JP2015078872A - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP2015078872A
JP2015078872A JP2013215468A JP2013215468A JP2015078872A JP 2015078872 A JP2015078872 A JP 2015078872A JP 2013215468 A JP2013215468 A JP 2013215468A JP 2013215468 A JP2013215468 A JP 2013215468A JP 2015078872 A JP2015078872 A JP 2015078872A
Authority
JP
Japan
Prior art keywords
current
phase current
phase
detection value
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013215468A
Other languages
Japanese (ja)
Inventor
小高 章弘
Akihiro Odaka
章弘 小高
鳥羽 章夫
Akio Toba
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013215468A priority Critical patent/JP2015078872A/en
Publication of JP2015078872A publication Critical patent/JP2015078872A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current measuring device capable of correctly measuring a current to be measured by correcting a current detection value of a current sensor in consideration of the influence of a magnetic field by the current flowing through a current line in the vicinity.SOLUTION: A current measuring device for measuring an AC current of each of the three phases includes: a current sensor such as a GMR element for detecting each of currents flowing through three phase current lines 10 U, 10 V, and 10 W; and current calculation means 300 for calculating an AC current of each of the three phases by correcting a current detection value by a current sensor using parameters a to i showing an influence given to a current detection value by a magnetic field generated by the current of each phase. In this manner, true three phase AC currents i, i, and iwhich flow through the current lines 10 U, 10 V,and 10 W are correctly measured.

Description

本発明は、GMR(Giant Magneto Resistance)素子等の磁気抵抗素子を利用して三相各相の交流電流を測定する電流測定装置に関するものである。   The present invention relates to a current measuring apparatus that measures an alternating current of each of three phases using a magnetoresistive element such as a GMR (Giant Magneto Resistance) element.

電流センサとしてGMR素子を使用した電流測定装置は、被測定電流によって発生する磁界によりGMR素子の電気抵抗が変化することを利用して被測定電流の大きさを求めている。
このGMR素子は、電流センサの小型化を可能にし、交流電流や直流電流を高感度に検出できるといった利点があるため、例えば三相交流電流の測定装置等に広く利用されている。
A current measuring apparatus using a GMR element as a current sensor obtains the magnitude of the current to be measured by utilizing the fact that the electrical resistance of the GMR element changes due to the magnetic field generated by the current to be measured.
This GMR element is advantageous in that it enables downsizing of a current sensor and can detect an alternating current and a direct current with high sensitivity, and is widely used, for example, in a three-phase alternating current measuring device.

しかしながら、被測定電流が流れる電流線に隣接して別の電流が流れている場合、この電流により発生する一種の外乱磁界が被測定電流検出用のGMR素子に影響を及ぼし、被測定電流を正確に検出できない場合がある。
このような外乱磁界の影響による測定精度の低下を防止するため、従来から、隣接する他の電流線をGMR素子から遠ざけて配置する、電流線の物理的形状や構造を工夫する、あるいは、GMR素子に磁気シールドを施す等の対策が講じられている。しかし、これらの対策は電流測定装置の大型化を招いてGMR素子の特徴である小型化を損なうことになり、また、磁気シールドを用いる場合にはコストが増加するという問題がある。
However, when another current flows adjacent to the current line through which the measured current flows, a kind of disturbance magnetic field generated by this current affects the GMR element for detecting the measured current, and the measured current is accurately May not be detected.
In order to prevent a decrease in measurement accuracy due to the influence of such a disturbance magnetic field, conventionally, other adjacent current lines are arranged away from the GMR element, the physical shape and structure of the current lines are devised, or GMR Measures such as applying a magnetic shield to the element are taken. However, these measures cause an increase in the size of the current measuring device, impairing the downsizing that is a feature of the GMR element, and there is a problem that the cost increases when a magnetic shield is used.

これらの問題を解決するために、例えば特許文献1に示す電流測定装置が提供されている。
図4は、特許文献1に記載された従来技術の説明図であり、(a)は全体構成図、(b)は電流センサの構成図、(c)は測定回路のブロック図である。
図4(a),(b)に示すように、被測定電流iが流れる電流線100から分流路205a,205cが引き出され、電流センサ200に形成された渦巻状の分流路205bに近接して第1,第2のGMR素子201,202が配置されている。201a,202aはGMR素子201,202の感度軸、203,204は分流路205bの端子である。
また、図4(c)に示すごとく、GMR素子201,202の出力信号は演算装置300に入力されてその差が求められるようになっている。
In order to solve these problems, for example, a current measuring device shown in Patent Document 1 is provided.
4A and 4B are explanatory diagrams of the prior art described in Patent Document 1. FIG. 4A is an overall configuration diagram, FIG. 4B is a configuration diagram of a current sensor, and FIG. 4C is a block diagram of a measurement circuit.
As shown in FIGS. 4A and 4B, the shunt flow paths 205 a and 205 c are drawn from the current line 100 through which the current to be measured i flows, and close to the spiral shunt flow path 205 b formed in the current sensor 200. First and second GMR elements 201 and 202 are arranged. Reference numerals 201a and 202a denote sensitivity axes of the GMR elements 201 and 202, and reference numerals 203 and 204 denote terminals of the shunt flow path 205b.
As shown in FIG. 4C, the output signals of the GMR elements 201 and 202 are input to the arithmetic unit 300, and the difference between them is obtained.

図4(a)において、被測定電流iから分流した電流iが分流路205bを流れると、図4(b)の矢印方向に磁界Hが発生し、この磁界HによるGMR素子201,202の出力信号(目的とする電流検出信号)は互いに逆相となる。一方、電流線100に隣接した他の電流線を流れる電流による磁界がGMR素子201,202に作用する場合、この外乱磁界によるGMR素子201,202の出力信号(ノイズ成分)は互いに同相となる。
よって、演算装置300によりGMR素子201,202の出力信号の差を演算すれば、外乱磁界によるノイズ成分が打ち消され、目的とする電流測定信号のみを得ることができる。
In FIG. 4A, when a current i 1 shunted from the current i to be measured flows through the shunt flow path 205b, a magnetic field H is generated in the direction of the arrow in FIG. 4B, and the GMR elements 201 and 202 are driven by the magnetic field H. Output signals (target current detection signals) are out of phase with each other. On the other hand, when a magnetic field due to a current flowing through another current line adjacent to the current line 100 acts on the GMR elements 201 and 202, the output signals (noise components) of the GMR elements 201 and 202 due to the disturbance magnetic field are in phase with each other.
Therefore, if the difference between the output signals of the GMR elements 201 and 202 is calculated by the arithmetic device 300, the noise component due to the disturbance magnetic field is canceled and only the target current measurement signal can be obtained.

更に、特許文献2には、図5,図6に示す従来技術が開示されている。
図5において、401〜404はホイートストンブリッジを構成する磁気抵抗素子であり、図6において、400は磁気抵抗素子401〜404が実装されたセンサーチップ、405は可変抵抗、406はセンサーチップ400の中心線、Uは出力電圧、Uは動作電圧、Istは制御電流である。
Further, Patent Document 2 discloses the prior art shown in FIGS.
5, reference numerals 401 to 404 denote magnetoresistive elements constituting the Wheatstone bridge. In FIG. 6, reference numeral 400 denotes a sensor chip on which the magnetoresistive elements 401 to 404 are mounted, reference numeral 405 denotes a variable resistor, and reference numeral 406 denotes a center of the sensor chip 400. The line, U a is the output voltage, U b is the operating voltage, and I st is the control current.

この従来技術では、センサーチップ400の中心線406から左右に距離aを隔てた領域IIIの両側に領域I,IIが形成され、これらの領域I,IIにおいて磁気抵抗素子401,404及び402,403がそれぞれ線対称の位置に配置されている。領域I,IIの裏側にはU字形の電流線(図示せず)が配置されており、この電流線を流れる被測定電流の方向は、領域I側と領域II側とで逆になっている。   In this prior art, regions I and II are formed on both sides of a region III that is separated from the center line 406 of the sensor chip 400 by a distance a on the left and right sides. Are arranged in line-symmetric positions. A U-shaped current line (not shown) is arranged on the back side of the regions I and II, and the direction of the current to be measured flowing through the current line is reversed between the region I side and the region II side. .

上記構成において、領域I,IIの裏側の電流線に被測定電流が流れている状態でホイートストンブリッジに動作電圧Uを印加すると、被測定電流による磁界が磁気抵抗素子401,404及び402,403に作用し、被測定電流の大きさに比例した出力電圧Uが得られる。このとき、隣接する電流線により発生した外部磁界が磁気抵抗素子401,404及び402,403に作用したとしても、これらの磁界は制御電流Istにより発生した磁界によって打ち消されるため、出力電圧Uに影響を及ぼすことはない。 In the above configuration, when the operating voltage U b is applied to the Wheatstone bridge in a state where the current to be measured flows through the current lines on the back side of the regions I and II, the magnetic field due to the current to be measured causes the magnetoresistive elements 401, 404 and 402, 403. And an output voltage U a proportional to the magnitude of the current to be measured is obtained. At this time, since the external magnetic field generated by adjacent current lines even when applied to the magneto-resistive element 401 and 404 and 402 and 403, these magnetic fields are to be canceled by the magnetic field generated by the control current I st, the output voltage U a Will not be affected.

特開2012−52912号公報(段落[0018]〜[0036]、図1,図2等)Japanese Patent Laying-Open No. 2012-52912 (paragraphs [0018] to [0036], FIG. 1, FIG. 2, etc.) 米国特許第5,621,377号明細書(第3欄第14行〜第52行、FIG.1〜FIG.3等)US Pat. No. 5,621,377 (column 3, line 14 to line 52, FIG. 1 to FIG. 3)

特許文献1に記載された従来技術では、GMR素子201,202に対する外乱磁界の影響を均等にするため、GMR素子201,202同士を近接して配置する必要があり、電流センサ200の製造工程で多くの手間やコストを要していた。
また、特許文献2に記載された従来技術では、磁気抵抗素子401,404及び402,403を線対称の位置に正確に配置しなくてはならず、製造上の手間や制約が大きいと共に、センサーチップ400が大型化するという問題があった。
In the prior art described in Patent Document 1, it is necessary to arrange the GMR elements 201 and 202 close to each other in order to equalize the influence of the disturbance magnetic field on the GMR elements 201 and 202. It required a lot of labor and cost.
Further, in the prior art described in Patent Document 2, the magnetoresistive elements 401, 404 and 402, 403 must be accurately arranged in line-symmetric positions, which has great manufacturing effort and restrictions, and sensor. There was a problem that the chip 400 was enlarged.

そこで、本発明の解決課題は、素子の配置や物理的構造による対策ではなく、周囲の電流線を流れる電流による磁界の影響を考慮して電流センサの電流検出値を補正することにより、被測定電流を正確に測定可能とした電流測定装置を提供することにある。   Therefore, the problem to be solved by the present invention is not a measure based on the element arrangement or physical structure, but by correcting the current detection value of the current sensor in consideration of the influence of the magnetic field due to the current flowing through the surrounding current lines. An object of the present invention is to provide a current measuring device capable of accurately measuring a current.

上記課題を解決するため、請求項1に係る発明は、三相各相の電流を測定する電流測定装置において、
三相のうち少なくとも二相の電流線を流れる電流を磁気抵抗素子によりそれぞれ検出する電流検出手段と、
各相の電流により発生する磁界が前記磁気抵抗素子による電流検出値に与える影響を示すパラメータを用いて少なくとも二相の電流検出値を補正することにより、三相各相の電流を演算によって算出する電流演算手段と、を備えたものである。
In order to solve the above problems, an invention according to claim 1 is a current measuring device for measuring a current of each phase of three phases.
Current detecting means for detecting currents flowing through at least two phase current lines of the three phases by means of magnetoresistive elements, and
By correcting the current detection value of at least two phases using a parameter indicating the influence of the magnetic field generated by the current of each phase on the current detection value by the magnetoresistive element, the current of each of the three phases is calculated by calculation. Current calculating means.

請求項2に係る発明は、請求項1に記載した電流測定装置において、前記パラメータは、三相の電流線相互の間隔に応じた値であることを特徴とする。   According to a second aspect of the present invention, in the current measuring device according to the first aspect, the parameter is a value corresponding to an interval between three-phase current lines.

請求項3に係る発明は、請求項1または2に記載した電流測定装置において、三相各相の電流線にそれぞれ設置された電流検出手段により三相全ての電流を検出するものである。   According to a third aspect of the present invention, in the current measuring device according to the first or second aspect, currents of all three phases are detected by current detecting means respectively installed on the current lines of the three phases.

請求項4に係る発明は、請求項1または2に記載した電流測定装置において、二相の電流線にそれぞれ設置された電流検出手段により二相の電流を検出するものである。   According to a fourth aspect of the present invention, in the current measuring device according to the first or second aspect, the two-phase current is detected by the current detecting means respectively installed on the two-phase current line.

請求項5に係る発明は、請求項3に記載した電流測定装置において、前記電流演算手段は、下記の数式により三相各相の電流i,i,iを演算することを特徴とする。
=GUU・iUdet+GUV・iVdet+GUW・iWdet
=GVU・iUdet+GVV・iVdet+GVW・iWdet
=GWU・iUdet+GWV・iVdet+GWW・iWdet
なお、上記のGUU〜GWWについては後述する。
The invention according to claim 5 is the current measuring device according to claim 3, wherein the current calculation means calculates the currents i U , i V , i W of each of the three phases according to the following formula: To do.
i U = G UU · i Udet + G UV · i Vdet + G UW · i Wdet
i V = G VU · i Udet + G VV · i Vdet + G VW · i Wdet
i W = G WU · i Udet + G WV · i Vdet + G WW · i Wdet
It will be described later above G UU ~G WW.

請求項6に係る発明は、請求項4に記載した電流測定装置において、前記電流演算手段は、三相各相の電流i,i,iを下記の数式により演算することを特徴とする。
=GUU’・iUdet+GUW’・iWdet
=GWU’・iUdet+GWW’・iWdet
=−i−i
なお、上記のGUU’,GUW’, GWU’,GWW’ については後述する。
The invention according to claim 6 is the current measuring device according to claim 4, wherein the current calculation means calculates the currents i U , i V , i W of each of the three phases according to the following formula: To do.
i U = G UU '· i Udet + G UW ' · i Wdet
i W = G WU '· i Udet + G WW ' · i Wdet
i V = −i U −i W
The above G UU ', G UW ', G WU ', and G WW ' will be described later.

請求項7に係る発明は、請求項5に記載した電流測定装置において、
三相の電流線が平面的に配置され、かつ、V相の電流線とU相の電流線との間隔、及び、V相の電流線とW相の電流線との間隔が等しいと共に、各電流センサの特性が全て等しい時に、後述するように、前記電流演算手段は、前記GUU〜GWWを求めるためのパラメータをa=e=i,c=g,b=d=f=hとして演算することを特徴とする。
The invention according to claim 7 is the current measuring device according to claim 5,
The three-phase current lines are arranged in a plane, and the distance between the V-phase current line and the U-phase current line and the distance between the V-phase current line and the W-phase current line are equal, When the characteristics of the current sensors are all equal, as will be described later, the current calculation means sets the parameters for obtaining the G UU to G WW as a = e = i, c = g, b = d = f = h. It is characterized by calculating.

請求項8に係る発明は、請求項6に記載した電流測定装置において、
三相の電流線が平面的に配置され、かつ、V相の電流線とU相の電流線との間隔、及び、V相の電流線とW相の電流線との間隔が等しいと共に、各電流センサの特性が全て等しい時に、後述するように、前記電流演算手段は、前記GUU’,GUW’, GWU’,GWW’を求めるためのパラメータをa=i,b=h,c=gとして演算するものである。
また、請求項9に係る発明は、請求項6に記載した電流測定装置において、
三相の電流線が平面的に配置され、かつ、W相の電流線とU相の電流線との間隔、及び、W相の電流線とV相の電流線との間隔が等しいと共に、各電流検出手段の特性が全て等しい時に、後述するように、前記電流演算手段は、前記GUU’,GUW’, GWU’,GWW’を求めるためのパラメータをa=i,c=h=gとして演算することを特徴とする
The invention according to claim 8 is the current measuring device according to claim 6,
The three-phase current lines are arranged in a plane, and the distance between the V-phase current line and the U-phase current line and the distance between the V-phase current line and the W-phase current line are equal, When the characteristics of the current sensors are all equal, as will be described later, the current calculation means sets parameters for obtaining the G UU ', G UW ', G WU ', and G WW ' as a = i, b = h, It is calculated as c = g.
The invention according to claim 9 is the current measuring device according to claim 6,
Three-phase current lines are arranged in a plane, and the distance between the W-phase current line and the U-phase current line and the distance between the W-phase current line and the V-phase current line are equal, When the characteristics of the current detection means are all equal, the current calculation means uses parameters a = i, c = h for obtaining G UU ', G UW ', G WU ', G WW ' as will be described later. It is calculated as = g

なお、請求項10に記載するように、請求項5に記載した電流測定装置において、三相の電流線が、立体的に互いに等間隔で配置され、かつ、各電流検出手段の特性が全て等しい時に、後述するように、前記電流演算手段が、前記GUU〜GWWを求めるためのパラメータをa=e=i,b=c=d=f=g=hとして演算することにより、演算を一層簡略化することができる。
同様に、請求項11に記載するように、請求項6に記載した電流測定装置において、三相の電流線が、立体的に互いに等間隔で配置され、かつ、各電流検出手段の特性が全て等しい時に、後述するように、前記電流演算手段が、前記GUU’,GUW’, GWU’,GWW’を求めるためのパラメータをa=i,b=c=g=hとして演算することにより、演算を一層簡略化することができる。
In addition, as described in claim 10, in the current measuring device according to claim 5, the three-phase current lines are three-dimensionally arranged at equal intervals, and the characteristics of the current detection means are all equal. Sometimes, as will be described later, the current calculation means calculates the parameters for obtaining G UU to G WW as a = e = i, b = c = d = f = g = h, It can be further simplified.
Similarly, as described in claim 11, in the current measuring device according to claim 6, the three-phase current lines are three-dimensionally arranged at equal intervals, and all the characteristics of each current detecting means are all When they are equal, as will be described later, the current calculation means calculates the parameters for obtaining the G UU ', G UW ', G WU ', G WW ' as a = i, b = c = g = h. As a result, the calculation can be further simplified.

また、請求項12に記載するように、前記磁気抵抗素子にはGMR素子を使用することが望ましい。   Further, as described in claim 12, it is desirable to use a GMR element for the magnetoresistive element.

本発明によれば、被測定電流を検出するための電流検出手段による電流検出値を、周囲の電流線を流れる電流による磁界の影響を考慮したパラメータを用いて補正することにより、被測定電流を正確に測定することができる。
また、被測定電流を求めるための補正演算は比較的簡単な四則演算だけで済むため、ハードウェアやソフトウェアの負担も少ない。
According to the present invention, the current to be measured is corrected by correcting the current detection value by the current detection means for detecting the current to be measured using a parameter that takes into account the influence of the magnetic field due to the current flowing through the surrounding current lines. It can be measured accurately.
In addition, the correction calculation for obtaining the current to be measured only requires relatively simple four arithmetic operations, so that the burden on hardware and software is small.

本発明の第1実施形態における電流検出手段の構成図である。It is a block diagram of the electric current detection means in 1st Embodiment of this invention. 本発明の第2実施形態における電流検出手段の構成図である。It is a block diagram of the electric current detection means in 2nd Embodiment of this invention. 本発明の各実施形態に共通する電流測定装置の全体構成図である。1 is an overall configuration diagram of a current measurement device common to each embodiment of the present invention. 特許文献1に記載された従来技術の説明図である。It is explanatory drawing of the prior art described in patent document 1. FIG. 特許文献2に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in patent document 2. 特許文献2に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 2. FIG.

以下、図に沿って本発明の実施形態を説明する。
1.第1実施形態
図1は、本発明の第1実施形態における電流検出手段の構成図である。図1において、10U,10V,10Wは互いに隣接した電流線であり、三相(U,V,W相)の電流i,i,iが流れている。
ここでは、U,V,W相の被測定電流(以下、単にU相電流,V相電流,W相電流という)i,i,iを、各相の電流線10U,10V,10Wにそれぞれ設置されたGMR素子等の磁気抵抗素子からなる電流センサ20U,20V,20Wの電流検出値iUdet,iVdet,iWdetに基づいて求める場合につき説明する。この場合、前述したように、各相の電流検出値iUdet,iVdet,iWdetは各相の電流i,i,iによる磁界の影響を受けるため、i=iUdet,i=iVdet,i=iWdetとはならない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1. First Embodiment FIG. 1 is a configuration diagram of current detection means in a first embodiment of the present invention. In Figure 1, 10 U, 10V, 10 W is adjacent current lines to each other, the current i U three-phase (U, V, W-phase), i V, i W flows.
Here, U, V, and W-phase currents to be measured (hereinafter simply referred to as U-phase current, V-phase current, and W-phase current) i U , i V , and i W are used as current lines 10U, 10V, and 10W for the respective phases. Will be described based on the current detection values i Udet , i Vdet , i Wdet of the current sensors 20U, 20V, 20W each composed of a magnetoresistive element such as a GMR element. In this case, as described above, since the current detection values i Udet , i Vdet , i Wdet of each phase are affected by the magnetic field due to the currents i U , i V , i W of each phase, i U = i Udet , i V = i Vdet and i W = i Wdet are not satisfied .

いま、表1に示すように、各相電流i,i,iによる磁界がU相電流検出値iUdetに及ぼす影響をパラメータKUU,KUV,KUWによって表し、同じくV相電流検出値iVdetに及ぼす影響をパラメータKVU,KVV,KVWによって表し、同じくW相電流検出値iWdetに及ぼす影響をパラメータKWU,KWV,KWWによって表すものとする。
なお、便宜的に、KUU=a,KUV=b,KUW=c,KVU=d,KVV=e,KVW=f,KWU=g,KWV=h,KWW=iとする。

Figure 2015078872
Now, as shown in Table 1, the influence of the magnetic field caused by the phase currents i U , i V , i W on the U-phase current detection value i Udet is expressed by parameters K UU , K UV , K UW , and the V-phase current is also the same. The influence on the detected value i Vdet is represented by parameters K VU , K VV , and K VW , and the influence on the W-phase current detected value i Wdet is also represented by parameters K WU , K WV , and K WW .
For convenience, K UU = a, K UV = b, K UW = c, K VU = d, K VV = e, K VW = f, K WU = g, K WV = h, K WW = i And
Figure 2015078872

ここで、各相の電流線10U,10V,10Wをこの順番で平面的かつ等間隔に配置した場合、電流検出値iUdet,iVdet,iWdetと実際の各相電流i,i,iとの間には、数式1〜数式3が成り立つ。

Figure 2015078872
Figure 2015078872
Figure 2015078872
Here, when the current lines 10U, 10V, and 10W of the respective phases are arranged in this order on a plane and at equal intervals, the detected current values i Udet , i Vdet , i Wdet and the actual phase currents i U , i V , Formulas 1 to 3 are established between i and W.
Figure 2015078872
Figure 2015078872
Figure 2015078872

ただし、電流センサ20U,20V,20Wの特性が完全に同一であるとすれば、9個のパラメータKUU〜KWWは各電流線と各電流センサとの間の距離に応じて変化するため、KVU=KVW=KUV=KWV,KWU=KUW,KVV=KWW=KUU、すなわち、d=f=b=h,c=g,e=i=aとなり、数式1〜3を更に簡略化することができる。しかし、以下では、電流センサ20U,20V,20Wの特性のばらつきを考慮して、数式1〜3に基づき各相電流i,i,iを求めることとする。 However, if the characteristics of the current sensors 20U, 20V, and 20W are completely the same, the nine parameters K UU to K WW change according to the distance between each current line and each current sensor. K VU = K VW = K UV = K WV , K WU = K UW , K VV = K WW = K UU , that is, d = f = b = h, c = g, e = i = a, Equation 1 ~ 3 can be further simplified. However, in the following, the phase currents i U , i V , and i W are obtained based on Formulas 1 to 3 in consideration of variations in characteristics of the current sensors 20U, 20V, and 20W.

(1)始めに、電流検出値iUdet,iVdet,iWdetを用いてU相電流iを測定する方法について説明する。
まず、数式1にKVVを乗算して数式4を得る。

Figure 2015078872
また、数式2にKUVを乗算して数式5を得る。
Figure 2015078872
次に、数式4から数式5を減算して数式6を得る。
Figure 2015078872
(1) First, the current detection value i UDET, i Vdet, how to measure the U-phase current i U with i WDET be described.
First, Equation 4 is obtained by multiplying Equation 1 by KVV .
Figure 2015078872
Also, Formula 5 is obtained by multiplying Formula 2 by K UV .
Figure 2015078872
Next, Equation 6 is obtained by subtracting Equation 5 from Equation 4.
Figure 2015078872

次いで、数式2にKWVを乗算して数式7を得る。

Figure 2015078872
また、数式3にKVVを乗算して数式8を得る。
Figure 2015078872
次に、数式7から数式8を減算して数式9を得る。
Figure 2015078872
Next, Equation 7 is obtained by multiplying Equation 2 by K WV .
Figure 2015078872
Also, Equation 8 is obtained by multiplying Equation 3 by KVV .
Figure 2015078872
Next, Equation 9 is obtained by subtracting Equation 8 from Equation 7.
Figure 2015078872

数式6に(KWVVW−KVVWW)を乗算して数式10を得る。

Figure 2015078872
また、数式9に(KUWVV−KVWUV)を乗算して数式11を得る。
Figure 2015078872
数式10から数式11を減算して数式12を得る。
Figure 2015078872
Expression 10 is obtained by multiplying Expression 6 by (K WV K VW −K VV K WW ).
Figure 2015078872
Also, Formula 11 is obtained by multiplying Formula 9 by (K UW K VV −K VW K UV ).
Figure 2015078872
Equation 12 is obtained by subtracting Equation 11 from Equation 10.
Figure 2015078872

数式12から数式13が得られる。

Figure 2015078872
ここで、数式13のiを数式14により定義する。
Figure 2015078872
Expression 13 is obtained from Expression 12.
Figure 2015078872
Here, i U in Equation 13 is defined by Equation 14.
Figure 2015078872

これまでの計算と、前述したKUU=a,KUV=b,KUW=c,KVU=d,KVV=e,KVW=f,KWU=g,KWV=h,KWW=iにより、数式15〜17を得る。

Figure 2015078872
Figure 2015078872
Figure 2015078872
The above calculation and the above-described K UU = a, K UV = b, K UW = c, K VU = d, K VV = e, K VW = f, K WU = g, K WV = h, K WW = 15, Formulas 15 to 17 are obtained.
Figure 2015078872
Figure 2015078872
Figure 2015078872

従って、数式15〜17により求めたGUU,GUV,GUWと電流検出値iUdet,iVdet,iWdetとを用いれば、数式14により、真のU相電流iを求めることができる。 Thus, G UU, G UV was determined using Equation 15 to 17, G UW and the current detection value i UDET, i Vdet, the use and i WDET, using Equation 14, it is possible to determine the true U-phase current i U .

(2)次に、電流検出値iUdet,iVdet,iWdetを用いてW相電流iを測定する方法について説明する。
まず、数式6に(KWVVU−KVVWU)を乗算して数式18を得る。

Figure 2015078872
数式9に(KUUVV−KVUUV)を乗算して数式19を得る。
Figure 2015078872
数式18から数式19を減算して数式20を得る。
Figure 2015078872
数式20を変形して数式21を得る。
Figure 2015078872
(2) Next, the current detection value i UDET, i Vdet, the method of measuring the W-phase current i W with i WDET be described.
First, Equation 18 is obtained by multiplying Equation 6 by (K WV K VU −K VV K WU ).
Figure 2015078872
Expression 19 is obtained by multiplying Expression 9 by (K UUK VV− K VU K UV ).
Figure 2015078872
Equation 19 is subtracted from Equation 18 to obtain Equation 20.
Figure 2015078872
Equation 20 is transformed to obtain Equation 21.
Figure 2015078872

ここで、数式21のiを数式22により定義する。

Figure 2015078872
Here, i W of Equation 21 is defined by Equation 22.
Figure 2015078872

これまでの計算と、前述したKUU=a,KUV=b,KUW=c,KVU=d,KVV=e,KVW=f,KWU=g,KWV=h,KWW=iにより、数式23〜25を得る。

Figure 2015078872
Figure 2015078872
Figure 2015078872
The above calculation and the above-described K UU = a, K UV = b, K UW = c, K VU = d, K VV = e, K VW = f, K WU = g, K WV = h, K WW = 23, Formulas 23 to 25 are obtained.
Figure 2015078872
Figure 2015078872
Figure 2015078872

従って、数式23〜25により求めたGWU,GWV,GWWと電流検出値iUdet,iVdet,iWdetとを用いれば、数式22により、真のW相電流iを求めることができる。 Accordingly, the true W-phase current i W can be obtained from Equation 22 by using G WU , G WV , G WW obtained from Equations 23 to 25 and the current detection values i Udet , i Vdet , i Wdet. .

(3)更に、電流検出値iUdet,iVdet,iWdetを用いてV相電流iを測定する方法について説明する。
まず、数式1にKVWを乗算して数式26を得る。

Figure 2015078872
次いで、数式2にKUWを乗算して数式27を得る。
Figure 2015078872
数式26から数式27を減算して数式28を得る。
Figure 2015078872
(3) Further, the current detection value i UDET, i Vdet, how to measure the V-phase current i V with i WDET be described.
First, Equation 26 is obtained by multiplying Equation 1 by K VW .
Figure 2015078872
Next, Equation 27 is obtained by multiplying Equation 2 by KUW .
Figure 2015078872
Equation 28 is subtracted from Equation 26 to obtain Equation 28.
Figure 2015078872

次に、数式2にKWWを乗算して数式29を得る。

Figure 2015078872
また、数式3にKVWを乗算して数式30を得る。
Figure 2015078872
数式29から数式30を減算して数式31を得る。
Figure 2015078872
Next, Equation 2 is obtained by multiplying Equation 2 by KWW .
Figure 2015078872
Also, Equation 30 is obtained by multiplying Equation 3 by K VW .
Figure 2015078872
Equation 31 is obtained by subtracting Equation 30 from Equation 29.
Figure 2015078872

更に、数式28に(KVUWW−KWUVW)を乗算して数式32を得る。

Figure 2015078872
数式31に(KUUVW−KVUUW)を乗算して数式33を得る。
Figure 2015078872
数式32から数式33を減算して数式34を得る。
Figure 2015078872
Furthermore, Formula 28 is obtained by multiplying Formula 28 by (K VU K WW −K WU K VW ).
Figure 2015078872
Obtaining a formula 33 by multiplying the (K UU K VW -K VU K UW) in Equation 31.
Figure 2015078872
Equation 34 is obtained by subtracting Equation 33 from Equation 32.
Figure 2015078872

数式34を変形して数式35を得る。また、数式35を変形して数式36を得る。

Figure 2015078872
Figure 2015078872
Expression 34 is transformed to obtain Expression 35. Further, the mathematical formula 35 is transformed to obtain the mathematical formula 36.
Figure 2015078872
Figure 2015078872

ここで、数式36のiを数式37により定義する。

Figure 2015078872
Here, i V in Expression 36 is defined by Expression 37.
Figure 2015078872

これまでの計算と、前述したKUU=a,KUV=b,KUW=c,KVU=d,KVV=e,KVW=f,KWU=g,KWV=h,KWW=iにより、数式38〜40を得る。

Figure 2015078872
Figure 2015078872
Figure 2015078872
The above calculation and the above-described K UU = a, K UV = b, K UW = c, K VU = d, K VV = e, K VW = f, K WU = g, K WV = h, K WW = 38, Formulas 38-40 are obtained.
Figure 2015078872
Figure 2015078872
Figure 2015078872

従って、数式38〜40により求めたGVU,GVV,GVWと電流検出値iUdet,iVdet,iWdetとを用いれば、数式37により、真のV相電流iを求めることができる。 Therefore, the true V-phase current i V can be obtained from Equation 37 by using G VU , G VV , G VW and current detection values i Udet , i Vdet , i Wdet obtained by Equations 38-40. .

ここで、数式15〜17のGUU,GUV,GUW、数式23〜25のGWU,GWV,GWW、数式38〜40のGVU,GVV,GVWを求めるためのパラメータa〜iは、以下に示すような方法により求めることができる。
すなわち、各相の電流線10U,10V,10Wに対し、U相電流iだけを流した場合、V相電流iだけを流した場合、W相電流iだけを流した場合、のそれぞれについて、各相の電流センサ20U,20V,20Wによる電流検出値を実測する。
Here, G UU formulas 15~17, G UV, G UW, G WU formulas 23~25, G WV, G WW, G VU formulas 38 to 40, G VV, parameters for determining the G VW a -I can be calculated | required by the method as shown below.
In other words, each phase of the current line 10 U, 10V, to 10 W, in passing only U-phase current i U, in passing only V-phase current i V, in passing only W-phase current i W, respectively The current detection values by the current sensors 20U, 20V, and 20W of each phase are actually measured.

例えば、各相電流i,i,iの振幅を何れも100[A]とした場合、各相の電流センサ20U,20V,20Wによる電流検出値(実測値)iUdet,iVdet,iWdetが表2のようになったとする。

Figure 2015078872
この表2は、U相電流iだけを流した場合のU相電流検出値iUdetが96[A]、V相電流検出値iVdetが2.8[A]、W相電流検出値iWdetが0.8[A]であり、V相電流iだけを流した場合のU相電流検出値iUdetが2.8[A]、V相電流検出値iVdetが96[A]、W相電流検出値iWdetが2.8[A]であり、W相電流iだけを流した場合のU相電流検出値iUdetが0.8[A]、V相電流検出値iVdetが2.4[A]、W相電流検出値iWdetが97[A]であることを示している。
なお、V相電流検出値iVdetの2.4[A]、W相電流検出値iWdetの97[A]は、電流検出時の誤差と考えられるので、これらの誤差がない場合を想定して、2.4[A]→2.8[A],97[A]→96[A]と補正しても良い。 For example, when the amplitudes of the phase currents i U , i V , i W are all 100 [A], the current detection values (actual values) i Udet , i Vdet , by the current sensors 20U, 20V, 20W of the respective phases Assume that i Wdet is as shown in Table 2.
Figure 2015078872
The Table 2, U-phase current i U U-phase current detection value i UDET in passing only is 96 [A], V-phase current detection value i Vdet is 2.8 [A], W-phase current detection value i Wdet a is 0.8 [a], U-phase current detection value i UDET in passing only V-phase current i V is 2.8 [a], V-phase current detection value i Vdet is 96 [a], The W-phase current detection value i Wdet is 2.8 [A], the U-phase current detection value i Udet is 0.8 [A] when only the W-phase current i W is passed, and the V-phase current detection value i Vdet. Is 2.4 [A], and the W-phase current detection value i Wdet is 97 [A].
It should be noted that 2.4 [A] of the V-phase current detection value i Vdet and 97 [A] of the W-phase current detection value i Wdet are considered errors at the time of current detection. Thus, the correction may be made as 2.4 [A] → 2.8 [A], 97 [A] → 96 [A].

以下では、表2の値をそのまま用いて処理するものとする。まず、表2の各相電流検出値iUdet,iVdet,iWdetをパーセント表示したパラメータをa〜iとすると、a=96[%],b=2.8[%],c=0.8[%],……である。このことは、U相電流iに対し、その96[%]がU相電流センサ20Uによって検出され、U相電流iにより発生する磁束の影響により、2.8[%]がV相電流センサ20Vによって検出され、0.8[%]がW相電流センサ20Wによって検出されることを示している。 In the following, processing is performed using the values in Table 2 as they are. First, assuming that the parameters indicating the respective phase current detection values i Udet , i Vdet , i Wdet in Table 2 as a percentage are a to i, a = 96 [%], b = 2.8 [%], c = 0. 8 [%], ... This is to U-phase current i U, the 96 [%] is detected by the U-phase current sensor 20 U, due to the influence of the magnetic flux generated by the U-phase current i U, 2.8 [%] is the V-phase current It is detected by the sensor 20V, and 0.8 [%] is detected by the W-phase current sensor 20W.

ここで、上記のパラメータa〜iは一相分の電流の影響が反映された値であり、実際の電流線10U,10V,10Wには三相交流電流が流れるので、U相電流検出値iUdetには各相電流i,i,iによる影響が同時に及び、このことはV相電流検出値iVdet及びW相電流検出値iWdetについても同様である。
従って、各相電流i,i,iによる影響を考慮する場合には、電流線10Uに振幅が100[A]の電流を流したときの各相電流検出値iUdet,iVdet,iWdetの振幅を実測してa,d,gを求める。同様に、電流線10Vに振幅が100[A]の電流を流したときの各相電流検出値iUdet,iVdet,iWdetの振幅を実測してb,e,hを求める。更に、電流線10Wに振幅が100[A]の電流を流したときの各相電流検出値iUdet,iVdet,iWdetの振幅を実測してc,f,iを求める。
Here, the parameters a to i are values that reflect the effect of the current for one phase, and a three-phase alternating current flows through the actual current lines 10U, 10V, and 10W. Udet is simultaneously influenced by the phase currents i U , i V , i W , and this is the same for the V-phase current detection value i Vdet and the W-phase current detection value i Wdet .
Therefore, when the influence of each phase current i U , i V , i W is considered, each phase current detection value i Udet , i Vdet , when a current having an amplitude of 100 [A] flows through the current line 10U, i Measure the amplitude of Wdet to determine a, d, and g. Similarly, the amplitude of each phase current detection value i Udet , i Vdet , i Wdet when a current having an amplitude of 100 [A] flows through the current line 10 V is measured to obtain b, e, h. Further, c, f, i are obtained by measuring the amplitude of each phase current detection value i Udet , i Vdet , i Wdet when a current having an amplitude of 100 [A] flows through the current line 10W.

以上のようにしてパラメータa〜iが求められれば、数式15〜17のGUU,GUV,GUW、数式23〜25のGWU,GWV,GWW、数式38〜40のGVU,GVV,GVWが定まり、各相電流i,i,iを演算により求めることができる。
ここでは、表2のパラメータa〜iをそのまま用いることとし、これらのパラメータa〜i及び数式14,数式22,数式37から、数式41を得る。
If the parameters a to i are obtained as described above, G UU , G UV , G UW of Expressions 15 to 17, G WU , G WV , G WW of Expressions 23 to 25, G VU of Expressions 38 to 40, G VV and G VW are determined, and the phase currents i U , i V , and i W can be obtained by calculation.
Here, the parameters a to i in Table 2 are used as they are, and the equation 41 is obtained from these parameters a to i and Equations 14, 22, and 37.

Figure 2015078872
Figure 2015078872

この数式41を用いれば、各相電流センサ20U,20V,20Wによる電流検出値iUdet,iVdet,iWdetを補正して実際の各相電流i,i,iを正確に測定することができる。 Using this equation 41, the current detection values i Udet , i Vdet , i Wdet by the phase current sensors 20U, 20V, 20W are corrected, and the actual phase currents i U , i V , i W are accurately measured. be able to.

2.第2実施形態
次に、図2は、本発明の第2実施形態における電流検出手段の構成図であり、図1と同一のものには同一の参照符号を付してある。
この第2実施形態では、各相電流i,i,iを、U相,W相の電流線10U,10Wにそれぞれ設置されたGMR素子等の磁気抵抗素子からなる電流センサ20U,20Wの電流検出値iUdet,iWdetに基づいて求める。
2. Second Embodiment Next, FIG. 2 is a configuration diagram of current detection means in a second embodiment of the present invention, and the same components as those in FIG. 1 are denoted by the same reference numerals.
In this second embodiment, the phase currents i U, i V, and i W, U-phase, W-phase current lines 10 U, the current sensor 20U consisting magnetoresistive element such as GMR elements disposed respectively 10 W, 20W The current detection values i Udet and i Wdet are obtained.

第1実施形態と同様に、各相電流i,i,iによる磁界がU相電流検出値iUdetに及ぼす影響をパラメータKUU(=a),KUV(=b),KUW(=c)によって表し、同じくW相電流検出値iWdetに及ぼす影響をパラメータKWU(=g),KWV(=h),KWW(=i)によって表すものとする。
これらの関係を表3に示す。

Figure 2015078872
As in the first embodiment, parameters K UU (= a), K UV (= b), and K UW are the effects of the magnetic fields generated by the phase currents i U , i V , i W on the U-phase current detection value i Udet. It is expressed by (= c), and the influence on the W-phase current detection value i Wdet is also expressed by parameters K WU (= g), K WV (= h), and K WW (= i).
These relationships are shown in Table 3.
Figure 2015078872

各相の電流線10U,10V,10Wをこの順番で平面的かつ等間隔に配置した場合、電流検出値iUdet,iWdetと実際の各相電流i,i,iとの間には、数式42,43が成り立つ。なお、i+i+i=0(i=−i−i)を条件とする。

Figure 2015078872
Figure 2015078872
When the current lines 10U, 10V, and 10W of each phase are arranged in this order in a planar and equidistant manner, the current detection values i Udet and i Wdet are between the actual phase currents i U , i V , and i W. The following formulas 42 and 43 hold. Incidentally, i U + i V + i W = 0 (i V = -i U -i W) to the condition.
Figure 2015078872
Figure 2015078872

ただし、電流センサ20U,20Wの特性が完全に同一であるとすれば、6個のパラメータKUU〜KWWは各電流線と各電流センサとの間の距離に応じて変化するため、KWU=KUW,KWV=KUV,KWW=KUU、すなわち、g=c,h=b,i=aとなり、数式42,43を更に簡略化することができる。しかし、以下では、電流センサ20U,20Wの特性のばらつきを考慮して、数式42,43に基づき各相電流i,i,iを求めることとする。 However, current sensor 20 U, if the characteristics of 20W are completely identical, because the six parameters K UU ~K WW, which changes according to the distance between each current line and the current sensors, K WU = K UW , K WV = K UV , K WW = K UU , that is, g = c, h = b, i = a, and the expressions 42 and 43 can be further simplified. However, hereinafter, the phase currents i U , i V , and i W are obtained based on the equations 42 and 43 in consideration of variations in characteristics of the current sensors 20U and 20W.

(1)始めに、電流検出値iUdet,iWdetを用いてU相電流iを測定する方法について説明する。
まず、数式42に(KWW−KWV)を乗算して数式44を得る。

Figure 2015078872
また、数式43に(KUW−KUV)を乗算して数式45を得る。
Figure 2015078872
(1) First, a method for measuring the U-phase current i U using current detection value i UDET, the i WDET.
First, Formula 44 is obtained by multiplying Formula 42 by (K WW −K WV ).
Figure 2015078872
Also, Formula 45 is obtained by multiplying Formula 43 by (K UW −K UV ).
Figure 2015078872

次に、数式44から数式45を減算して数式46を得る。更に、数式46を変形して数式47を得る。

Figure 2015078872
Figure 2015078872
Next, Equation 45 is subtracted from Equation 44 to obtain Equation 46. Further, the mathematical formula 46 is transformed to obtain the mathematical formula 47.
Figure 2015078872
Figure 2015078872

ここで、U相電流iを数式48により定義する。なお、数式48におけるGUU’,GUW’は数式49,50に示す通りであり、数式14,15,17におけるGUU,GUWとは異なる値である。
また、数式49,50において、a=KUU,b=KUV,c=KUW,g=KWU,h=KWV,i=KWWである。

Figure 2015078872
Figure 2015078872
Figure 2015078872
従って、数式48〜50により、電流検出値iUdet,iWdet及びGUU’,GUW’を用いれば、真のU相電流iを求めることができる。 Here, the U-phase current i U is defined by Equation 48. Note that G UU ′ and G UW ′ in Formula 48 are as shown in Formulas 49 and 50, and are different from G UU and G UW in Formulas 14, 15, and 17.
Further, in Equations 49 and 50, a = K UU , b = K UV , c = K UW , g = K WU , h = K WV , i = K WW .
Figure 2015078872
Figure 2015078872
Figure 2015078872
Therefore, the true U-phase current i U can be obtained by using the current detection values i Udet , i Wdet and G UU ', G UW ' according to the mathematical expressions 48 to 50.

(2)次に、電流検出値iUdet,iWdetを用いてW相電流iを測定する方法について説明する。
まず、数式42に(KWU−KWV)を乗算して数式51を得る。

Figure 2015078872
また、数式43に(KUU−KUV)を乗算して数式52を得る。
Figure 2015078872
(2) Next, the current detection value i UDET, the method of measuring the W-phase current i W with i WDET be described.
First, Formula 51 is obtained by multiplying Formula 42 by (K WU −K WV ).
Figure 2015078872
Further, Formula 52 is obtained by multiplying Formula 43 by (K UU −K UV ).
Figure 2015078872

数式51から数式52を減算して数式53を得る。更に、数式53を変形して数式54を得る。

Figure 2015078872
Figure 2015078872
The formula 53 is obtained by subtracting the formula 52 from the formula 51. Further, the mathematical formula 53 is transformed to obtain the mathematical formula 54.
Figure 2015078872
Figure 2015078872

ここで、W相の被測定電流iを数式55により定義する。なお、数式55におけるGWU’,GWW’は、数式56,57に示す通りである。

Figure 2015078872
Figure 2015078872
Figure 2015078872
従って、数式55〜57により、電流検出値iUdet,iWdet及びGWU’,GWW’を用いれば、真のW相電流iを求めることができる。 Here, the measured current i W of the W phase is defined by Equation 55. Incidentally, G WU in Equation 55 ', G WW' is shown in Equation 56 and 57.
Figure 2015078872
Figure 2015078872
Figure 2015078872
Therefore, the true W-phase current i W can be obtained by using the current detection values i Udet and i Wdet and G WU ′ and G WW ′ according to the equations 55 to 57.

数式49,50のGUU’,GUW’及び数式56,57のGWU’,GWW’を求めるためのa=KUU,b=KUV,c=KUW,g=KWU,h=KWV,i=KWWは、第1実施形態と同様に実測によって求めることができる。すなわち、前述した表2によれば、U相電流iだけを流した場合のU相電流検出値iUdetが96[A]、W相電流検出値iWdetが0.8[A]であり、V相電流iだけを流した場合のU相電流検出値iUdetが2.8[A]、W相電流検出値iWdetが2.8[A]であり、W相電流iだけを流した場合のU相電流検出値iUdetが0.8[A]、W相電流検出値iWdetが97[A]であるから、a=96[%],b=2.8[%],c=0.8[%],g=0.8[%],h=2.8[%],i=97[%]となる。
これらのパラメータa,b,c,g,h,iから数式49,50のGUU’,GUW’及び数式56,57のGWU’,GWW’を求めることができ、更に数式48,数式55を用いて、U相電流i及びW相電流iを数式58により求めることができる。
A = K UU , b = K UV , c = K UW , g = K WU , h for obtaining G UU ′, G UW ′ of Formulas 49 and 50 and G WU ′ and G WW ′ of Formulas 56 and 57 = K WV, i = K WW can be determined by actual measurement as in the first embodiment. That is, according to Table 2 described above, the U-phase current detection value i Udet is 96 [A] and the W-phase current detection value i Wdet is 0.8 [A] when only the U-phase current i U is passed. , U-phase current detection value i UDET 2.8 in passing only V-phase current i V [a], W-phase current detection value i WDET is 2.8 [a], W-phase current i W only The U-phase current detection value i Udet is 0.8 [A] and the W-phase current detection value i Wdet is 97 [A], so that a = 96 [%] and b = 2.8 [%]. ], C = 0.8 [%], g = 0.8 [%], h = 2.8 [%], i = 97 [%].
From these parameters a, b, c, g, h, i, G UU ′, G UW ′ of Formulas 49, 50 and G WU ′, G WW ′ of Formulas 56, 57 can be obtained. Using Equation 55, the U-phase current i U and the W-phase current i W can be obtained by Equation 58.

Figure 2015078872
Figure 2015078872

(3)また、V相電流iは、前述したように数式59により演算可能である。
[数59]
=−i−i
(3) Further, the V-phase current i V can be calculated by Equation 59 as described above.
[Numerical formula 59]
i V = −i U −i W

よって、U相電流センサ20U,W相電流センサ20Wによる電流検出値iUdet,iWdetを補正して、実際の各相電流i,i,iを正確に測定することが可能である。
なお、この第2実施形態では、U相,W相の電流線10U,10Wに電流センサ20U,20Wをそれぞれ設置した例について説明したが、例えばU相,V相の電流線10U,10Vに電流センサをそれぞれ設置した場合にも本発明を適用できることは言うまでもない。
Therefore, it is possible to correct the current detection values i Udet and i Wdet by the U-phase current sensor 20U and the W-phase current sensor 20W and accurately measure the actual phase currents i U , i V and i W. .
In the second embodiment, the example in which the current sensors 20U and 20W are respectively installed on the U-phase and W-phase current lines 10U and 10W has been described. However, for example, a current is supplied to the U-phase and V-phase current lines 10U and 10V. Needless to say, the present invention can also be applied to the case where each sensor is installed.

次に、図3は、上述した第1,第2実施形態に共通する電流測定装置の全体構成図である。
図3において、200は、第1実施形態の電流センサ20U,20V,20Wまたは第2実施形態の電流センサ20U,20Wからなる電流検出手段、300は、電流センサ20U,20V,20Wによる電流検出値iUdet,iVdet,iWdet及びパラメータa〜iから各相電流i,i,iを演算し、または、電流センサ20U,20Wによる電流検出値iUdet,iWdet及びパラメータa,b,c,g,h,iから各相電流i,i,iを演算するCPU等の電流演算手段である。
パラメータa〜iまたはa,b,c,g,h,iが既知であれば、電流演算手段300による簡単な四則演算だけで実際の各相電流i,i,iを正確に求めることができ、ハードウェア及びソフトウェアの負担も少ない。
Next, FIG. 3 is an overall configuration diagram of a current measuring device common to the first and second embodiments described above.
In FIG. 3, reference numeral 200 denotes current detection means comprising the current sensors 20U, 20V, 20W of the first embodiment or the current sensors 20U, 20W of the second embodiment, and 300 denotes a current detection value by the current sensors 20U, 20V, 20W. Each phase current i U , i V , i W is calculated from i Udet , i Vdet , i Wdet and parameters a to i, or current detection values i Udet , i Wdet and parameters a, b by current sensors 20U, 20W are calculated. , C, g, h, i, current calculation means such as a CPU for calculating each phase current i U , i V , i W.
If the parameters a to i or a, b, c, g, h, i are known, the actual phase currents i U , i V , i W can be accurately obtained only by simple four arithmetic operations by the current calculating means 300. And the burden of hardware and software is small.

なお、上記実施形態では、各相の電流線10U,10V,10Wを平面的かつ等間隔に配置した場合について説明したが、各相の電流線10U,10V,10Wが立体的に等間隔で配置され(電流線10U,10V,10Wの長さ方向の断面形状が正三角形であり、その各頂点に電流線10U,10V,10Wがそれぞれ配置され)、更に各相電流センサの特性が同一であるとすれば、例えば表1におけるKVU=KWU,KUV=KWV,KUW=KWU,KUU=KVV=KWWとおくことができ、各相電流i,i,iの演算式を一層簡略化することができる。 In the above-described embodiment, the case where the current lines 10U, 10V, and 10W of each phase are arranged planarly and at equal intervals has been described. However, the current lines 10U, 10V, and 10W of each phase are arranged at equal intervals in three dimensions. (The cross sections of the current lines 10U, 10V, and 10W in the longitudinal direction are equilateral triangles, and the current lines 10U, 10V, and 10W are arranged at the respective apexes), and the characteristics of the phase current sensors are the same. For example, K VU = K WU , K UV = K WV , K UW = K WU , K UU = K VV = K WW in Table 1 can be set, and the phase currents i U , i V , i The calculation formula of W can be further simplified.

10U,10V,10W:電流線
20U,20V,20W:電流センサ
200:電流検出手段
300:電流演算手段
10U, 10V, 10W: current lines 20U, 20V, 20W: current sensor 200: current detection means 300: current calculation means

Claims (12)

三相各相の電流を測定する電流測定装置において、
三相のうち少なくとも二相の電流線を流れる電流を磁気抵抗素子によりそれぞれ検出する電流検出手段と、
各相の電流により発生する磁界が前記磁気抵抗素子による電流検出値に与える影響を示すパラメータを用いて少なくとも二相の電流検出値を補正することにより、三相各相の電流を演算によって算出する電流演算手段と、
を備えたことを特徴とする電流測定装置。
In the current measurement device that measures the current of each of the three phases,
Current detecting means for detecting currents flowing through at least two phase current lines of the three phases by means of magnetoresistive elements, and
By correcting the current detection value of at least two phases using a parameter indicating the influence of the magnetic field generated by the current of each phase on the current detection value by the magnetoresistive element, the current of each of the three phases is calculated by calculation. Current calculation means;
A current measuring device comprising:
請求項1に記載した電流測定装置において、
前記パラメータは、三相の電流線相互の間隔に応じた値であることを特徴とする電流測定検出装置。
The current measuring device according to claim 1,
The said parameter is a value according to the space | interval of the three-phase current line, The current measurement detection apparatus characterized by the above-mentioned.
請求項1または2に記載した電流測定装置において、
三相各相の電流線にそれぞれ設置された前記電流検出手段により三相全ての電流を検出することを特徴とする電流測定装置。
In the current measuring device according to claim 1 or 2,
A current measuring device that detects currents of all three phases by the current detecting means respectively installed on the current lines of the three phases.
請求項1または2に記載した電流測定装置において、
二相の電流線にそれぞれ設置された前記電流検出手段により二相の電流を検出することを特徴とする電流測定装置。
In the current measuring device according to claim 1 or 2,
A current measuring device for detecting a two-phase current by means of the current detection means respectively installed on a two-phase current line.
請求項3に記載した電流測定装置において、
前記電流演算手段は、下記の数式により三相各相の電流i,i,iを演算することを特徴とする電流測定装置。
=GUU・iUdet+GUV・iVdet+GUW・iWdet
=GVU・iUdet+GVV・iVdet+GVW・iWdet
=GWU・iUdet+GWV・iVdet+GWW・iWdet
(なお、
UU=(hf−ei)e/{(hf−ei)(ae−db)−( hd−eg)( ce−fb)},
UV={(ei−hf)b+(fb−ce)h}/{(hf−ei)(ae−db)−( hd−eg)( ce−fb)},
UW=(ce−fb)e/{(hf−ei)(ae−db)−( hd−eg)( ce−fb)},
VU=f(di−gf)/{(di−gf)(bf−ec)−( ei−hf)( af−dc)},
VV={c(gf−di)+i(dc−af)}/{(di−gf)(bf−ec)−(ei−hf)(af−dc)},
VW=f(af−dc)/{(di−gf)(bf−ec)−( ei−hf)( af−dc)},
WU=(hd−eg)e/{(hd−eg)(ce−fb)−( ae−db)( hf−ei)},
WV={(eg−hd)b+(db−ae)h}/{(hd−eg)(ce−fb)−( ae−db)(hf−ei)},
WW=(ae−db)e/{(hd−eg)(ce−fb)−(ae−db)( hf−ei)}
であり、
a:U相電流がU相電流検出値に及ぼす影響を示すパラメータ,
b:V相電流がU相電流検出値に及ぼす影響を示すパラメータ,
c:W相電流がU相電流検出値に及ぼす影響を示すパラメータ,
d:U相電流がV相電流検出値に及ぼす影響を示すパラメータ,
e:V相電流がV相電流検出値に及ぼす影響を示すパラメータ,
f:W相電流がV相電流検出値に及ぼす影響を示すパラメータ,
g:U相電流がW相電流検出値に及ぼす影響を示すパラメータ,
h:V相電流がW相電流検出値に及ぼす影響を示すパラメータ,
i:W相電流がW相電流検出値に及ぼす影響を示すパラメータ,
Udet:U相電流検出値,iVdet:V相電流検出値,iWdet:W相電流検出値
であって、前記パラメータa〜iは、振幅が既知の電流を何れか一つの電流線に流した時に各電流検出手段の電流検出値から求められる値)
In the current measuring device according to claim 3,
The current calculation means calculates the currents i U , i V , i W of each of the three phases according to the following mathematical formula.
i U = G UU · i Udet + G UV · i Vdet + G UW · i Wdet
i V = G VU · i Udet + G VV · i Vdet + G VW · i Wdet
i W = G WU · i Udet + G WV · i Vdet + G WW · i Wdet
(Note that
G UU = (hf-ei) e / {(hf-ei) (ae-db)-(hd-eg) (ce-fb)},
G UV = {(ei−hf) b + (fb−ce) h} / {(hf−ei) (ae−db) − (hd−eg) (ce−fb)},
G UW = (ce−fb) e / {(hf−ei) (ae−db) − (hd−eg) (ce−fb)},
G VU = f (di−gf) / {(di−gf) (bf−ec) − (ei−hf) (af−dc)},
G VV = {c (gf−di) + i (dc−af)} / {(di−gf) (bf−ec) − (ei−hf) (af−dc)},
G VW = f (af−dc) / {(di−gf) (bf−ec) − (ei−hf) (af−dc)},
G WU = (hd-eg) e / {(hd-eg) (ce-fb)-(ae-db) (hf-ei)},
G WV = {(eg−hd) b + (db−ae) h} / {(hd−eg) (ce−fb) − (ae−db) (hf−ei)},
G WW = (ae-db) e / {(hd-eg) (ce-fb)-(ae-db) (hf-ei)}
And
a: a parameter indicating the influence of the U-phase current on the U-phase current detection value;
b: a parameter indicating the influence of the V-phase current on the U-phase current detection value,
c: a parameter indicating the influence of the W-phase current on the U-phase current detection value;
d: a parameter indicating the influence of the U-phase current on the V-phase current detection value;
e: a parameter indicating the influence of the V-phase current on the V-phase current detection value;
f: a parameter indicating the influence of the W-phase current on the V-phase current detection value,
g: a parameter indicating the influence of the U-phase current on the W-phase current detection value,
h: a parameter indicating the influence of the V-phase current on the W-phase current detection value,
i: a parameter indicating the influence of the W-phase current on the W-phase current detection value;
i Udet : U-phase current detection value, i Vdet : V-phase current detection value, i Wdet : W-phase current detection value, and the parameters a to i are currents with known amplitudes to any one current line Value obtained from the current detection value of each current detection means)
請求項4に記載した電流測定装置において、
前記電流演算手段は、三相各相の電流i,i,iを下記の数式により演算することを特徴とする電流測定装置。
=GUU’・iUdet+GUW’・iWdet
=GWU’・iUdet+GWW’・iWdet
=−i−i
(なお、
UU’=(i−h)/{(i−h)(a−b)−(g−h)( c−b)},
UW’=−(c−b)/{(i−h)(a−b)−(g−h)( c−b)},
WU’=(g−h)/{(g−h)(c−b)−(i−h)( a−b)},
WW’=−(a−b)/{(g−h)(c−b)−(i−h)(a−b)}
であり、
a:U相電流がU相電流検出値に及ぼす影響を示すパラメータ,
b:V相電流がU相電流検出値に及ぼす影響を示すパラメータ,
c:W相電流がU相電流検出値に及ぼす影響を示すパラメータ,
g:U相電流がW相電流検出値に及ぼす影響を示すパラメータ,
h:V相電流がW相電流検出値に及ぼす影響を示すパラメータ,
i:W相電流がW相電流検出値に及ぼす影響を示すパラメータ,
Udet:U相電流検出値,iWdet:W相電流検出値
であって、
前記パラメータa,b,c,g,h,iは、振幅が既知の電流を何れか一つの電流線に流した時に各電流検出手段の電流検出値から求められる値)
In the current measuring device according to claim 4,
The current calculation means calculates the currents i U , i V , i W of each phase of the three phases according to the following mathematical formula.
i U = G UU '· i Udet + G UW ' · i Wdet
i W = G WU '· i Udet + G WW ' · i Wdet
i V = −i U −i W
(Note that
G UU ′ = (i−h) / {(i−h) (ab) − (gh) (c−b)},
G UW ′ = − (c−b) / {(i−h) (a−b) − (g−h) (c−b)},
G WU ′ = (g−h) / {(g−h) (c−b) − (i−h) (a−b)},
GWW '=-(ab) / {(gh) (cb)-(ih) (ab)}
And
a: a parameter indicating the influence of the U-phase current on the U-phase current detection value;
b: a parameter indicating the influence of the V-phase current on the U-phase current detection value,
c: a parameter indicating the influence of the W-phase current on the U-phase current detection value;
g: a parameter indicating the influence of the U-phase current on the W-phase current detection value,
h: a parameter indicating the influence of the V-phase current on the W-phase current detection value,
i: a parameter indicating the influence of the W-phase current on the W-phase current detection value;
i Udet : U-phase current detection value, i Wdet : W-phase current detection value,
The parameters a, b, c, g, h, i are values obtained from the current detection values of the respective current detection means when a current having a known amplitude is passed through any one of the current lines)
請求項5に記載した電流測定装置において、
三相の電流線が平面的に配置され、かつ、V相の電流線とU相の電流線との間隔、及び、V相の電流線とW相の電流線との間隔が等しいと共に、各電流検出手段の特性が全て等しい時に、
前記電流演算手段は、
前記パラメータa=e=i,c=g,b=d=f=hとして演算することを特徴とする電流測定装置。
The current measuring device according to claim 5,
The three-phase current lines are arranged in a plane, and the distance between the V-phase current line and the U-phase current line and the distance between the V-phase current line and the W-phase current line are equal, When the characteristics of the current detection means are all equal,
The current calculation means includes
The current measuring device is characterized by calculating with the parameters a = e = i, c = g, b = d = f = h.
請求項6に記載した電流測定装置において、
三相の電流線が平面的に配置され、かつ、V相の電流線とU相の電流線との間隔、及び、V相の電流線とW相の電流線との間隔が等しいと共に、各電流検出手段の特性が全て等しい時に、
前記電流演算手段は、
前記パラメータa=i,b=h,c=gとして演算することを特徴とする電流測定装置。
The current measuring device according to claim 6,
The three-phase current lines are arranged in a plane, and the distance between the V-phase current line and the U-phase current line and the distance between the V-phase current line and the W-phase current line are equal, When the characteristics of the current detection means are all equal,
The current calculation means includes
The current measuring device is calculated as the parameters a = i, b = h, c = g.
請求項6に記載した電流測定装置において、
三相の電流線が平面的に配置され、かつ、W相の電流線とU相の電流線との間隔、及び、W相の電流線とV相の電流線との間隔が等しいと共に、各電流検出手段の特性が全て等しい時に、
前記電流演算手段は、
前記パラメータa=i,c=h=gとして演算することを特徴とする電流測定装置。
The current measuring device according to claim 6,
Three-phase current lines are arranged in a plane, and the distance between the W-phase current line and the U-phase current line and the distance between the W-phase current line and the V-phase current line are equal, When the characteristics of the current detection means are all equal,
The current calculation means includes
The current measuring device is calculated with the parameters a = i and c = h = g.
請求項5に記載した電流測定装置において、
三相の電流線が、立体的に互いに等間隔で配置され、かつ、各電流検出手段の特性が全て等しい時に、
前記電流演算手段は、
前記パラメータa=e=i,b=c=d=f=g=hとして演算することを特徴とする電流測定装置。
The current measuring device according to claim 5,
When the three-phase current lines are three-dimensionally arranged at equal intervals from each other and the characteristics of each current detection means are all equal,
The current calculation means includes
A current measuring device, wherein the calculation is performed with the parameters a = e = i and b = c = d = f = g = h.
請求項6に記載した電流測定装置において、
三相の電流線が、立体的に互いに等間隔で配置され、かつ、各電流検出手段の特性が全て等しい時に、
前記電流演算手段は、
前記パラメータa=i,b=c=g=hとして演算することを特徴とする電流測定装置。
The current measuring device according to claim 6,
When the three-phase current lines are three-dimensionally arranged at equal intervals from each other and the characteristics of each current detection means are all equal,
The current calculation means includes
The current measuring device is characterized by calculating with the parameters a = i and b = c = g = h.
請求項1〜11の何れか1項に記載した電流測定装置において、
前記磁気抵抗素子がGMR素子であることを特徴とする電流測定装置。
In the current measuring device according to any one of claims 1 to 11,
A current measuring apparatus, wherein the magnetoresistive element is a GMR element.
JP2013215468A 2013-10-16 2013-10-16 Current measuring device Pending JP2015078872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215468A JP2015078872A (en) 2013-10-16 2013-10-16 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215468A JP2015078872A (en) 2013-10-16 2013-10-16 Current measuring device

Publications (1)

Publication Number Publication Date
JP2015078872A true JP2015078872A (en) 2015-04-23

Family

ID=53010408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215468A Pending JP2015078872A (en) 2013-10-16 2013-10-16 Current measuring device

Country Status (1)

Country Link
JP (1) JP2015078872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381311A (en) * 2023-05-26 2023-07-04 南京博纳威电子科技有限公司 Reluctance-based current measurement system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152269U (en) * 1986-03-18 1987-09-26
JPH08233868A (en) * 1995-02-28 1996-09-13 Kyushu Henatsuki Kk Method and apparatus for setting magnetic field influence coefficient
US20050286190A1 (en) * 2004-06-29 2005-12-29 Rostron Joseph R Electric power monitoring and response system
JP2007303988A (en) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp Current detection device
JP2011080970A (en) * 2009-10-02 2011-04-21 Kohshin Electric Corp Detection device of multiphase current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152269U (en) * 1986-03-18 1987-09-26
JPH08233868A (en) * 1995-02-28 1996-09-13 Kyushu Henatsuki Kk Method and apparatus for setting magnetic field influence coefficient
US20050286190A1 (en) * 2004-06-29 2005-12-29 Rostron Joseph R Electric power monitoring and response system
JP2007303988A (en) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp Current detection device
JP2011080970A (en) * 2009-10-02 2011-04-21 Kohshin Electric Corp Detection device of multiphase current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381311A (en) * 2023-05-26 2023-07-04 南京博纳威电子科技有限公司 Reluctance-based current measurement system and method
CN116381311B (en) * 2023-05-26 2023-09-08 南京博纳威电子科技有限公司 Current measurement system and method based on magneto-resistance effect

Similar Documents

Publication Publication Date Title
JP5648246B2 (en) Current sensor
JP6303527B2 (en) Current sensor
CN109283379B (en) Method, device and equipment for measuring current of lead and readable storage medium
US20140097826A1 (en) Current sensor
US9201101B2 (en) Current sensor
JP2020118448A (en) Current sensor
WO2016056135A1 (en) Current detection device and current detection method
JP6566188B2 (en) Current sensor
JP2019060646A (en) Current sensor
JP7006633B2 (en) Magnetic sensor system
US10330708B2 (en) Current detection device and correction factor calculation method
JP2018165699A (en) Current sensor
US10295571B2 (en) Bus bar module
JP2013108787A (en) Current sensor
JP2007155399A (en) Current sensor and current value calculation system having the same
JP2015078872A (en) Current measuring device
US20160349334A1 (en) Integrated fluxgate magnetic gradient sensor
CN114424070A (en) Differential signal current sensor
JP2015132516A (en) Electric current detection structure
JP2014066623A (en) Current sensor
JP2013142604A (en) Current sensor
JP2016142652A (en) Power sensor
JP6421046B2 (en) Current measuring device
CN111122937A (en) Current detection method and current detection structure
JP2008241678A (en) Current sensor and current detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171219