のNi量の、合金Ni含有量に対する割合、耐応力緩和特性、曲げ特性、導電率、強度のいずれかが、発明例に比して著しく劣る。   Comparative Examples 17 to 22 in Table 2 use copper alloys outside the composition of the present invention of Alloy Nos. 14 to 19 in Table 1. For this reason, although the manufacturing conditions are within the preferable range, any of the ratio of Ni content in the extraction residue to the alloy Ni content, stress relaxation resistance, bending characteristics, conductivity, and strength is an example of the invention. Is significantly inferior to

比較例17の銅合金はNiの含有量が下限を低めに外れている(表1の合金番号14)。このため、強度や耐応力緩和特性が低い。   In the copper alloy of Comparative Example 17, the Ni content deviates from the lower limit (alloy number 14 in Table 1). For this reason, strength and stress relaxation resistance are low.

比較例18の銅合金はNiの含有量が上限を高めに外れている(表1の合金番号15)。このため、強度、耐応力緩和特性、曲げ加工性が低い。   In the copper alloy of Comparative Example 18, the Ni content deviates from the upper limit (Alloy No. 15 in Table 1). For this reason, strength, stress relaxation resistance, and bending workability are low.

比較例19の銅合金はSnの含有量が下限を低めに外れている(表1の合金番号16)。このため、比較例19は、仕上げ冷間圧延の圧下率を前記した通り比較的高くして強度向上を図ったが、焼鈍による軟化によって、強度が低すぎる結果となった。   In the copper alloy of Comparative Example 19, the Sn content deviates from the lower limit (alloy number 16 in Table 1). For this reason, in Comparative Example 19, the reduction ratio of the finish cold rolling was relatively increased as described above to improve the strength, but the strength was too low due to the softening by annealing.

比較例20の銅合金はSnの含有量が上限を高めに外れている(表1の合金番号17)。このため、導電率が低い。   In the copper alloy of Comparative Example 20, the Sn content is higher than the upper limit (Alloy No. 17 in Table 1). For this reason, electrical conductivity is low.

比較例21の銅合金はPの含有量が下限を低めに外れている(表1の合金番号18)。このため、強度、耐応力緩和特性が低い。   In the copper alloy of Comparative Example 21, the P content deviates from the lower limit (alloy number 18 in Table 1). For this reason, strength and stress relaxation resistance are low.

比較例22の銅合金はPの含有量が上限を高めに外れている(表1の合金番号19)。このため、強度、耐応力緩和特性、曲げ加工性が低い。   In the copper alloy of Comparative Example 22, the P content deviates from the upper limit (alloy number 19 in Table 1). For this reason, strength, stress relaxation resistance, and bending workability are low.

以上の結果から、高強度、高導電率化させた上で、圧延方向に対して直角方向の耐応力緩和特性や曲げ加工性に優れさせるための、本発明銅合金板の成分組成、組織、更には、組織を得るための好ましい製造条件の意義が裏付けられる。   From the above results, the component composition of the copper alloy sheet of the present invention, the structure, in order to improve the stress relaxation resistance and bending workability in the direction perpendicular to the rolling direction, with high strength and high conductivity, Furthermore, the significance of preferable manufacturing conditions for obtaining the structure is supported.

Figure 2007107087
Figure 2007107087

Figure 2007107087
Figure 2007107087

以上説明したように、本発明によれば、圧延方向に対して直角方向の耐応力緩和特性が高く、高強度、高導電率、優れた曲げ加工性を兼備したCu−Ni−Sn−P系合金を提供することができる。この結果、特に自動車用端子・コネクタなどの接続部品用として、圧延方向に対して直角方向の耐応力緩和特性が要求される用途に適用することができる。   As described above, according to the present invention, the Cu—Ni—Sn—P system has high stress relaxation resistance in the direction perpendicular to the rolling direction, and has high strength, high conductivity, and excellent bending workability. Alloys can be provided. As a result, it can be applied to applications requiring stress relaxation resistance in a direction perpendicular to the rolling direction, particularly for connecting parts such as automobile terminals and connectors.

銅合金板の耐応力緩和試験を説明する断面図である。It is sectional drawing explaining the stress relaxation test of a copper alloy plate. 箱形コネクタの構造を示す断面図である。It is sectional drawing which shows the structure of a box-type connector.

Claims (5)

質量%で、Ni:0.1〜3.0%、Sn:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部銅および不可避的不純物からなる銅合金であって、下記抽出残渣法により目開きサイズ0.1μm のフィルター上に抽出分離された抽出残渣における下記Ni量が、前記銅合金中のNi含有量に対する割合で40%以下であることを特徴とする耐応力緩和特性に優れた銅合金。
ここで、上記抽出残渣法は、10質量%の酢酸アンモニウム濃度のメタノール溶液300mlに、10gの前記銅合金を浸漬し、この銅合金を陽極とする一方、白金を陰極として用いて、電流密度10mmA/cm2 で定電流電解を行い、この銅合金を溶解させた前記溶液を、目開きサイズ0.1μm のポリカーボネート製メンブレンフィルターによって吸引ろ過し、このフィルター上に未溶解物残渣を分離抽出するものとする。
また、上記抽出残渣中の上記Ni量は、前記フィルター上の未溶解物残渣を王水と水とを1対1の割合で混合した溶液によって溶解した後に、ICP発光分光法によって分析して求めるものとする。
In mass%, Ni: 0.1-3.0%, Sn: 0.01-3.0%, P: 0.01-0.3%, respectively, the balance copper and copper consisting of inevitable impurities The following Ni content in an extraction residue extracted and separated on a filter having an aperture size of 0.1 μm by the following extraction residue method is 40% or less in proportion to the Ni content in the copper alloy. A copper alloy with excellent stress relaxation resistance.
Here, in the extraction residue method, 10 g of the copper alloy was immersed in 300 ml of a 10% by mass ammonium acetate concentration methanol solution, and the copper alloy was used as an anode, while platinum was used as a cathode, and a current density of 10 mmA. a constant current electrolysis at / cm 2, which the solution obtained by dissolving the copper alloy, and suction filtered through a polycarbonate membrane filter having an opening size 0.1 [mu] m, the undissolved substances residue is separated and extracted on the filter And
The amount of Ni in the extraction residue is obtained by dissolving the undissolved residue on the filter with a solution in which aqua regia and water are mixed at a ratio of 1: 1, and then analyzing by ICP emission spectroscopy. Shall.
前記銅合金が、更に、質量%で、Fe:0.5%以下、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下とした請求項1に記載の耐応力緩和特性に優れた銅合金。   The copper alloy is further mass% Fe: 0.5% or less, Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, Mg: 0.3% or less. A copper alloy having excellent stress relaxation resistance according to claim 1. 前記銅合金が、更に、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptの含有量を、これらの元素の合計で1.0質量%以下とした請求項1〜3に記載の耐応力緩和特性に優れた銅合金。   The copper alloy further contains Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt in a total amount of these elements of 1.0% by mass or less. Copper alloy with excellent stress relaxation resistance described in 1. 前記銅合金が、Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素の合計で0.1質量%以下とした請求項1〜4に記載の耐応力緩和特性に優れた銅合金。   The copper alloy is Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te. The copper alloy excellent in stress relaxation resistance according to claim 1, wherein the content of B, B, and Misch metal is 0.1% by mass or less in total of these elements. 請求項1乃至4のいずれかの銅合金の板を製造する方法であって、銅合金の鋳造、熱間圧延、冷間圧延、仕上げ焼鈍により銅合金板を得るに際し、銅合金溶解炉での合金元素の添加完了から鋳造開始までの所要時間を1200秒以内とし、更に、鋳塊の加熱炉より鋳塊を抽出してから熱間圧延終了までの所要時間を1200秒以下とする耐応力緩和特性に優れた銅合金板の製造方法。   A method for producing a copper alloy plate according to any one of claims 1 to 4, wherein the copper alloy plate is obtained by casting, hot rolling, cold rolling, and finish annealing of the copper alloy. Stress relaxation to reduce the time required from the completion of addition of the alloy element to the start of casting within 1200 seconds, and further to the time required for hot rolling after the ingot is extracted from the ingot heating furnace to 1200 seconds or less A method for producing a copper alloy sheet having excellent characteristics.
JP2006156395A 2005-09-16 2006-06-05 Copper alloy sheet excellent in stress relaxation resistance and method for producing the same Active JP4164517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156395A JP4164517B2 (en) 2005-09-16 2006-06-05 Copper alloy sheet excellent in stress relaxation resistance and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005270694 2005-09-16
JP2006156395A JP4164517B2 (en) 2005-09-16 2006-06-05 Copper alloy sheet excellent in stress relaxation resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007107087A true JP2007107087A (en) 2007-04-26
JP4164517B2 JP4164517B2 (en) 2008-10-15

Family

ID=38033179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156395A Active JP4164517B2 (en) 2005-09-16 2006-06-05 Copper alloy sheet excellent in stress relaxation resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4164517B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100111A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
WO2009096314A1 (en) 2008-01-31 2009-08-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate having excellent anti-stress relaxation properties
WO2009098810A1 (en) * 2008-02-08 2009-08-13 Mitsui Mining & Smelting Co., Ltd. Process for producing precipitation-hardened copper alloy strip
JP2015048518A (en) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in stress relaxation characteristic
JP2015086462A (en) * 2013-11-01 2015-05-07 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation property
JP2017002407A (en) * 2016-08-23 2017-01-05 Jx金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation characteristic

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100111A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
WO2009096314A1 (en) 2008-01-31 2009-08-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate having excellent anti-stress relaxation properties
EP2241643A1 (en) * 2008-01-31 2010-10-20 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate having excellent anti-stress relaxation properties
EP2241643A4 (en) * 2008-01-31 2011-10-05 Kobe Steel Ltd Copper alloy plate having excellent anti-stress relaxation properties
US10053751B2 (en) 2008-01-31 2018-08-21 Kobe Steel, Ltd. Copper alloy sheet excellent in resistance property of stress relaxation
WO2009098810A1 (en) * 2008-02-08 2009-08-13 Mitsui Mining & Smelting Co., Ltd. Process for producing precipitation-hardened copper alloy strip
JP4714943B2 (en) * 2008-02-08 2011-07-06 三井住友金属鉱山伸銅株式会社 Method for producing precipitation hardening type copper alloy strip
JP2015048518A (en) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in stress relaxation characteristic
JP2015086462A (en) * 2013-11-01 2015-05-07 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation property
JP2017002407A (en) * 2016-08-23 2017-01-05 Jx金属株式会社 Copper alloy sheet excellent in conductivity and stress relaxation characteristic

Also Published As

Publication number Publication date
JP4164517B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
KR100992281B1 (en) Copper alloy, copper alloy plate, and process for producing the same
JP4950584B2 (en) Copper alloy with high strength and heat resistance
CN100577833C (en) Copper alloy, copper alloy plate, and process for producing the same
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
WO2007007517A1 (en) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
TWI513833B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
TWI547570B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, rolled copper alloy for electronic device, and parts for electronic device
JP3935492B2 (en) Copper alloy having high strength and excellent bendability and method for producing copper alloy sheet
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
WO2019189534A1 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP4164517B2 (en) Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
JP2012072470A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5910004B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP4210703B1 (en) Copper alloy sheet with excellent stress relaxation resistance and bending workability
JP4210706B1 (en) Copper alloy sheet with excellent stress relaxation resistance
JP5682278B2 (en) Copper alloy for electronic and electrical equipment
JP4324627B2 (en) Copper alloy sheet with excellent strength-ductility balance
JP4210705B1 (en) Copper alloy sheet with excellent stress relaxation resistance and press punchability
JP4209749B2 (en) Copper alloy with high strength and excellent bendability
JP2013117060A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4164517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5