JP2015076918A - 電源装置及び電気推進車両 - Google Patents

電源装置及び電気推進車両 Download PDF

Info

Publication number
JP2015076918A
JP2015076918A JP2013210158A JP2013210158A JP2015076918A JP 2015076918 A JP2015076918 A JP 2015076918A JP 2013210158 A JP2013210158 A JP 2013210158A JP 2013210158 A JP2013210158 A JP 2013210158A JP 2015076918 A JP2015076918 A JP 2015076918A
Authority
JP
Japan
Prior art keywords
battery
batteries
power supply
voltage
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013210158A
Other languages
English (en)
Inventor
洋平 山口
Yohei Yamaguchi
洋平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013210158A priority Critical patent/JP2015076918A/ja
Publication of JP2015076918A publication Critical patent/JP2015076918A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】複数の二次電池の直列体を含む電源装置において、放電専用の抵抗に要する取付スペースを削減し、かつ、エネルギーの無駄を少しでも抑制する。
【解決手段】複数の二次電池を相互に直列に接続して成る直列体を含む組電池と、これら複数の二次電池の各々について、その両端の電圧を検知する電圧センサと、当該組電池を加熱保温する加熱装置と、電圧センサの出力に基づいて、前記複数の二次電池のうち電圧が他の二次電池より高い二次電池を加熱装置へ接続して放電させる接続装置とを備えたものである。また、電気推進車両には、このような電源装置を電源として搭載することができる。
【選択図】図6

Description

本発明は、充電可能な電池(二次電池)を互いに直列に接続して成る組電池を有する電源装置に関する。
ハイブリッド車(HEV)や電気自動車(EV)には、多数の二次電池によって構成された電源装置が搭載されている。かかる電源装置は、複数の電池の直列体を基本構成として備え、必要な電流容量によりこれを並列に構成する。例えば電池としてリチウムイオン電池を使用する場合、1つの電池(セル)の電圧は、約3〜4.2V程度しかないので、高い直流電圧を必要とする用途には、多数の電池が直列に接続される。また、電池を充電するには、直列体全体に高い充電電圧が印加される。
図13は、n個の電池(例えばリチウムイオン電池)B1〜Bnを直列に接続した状態で、直列体を電源(直流)51により充電する回路図である。放電時は、電源51が負荷52に置き換わり、直列体から負荷52に電力が供給される。電池B1〜Bnにはそれぞれ並列に、半導体のスイッチ素子S(S1〜Snの総称)と抵抗R(R1〜Rnの総称)との直列体が接続されている。また、電池B1〜Bnのそれぞれの両端には、並列に、電圧センサV1〜Vnが接続されている。
充電時は、各電池が均一に充電され、電池の直列体全体で、蓄積し得る最大のエネルギーを蓄えることが望ましい。ところが、実際には各電池の残量及び容量の差があり、満充電に達するタイミングが一致しない。
例えば、図14は、電池B1及びB2について、満充電に達するタイミングが異なる場合の充電特性を示すグラフである。この場合、同じ3.0Vから充電開始しても、電池B1は時刻t1で既に満充電(4.2V)に達し、一方、電池B2はそれより後の時刻t2になってようやく満充電(4.2V)に達する。
単純に、電池の直列体に充電電圧を印加するとすれば、いずれか1つの電池でも満充電の状態になれば、当該電池の過充電を防止すべく、その時点で充電を停止しなければならない。しかし、他の電池は満充電に達していない。
そこで、例えば図14における電池B1が満充電(4.2V)に達したとすると、以後、スイッチ素子S1を断続的にオンとして電池B1を放電させ、過充電を抑制する。他の電池についても同様であり、最終的に全ての電池が満充電に達した時点で、全てのスイッチ素子S1〜Snがオフとなり、充電が完了する。
電池B1〜Bnの放電によって負荷52に給電する場合も同様であり、いずれかの電池が放電限界に達すると、他の電池に余力があっても、全体としては放電停止しなければならない。これでは、電池全体として保有するエネルギーを十分に活用することができない。そこで、早めに電池B1〜Bnの間で電圧均等化を行い、全ての電池B1〜Bnが同じように放電していくようにすれば、より大きなエネルギーを取り出すことができる。この場合、低いレベルの電池に合わせることになるので、電圧の高い電池のスイッチS1〜Snのいずれかをオンにして、電池を放電させる。こうして、全ての電池B1〜Bnが同じように電圧が低下していくようにする。
再表2011/118484号公報
しかしながら、上記のような電圧均等化を実行するには、電池の数だけ放電抵抗(抵抗体)が必要となる。ハイブリッド車や電気自動車には多数(例えば100個以上)の電池が搭載されるため、放電抵抗の数も多数となり、相応の大きな取付スペースが必要となる。また、放電によって失われる電気エネルギーは、回収されないので、無駄な電力損失でもある。
かかる従来の問題点に鑑み、本発明は、複数の二次電池の直列体を含む電源装置において、放電専用の抵抗に要する取付スペースを削減し、かつ、エネルギーの無駄を少しでも抑制することを目的とする。
本発明の電源装置は、複数の二次電池を相互に直列に接続して成る直列体を含む組電池と、前記複数の二次電池の各々について、その両端の電圧を検知する電圧センサと、前記組電池を加熱保温する加熱装置と、前記電圧センサの出力に基づいて、前記複数の二次電池のうち電圧が他の二次電池より高い二次電池を前記加熱装置へ接続して放電させる接続装置と、を備えたものである。
なお、電気推進車両には、このような電源装置を電源として搭載することができる。
本発明の電源装置によれば、放電専用の抵抗のための取付スペースを節減することができ、かつ、無駄な電力消費を抑制することができる。放電専用の抵抗を搭載する必要が無い分だけ、コンパクト化及び軽量化が可能となり、電気推進車両にとっては特に好適である。
溶融塩電池における発電要素の基本構造を原理的に示す略図である。 溶融塩電池本体(電池としての本体部分)の積層構造を簡略に示す斜視図である。 図2と同様の構造についての横断面図である。 組電池を構成した状態の一例を示す斜視図である。 組電池が走行用電源として電気自動車に搭載された状態を示す図である。 図4に示す組電池を含む、本発明の第1実施形態に係る電源装置の回路図である。 マルチプレクサの動作と回路構成の関係を示す回路図(1/4)である。 マルチプレクサの動作と回路構成の関係を示す回路図(2/4)である。 マルチプレクサの動作と回路構成の関係を示す回路図(3/4)である。 マルチプレクサの動作と回路構成の関係を示す回路図(4/4)である。 接続装置の動作を示すフローチャートである。 第2実施形態に係る電源装置の回路図である。 n個の電池(例えばリチウムイオン電池)を直列に接続した状態で、直列体を電源(直流)により充電する回路図である。 2つの電池について、満充電に達するタイミングが異なる場合の充電特性を示すグラフである。
[実施形態の要旨]
本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
(1)この電源装置は、複数の二次電池を相互に直列に接続して成る直列体を含む組電池と、前記複数の二次電池の各々について、その両端の電圧を検知する電圧センサと、前記組電池を加熱保温する加熱装置と、前記電圧センサの出力に基づいて、前記複数の二次電池のうち電圧が他の二次電池より高い二次電池を前記加熱装置へ接続して放電させる接続装置とを備えたものである。
かかる電源装置では、各二次電池の電圧を揃えるための放電により、加熱装置に給電し、組電池の加熱保温に利用することができる。従って、電圧均等化のための放電が加熱保温に利用されて無駄な電力消費を抑制することができる。また、加熱装置を放電抵抗として利用するので、放電専用の抵抗を別途設ける必要が無い。従って、放電専用の抵抗のための取付スペースを節減することができる。なお、このような電圧均等化は、放電中及び充電中のいずれでも実行することができる。
(2)また、(1)の電源装置において、前記二次電池は溶融塩を電解質とする溶融塩電池であってもよい。
溶融塩電池は、溶融塩の電解液を適切な温度に維持する必要があるので、電圧均等化のための放電を利用して加熱保温する対象として好適である。また、使用可能な温度範囲が広い溶融塩電池は加熱に対する許容範囲が広く、好適である。
(3)また、(1)又は(2)の電源装置において、前記加熱装置は複数個あって、そのうち任意の個数を、前記放電のための電路に接続するスイッチを備えたものであってもよい。
この場合、スイッチのオン/オフを選択することにより、加熱装置の一部又は全部を使用する、という利用形態が可能となる。すなわち、放電用の抵抗値を所望の値になるように選択することが可能となる。また、複数の加熱装置を互いに並列に接続すれば、全体としての抵抗値を個々の加熱装置よりも小さくすることができる。抵抗値を小さくすれば大電流が流れて発熱量も大きくなるが、組電池が吸熱の役割を果たすことにより、過熱の恐れはなく、大電流の通電も可能である。従って、電圧均等化も迅速に行われる。
(4)また、電気推進車両としては、(1)に記載の電源装置を電源として搭載するものである。
この場合、加熱装置を放電抵抗として利用するので、電気推進車両に、放電専用の抵抗を搭載する必要が無い。その分、コンパクト化及び軽量化が可能となり、電気推進車両にとっては特に好適である。
[実施形態の詳細]
《溶融塩電池の基本構造》
まず、電源装置に用いる二次電池の一例としての、溶融塩電池について説明する。
図1は、溶融塩電池における発電要素の基本構造を原理的に示す略図である。図において、発電要素は、正極1、負極2及びそれらの間に介在するセパレータ3を備えている。正極1は、正極集電体1aと、正極材1bとによって構成されている。負極2は、負極集電体2aと、負極材2bとによって構成されている。
正極集電体1aの素材は、例えば、アルミニウム不織布(線径100μm、気孔率80%)である。正極材1bは、正極活物質としての例えばNaCrOと、アセチレンブラックと、PVDF(ポリフッ化ビニリデン)と、N−メチル−2−ピロリドンとを、質量比85:10:5:100の割合で混練したものである。そして、このように混練したものを、アルミニウム不織布の正極集電体1aに充填し、乾燥後に、100MPaにてプレスし、正極1の厚みが約1mmとなるように形成される。
一方、負極2においては、アルミニウム製の負極集電体2a上に、負極活物質としての例えば錫を含むSn−Na合金が、メッキにより形成される。
正極1及び負極2の間に介在するセパレータ3は、ガラスの不織布(厚さ200μm)又はポリオレフィンシート(厚さ50μm)に電解質としての溶融塩を含浸させたものである。この溶融塩は、例えば、NaFSA(ナトリウム・ビスフルオロスルフォニルアミド)56mol%と、KFSA(カリウム・ビスフルオロスルフォニルアミド)44mol%との混合物であり、融点は57℃である。融点以上の温度では、溶融塩は溶融し、高濃度のイオンが溶解した電解液となって、正極1及び負極2に触れている。また、この溶融塩は不燃性である。この溶融塩電池の稼働温度領域は57℃〜190℃である。
なお、上述した各部の材質・成分や数値は好適な一例であるが、これらに限定されるものではない。
例えば、溶融塩としては、上記の他、NaFSAと、LiFSA、KFSA、RbFSA又はCsFSAとの混合物も好適である。また、有機カチオン等よりなる他の塩を混合する場合もあり、一般には、溶融塩は、(a)NaFSAを含む混合物、(b)NaTFSA(ナトリウム・ビストリフルオロメチルスルフォニルアミド)を含む混合物、(c)NaFTA(ナトリウム・フルオロスルフォニル−トリフルオロメチルスルフォニルアミド)を含む混合物、が適する。また、(a)〜(c)のうち2以上を混合することも可能である。これらの場合、各混合物の溶融塩は、比較的低融点となるので、少ない加熱で高濃度のイオンが溶解した状態を実現し、溶融塩電池を作動させることができる。
また、上記の例では、20℃程度の常温で電解液が固化している溶融塩電池について説明したが、これ以外にも、例えばNaFSAとPy13FSA(N−メチル−N−プロピルピロリジニウムFSA)との混合物は、57℃よりも融点が低温で、例えば20度程度の常温でも溶融状態である電解液/電解質として、適用可能である。
《溶融塩電池の具体的構造》
次に、より具体的な溶融塩電池の発電要素の構成について説明する。図2は、溶融塩電池本体(電池としての本体部分)10の積層構造を簡略に示す斜視図、図3は同様の構造についての横断面図である。
図2及び図3において、複数(図示しているのは6個)の矩形平板状の負極2と、袋状のセパレータ3に各々収容された複数(図示しているのは5個)の矩形平板状の正極1とが、互いに対向して図3における上下方向すなわち積層方向に重ね合わせられ、積層構造を成している。
セパレータ3は、隣り合う正極1と負極2との間に介在しており、言い換えれば、セパレータ3を介して、正極1及び負極2が交互に積層されていることになる。実際に積層する数は、例えば、正極1が20個、負極2が21個、セパレータ3は「袋」としては20袋であるが、正極1・負極2間に介在する個数としては40個である。なお、セパレータ3は、袋状に限定されず、分離した40個であってもよい。
なお、図3では、セパレータ3と負極2とが互いに離れているように描いているが、溶融塩電池の完成時には互いに密着する。正極1も、当然に、セパレータ3に密着している。また、正極1の縦方向及び横方向それぞれの寸法は、デンドライトの発生を防止するために、負極2の縦方向及び横方向の寸法より小さくしてあり、正極1の外縁が、セパレータ3を介して負極2の周縁部に対向するようになっている。
《実用上の単電池・組電池としての一形態》
上記のように構成された溶融塩電池本体10は、例えばアルミニウム合金製で直方体状の電池容器に収容され、単電池(素電池)としての物理的な一個体を成す。
図4は、このような電池容器11に収容された状態の複数個の溶融塩電池B1〜B4(図示の便宜上、ここでは4個としている。)を互いに近接しつつ立ち並べて、組電池100を構成した状態の一例を示す斜視図である。なお、これは一例として示すに過ぎず、必要に応じて、さらに多くの溶融塩電池を図のY方向或いはX方向に並べることができる。また、Z方向に段積みする構造とすることもできる。
溶融塩電池B1〜B4は、必要とする出力(電圧、電流)に応じて、互いに直列又は、さらに多くの溶融塩電池を用いて、直並列に接続される。これにより、組電池100は、所望の電圧・電流の定格で使用することができる。
図4における正極端子1t及び負極端子2tはそれぞれ、図2又は図3における正極1及び負極2のそれぞれから、上部へ引き出され、電池容器11の外部へ露出している。各端子1t,2tは、電池容器11と絶縁されている。
なお、各端子1t,2tは、電池容器11の側面(Y−Z平面に平行な面)上方に引き出される場合もある。また、電池容器11の内部の気圧が万一過度に上昇したときに放圧するための放圧弁が上部に設けられる場合があるが、ここでは図示を省略している。また、電池容器11の内面には絶縁処理が施されている。
電池容器11の例えば底面に密接して、加熱装置としての薄いパネル状のヒータH1〜H4が設けられている。ヒータH1〜H4に通電することにより、電池容器11を加熱すると、常温では固体である溶融塩が溶融状態となり、充電及び放電が可能な状態となる。但し、前述のように、常温で既に溶融している溶融塩もある。いずれにしても、安定的な溶融状態とするため、電解液の温度が例えば90℃〜95℃になるように加熱することが好ましい。
なお、このヒータH1〜H4の設け方は、一例に過ぎず、電池間の側面(Y−Z平面に平行な面)にヒータを当てる(挟む)構成等、種々変形が可能である。組電池100は、例えば、保温効果を高めるため、断熱性のある外箱12に収容される。
《電気推進車両の一例》
上記のように構成された組電池100は、外箱12に収容された状態で、所望の設置場所に設置される。
例えば図5は、組電池100が走行用電源として電気自動車300に搭載された状態を示す図である。組電池100は、負荷200としての、モータ(電動機)に電力を供給する。
《電源装置の第1実施形態》
図6は、例えば図4に示す組電池100を含む、本発明の第1実施形態に係る電源装置の回路図である。図において、組電池100は、複数(この例では4である。)の溶融塩電池(以下、単に電池とも言う。)B1〜B4を相互に直列に接続して成る直列体である。組電池100は、負荷200に電力を供給することができる。電池B1〜B4の各々について、その両端の電圧を検知する電圧センサV1〜V4が設けられている。電路Lp,Ln間で互いに並列に接続されたヒータH1〜H4は、組電池100を加熱保温する。電圧センサV1〜V4の出力である検知信号は、制御部15に入力される。
電池B1〜B4の各々の両端は、マルチプレクサ13,14に接続されている。また、マルチプレクサ13,14の出力は、互いに並列に接続されたヒータH1〜H4に与えられる。マルチプレクサ13,14は、制御部15の指令を受けて動作する。この制御部15及びマルチプレクサ13,14によって接続装置16が構成されている。この接続装置16は、電圧センサV1〜V4の出力に基づいて、電池B1〜B4のうち、電圧が他の電池より高い電池を優先的に、放電のための電路Lp,Lnを介して、ヒータH1〜H4へ接続して放電させる機能を有する。
図7〜10は、マルチプレクサ13,14の動作と回路構成の関係を示す回路図である。図7では、マルチプレクサ13,14の内部で図の点線で示すように内部接続が構成されている。この場合、電池B1のプラス側が、マルチプレクサ13を介して電路Lpに接続されている。また、電池B1のマイナス側が、マルチプレクサ14を介して電路Lnに接続されている。従って、電池B1の電圧がヒータH1〜H4の並列体に印加され、ヒータH1〜H4に給電される。これにより、組電池100を加熱保温する電力は電池B1から供給され、その分、電池B1は、他の電池B2〜B4よりも放電量が多くなり、他の電池B2〜B4よりも早く電圧が下がる。
図8では、マルチプレクサ13,14の内部で図の点線で示すように内部接続が構成されている。この場合、電池B2のプラス側が、マルチプレクサ13を介して電路Lpに接続されている。また、電池B2のマイナス側が、マルチプレクサ14を介して電路Lnに接続されている。従って、電池B2の電圧がヒータH1〜H4の並列体に印加され、ヒータH1〜H4に給電される。これにより、組電池100を加熱保温する電力は電池B2から供給され、その分、電池B2は、他の電池B1,B3,B4よりも放電量が多くなり、他の電池B1,B3,B4よりも早く電圧が下がる。
図9では、マルチプレクサ13,14の内部で図の点線で示すように内部接続が構成されている。この場合、電池B3のプラス側が、マルチプレクサ13を介して電路Lpに接続されている。また、電池B3のマイナス側が、マルチプレクサ14を介して電路Lnに接続されている。従って、電池B3の電圧がヒータH1〜H4の並列体に印加され、ヒータH1〜H4に給電される。これにより、組電池100を加熱保温する電力は電池B3から供給され、その分、電池B3は、他の電池B1,B2,B4よりも放電量が多くなり、他の電池B1,B2,B4よりも早く電圧が下がる。
図10では、マルチプレクサ13,14の内部で図の点線で示すように内部接続が構成されている。この場合、電池B4のプラス側が、マルチプレクサ13を介して電路Lpに接続されている。また、電池B4のマイナス側が、マルチプレクサ14を介して電路Lnに接続されている。従って、電池B4の電圧がヒータH1〜H4の並列体に印加され、ヒータH1〜H4に給電される。これにより、組電池100を加熱保温する電力は電池B4から供給され、その分、電池B4は、他の電池B1〜B3よりも放電量が多くなり、他の電池B1〜B3よりも早く電圧が下がる。
図11は、接続装置16の動作を示すフローチャートである。このフローチャートの処理は定期的に繰り返し実行される。実行開始とともに、接続装置16の制御部15は、各電圧センサV1〜V4から送られてくる検知信号に基づいて、電圧が均等であるか否かの判定を行う(ステップS−1)。4つの電圧が同一又は最小値−最大値の電圧差が所定値の範囲内である場合は、電圧は均等とされる。電圧が均等であれば、処理は終了となる。一方、電圧が均等でない場合には、制御部15は、マルチプレクサ13,14を図7〜10のいずれかの回路接続状態として、最も高い電圧の電池からヒータH1〜H4に給電し、当該電池を放電させる(ステップS−2)。
図11に示す処理を繰り返すことにより、常に最も電圧が高い電池がヒータH1〜H4への給電の役割を担うことになる。これにより、各電池の電圧の均等化が実現されるとともに、均等化のための電力が加熱保温に活用され、無駄が無い。結果的に、従来のような放電専用の抵抗は不要となり、その分、設置空間の節減になる。
電気自動車等の電気推進車両に、このような電源装置を電源として搭載すれば、加熱装置を放電抵抗として利用するので、電気推進車両に、放電専用の抵抗を搭載する必要が無い。その分、コンパクト化及び軽量化が可能となり、電気推進車両にとっては特に好適である。
《電源装置の第2実施形態》
図12は、第2実施形態に係る電源装置の回路図である。
図6との違いは、ヒータH1〜H4のそれぞれに直列に、スイッチS1〜S4を設けた点である。スイッチS1〜S4は、制御部15によりオン/オフを制御することができる。
図12に示す電源装置では、例えばヒータH1〜H4の各抵抗値を同一値Rとすると、スイッチS1〜S4のうち、1つだけオンにすれば、放電用の抵抗値は、Rとなる。2つオンにすれば、R/2、3つオンにすればR/3、全てオンにすればR/4となる。従って、必要に応じて、放電用の抵抗値が所望の値になるように選択することができる。
すなわちこの場合、スイッチS1〜S4のオン/オフを選択することにより、ヒータH1〜H4の一部又は全部を使用する、という利用形態が可能となる。すなわち、放電用の抵抗値を所望の値になるように選択することが可能となる。また、複数のヒータH1〜H4を互いに並列に接続すれば、全体としての抵抗値を個々のヒータよりも小さくすることができる。抵抗値を小さくすれば大電流が流れて発熱量も大きくなるが、組電池が吸熱の役割を果たすことにより、過熱の恐れはなく、大電流の通電も可能である。従って、電圧均等化も迅速に行われる。
《充電の場合》
なお、上記各実施形態では、組電池100から負荷200への放電する場合について説明又は図示したが、負荷200に変えて充電用の電源を接続した場合でも全く同様に、電圧の高い電池を放電させつつ組電池100全体としては充電を行うことができる。従って、過充電を防止しつつ、組電池100全体で電圧の均等化を図りながら充電を行うことができる。
《その他》
なお、上記各実施形態では、充電時/放電時のいずれの場合でも、複数の電池のうち電圧が最も高い1つの電池を放電させるべく加熱装置に接続する回路例を示したが、電圧が最も高い電池が同一値(検知精度範囲内で同一値)で複数存在する場合もあり得る。また、必ずしも電圧が最も高い電池のみならず、総電池数によっては、電圧順位で1番からm(2以上の自然数)番までの複数の電池をヒータに接続することも考えられる。
かかる場合には、接続装置16を工夫することによって、容易に複数の電池を加熱装置に接続することができる。すなわち、接続装置16は、「複数の電池のうち電圧が他の電池より高い電池を加熱装置へ接続して放電させる」ものであるが、ここで、加熱装置への接続用として選ばれる電池は、例えば以下のように、種々あり得る。
(イ)最高電圧の1個の電池
(ロ)互いに同一の最高電圧を示す複数の電池
(ハ)電圧順位で1番からm番までの限定数の電池
(ニ)最低電圧の電池よりは高い電圧を有する限定数の、又は全ての、電池
なお、図5の電気自動車は一例であり、その他、バッテリフォークリフト、建設作業車、農作業車、電動カート、電動車椅子等、各種の電気推進車両に当該電源装置を搭載することができる。また、このような電源装置は、移動体に限らず、定置用の各種設備にも使用可能である。例えば、商用電源に依存せず、太陽光発電と組み合わせて用いる電源装置にも好適である。
また、上記電源装置は、溶融塩電池を想定して説明した。溶融塩電池は加熱保温が必要であることから、このような電圧均等化のための放電を有効利用することに適する。また、使用可能な温度範囲が広い溶融塩電池は加熱に対する許容範囲が広く、好適である。
しかしながら、必ずしも、二次電池が溶融塩電池に限定されるわけではない。例えば、NaS電池によって構成される電源装置であってもよい。また、基本的にはリチウムイオン電池やニッケル水素電池には加熱保温は必要ないが、特殊な用途(例えば極寒地)では、電池としての能力を最大限に発揮させるために、昇温した方が良い場合もあり得る。この場合もヒータが必要となる。従って、上記電源装置は、このような場合の昇温と電圧均等化にも使用可能である。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 正極
1a 正極集電体
1b 正極材
1t 正極端子
2 負極
2a 負極集電体
2b 負極材
2t 負極端子
3 セパレータ
10 溶融塩電池本体
11 電池容器
12 外箱
13,14 マルチプレクサ
15 制御部
16 接続装置
100 組電池
200 負荷
300 電気自動車
B1〜B4/B1〜Bn 電池
H1〜H4 ヒータ(加熱装置)
Lp,Ln 電路
S1〜S4/S1〜Sn スイッチ
V1〜V4/V1〜Vn 電圧センサ
R1〜Rn 抵抗

Claims (4)

  1. 複数の二次電池を相互に直列に接続して成る直列体を含む組電池と、
    前記複数の二次電池の各々について、その両端の電圧を検知する電圧センサと、
    前記組電池を加熱保温する加熱装置と、
    前記電圧センサの出力に基づいて、前記複数の二次電池のうち電圧が他の二次電池より高い二次電池を前記加熱装置へ接続して放電させる接続装置と、
    を備えた電源装置。
  2. 前記二次電池は溶融塩を電解質とする溶融塩電池である請求項1に記載の電源装置。
  3. 前記加熱装置は複数個あって、そのうち任意の個数を、前記放電のための電路に接続するスイッチを備えた請求項1又は請求項2に記載の電源装置。
  4. 請求項1に記載の電源装置を電源として搭載した電気推進車両。
JP2013210158A 2013-10-07 2013-10-07 電源装置及び電気推進車両 Pending JP2015076918A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210158A JP2015076918A (ja) 2013-10-07 2013-10-07 電源装置及び電気推進車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210158A JP2015076918A (ja) 2013-10-07 2013-10-07 電源装置及び電気推進車両

Publications (1)

Publication Number Publication Date
JP2015076918A true JP2015076918A (ja) 2015-04-20

Family

ID=53001401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210158A Pending JP2015076918A (ja) 2013-10-07 2013-10-07 電源装置及び電気推進車両

Country Status (1)

Country Link
JP (1) JP2015076918A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804521A (zh) * 2016-06-16 2019-05-24 布鲁解决方案公司 智能管理供电设施的电化学电池的方法和系统
JP2019165540A (ja) * 2018-03-19 2019-09-26 いすゞ自動車株式会社 車両用電源システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804521A (zh) * 2016-06-16 2019-05-24 布鲁解决方案公司 智能管理供电设施的电化学电池的方法和系统
JP2019520020A (ja) * 2016-06-16 2019-07-11 ブルー ソリューション 電力供給設備の電気化学バッテリーを知的に管理するための方法及びシステム
JP2019165540A (ja) * 2018-03-19 2019-09-26 いすゞ自動車株式会社 車両用電源システム
JP7059723B2 (ja) 2018-03-19 2022-04-26 いすゞ自動車株式会社 車両用電源システム

Similar Documents

Publication Publication Date Title
KR100825208B1 (ko) 높은 효율성으로 작동되는 하이브리드형 전지팩
JP6567553B2 (ja) 電池パック
JP5392407B2 (ja) 電池パック
JP2006121874A (ja) 電源装置およびこれを搭載した車両
JPWO2012164630A1 (ja) 蓄電システム
CA2769959A1 (en) Battery self heating system
WO2014024708A1 (ja) 産業用車両及びその電源装置
KR20170091133A (ko) 완전 고체 상태 리튬 배터리
WO2013161549A1 (ja) 溶融塩電池システム
US20140272486A1 (en) Molten salt battery device and control method for molten salt battery device
WO2013186209A2 (en) A rechargeable electric battery pack for a vehicle
JPWO2012147121A1 (ja) 電池パック
JP6280421B2 (ja) 電池加温システム
JP2014089915A (ja) 電源システム及び電動車両
JP6504012B2 (ja) 組電池
JP2015076918A (ja) 電源装置及び電気推進車両
JP2014238966A (ja) 電源装置及び電気推進車両並びに二次電池の昇温方法
JP2012243732A (ja) 溶融塩組電池及びそのウォームアップ方法
CN109244599B (zh) 一种具有快速加热功能的复合负极极片、及采用其的电芯和电池
JP2013013245A (ja) 蓄電システム
JP2012190543A (ja) 溶融塩電池装置及び溶融塩電池の制御方法
JP2014011061A (ja) 溶融塩電池システム
JP2014056811A (ja) 溶融塩電池システム及びその充放電方法
KR20140029921A (ko) 배터리 셀 및 배터리 모듈
JP2013229130A (ja) 電源システムとその制御方法