JP2015081898A - Decontamination method and decontamination device for radioactive waste ion exchange resin - Google Patents

Decontamination method and decontamination device for radioactive waste ion exchange resin Download PDF

Info

Publication number
JP2015081898A
JP2015081898A JP2013221321A JP2013221321A JP2015081898A JP 2015081898 A JP2015081898 A JP 2015081898A JP 2013221321 A JP2013221321 A JP 2013221321A JP 2013221321 A JP2013221321 A JP 2013221321A JP 2015081898 A JP2015081898 A JP 2015081898A
Authority
JP
Japan
Prior art keywords
acid
exchange resin
ion exchange
cathode
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013221321A
Other languages
Japanese (ja)
Other versions
JP6439242B2 (en
Inventor
真吾 宮本
Shingo Miyamoto
真吾 宮本
守 岩▲崎▼
Mamoru Iwasaki
守 岩▲崎▼
元浩 会沢
Motohiro Aizawa
元浩 会沢
太田 信之
Nobuyuki Ota
信之 太田
貴子 住谷
Takako Sumiya
貴子 住谷
石田 一成
Kazunari Ishida
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Original Assignee
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Hitachi GE Nuclear Energy Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013221321A priority Critical patent/JP6439242B2/en
Priority to PCT/JP2014/077836 priority patent/WO2015060250A1/en
Priority to MX2016005106A priority patent/MX2016005106A/en
Priority to US15/030,781 priority patent/US10083769B2/en
Priority to EP14854988.4A priority patent/EP3065139B1/en
Priority to TW103136785A priority patent/TWI638910B/en
Publication of JP2015081898A publication Critical patent/JP2015081898A/en
Application granted granted Critical
Publication of JP6439242B2 publication Critical patent/JP6439242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove an ionic radioactive matter in waste ion exchange resin, and reduce dose of the waste ion exchange resin to the extremely low level by solving and removing clad.SOLUTION: Acid which is heated to equal to or more than 60°C is brought into contact to waste ion exchange resin including clad mainly formed of ion oxide and absorbing a radioactive matter, for solving and removing the ionic radioactive matter in the waste ion exchange resin, and removing the clad. The acid waste liquid including the ionic radioactive matter used for decontamination is subjected to electro-deposition treatment, circulated and reused.

Description

本発明は、原子力発電所等にて使用された、放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂から、放射性物質を効率的に除去する除染方法と除染装置に関する。   The present invention relates to a decontamination method and a decontamination method that efficiently removes radioactive materials from a waste ion exchange resin that adsorbs radioactive materials and includes a cladding mainly composed of iron oxide, which is used in nuclear power plants and the like. It relates to a dyeing device.

原子力発電所において、原子炉水浄化系(CUW)、燃料貯蔵プール水浄化系(FPC)といった直接燃料棒に触れ、放射性物質を含む冷却水系の浄化に使用されたイオン交換樹脂は、放射性物質を多く吸着しているため、高線量率の放射性廃棄物として、発電所内の樹脂タンクに貯留されている。また、原子力発電所では、放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を化学洗浄により除去する際にも、イオン交換樹脂が使用されており、その使用済イオン交換樹脂もまた、高線量率の放射性廃棄物として樹脂タンクに貯留している。これらの放射性物質を含む廃棄物は、最終的にセメント等の固化助材と混練して安定化した後に、埋設処分される。埋設処分する際の費用は、内包する放射性物質の量で異なり、放射性物質濃度が高いほど高額となる。このため、高線量率の廃棄物はできるだけ減容した後に、固化体の埋設廃棄物とすることが経済的である。具体的には、イオン交換樹脂から放射性物質を固形物として分離し、遮蔽容器内に封じ込めることができれば、減容化の面で望ましい。放射性物質が除去された廃イオン交換樹脂は、処分費用が安価な低線量率の廃棄物であり、さらに、廃イオン交換樹脂を焼却可能なレベルまで放射性物質を除去できれば、焼却処理により、大幅な減容が達成できる。   In nuclear power plants, the ion exchange resin used to purify the cooling water system containing radioactive materials by directly touching the fuel rods such as the reactor water purification system (CUW) and the fuel storage pool water purification system (FPC) Because it is adsorbed in large quantities, it is stored in a resin tank inside the power plant as radioactive waste with a high dose rate. At nuclear power plants, ion-exchange resins are also used to remove radioactive substances from primary cooling system equipment and piping contaminated with radioactive substances and the surfaces of metal parts of systems containing them by chemical cleaning. The spent ion exchange resin is also stored in the resin tank as high dose rate radioactive waste. Waste containing these radioactive substances is finally kneaded with a solidification aid such as cement and stabilized, and then buried. The cost for disposal is different depending on the amount of radioactive material contained, and the higher the radioactive material concentration, the higher the cost. For this reason, it is economical to reduce the volume of waste with a high dose rate as much as possible and then use it as a solid waste. Specifically, it is desirable in terms of volume reduction if the radioactive substance can be separated from the ion exchange resin as a solid and can be contained in a shielding container. Waste ion exchange resin from which radioactive materials have been removed is a low-dose rate waste with low disposal costs, and if the radioactive materials can be removed to a level where incineration of the waste ion exchange resin can be achieved, incineration will significantly Volume reduction can be achieved.

この高線量の廃樹脂の処理方法として、特許文献1や特許文献2に提案されているように、フェントン法や超臨界水酸化等の湿式酸化により廃樹脂を分解する方法があるが、これらの方法を適用した場合、いずれの場合も高線量率の廃液が多量に生成される。その高線量率の廃液を最終的に処分する際には、さらに蒸発濃縮し、その濃縮液をセメントと混練する等の方法により固化体として安定化することが必要となる。この場合、セメント等の固化助材を新たに添加するため、その分最終処分される高線量率の廃棄物量が増加し、廃棄物量の低減に至らないという問題がある。   As a processing method of this high dose waste resin, there are methods of decomposing waste resin by wet oxidation such as Fenton method and supercritical water oxidation as proposed in Patent Document 1 and Patent Document 2. When the method is applied, in all cases, a large amount of waste liquid with a high dose rate is generated. When the waste liquid with a high dose rate is finally disposed of, it is necessary to stabilize it as a solidified body by a method such as evaporating and concentrating and kneading the concentrated liquid with cement. In this case, since a solidification aid such as cement is newly added, there is a problem that the amount of waste at a high dose rate to be finally disposed increases and the amount of waste cannot be reduced.

廃樹脂を焼却処分できれば放射性廃棄物の大幅な減容化が可能であるが、この場合には、焼却灰に放射性物質が濃縮してしまうため、焼却灰が高線量となってしまう。廃樹脂から放射性物質を完全に除去できれば、焼却灰が高線量となることを防ぐことができ、焼却による減容化が可能となるため、廃樹脂から放射性物質を除去する技術が種々検討されている。
従来、廃樹脂から放射性物質を除去する技術として、特許文献3には、廃樹脂を充填した溶離器に硫酸を通液し、イオン状の放射性物質を溶離し、溶離液から拡散透析により放射性物質を分離し、硫酸を循環再利用する技術が開示されている。この場合も、放射性物質を含む廃液が生成するが、その固化処理までは網羅されていない。
If the waste resin can be disposed of by incineration, the volume of radioactive waste can be significantly reduced. However, in this case, the radioactive material is concentrated in the incineration ash, resulting in a high dose of incineration ash. If the radioactive material can be completely removed from the waste resin, the incineration ash can be prevented from becoming a high dose, and the volume can be reduced by incineration. Therefore, various technologies for removing the radioactive material from the waste resin have been studied. Yes.
Conventionally, as a technique for removing radioactive substances from waste resin, Patent Document 3 discloses that sulfuric acid is passed through an eluent filled with waste resin to elute ionic radioactive substances, and the radioactive substances are obtained by diffusion dialysis from the eluent. Is disclosed, and sulfuric acid is recycled and reused. In this case as well, a waste liquid containing radioactive material is generated, but the solidification process is not covered.

一方で、イオン状の放射性物質を含む廃液から放射性物質を除去する方法として、特許文献4には、放射性陽イオンが溶解した汚染除去溶液を、電析セルを通過させながら通電し、放射性陽イオンを放射性金属粒子として陰極に堆積させて、汚染除去溶液を再生・再利用する技術が開示されている。その際に、放射性金属粒子を堆積させた陰極は、陰極液を陰極全体に注いで放射性金属粒子を脱離させるとの記載がある。   On the other hand, as a method for removing radioactive substances from waste liquids containing ionic radioactive substances, Patent Document 4 discloses that a decontamination solution in which radioactive cations are dissolved is energized while passing through an electrodeposition cell, and the radioactive cations are used. Has been disclosed in which a decontamination solution is regenerated and reused by depositing as a radioactive metal particle on a cathode. At that time, the cathode on which radioactive metal particles are deposited is described as pouring catholyte over the entire cathode to desorb the radioactive metal particles.

特公昭61−9599号公報Japanese Patent Publication No. 61-9599 特許第3657747号公報Japanese Patent No. 3657747 特開2004−28697号公報JP 2004-28697 A 特許第4438988号公報Japanese Patent No. 4438898

原子炉水浄化系や燃料貯蔵プール水浄化系で使用された高線量の廃樹脂は、放射性物質のイオンを吸着しているとともに、酸化鉄を主成分とするクラッドが混入している。そのクラッドにも放射性物質が含まれるため、廃樹脂から放射性物質を完全に除去するためには、廃樹脂中からクラッドも同時に除去する必要がある。
廃樹脂中に含まれるクラッドの化学形態は、主にマグネタイト(Fe)およびヘマタイト(α−Fe)が存在する。上記特許文献3に記載されるように、加温されていない常温の硫酸を廃樹脂に通液する方法では、難溶解性のヘマタイト(α−Fe)を溶解することが難しく、廃樹脂からクラッドを除去することができないため、放射性物質が残留するという問題がある。
The high-dose waste resin used in the reactor water purification system and the fuel storage pool water purification system adsorbs radioactive material ions and is mixed with clad mainly composed of iron oxide. Since the clad also contains a radioactive substance, it is necessary to remove the clad from the waste resin at the same time in order to completely remove the radioactive substance from the waste resin.
The chemical form of the clad contained in the waste resin mainly includes magnetite (Fe 3 O 4 ) and hematite (α-Fe 2 O 3 ). As described in Patent Document 3, it is difficult to dissolve hardly-soluble hematite (α-Fe 2 O 3 ) in a method in which unwarmed sulfuric acid at room temperature is passed through a waste resin. Since the clad cannot be removed from the resin, there is a problem that radioactive materials remain.

本発明は、廃イオン交換樹脂中のイオン状の放射性物質を除去するとともに、クラッドを溶解除去することにより、廃イオン交換樹脂の線量を極低レベルにまで低減する除染方法および除染装置を提供することを課題とする。   The present invention provides a decontamination method and a decontamination apparatus for reducing the dose of waste ion exchange resin to an extremely low level by removing ionic radioactive substances in waste ion exchange resin and dissolving and removing the cladding. The issue is to provide.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、所定温度に加温された酸を用いることにより、廃イオン交換樹脂中のイオン状放射性物質を溶離除去すると共に、クラッドをも溶解除去することができること、この除染処理で得られた酸廃液は、電着処理して循環再利用できることが分かり、本発明を完成させた。   As a result of intensive investigations to solve the above problems, the present inventors have used an acid heated to a predetermined temperature to elute and remove ionic radioactive substances in the waste ion exchange resin, and to remove the cladding. As a result, it was found that the acid waste solution obtained by this decontamination treatment can be recycled by electrodeposition, and the present invention was completed.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂に、60℃以上に加温した酸を接触させて、該廃イオン交換樹脂中のイオン状の放射性物質を溶離除去するとともに、該クラッドを溶解除去する除染工程を含むことを特徴とする放射性廃イオン交換樹脂の除染方法。 [1] A waste ion exchange resin that adsorbs a radioactive substance and contains a clad composed mainly of iron oxide is brought into contact with an acid heated to 60 ° C. or more, so that the ionic radioactivity in the waste ion exchange resin is contacted. A method for decontaminating radioactive waste ion exchange resin, comprising a step of decontaminating a substance and dissolving and removing the clad.

[2] 前記酸は、硫酸および/またはシュウ酸であることを特徴とする[1]に記載の放射性廃イオン交換樹脂の除染方法。 [2] The method for decontaminating a radioactive waste ion exchange resin according to [1], wherein the acid is sulfuric acid and / or oxalic acid.

[3] 前記酸は、5〜40重量%の硫酸溶液および/または0.1〜40重量%のシュウ酸溶液であることを特徴とする[1]または[2]に記載の放射性廃イオン交換樹脂の除染方法。 [3] The radioactive waste ion exchange according to [1] or [2], wherein the acid is a 5 to 40% by weight sulfuric acid solution and / or a 0.1 to 40% by weight oxalic acid solution. Resin decontamination method.

[4] 前記放射性物質はコバルト−60を含むことを特徴とする[1]ないし[3]のいずれかに記載の放射性廃イオン交換樹脂の除染方法。 [4] The radioactive waste ion-exchange resin decontamination method according to any one of [1] to [3], wherein the radioactive substance contains cobalt-60.

[5] 前記除染工程から排出されるイオン状放射性物質を含む酸廃液を、陽極と陰極を有する電着槽に導入し、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質を陰極上に電着させて、該酸廃液からイオン状放射性物質を除去する電着工程と、該電着工程で、該イオン状放射性物質を除去して得られた処理液を前記除染工程に循環して再利用する循環工程とを含むことを特徴とする[1]ないし[4]のいずれかに記載の放射性廃イオン交換樹脂の除染方法。 [5] By introducing an acid waste solution containing an ionic radioactive substance discharged from the decontamination step into an electrodeposition tank having an anode and a cathode, and energizing between the anode and the cathode, ions in the acid waste solution Electrodepositing the radioactive radioactive material on the cathode to remove the ionic radioactive material from the acid waste solution, and the treatment liquid obtained by removing the ionic radioactive material in the electrodeposition step, The decontamination method for a radioactive waste ion exchange resin according to any one of [1] to [4], further comprising a circulation step of recycling and reusing the decontamination step.

[6] 前記電着槽は、陽極が設置された陽極室と、陰極が設置された陰極室とが、カチオン交換膜により隔てられており、前記酸廃液は該陽極室に導入され、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質が該カチオン交換膜を透過して該陰極室に移動し、該陰極上に電着されることを特徴とする[5]に記載の放射性廃イオン交換樹脂の除染方法。 [6] In the electrodeposition tank, an anode chamber in which an anode is installed and a cathode chamber in which a cathode is installed are separated by a cation exchange membrane, and the acid waste liquid is introduced into the anode chamber, and the anode chamber The ionic radioactive material in the acid waste liquid permeates through the cation exchange membrane, moves to the cathode chamber, and is electrodeposited on the cathode [5] Decontamination method of radioactive waste ion exchange resin as described in 1.

[7] 前記陰極上に、コバルト−60と、前記クラッドの溶解物である鉄が電着されることを特徴とする[5]または[6]に記載の放射性廃イオン交換樹脂の除染方法。 [7] The radioactive waste ion-exchange resin decontamination method according to [5] or [6], wherein cobalt-60 and iron which is a melt of the clad are electrodeposited on the cathode. .

[8] 放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂に、60℃以上に加温した酸を接触させて、該廃イオン交換樹脂中のイオン状の放射性物質を溶離除去するとともに、該クラッドを溶解除去する除染手段を含む放射性廃イオン交換樹脂の除染装置であって、該除染手段は、前記廃イオン交換樹脂が充填される充填塔と、該充填塔に前記加温した酸を導入する導入配管と、該導入配管に設けられた加温手段と、該充填塔からイオン状放射性物質を含む酸廃液を排出する排出配管とを備えることを特徴とする放射性廃イオン交換樹脂の除染装置。 [8] A waste ion exchange resin that adsorbs a radioactive substance and contains a clad composed mainly of iron oxide is brought into contact with an acid heated to 60 ° C. or more, so that the ionic radioactivity in the waste ion exchange resin is contacted. A radioactive waste ion exchange resin decontamination apparatus comprising a decontamination means for dissolving and removing a substance and dissolving and removing the clad, the decontamination means comprising a packed tower filled with the waste ion exchange resin, An introduction pipe for introducing the heated acid into the packed tower, a heating means provided in the introduction pipe, and a discharge pipe for discharging the acid waste liquid containing ionic radioactive substances from the packed tower. Characterized decontamination equipment for radioactive waste ion exchange resin.

[9] 陽極と陰極を有する電着槽と、該陽極と陰極に通電する手段と、該電着槽に前記酸廃液を導入する手段と、該電着槽の処理液を前記加温手段の上流側に循環する手段とを有し、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質を陰極上に電着させて、該酸廃液からイオン状放射性物質を除去し、該イオン状放射性物質を除去して得られた処理液が前記除染手段で再利用されることを特徴とする[8]に記載の放射性廃イオン交換樹脂の除染装置。 [9] An electrodeposition tank having an anode and a cathode, a means for energizing the anode and the cathode, a means for introducing the acid waste liquid into the electrodeposition tank, and a treatment liquid in the electrodeposition tank Means to circulate upstream, and by conducting electricity between the anode and cathode, the ionic radioactive material in the acid waste solution is electrodeposited on the cathode, and the ionic radioactive material is removed from the acid waste solution. The decontamination apparatus for radioactive waste ion exchange resin according to [8], wherein the treatment liquid obtained by removing the ionic radioactive substance is reused by the decontamination means.

[10] 前記電着槽は、陽極が設置された陽極室と、陰極が設置された陰極室と、該陽極室と陰極室とを隔離するカチオン交換膜とを有し、前記酸廃液は該陽極室に導入され、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質が該カチオン交換膜を透過して該陰極室に移動し、該陰極上に電着されることを特徴とする[9]に記載の放射性廃イオン交換樹脂の除染装置。 [10] The electrodeposition tank includes an anode chamber in which an anode is installed, a cathode chamber in which a cathode is installed, and a cation exchange membrane that separates the anode chamber and the cathode chamber. When introduced into the anode chamber and energized between the anode and the cathode, the ionic radioactive material in the acid waste liquid passes through the cation exchange membrane and moves to the cathode chamber, and is electrodeposited on the cathode. The decontamination apparatus for radioactive waste ion exchange resin according to [9], wherein

[11] 前記陰極上に、コバルト−60と、前記クラッドの溶解物である鉄が電着されることを特徴とする[9]または[10]に記載の放射性廃イオン交換樹脂の除染装置。 [11] The radioactive waste ion exchange resin decontamination apparatus according to [9] or [10], wherein cobalt-60 and iron which is a melt of the clad are electrodeposited on the cathode. .

本発明によれば、廃イオン交換樹脂に60℃以上に加温した酸を接触させるため、廃イオン交換樹脂のカチオン交換樹脂に吸着している放射性金属イオンをHイオンとイオン交換して溶離除去できるとともに、廃イオン交換樹脂中に混入しているヘマタイトを含むクラッドをも効率良く溶解除去することができる。 According to the present invention, since the acid heated to 60 ° C. or higher is brought into contact with the waste ion exchange resin, the radioactive metal ions adsorbed on the cation exchange resin of the waste ion exchange resin are ion-exchanged with H + ions and eluted. In addition to being able to be removed, the clad containing hematite mixed in the waste ion exchange resin can also be efficiently dissolved and removed.

また、この除染処理で排出される放射性金属イオンやクラッドの溶解物である鉄イオンを含む酸廃液を、陽極と陰極を配した電着槽に導入して、陽極と陰極間に通電することにより、放射性金属イオンと鉄イオンを同時に陰極上に電着させて除去することが可能であり、電着処理液を廃イオン交換樹脂の除染処理に再利用することができる。また、電着に用いた電極を交換して、或いは電極上の電着層を除去して電着を行うことにより、廃イオン交換樹脂の除染及び酸廃液からの放射性物質の除去を継続して行うことができ、大量の廃イオン交換樹脂を処理することが可能である。   In addition, an acid waste solution containing radioactive metal ions discharged from this decontamination process and iron ions that are dissolved in the clad is introduced into an electrodeposition tank provided with an anode and a cathode, and electricity is passed between the anode and the cathode. Thus, radioactive metal ions and iron ions can be simultaneously electrodeposited on the cathode and removed, and the electrodeposition treatment liquid can be reused for the decontamination treatment of the waste ion exchange resin. In addition, by replacing the electrode used for electrodeposition or removing the electrodeposition layer on the electrode and performing electrodeposition, decontamination of the waste ion exchange resin and removal of radioactive substances from the acid waste liquid are continued. It is possible to process a large amount of waste ion exchange resin.

本発明によれば、放射線量が極低レベルに低減された廃イオン交換樹脂を得ることができ、処理後の廃イオン交換樹脂は焼却処理が可能となる。そして、廃イオン交換樹脂を焼却して焼却灰とすることにより1/100〜1/200の容量に低減することができる。   According to the present invention, it is possible to obtain a waste ion exchange resin having a radiation dose reduced to an extremely low level, and the treated waste ion exchange resin can be incinerated. And it can reduce to the capacity | capacitance of 1/100-1/200 by incinerating waste ion exchange resin to make incineration ash.

本発明の実施の形態の一例を示す放射性イオン交換樹脂の除染装置の系統図である。It is a systematic diagram of the decontamination apparatus of the radioactive ion exchange resin which shows an example of embodiment of this invention. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実験例2で用いた電着装置を示す系統図である。It is a systematic diagram which shows the electrodeposition apparatus used in Experimental example 2. 実験例3〜9及び比較実験例1〜8で用いた電着装置を示す系統図である。It is a systematic diagram which shows the electrodeposition apparatus used in Experimental Examples 3-9 and Comparative Experimental Examples 1-8. 比較実験例2の電着試験結果を示すグラフである。6 is a graph showing the electrodeposition test results of Comparative Experimental Example 2. 実験例3〜9及び比較実験例6の電着試験結果を示すグラフである。It is a graph which shows the electrodeposition test result of Experimental Examples 3-9 and Comparative Experimental Example 6.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明においては、放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂に、60℃以上に加温した酸(以下、「溶離液」と称す場合がある。)を接触させて、廃イオン交換樹脂中のイオン状の放射性物質を溶離除去するとともに、クラッドを溶解除去する。   In the present invention, a waste ion-exchange resin that adsorbs a radioactive substance and contains a clad composed mainly of iron oxide is heated to 60 ° C. or higher (hereinafter sometimes referred to as “eluent”). Is contacted to elute and remove the ionic radioactive material in the waste ion exchange resin, and dissolve and remove the clad.

本発明で、除染処理する放射性廃イオン交換樹脂は、コバルト−60やニッケル−63等の放射性金属成分のように、溶離液中で陽イオンとなる放射性物質を吸着していると共に、酸化鉄を主成分とするクラッド(ここで酸化鉄を主成分とするとは、酸化鉄をクラッド中に50重量%以上含有することを意味する。)を含むものである。なお、廃イオン交換樹脂の放射性物質の吸着量やクラッドの含有量には特に制限はない。   In the present invention, the radioactive waste ion-exchange resin to be decontaminated adsorbs radioactive substances that become cations in the eluent, such as cobalt-60 and nickel-63, and iron oxide. (Including iron oxide as a main component means that 50 wt% or more of iron oxide is contained in the cladding). In addition, there is no restriction | limiting in particular in the adsorption amount of the radioactive substance of a waste ion exchange resin, and content of a clad.

溶離液としては、硫酸、塩酸、硝酸といった無機酸や、ギ酸、酢酸、シュウ酸といった有機酸の水溶液を用いることができる。これらの酸は1種のみを用いてもよく、2種以上を混合して用いてもよいが、60℃以上に加温して用いる際に揮発しにくく、危険物に該当しない硫酸および/またはシュウ酸を用いることが好ましい。   As an eluent, an aqueous solution of an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, or an organic acid such as formic acid, acetic acid or oxalic acid can be used. These acids may be used singly or in combination of two or more. However, when heated to 60 ° C. or higher, the acid does not easily volatilize and / or sulfuric acid does not fall under the category of hazardous substances and / or It is preferable to use oxalic acid.

溶離液中の酸濃度は、用いる酸に応じて好適な濃度が存在し、例えば、硫酸濃度は、5〜40重量%が好ましく、10〜30重量%がより好ましい。また、シュウ酸濃度は、0.1〜40重量%が好ましく、1〜20重量%がより好ましい。上記範囲よりも酸濃度が低いと、クラッドの主成分であるヘマタイト(α−Fe)の溶解効率が低下する。即ち、クラッドは、廃イオン交換樹脂に混入または樹脂内に入り込んだ形で存在しており、その主成分が難溶性のヘマタイトであり、低濃度の酸では溶解することは困難である。溶離液中の酸濃度が高いと後段の電着工程における、水素発生量が過多となり、電着効率が低下する。 The acid concentration in the eluent has a suitable concentration depending on the acid used. For example, the sulfuric acid concentration is preferably 5 to 40% by weight, more preferably 10 to 30% by weight. The oxalic acid concentration is preferably 0.1 to 40% by weight, more preferably 1 to 20% by weight. When the acid concentration is lower than the above range, the dissolution efficiency of hematite (α-Fe 2 O 3 ), which is the main component of the cladding, is lowered. That is, the clad is present in a form mixed with or entering the waste ion exchange resin, the main component of which is hardly soluble hematite, and it is difficult to dissolve with a low concentration of acid. If the acid concentration in the eluent is high, the amount of hydrogen generated in the subsequent electrodeposition process becomes excessive, and the electrodeposition efficiency decreases.

本発明では、溶離液を60℃以上、好ましくは70〜120℃、より好ましくは80〜100℃に加温して用いる。この温度が低すぎると、クラッドの溶解効率が悪く、高すぎると水の蒸発、酸の揮発が過多となるため、作業上好ましくない。   In the present invention, the eluent is heated to 60 ° C. or higher, preferably 70 to 120 ° C., more preferably 80 to 100 ° C. If this temperature is too low, the dissolution efficiency of the clad is poor, and if it is too high, water evaporation and acid volatilization become excessive, which is not preferable in terms of work.

加温した溶離液と廃イオン交換樹脂との接触方法としては特に制限はなく、溶離液中に廃イオン交換樹脂を投入して撹拌するバッチ式であってもよく、後述の図1に示すように、廃イオン交換樹脂を充填した充填塔に溶離液を通液する通液式であってもよい。   The method for contacting the heated eluent and the waste ion exchange resin is not particularly limited, and may be a batch type in which the waste ion exchange resin is put into the eluent and stirred, as shown in FIG. In addition, a flow-through type in which the eluent is passed through a packed column filled with waste ion exchange resin may be used.

バッチ式処理の場合、溶離液と廃イオン交換樹脂の接触時間は0.5〜24hr程度とすることが好ましく、特に2〜12hr程度とすることが好ましい。また、通液式の場合は、充填塔容積に対して通液SV0.2〜10hr−1程度とすることが好ましい。 In the case of batch processing, the contact time between the eluent and the waste ion exchange resin is preferably about 0.5 to 24 hours, and more preferably about 2 to 12 hours. Further, in the case of the liquid passing type, the liquid passing SV is preferably about 0.2 to 10 hr −1 with respect to the packed column volume.

廃イオン交換樹脂との接触で、廃イオン交換樹脂に吸着したイオン状の放射性物質を溶離すると共に廃イオン交換樹脂に混入したクラッドを溶解させてこれらを含有する溶離液(以下、「酸廃液」と称す場合がある。)は、陽極と陰極を有する電着槽に導入し、電着槽の陽極と陰極間に通電することにより、酸廃液中の陽イオン状放射性物質とクラッドに由来する鉄イオンを陰極上に電着させて酸廃液から除去し、得られた処理液を溶離液として再利用することが好ましい。   In contact with the waste ion exchange resin, the ionic radioactive material adsorbed on the waste ion exchange resin is eluted and the clad mixed in the waste ion exchange resin is dissolved to contain an eluent (hereinafter referred to as “acid waste liquid”). Is introduced into an electrodeposition tank having an anode and a cathode, and an electric current is passed between the anode and the cathode of the electrodeposition tank, so that the iron derived from the cationic radioactive material in the acid waste liquid and the clad It is preferable that ions are electrodeposited on the cathode to be removed from the acid waste solution, and the resulting treatment solution is reused as an eluent.

以下に、廃イオン交換樹脂の除染処理、除染処理で得られた酸廃液を電着処理して再利用するための装置として好適な装置を、図1を参照して説明する。   Hereinafter, an apparatus suitable as an apparatus for decontaminating waste ion exchange resin and reusing the acid waste liquid obtained by decontamination treatment by electrodeposition will be described with reference to FIG.

図1の装置は、溶離液を貯留する溶離液貯槽1と、廃イオン交換樹脂10が充填された充填塔である溶離槽2と、溶離槽2から排出される酸廃液を貯留する酸廃液貯槽3と、酸廃液貯槽3からの酸廃液が導入される電着槽4と、電着槽4に供給される電着液を貯留する電着液貯槽5とを備える。電着槽4は、陽極6Aを有する陽極室6と陰極7Aを有する陰極室7とがカチオン交換膜8で隔離された構成とされており、酸廃液は陽極室6に通液され、電着液は陰極室7に通液される。9A,9Bは熱交換器であるが、熱交換器9Aは加熱、熱交換器9Bは冷却できればどのような手段でもよく、熱交換器9Aとして電気ヒータを使用することも可能である。   The apparatus of FIG. 1 includes an eluent storage tank 1 that stores an eluent, an elution tank 2 that is a packed tower filled with a waste ion exchange resin 10, and an acid waste liquid storage tank that stores an acid waste liquid discharged from the elution tank 2. 3, an electrodeposition tank 4 into which the acid waste liquid from the acid waste liquid storage tank 3 is introduced, and an electrodeposition liquid storage tank 5 for storing the electrodeposition liquid supplied to the electrodeposition tank 4. The electrodeposition tank 4 has a structure in which an anode chamber 6 having an anode 6A and a cathode chamber 7 having a cathode 7A are separated by a cation exchange membrane 8, and the acid waste liquid is passed through the anode chamber 6 for electrodeposition. The liquid is passed through the cathode chamber 7. Although 9A and 9B are heat exchangers, any means may be used as long as the heat exchanger 9A can be heated and the heat exchanger 9B can be cooled, and an electric heater can be used as the heat exchanger 9A.

溶離液貯槽1内の溶離液は、ポンプPにより配管11を経て溶離槽2に送給される過程で熱交換器9Aで60℃以上に加温された後、溶離槽2に上向流で通液され、流出液(酸廃液)は配管12を経て、熱交換器9Bで電着槽4内のカチオン交換膜8の劣化が小さい60℃未満の温度、例えば10℃以上60℃未満に冷却された後酸廃液貯槽3に送給される。酸廃液貯槽3内の酸廃液は、ポンプPにより配管13を経て電着槽4の陽極室6に導入され、電着処理液は配管14より溶離液貯槽1に循環され、溶離液として再利用される。
一方、電着槽4の陰極室7には、電着液貯槽5内の電着液がポンプPにより配管15を経て導入され、配管16を経て電着液貯槽5に戻される。
溶離液貯槽1には適宜酸が配管21より補給され、電着液貯槽5には配管22より適宜電着液が補給される。
Eluent of the eluent storage tank 1, after being heat exchanger 9A heated to 60 ° C. or more in the process of being fed to the elution tank 2 through the pipe 11 by the pump P 1, upflow the elution vessel 2 The effluent (acid waste liquid) passes through the pipe 12, and the heat exchanger 9B reduces the deterioration of the cation exchange membrane 8 in the electrodeposition tank 4 to a temperature lower than 60 ° C., for example, 10 ° C. or higher and lower than 60 ° C. After being cooled, it is fed to the acid waste liquid storage tank 3. Acid waste liquid in the acid waste liquid tank 3 by the pump P 2 is introduced into the anode chamber 6 of the through pipe 13 electrodeposition tank 4, electrodeposition processing liquid is circulated eluent storage tank 1 from the pipe 14, re as eluent Used.
On the other hand, the electrodeposition liquid in the electrodeposition liquid storage tank 5 is introduced into the cathode chamber 7 of the electrodeposition tank 4 through the pipe 15 by the pump P 3 and returned to the electrodeposition liquid storage tank 5 through the pipe 16.
The eluent storage tank 1 is appropriately replenished with acid from the pipe 21, and the electrodeposition liquid reservoir 5 is appropriately replenished with the electrodeposition liquid from the pipe 22.

この装置では、加熱された溶離液を廃イオン交換樹脂10が充填された溶離槽2に通液することにより、廃イオン交換樹脂10に吸着しているイオン状の放射性物質が溶離除去されるとともに、廃イオン交換樹脂10に混入または樹脂粒子内に入り込んでいるクラッドが溶解除去される。廃イオン交換樹脂10と接触して、イオン状の放射性物質やクラッド溶解物を含む溶離液(酸廃液)は、酸廃液貯槽3を経て電着槽(電着セル)4の陽極室7に導入される。この電着槽4の陽極6Aと陰極7Aに通電することにより、酸廃液中の放射性金属イオンやクラッド由来の鉄イオンがカチオン交換膜8を透過して陰極室7に移動して、陰極7A上に電着される。電着槽4で放射性金属イオンや鉄イオンが除去された酸廃液の処理液は、溶離液貯槽1に戻され、循環再利用される。
陰極室7内の電着液は、ポンプPにより電着液貯槽5との間を循環させ、電着液の減少分を電着液貯槽5に添加しつつ循環再利用する。
In this apparatus, by passing the heated eluent through the elution tank 2 filled with the waste ion exchange resin 10, the ionic radioactive substance adsorbed on the waste ion exchange resin 10 is eluted and removed. Then, the clad mixed in the waste ion exchange resin 10 or entering the resin particles is dissolved and removed. In contact with the waste ion exchange resin 10, an eluent (acid waste liquid) containing ionic radioactive material and clad dissolved material is introduced into the anode chamber 7 of the electrodeposition tank (electrodeposition cell) 4 through the acid waste liquid storage tank 3. Is done. By energizing the anode 6A and the cathode 7A of the electrodeposition tank 4, the radioactive metal ions in the acid waste liquid and the iron ions derived from the clad permeate through the cation exchange membrane 8 and move to the cathode chamber 7, and on the cathode 7A. Is electrodeposited. The acid waste liquid treatment liquid from which radioactive metal ions and iron ions have been removed in the electrodeposition tank 4 is returned to the eluent storage tank 1 and recycled.
The electrodeposition liquid in the cathode chamber 7 is circulated and reused while being circulated between the electrodeposition liquid storage tank 5 by the pump P 3 and the reduced amount of the electrodeposition liquid is added to the electrodeposition liquid storage tank 5.

なお、電着液としては、分子内に2つのカルボキシル基を有するジカルボン酸及びその塩(以下、「ジカルボン酸(塩)」と称す場合がある。)、並びに分子内に3つのカルボキシル基を有するトリカルボン酸及びその塩(以下、「トリカルボン酸(塩)」と称す場合がある。)から選択される1種以上の添加剤(以下「本発明の添加剤」と称す場合がある。)を含む水溶液を用いることが好ましい。
ジカルボン酸(塩)、トリカルボン酸(塩)は、そのキレート効果で電着中の懸濁物質の発生を抑制し、電着効果の向上に優れた効果を奏する。
これに対して、分子内に1つのカルボキシル基を持つモノカルボン酸では、Co−60等の放射性金属イオン(放射性物質は何らCo−60に限定されない。以下、Co−60と安定同位体Coを合わせてCoで示す。)やクラッドからのFeイオンとの結合力が弱く、液中でCoやFeの水酸化物からなる懸濁物質が発生する、陰極に均一に電着しないといった問題が生じる。また、分子内に4つ以上のカルボキシル基を有するカルボン酸を用いると、CoイオンやFeイオンとの結合力が強すぎて、液中にCoやFeが保持され、電着の速度が著しく低下するという問題が生じる。
In addition, as an electrodeposition liquid, it has dicarboxylic acid and its salt (henceforth a "dicarboxylic acid (salt)") which has two carboxyl groups in a molecule | numerator, and has three carboxyl groups in a molecule | numerator. One or more additives selected from tricarboxylic acid and salts thereof (hereinafter sometimes referred to as “tricarboxylic acid (salt)”) (hereinafter sometimes referred to as “additive of the present invention”) are included. It is preferable to use an aqueous solution.
Dicarboxylic acids (salts) and tricarboxylic acids (salts) suppress the generation of suspended substances during electrodeposition due to their chelating effects, and have an excellent effect in improving the electrodeposition effect.
On the other hand, in a monocarboxylic acid having one carboxyl group in the molecule, a radioactive metal ion such as Co-60 (the radioactive material is not limited to Co-60 at all. In addition, the bonding force with Fe ions from the clad is weak, and a suspended substance composed of Co or Fe hydroxide is generated in the liquid, or the electrode is not uniformly electrodeposited on the cathode. . In addition, when a carboxylic acid having four or more carboxyl groups in the molecule is used, the binding force with Co ions and Fe ions is too strong, and Co and Fe are retained in the liquid, and the rate of electrodeposition is significantly reduced. Problem arises.

ジカルボン酸(塩)、トリカルボン酸(塩)としては、下記式(1)で表されるものが、特に、懸濁物質が生じにくく、かつ電着が速やかに進むようになる点で好ましい。下記式(1)で表されるジカルボン酸(塩)やトリカルボン酸(塩)は、分子内のカルボキシル基同士の間に1〜3個の炭素原子が存在するものであり、その形状に由来して、CoイオンやFeイオンとの間に適度な結合力が得られると推測される。   As the dicarboxylic acid (salt) and tricarboxylic acid (salt), those represented by the following formula (1) are particularly preferable in that suspended substances are hardly generated and electrodeposition proceeds rapidly. The dicarboxylic acid (salt) or tricarboxylic acid (salt) represented by the following formula (1) has 1 to 3 carbon atoms between the carboxyl groups in the molecule, and is derived from its shape. Thus, it is estimated that an appropriate binding force can be obtained between Co ions and Fe ions.

OOC−(CHX)−(NH)−(CX)−CX−COOM
…(1)
(式(1)中、X,X,Xは各々独立にH又はOHを表し、X,Xは各々独立にH、OH又はCOOMを表し、M,M,Mは各々独立にH、1価のアルカリ金属又はアンモニウムイオンを表し、a,b,cは各々独立に0又は1の整数を表す。ただし、式(1)において、XとXは同時にCOOMとなることはない。)
M 1 OOC- (CHX 1) a - (NH) b - (CX 2 X 4) c -CX 3 X 5 -COOM 2
... (1)
(In the formula (1), X 1 , X 2 and X 3 each independently represent H or OH, X 4 and X 5 each independently represent H, OH or COOM 3 , M 1 , M 2 , M 3 each independently represent H, monovalent alkali metal or ammonium ion, and a, b, and c each independently represent an integer of 0 or 1. However, in Formula (1), X 4 and X 5 are simultaneously COOM 3 will never be reached.)

本発明に好適なジカルボン酸としては、例えば、シュウ酸(エタン二酸、HOOC−COOH)、マロン酸(プロパン二酸、HOOC−CH−COOH)、コハク酸(ブタン二酸、HOOC−CH−CH−COOH)、グルタル酸(ペンタン二酸、HOOC−CH−CH−CH−COOH)、リンゴ酸(2−ヒドロキシブタン二酸、HOOC−CH−CH(OH)−COOH)、酒石酸(2,3−ジヒドロキシブタン二酸、HOOC−CH(OH)−CH(OH)−COOH)、イミノ二酢酸(HOOC−CH−NH−CH−COOH)などが挙げられるが、マロン酸、コハク酸、リンゴ酸、酒石酸、イミノ二酢酸が特に好ましい。トリカルボン酸としては、クエン酸(HOOC−CH−COH(COOH)−CH−COOH)、1,2,3−プロパントリカルボン酸などが挙げられるが、クエン酸が特に好ましい。また、これらのジカルボン酸、トリカルボン酸の塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩が挙げられる。 Suitable dicarboxylic acids in the present invention, for example, oxalic acid (ethanedioic acid, HOOC-COOH), malonic acid (propanedioic acid, HOOC-CH 2 -COOH), succinic acid (butanedioic acid, HOOC-CH 2 -CH 2 -COOH), glutaric acid (pentanedioic acid, HOOC-CH 2 -CH 2 -CH 2 -COOH), malic acid (2-hydroxybutanedioic acid, HOOC-CH 2 -CH (OH ) -COOH) , Tartaric acid (2,3-dihydroxybutanedioic acid, HOOC—CH (OH) —CH (OH) —COOH), iminodiacetic acid (HOOC—CH 2 —NH—CH 2 —COOH), etc. Acid, succinic acid, malic acid, tartaric acid and iminodiacetic acid are particularly preferred. Examples of the tricarboxylic acid include citric acid (HOOC—CH 2 —COH (COOH) —CH 2 —COOH), 1,2,3-propanetricarboxylic acid, and citric acid is particularly preferable. In addition, examples of salts of these dicarboxylic acids and tricarboxylic acids include alkali metal salts such as sodium salts and potassium salts, and ammonium salts.

電着液中には、ジカルボン酸(塩)及び/又はトリカルボン酸(塩)と共にアンモニウム塩を共存させることが好ましい。アンモニウム塩を添加しない場合には、通常FeよりもCoの方が電着速度が速く、Coの電着層の上にFeの電着層が生成する形となるが、アンモニウム塩を添加することにより、CoとFeの電着速度がほぼ同等となり、CoとFeが合金状に電着するようになる。CoとFeの電着速度が異なり、Co層とFe層に分かれて電着すると、電着物の浮きや剥がれが起きやすくなって、継続的な電着処理ができなくなる恐れがある。   In the electrodeposition solution, an ammonium salt is preferably present together with a dicarboxylic acid (salt) and / or a tricarboxylic acid (salt). When no ammonium salt is added, the electrodeposition rate of Co is usually higher than that of Fe, and an Fe electrodeposition layer is formed on the Co electrodeposition layer. However, an ammonium salt should be added. As a result, the electrodeposition rates of Co and Fe are substantially equal, and Co and Fe are electrodeposited in an alloy form. If the electrodeposition rates of Co and Fe are different and electrodeposition is performed separately for the Co layer and the Fe layer, the electrodeposit tends to float or peel off, and there is a possibility that continuous electrodeposition processing cannot be performed.

アンモニウム塩としては、液中でアンモニウムイオンを生じるものであればよく、例えば、塩化アンモニウム、硫酸アンモニウム、シュウ酸アンモニウム及びクエン酸アンモニウムが好適である。これらのアンモニウム塩は、1種のみを用いてもよく、2種以上を混合して使用してもよい。特に、シュウ酸アンモニウム等のジカルボン酸アンモニウムやクエン酸アンモニウム等のトリカルボン酸アンモニウムを用いると、アンモニウム塩と本発明の添加剤とを兼ねることができ、ジカルボン酸やトリカルボン酸のキレート効果による懸濁物質の発生抑制効果とCoとFeの電着速度を同等にする効果を1剤で得ることが可能である。   Any ammonium salt may be used as long as it produces ammonium ions in the liquid. For example, ammonium chloride, ammonium sulfate, ammonium oxalate, and ammonium citrate are preferable. These ammonium salts may be used alone or in combination of two or more. In particular, if ammonium dicarboxylate such as ammonium oxalate or ammonium tricarboxylate such as ammonium citrate is used, the ammonium salt and the additive of the present invention can be used, and the suspended substance due to the chelating effect of dicarboxylic acid or tricarboxylic acid It is possible to obtain the effect of suppressing the generation of copper and the effect of equalizing the electrodeposition rates of Co and Fe with one agent.

また、電着液のpHは1〜9とすることが好ましく2〜8.5とすることがより好ましい。電着液のpHが低すぎると、陰極上に電着したCoやFeの再溶解が起こり、電着速度が低下する恐れがある。また、pHが高すぎると、CoやFeの水酸化物が液中に懸濁物質として発生しやすくなる。このため、pHが上記範囲外となる場合には、アルカリや酸により、適宜pH調整を行うのが好ましい。pH調整に用いる酸としては、電着液中の本発明の添加剤と同じジカルボン酸及び/又はトリカルボン酸を用いるのが好ましい。   The pH of the electrodeposition liquid is preferably 1 to 9, and more preferably 2 to 8.5. If the pH of the electrodeposition solution is too low, Co or Fe electrodeposited on the cathode may be redissolved, and the electrodeposition rate may be reduced. On the other hand, if the pH is too high, Co or Fe hydroxide is likely to be generated as a suspended substance in the liquid. For this reason, when the pH is out of the above range, it is preferable to appropriately adjust the pH with an alkali or an acid. The acid used for pH adjustment is preferably the same dicarboxylic acid and / or tricarboxylic acid as the additive of the present invention in the electrodeposition solution.

電着液としては、例えば、本発明の添加剤を0.01〜20重量%、好ましくは0.1〜5重量%含む、pH1〜9、好ましくはpH2〜8.5の水溶液が用いられる。
電着液中の本発明の添加剤の量が少な過ぎると、本発明の添加剤を用いたことによる懸濁物質抑制の効果を十分に得ることができず、多過ぎるとキレート効果が大きくなりすぎて電着速度が低下する。
また、アンモニウム塩を用いる場合、アンモニウム塩は、0.01〜20重量%、好ましくは0.1〜5重量%含むことが好ましい。アンモニウム塩の濃度が低過ぎるとアンモニウム塩を用いたことによる上記効果を十分に得ることができず、高過ぎると効果の向上がなく、薬品使用量が無駄となる。
As the electrodeposition liquid, for example, an aqueous solution containing 0.01 to 20% by weight, preferably 0.1 to 5% by weight of the additive of the present invention and having a pH of 1 to 9, preferably a pH of 2 to 8.5 is used.
If the amount of the additive of the present invention in the electrodeposition solution is too small, the effect of inhibiting suspended substances due to the use of the additive of the present invention cannot be sufficiently obtained, and if too much, the chelating effect increases. The electrodeposition rate is too low.
When an ammonium salt is used, the ammonium salt is preferably contained in an amount of 0.01 to 20% by weight, preferably 0.1 to 5% by weight. If the concentration of the ammonium salt is too low, the above-mentioned effect due to the use of the ammonium salt cannot be sufficiently obtained, and if it is too high, the effect is not improved and the amount of chemical used is wasted.

電着条件(電流値、電流密度、温度等)には特に制限はないが、電流密度については、陰極面積に対して5〜600A/cmとするのが電着効率の面で好ましい。 The electrodeposition conditions (current value, current density, temperature, etc.) are not particularly limited, but the current density is preferably 5 to 600 A / cm 2 with respect to the cathode area in terms of electrodeposition efficiency.

図1は、本発明の実施に好適な除染装置の一例を示すものであって、本発明の除染装置は、何ら図示のものに限定されるものではない。
図1において、溶離液は、溶離槽2に上向流で通液されているが、下向流であってもよい。ただし、廃イオン交換樹脂が粉末状である場合には、通液の際に差圧上昇しやすいため、上向流とすることが好ましい。また、電着槽4において、酸廃液と電着液とはカチオン交換膜8を介して逆方向に通液されてもよい。更に、溶離槽2に導入される溶離液と排出される酸廃液とを熱交換することも可能である。
また、電着槽4は閉鎖系となっているが、陰極から水素ガスが発生するため、上部を開放した開放系とするのが好ましい。また、金属が電着した陰極を交換する際にも、電着槽の上部が開放されていた方が交換が容易となる。
FIG. 1 shows an example of a decontamination apparatus suitable for carrying out the present invention, and the decontamination apparatus of the present invention is not limited to the illustrated one.
In FIG. 1, the eluent is passed through the elution tank 2 in an upward flow, but may be a downward flow. However, when the waste ion exchange resin is in the form of a powder, it is preferable to make the flow upward because the differential pressure is likely to increase during liquid flow. In the electrodeposition tank 4, the acid waste solution and the electrodeposition solution may be passed through the cation exchange membrane 8 in the opposite directions. Furthermore, it is possible to exchange heat between the eluent introduced into the elution tank 2 and the discharged acid waste liquid.
Moreover, although the electrodeposition tank 4 is a closed system, since hydrogen gas is generated from the cathode, it is preferable to use an open system with the upper part opened. In addition, when replacing the cathode electrodeposited with metal, the replacement is easier if the upper part of the electrodeposition tank is open.

本発明は、原子力発電所において、原子炉水浄化系、燃料貯蔵プール水浄化系といった直接燃料棒に触れる水系の浄化に使用された廃イオン交換樹脂、放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を化学的に除去した際に排出される除染廃液の処理に使用された廃イオン交換樹脂等の、イオン状の放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂に有効に適用される。   The present invention relates to a waste ion exchange resin used for purification of a water system directly touching a fuel rod such as a reactor water purification system and a fuel storage pool water purification system in a nuclear power plant, and a primary cooling system device contaminated with a radioactive material. Adsorbs ionic radioactive substances such as waste ion exchange resin used for the treatment of decontamination waste liquid discharged when radioactive substances are chemically removed from the surface of metal members of pipes, pipes, and systems containing them It is effectively applied to waste ion exchange resin containing a clad mainly composed of iron oxide.

以下に実験例及び実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples and examples.

[実験例1]
表1に示す酸濃度及びpHの溶離液(水溶液)を500mL調製し、この溶離液中に模擬クラッド(高純度化学研究所製、α−Fe、メーカー公称径1μm)1gを入れ、表1に示す液温及び溶解時間で溶解試験を行った。
溶離液中のFe濃度から、Fe(クラッド)溶解率を調べ、結果を表1に示した。
[Experimental Example 1]
500 mL of an eluent (aqueous solution) having an acid concentration and pH shown in Table 1 was prepared, and 1 g of a simulated clad (manufactured by High Purity Chemical Laboratory, α-Fe 2 O 3 , manufacturer's nominal diameter 1 μm) was placed in the eluent. The dissolution test was conducted at the liquid temperature and dissolution time shown in Table 1.
The Fe (cladding) dissolution rate was examined from the Fe concentration in the eluent, and the results are shown in Table 1.

Figure 2015081898
Figure 2015081898

表1より明らかなように、低温で溶解試験を行ったNo.7〜12では溶解率が低いが、90℃に加温した硫酸および/またはシュウ酸水溶液を用いたNo.1〜6では、クラッドを効率良く溶解することができる。   As apparent from Table 1, No. 1 was subjected to a dissolution test at a low temperature. 7-12, although the dissolution rate is low, No. 1 using sulfuric acid and / or oxalic acid aqueous solution heated to 90 ° C. In 1 to 6, the clad can be efficiently dissolved.

[実施例1]
Coを吸着した混合樹脂は、塩化コバルト(II)6水和物96mgを溶解した水溶液に、粉末状H形カチオン交換樹脂(三菱化学(株)社製、交換容量:5.1meq/g、粒度10−200μm:95%)と粉末状OH形アニオン交換樹脂(三菱化学(株)社製、交換容量4.1meq/g、粒度0−100μm:74%、10−250μm:93%)を40.0gずつ混合し、12hr攪拌することにより調製した。12hr後に上澄水中のCo濃度を原子吸光光度計にて測定した結果、検出下限値以下であったことから、Coイオンのほぼ全量がイオン交換樹脂に吸着されたことが確認された。前記混合樹脂に模擬クラッドとしての鉄酸化物(高純度化学研究所製、α−Fe、メーカー公称径1μm)4.0gを添加して混合したものを模擬廃樹脂とした。その後、この模擬廃樹脂を90℃に加温した10重量%硫酸溶離液(水溶液)1.6L中に投入し、ホットスターラーで加熱攪拌しながら90℃に維持し、溶解挙動を確認した。
10重量%硫酸溶離液に模擬廃樹脂を投入後、所定時間毎に硫酸溶離液を数mLずつ採取し、濾過したサンプル中のFeを原子吸光光度計にて分析すると共に、CoをICP−MSにて分析した。
その結果、Feについては、図2に示すとおり、添加した模擬クラッド中のFe量のほぼ100%が硫酸溶離液中に溶解しており、模擬クラッド溶解後にカチオン交換樹脂への再吸着も起こっていないことが分かった。なお、2時間以降で溶解率が100%を超えているのは、加温による溶離液中の水の蒸発のためである。また、Coについては、添加した塩化コバルト中のCo量のほぼ100%が硫酸溶離液中に溶離しており、樹脂から良好にCoイオンを溶離できていることが確認できた。
[Example 1]
The mixed resin adsorbing Co was dissolved in an aqueous solution in which 96 mg of cobalt (II) chloride hexahydrate was dissolved, and the powdered H-type cation exchange resin (manufactured by Mitsubishi Chemical Corporation, exchange capacity: 5.1 meq / g, particle size) 10-200 [mu] m: 95%) and powdered OH type anion exchange resin (Mitsubishi Chemical Corporation, exchange capacity 4.1 meq / g, particle size 0-100 [mu] m: 74%, 10-250 [mu] m: 93%). It was prepared by mixing 0 g at a time and stirring for 12 hr. As a result of measuring the Co concentration in the supernatant water with an atomic absorption photometer after 12 hours, it was below the lower limit of detection, so it was confirmed that almost all of the Co ions were adsorbed on the ion exchange resin. A simulated waste resin was prepared by adding 4.0 g of iron oxide (manufactured by High Purity Chemical Laboratory, α-Fe 2 O 3 , manufacturer's nominal diameter 1 μm) as a simulated cladding to the mixed resin and mixing them. Then, this simulated waste resin was put into 1.6 L of 10 wt% sulfuric acid eluent (aqueous solution) heated to 90 ° C., and maintained at 90 ° C. while stirring with a hot stirrer, and the dissolution behavior was confirmed.
After adding the simulated waste resin to the 10 wt% sulfuric acid eluent, several mL of sulfuric acid eluent was collected every predetermined time, and Fe in the filtered sample was analyzed with an atomic absorption photometer, and Co was analyzed by ICP-MS. Analyzed in
As a result, as shown in FIG. 2, about 100% of the amount of Fe in the added simulated cladding was dissolved in the sulfuric acid eluent, and re-adsorption to the cation exchange resin occurred after dissolution of the simulated cladding. I found that there was no. The reason why the dissolution rate exceeds 100% after 2 hours is due to evaporation of water in the eluent by heating. As for Co, almost 100% of the amount of Co in the added cobalt chloride was eluted in the sulfuric acid eluent, and it was confirmed that Co ions could be eluted well from the resin.

[実験例2]
CoCl及びFeClと硫酸を水に溶解させて表2に示す性状の模擬酸廃液を調製し、また、クエン酸を水に溶解させて表2に示す性状の模擬電着液(陰極液)を調製して、図3の装置を用いて、Co、Feの電着試験を行った。図3において、図1に示す装置と同一機能を奏する部材には同一符号を付してある。図3中、31は、電着処理液を酸廃液貯槽3に戻す配管である。電着条件は表2の通りである。陽極はPtメッキTi板、陰極はCu板を使用した。
[Experiment 2]
CoCI 2, FeCl 3 and sulfuric acid are dissolved in water to prepare a simulated acid waste solution having the properties shown in Table 2, and citric acid is dissolved in water to simulate the simulated electrodeposition solution (catholyte) having the properties shown in Table 2. Was prepared, and an electrodeposition test for Co and Fe was performed using the apparatus shown in FIG. In FIG. 3, members having the same functions as those of the apparatus shown in FIG. In FIG. 3, reference numeral 31 denotes a pipe for returning the electrodeposition treatment liquid to the acid waste liquid storage tank 3. The electrodeposition conditions are as shown in Table 2. The anode used was a Pt-plated Ti plate, and the cathode used a Cu plate.

Figure 2015081898
Figure 2015081898

6hr通電後の模擬酸廃液中のCo及びFeを原子吸光光度計にて測定したところ、6hrの通電により、模擬酸廃液中のCoが19%、Feが10%除去でき、陰極に黒色の電着物が得られた。
この電着装置では、強酸性の廃液を直接陰極に接触させることなく、カチオン交換膜を介して金属イオンを陰極室に移動させて、効率的に電着させることができた。
Co and Fe in the simulated acid waste solution after 6 hours of energization were measured with an atomic absorption photometer. As a result of energization for 6 hours, 19% of Co and 10% of Fe in the simulated acid waste solution could be removed and A kimono was obtained.
In this electrodeposition apparatus, the metal ions were moved to the cathode chamber through the cation exchange membrane without bringing the strongly acidic waste liquid into direct contact with the cathode, so that the electrodeposition could be efficiently performed.

[実験例3〜9、比較実験例1〜8]
各種の添加剤とCoCl及びFeClを用いて、表3に示す組成の電着液400mLを調製し、懸濁物質が発生しなかったものについて、図4の装置を用いて、電着試験を行った。通電は8hr、1A(電流密度62.5mA/cm)で行った。陽極にはPtメッキTi板を、陰極にはCu板を使用した。図4において、図1,2に示す装置と同一機能を奏する部材には同一符号を付してある。20は電源である。
表3に通電前後での懸濁物質の発生の有無と液pHを示した。通電前後の両方において懸濁物質がない実験例3〜9、比較実験例2,6の電着液について、液中のCoとFeの濃度の経時変化を解析した結果を図5、6に示す。8hrの通電結果から、実験例3〜9においては、経時的にCo及びFeを電着できていることがわかる。
[Experimental Examples 3-9, Comparative Experimental Examples 1-8]
Using various additives and CoCl 2 and FeCl 3 , 400 mL of an electrodeposition solution having the composition shown in Table 3 was prepared, and the electrodeposition test was performed using the apparatus shown in FIG. Went. Energization was performed at 8 hr, 1 A (current density 62.5 mA / cm 2 ). A Pt-plated Ti plate was used for the anode and a Cu plate was used for the cathode. In FIG. 4, members having the same functions as those of the apparatus shown in FIGS. Reference numeral 20 denotes a power source.
Table 3 shows the presence or absence of suspended solids and the pH of the liquid before and after energization. 5 and 6 show the results of analyzing the changes over time in the concentrations of Co and Fe in each of the electrodeposition liquids of Experimental Examples 3 to 9 and Comparative Experimental Examples 2 and 6 where there is no suspended matter both before and after energization. . From the energization result for 8 hours, it can be seen that in Experimental Examples 3 to 9, Co and Fe could be electrodeposited over time.

Figure 2015081898
Figure 2015081898

1 溶離液貯槽
2 溶離槽
3 酸廃液貯槽
4 電着槽
5 電着液貯槽
6 陽極室
6A 陽極
7 陰極室
7A 陰極
8 カチオン交換膜
9A,9B 熱交換器
10 廃イオン交換樹脂
DESCRIPTION OF SYMBOLS 1 Eluent storage tank 2 Elution tank 3 Acid waste liquid storage tank 4 Electrodeposition tank 5 Electrodeposition liquid storage tank 6 Anode chamber 6A Anode 7 Cathode chamber 7A Cathode 8 Cation exchange membrane 9A, 9B Heat exchanger 10 Waste ion exchange resin

Claims (11)

放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂に、60℃以上に加温した酸を接触させて、該廃イオン交換樹脂中のイオン状の放射性物質を溶離除去するとともに、該クラッドを溶解除去する除染工程を含むことを特徴とする放射性廃イオン交換樹脂の除染方法。   While adsorbing radioactive material, waste ion exchange resin containing a clad composed mainly of iron oxide is brought into contact with an acid heated to 60 ° C. or more to elute the ionic radioactive material in the waste ion exchange resin. A decontamination method for a radioactive waste ion exchange resin, comprising a decontamination step of dissolving and removing the clad while removing the clad. 前記酸は、硫酸および/またはシュウ酸であることを特徴とする請求項1に記載の放射性廃イオン交換樹脂の除染方法。   The method for decontaminating radioactive waste ion exchange resin according to claim 1, wherein the acid is sulfuric acid and / or oxalic acid. 前記酸は、5〜40重量%の硫酸溶液および/または0.1〜40重量%のシュウ酸溶液であることを特徴とする請求項1または2に記載の放射性廃イオン交換樹脂の除染方法。   The method for decontaminating radioactive waste ion exchange resin according to claim 1 or 2, wherein the acid is a 5 to 40 wt% sulfuric acid solution and / or a 0.1 to 40 wt% oxalic acid solution. . 前記放射性物質はコバルト−60を含むことを特徴とする請求項1ないし3のいずれか1項に記載の放射性廃イオン交換樹脂の除染方法。   The method for decontaminating radioactive waste ion exchange resin according to any one of claims 1 to 3, wherein the radioactive substance contains cobalt-60. 前記除染工程から排出されるイオン状放射性物質を含む酸廃液を、陽極と陰極を有する電着槽に導入し、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質を陰極上に電着させて、該酸廃液からイオン状放射性物質を除去する電着工程と、該電着工程で、該イオン状放射性物質を除去して得られた処理液を前記除染工程に循環して再利用する循環工程とを含むことを特徴とする請求項1ないし4のいずれか1項に記載の放射性廃イオン交換樹脂の除染方法。   By introducing an acid waste liquid containing an ionic radioactive substance discharged from the decontamination step into an electrodeposition tank having an anode and a cathode, and energizing between the anode and the cathode, the ionic radioactive substance in the acid waste liquid Electrodeposition on the cathode to remove the ionic radioactive material from the acid waste liquid, and the treatment liquid obtained by removing the ionic radioactive material in the electrodeposition step to the decontamination step The method for decontaminating radioactive waste ion exchange resin according to any one of claims 1 to 4, further comprising a circulation step of recycling and recycling the waste. 前記電着槽は、陽極が設置された陽極室と、陰極が設置された陰極室とが、カチオン交換膜により隔てられており、前記酸廃液は該陽極室に導入され、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質が該カチオン交換膜を透過して該陰極室に移動し、該陰極上に電着されることを特徴とする請求項5に記載の放射性廃イオン交換樹脂の除染方法。   In the electrodeposition tank, an anode chamber in which an anode is installed and a cathode chamber in which a cathode is installed are separated by a cation exchange membrane, and the acid waste liquid is introduced into the anode chamber, and The ionic radioactive substance in the acid waste liquid permeates through the cation exchange membrane, moves to the cathode chamber, and is electrodeposited on the cathode. Decontamination method for radioactive waste ion exchange resin. 前記陰極上に、コバルト−60と、前記クラッドの溶解物である鉄が電着されることを特徴とする請求項5または6に記載の放射性廃イオン交換樹脂の除染方法。   The method for decontaminating radioactive waste ion exchange resin according to claim 5 or 6, wherein cobalt-60 and iron which is a melt of the clad are electrodeposited on the cathode. 放射性物質を吸着すると共に、酸化鉄を主成分とするクラッドを含む廃イオン交換樹脂に、60℃以上に加温した酸を接触させて、該廃イオン交換樹脂中のイオン状の放射性物質を溶離除去するとともに、該クラッドを溶解除去する除染手段を含む放射性廃イオン交換樹脂の除染装置であって、該除染手段は、前記廃イオン交換樹脂が充填される充填塔と、該充填塔に前記加温した酸を導入する導入配管と、該導入配管に設けられた加温手段と、該充填塔からイオン状放射性物質を含む酸廃液を排出する排出配管とを備えることを特徴とする放射性廃イオン交換樹脂の除染装置。   While adsorbing radioactive material, waste ion exchange resin containing a clad composed mainly of iron oxide is brought into contact with an acid heated to 60 ° C. or more to elute the ionic radioactive material in the waste ion exchange resin. A decontamination apparatus for a radioactive waste ion exchange resin that includes a decontamination means for removing the clad and dissolving the clad, wherein the decontamination means comprises a packed tower filled with the waste ion exchange resin, and the packed tower A heating pipe provided in the introduction pipe, and a discharge pipe for discharging the acid waste liquid containing the ionic radioactive substance from the packed tower. Decontamination equipment for radioactive waste ion exchange resin. 陽極と陰極を有する電着槽と、該陽極と陰極に通電する手段と、該電着槽に前記酸廃液を導入する手段と、該電着槽の処理液を前記加温手段の上流側に循環する手段とを有し、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質を陰極上に電着させて、該酸廃液からイオン状放射性物質を除去し、該イオン状放射性物質を除去して得られた処理液が前記除染手段で再利用されることを特徴とする請求項8に記載の放射性廃イオン交換樹脂の除染装置。   An electrodeposition tank having an anode and a cathode; means for energizing the anode and cathode; means for introducing the acid waste liquid into the electrodeposition tank; and a treatment liquid in the electrodeposition tank upstream of the heating means. A means for circulating, and by energizing between the anode and the cathode, the ionic radioactive material in the acid waste liquid is electrodeposited on the cathode to remove the ionic radioactive material from the acid waste liquid, The radioactive waste ion-exchange resin decontamination apparatus according to claim 8, wherein a treatment liquid obtained by removing ionic radioactive substances is reused by the decontamination means. 前記電着槽は、陽極が設置された陽極室と、陰極が設置された陰極室と、該陽極室と陰極室とを隔離するカチオン交換膜とを有し、前記酸廃液は該陽極室に導入され、該陽極と陰極間に通電することにより、該酸廃液中のイオン状放射性物質が該カチオン交換膜を透過して該陰極室に移動し、該陰極上に電着されることを特徴とする請求項9に記載の放射性廃イオン交換樹脂の除染装置。   The electrodeposition tank has an anode chamber in which an anode is installed, a cathode chamber in which a cathode is installed, and a cation exchange membrane that separates the anode chamber and the cathode chamber, and the acid waste liquid is placed in the anode chamber. Introduced and energized between the anode and the cathode, the ionic radioactive material in the acid waste liquid passes through the cation exchange membrane and moves to the cathode chamber, and is electrodeposited on the cathode. The decontamination apparatus for radioactive waste ion exchange resin according to claim 9. 前記陰極上に、コバルト−60と、前記クラッドの溶解物である鉄が電着されることを特徴とする請求項9または10に記載の放射性廃イオン交換樹脂の除染装置。   11. The radioactive waste ion exchange resin decontamination apparatus according to claim 9, wherein cobalt-60 and iron which is a melt of the clad are electrodeposited on the cathode.
JP2013221321A 2013-10-24 2013-10-24 Decontamination method and decontamination apparatus for radioactive waste ion exchange resin Active JP6439242B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013221321A JP6439242B2 (en) 2013-10-24 2013-10-24 Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
PCT/JP2014/077836 WO2015060250A1 (en) 2013-10-24 2014-10-20 Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
MX2016005106A MX2016005106A (en) 2013-10-24 2014-10-20 Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin.
US15/030,781 US10083769B2 (en) 2013-10-24 2014-10-20 Treatment method and treatment apparatus of iron-group metal ion-containing liquid, method and apparatus for electrodepositing Co and Fe, and decontamination method and decontamination apparatus of radioactive waste ion exchange resin
EP14854988.4A EP3065139B1 (en) 2013-10-24 2014-10-20 Method and apparatus for electrodeposition of radioactice co-60 and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
TW103136785A TWI638910B (en) 2013-10-24 2014-10-24 The measurement method and processing device for liquid containing iron and metal, electrodeposition method and device for Co and Fe, and method for removing pollution of radioactive waste ion exchange resin and device for

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221321A JP6439242B2 (en) 2013-10-24 2013-10-24 Decontamination method and decontamination apparatus for radioactive waste ion exchange resin

Publications (2)

Publication Number Publication Date
JP2015081898A true JP2015081898A (en) 2015-04-27
JP6439242B2 JP6439242B2 (en) 2018-12-19

Family

ID=53012551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221321A Active JP6439242B2 (en) 2013-10-24 2013-10-24 Decontamination method and decontamination apparatus for radioactive waste ion exchange resin

Country Status (1)

Country Link
JP (1) JP6439242B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191693A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Method and apparatus for eluting used ion exchange resin
JP2016191692A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Method for processing iron group metal ion-containing liquid, and processing unit
KR102005680B1 (en) * 2018-07-11 2019-07-31 주식회사 엘림글로벌 Methods for Treatment of Spent Radio- active Ion-Exchange Resin
JP2020173130A (en) * 2019-04-09 2020-10-22 日揮株式会社 Method of treating hardly filterable substance
US11935666B2 (en) 2017-03-16 2024-03-19 Cellgentek Co., Ltd Apparatus for purifying nuclear reactor coolant from radioactive materials and adjusting coolant pH

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784399A (en) * 1980-11-14 1982-05-26 Hitachi Ltd Method of mixing radioactive waste
JPS61254899A (en) * 1985-05-07 1986-11-12 三菱重工業株式会社 Method of processing radioactive ion exchange resin
JPS63175800A (en) * 1987-01-14 1988-07-20 株式会社日立製作所 Processing method and facility of radioactive spent ion exchange resin
JPH0843595A (en) * 1994-08-01 1996-02-16 Power Reactor & Nuclear Fuel Dev Corp Method for separating radionuclide from used ion exchange resin
US5835865A (en) * 1994-07-04 1998-11-10 Siemens Aktiengesellschaft Method and device for the disposal of a cation exchanger
JP2003004894A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Processing method for radioactive ion exchanger resin and its processing device
JP2004028697A (en) * 2002-06-24 2004-01-29 Mitsubishi Heavy Ind Ltd Radioactive ion species eluent treatment apparatus, treatment system of radioactive ion-exchange resin, and treatment method of radioactive ion-exchange resin
JP2006078336A (en) * 2004-09-09 2006-03-23 Tokyo Electric Power Co Inc:The Method for decontaminating radioactive substance and chemical decontamination device
JP4438988B2 (en) * 2002-03-25 2010-03-24 エレクトリック パワー リサーチ インスティテュート Electrochemical method, system and apparatus for removing contamination by radioactive material.
JP2012108073A (en) * 2010-11-19 2012-06-07 Toshiba Corp Decontamination method and decontamination device
JP2013044588A (en) * 2011-08-23 2013-03-04 Hitachi-Ge Nuclear Energy Ltd Method and system for treatment of waste resin of nuclear power plant
JP2013185938A (en) * 2012-03-07 2013-09-19 Ebara Kogyo Senjo Kk Method and apparatus for decontaminating radioactive waste ion exchange resin

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784399A (en) * 1980-11-14 1982-05-26 Hitachi Ltd Method of mixing radioactive waste
JPS61254899A (en) * 1985-05-07 1986-11-12 三菱重工業株式会社 Method of processing radioactive ion exchange resin
JPS63175800A (en) * 1987-01-14 1988-07-20 株式会社日立製作所 Processing method and facility of radioactive spent ion exchange resin
US5835865A (en) * 1994-07-04 1998-11-10 Siemens Aktiengesellschaft Method and device for the disposal of a cation exchanger
JPH0843595A (en) * 1994-08-01 1996-02-16 Power Reactor & Nuclear Fuel Dev Corp Method for separating radionuclide from used ion exchange resin
JP2003004894A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Processing method for radioactive ion exchanger resin and its processing device
JP4438988B2 (en) * 2002-03-25 2010-03-24 エレクトリック パワー リサーチ インスティテュート Electrochemical method, system and apparatus for removing contamination by radioactive material.
JP2004028697A (en) * 2002-06-24 2004-01-29 Mitsubishi Heavy Ind Ltd Radioactive ion species eluent treatment apparatus, treatment system of radioactive ion-exchange resin, and treatment method of radioactive ion-exchange resin
JP2006078336A (en) * 2004-09-09 2006-03-23 Tokyo Electric Power Co Inc:The Method for decontaminating radioactive substance and chemical decontamination device
JP2012108073A (en) * 2010-11-19 2012-06-07 Toshiba Corp Decontamination method and decontamination device
JP2013044588A (en) * 2011-08-23 2013-03-04 Hitachi-Ge Nuclear Energy Ltd Method and system for treatment of waste resin of nuclear power plant
JP2013185938A (en) * 2012-03-07 2013-09-19 Ebara Kogyo Senjo Kk Method and apparatus for decontaminating radioactive waste ion exchange resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191693A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Method and apparatus for eluting used ion exchange resin
JP2016191692A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Method for processing iron group metal ion-containing liquid, and processing unit
US11935666B2 (en) 2017-03-16 2024-03-19 Cellgentek Co., Ltd Apparatus for purifying nuclear reactor coolant from radioactive materials and adjusting coolant pH
KR102005680B1 (en) * 2018-07-11 2019-07-31 주식회사 엘림글로벌 Methods for Treatment of Spent Radio- active Ion-Exchange Resin
JP2020173130A (en) * 2019-04-09 2020-10-22 日揮株式会社 Method of treating hardly filterable substance
JP7256061B2 (en) 2019-04-09 2023-04-11 日揮株式会社 Method for treating hard-to-filter substances

Also Published As

Publication number Publication date
JP6439242B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6439242B2 (en) Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
JP6221847B2 (en) Co and Fe electrodeposition method and apparatus
WO2016159051A1 (en) Method and device for treating metal ion-containing liquids
WO2014153974A1 (en) Radioactive wastewater treating method
JP5933992B2 (en) Decontamination method of radioactive waste ion exchange resin
TWI638910B (en) The measurement method and processing device for liquid containing iron and metal, electrodeposition method and device for Co and Fe, and method for removing pollution of radioactive waste ion exchange resin and device for
JP2015081381A (en) Method and apparatus for treating liquid containing iron-group metal ion
EP1487748B1 (en) Electrochemical process for decontamination of radioactive materials
JP6428441B2 (en) Acid waste liquid treatment apparatus and treatment method
WO2015060250A1 (en) Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
JP6477160B2 (en) Method and apparatus for eluting spent ion exchange resin
JP2008209418A (en) Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP2008180740A (en) Nuclear power plant constitutive member
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
JP6393158B2 (en) Secondary waste reduction method for chemical decontamination, secondary waste elution recovery device, and chemical decontamination system
JP6428440B2 (en) Method and apparatus for processing iron group metal ion-containing liquid
JP6178116B2 (en) Soil decontamination apparatus and method
JP2016191691A (en) Method for processing metal ion-containing acid liquid, and processing unit
JP2019030836A (en) Method for dissolving used ion exchange resin, and elution apparatus
JP4383091B2 (en) Condensate desalination method and apparatus
JP6543363B2 (en) Nuclear power spent fuel pool water purification method and device and spent fuel pool water treatment method and device
JP6643196B2 (en) Secondary waste elution and recovery device for chemical decontamination and chemical decontamination system
JP2016191619A (en) Condensate demineralization apparatus and condensate demineralization method
JP2017111027A (en) Method for reducing secondary waste chemically decontaminated, apparatus for eluting and collecting secondary waste and chemical decontamination system
JP2019132774A (en) Method for desalting condensed water or waste water in nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250