JP2015076324A - Solid electrolytic material and all-solid battery arranged by use thereof - Google Patents

Solid electrolytic material and all-solid battery arranged by use thereof Download PDF

Info

Publication number
JP2015076324A
JP2015076324A JP2013212890A JP2013212890A JP2015076324A JP 2015076324 A JP2015076324 A JP 2015076324A JP 2013212890 A JP2013212890 A JP 2013212890A JP 2013212890 A JP2013212890 A JP 2013212890A JP 2015076324 A JP2015076324 A JP 2015076324A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sample
examples
electrolyte material
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013212890A
Other languages
Japanese (ja)
Other versions
JP6260185B2 (en
Inventor
充 吉岡
Mitsuru Yoshioka
充 吉岡
倍太 尾内
Yasuhiro Onouchi
倍太 尾内
剛司 林
Goji Hayashi
剛司 林
彰佑 伊藤
Akihiro Ito
彰佑 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013212890A priority Critical patent/JP6260185B2/en
Publication of JP2015076324A publication Critical patent/JP2015076324A/en
Application granted granted Critical
Publication of JP6260185B2 publication Critical patent/JP6260185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a reliable solid electrolytic material of NASICON structure including Ti or Zr which makes possible to prevent the worsening of the performance of a solid battery owing to the decrease in ion conductivity as a result of reduction; and an all-solid battery arranged by use of such a solid electrolytic material.SOLUTION: A solid electrolytic material has a crystalline structure of NASICON type or similar to NASICON type. The solid electrolytic material has a composition expressed by the following general formula: LiM1R(PO)(where M1 represents an element larger than Li in ion radius; R represents Ti or Zr; a=0.50-1.79; and b=0.01-1.00). In the composition, M1 is an alkali metal other than Li; Na is used as M1. The composition may be arranged to meet the condition that R is Ti, part of which is substituted with another element M2, and M2 is at least one element selected from a group consisting of Mg, Ca, Sr, Al, Ga, In, Ge, Sn and Sb. Used as M2 is an element smaller than Zr in ion radius.

Description

本発明は、電解質材料および電池に関し、詳しくは、固体電解質材料およびそれを用いた全固体電池に関する。   The present invention relates to an electrolyte material and a battery, and more particularly to a solid electrolyte material and an all-solid battery using the same.

近年、携帯電話やポータブルコンピュータなどに、種々の電池(二次電池)が広く用いられている。そして、従来より広く用いられてきた電池においては、イオンを移動させる媒体として、有機溶媒などの液体の電解質(電解液)が一般的に使用されている。   In recent years, various batteries (secondary batteries) have been widely used for mobile phones and portable computers. In a battery that has been widely used conventionally, a liquid electrolyte (electrolytic solution) such as an organic solvent is generally used as a medium for moving ions.

しかし、液体の電解質(電解液)を用いた電池においては、電解液の漏液などの問題を生ずる可能性があり、信頼性に関し、改善すべき点がある。また、電解液に一般的に用いられる有機溶媒などは可燃性物質であり、安全上、好ましくないという問題がある。   However, in a battery using a liquid electrolyte (electrolytic solution), problems such as leakage of the electrolytic solution may occur, and there is a point to be improved regarding reliability. Moreover, the organic solvent etc. which are generally used for electrolyte solution are combustible substances, and there exists a problem that it is unpreferable on safety.

このため、電解液に代えて固体電解質を用いることが提案されており、また、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成された固体二次電池の開発が進められている。   For this reason, it has been proposed to use a solid electrolyte instead of the electrolytic solution, and the development of a solid secondary battery in which a solid electrolyte is used as the electrolyte and the other components are also made of solid is being promoted. .

そして、特許文献1には、全固体電池を構成する固体電解質として各種のカチオンを導電体としたNASICON構造を有する化合物について、様々な組成が開示されている。   Patent Document 1 discloses various compositions of a compound having a NASICON structure using various cations as conductors as a solid electrolyte constituting an all-solid battery.

しかしながら、本願の発明者等が検討を行った結果、特許文献1で開示されている、Tiを含むNASICON構造を有する固体電解質を還元した場合には、固体電解質のイオン伝導度が低下することがわかった。すなわち、Tiを中心金属に含むNASICON構造の固体電解質を、固体電池の電解質として用いた場合には、負極の電位によってTiを含むNASICON構造の固体電解質が還元されることによりイオン伝導度が低下し、固体電池の性能が著しく低下することが確認された。   However, as a result of investigations by the inventors of the present application, when a solid electrolyte having a NASICON structure containing Ti disclosed in Patent Document 1 is reduced, the ionic conductivity of the solid electrolyte may be reduced. all right. In other words, when a solid electrolyte having a NASICON structure containing Ti as a central metal is used as the electrolyte of a solid battery, the ionic conductivity is reduced by reducing the solid electrolyte having a NASICON structure containing Ti by the potential of the negative electrode. As a result, it was confirmed that the performance of the solid battery was remarkably deteriorated.

特開2007−258165号公報JP 2007-258165 A

本発明は、上記課題を解決するものであり、還元されてイオン伝導度が低下し、固体電池の性能が低下することを防止することが可能な信頼性の高い固体電解質材料およびそれを用いた全固体電池を提供することを目的とする。   The present invention solves the above-mentioned problems, and uses a solid electrolyte material with high reliability capable of preventing reduction in ion conductivity due to reduction and deterioration in performance of a solid battery and the same. An object is to provide an all-solid-state battery.

本発明の発明者等は、上記課題を解決するため、固体電解質材料について検討を行った。その結果、LiZr(PO43組成の固体電解質は、様々な晶系を形成しやすいために、単一相を得ることが難しいという知見を得た。
かかる知見に基づき、さらに種々の実験および検討を行い、NASICON構造の固体電解質に関して、LiZr(PO43組成の固体電解質を構成するLiの一部を他の元素で置換することにより、優れた充放電特性を示す場合があることを知り、さらに検討を進めて本発明を完成した。
The inventors of the present invention studied solid electrolyte materials in order to solve the above problems. As a result, it has been found that a solid electrolyte having a composition of LiZr (PO 4 ) 3 easily forms various crystal systems, and thus it is difficult to obtain a single phase.
Based on this knowledge, various experiments and examinations were further performed, and regarding the solid electrolyte having a NASICON structure, a part of Li constituting the solid electrolyte having a LiZr (PO 4 ) 3 composition was replaced with another element, which was excellent. Knowing that charge / discharge characteristics may be exhibited, the inventors further studied and completed the present invention.

本発明の固体電解質材料は、
NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質材料であって、
一般式:LiaM1b2(PO43(M1はLiよりイオン半径の大きい元素であり、RはTiまたはZr、a=0.50〜1.79、b=0.01〜1.00)で表わされること
を特徴としている。
The solid electrolyte material of the present invention is
A solid electrolyte material having a crystal structure similar to NASICON type or NASICON type,
General formula: Li a M1 b R 2 (PO 4 ) 3 (M1 is an element having an ionic radius larger than Li, and R is Ti or Zr, a = 0.50 to 1.79, b = 0.01 to 1 .00).

また、本発明の固体電解質材料においては、前記M1が、Li以外のアルカリ金属であることが好ましい。   In the solid electrolyte material of the present invention, the M1 is preferably an alkali metal other than Li.

M1がLiと同じ一価のカチオンとなるアルカリ金属である場合、固体電解質材料はより高いイオン伝導度を示す。
なお、M1がアルカリ金属以外の元素である場合には、一価より大きな価数となることから、M1の量が同じ(M1の係数bの値が同じ)でも、価数的に中性に保持しようとするとアルカリ金属で置換した場合に比べてLiの量が低下し(すなわち、Liの係数aの値が小さくなり)、イオン伝導度が低下する傾向がある。
したがって、M1としては一価のカチオンであるアルカリ金属を用いることが好ましく、一価のアルカリ金属をM1として用いることで、より高いイオン伝導度を示す固体電解質材料を得ることができる。
When M1 is an alkali metal that is the same monovalent cation as Li, the solid electrolyte material exhibits higher ionic conductivity.
When M1 is an element other than an alkali metal, the valence is larger than monovalent, so even if the amount of M1 is the same (the value of the coefficient b of M1 is the same), the valence is neutral. If it tries to hold | maintain, compared with the case where it substitutes with an alkali metal, the quantity of Li will fall (namely, the value of the coefficient a of Li will become small), and there exists a tendency for ion conductivity to fall.
Therefore, it is preferable to use an alkali metal which is a monovalent cation as M1, and by using a monovalent alkali metal as M1, a solid electrolyte material exhibiting higher ionic conductivity can be obtained.

また、前記M1が、Naであることが好ましい。   The M1 is preferably Na.

M1としてNaを用いることにより、より高いイオン伝導度を示す固体電解質材料を得ることが可能になる。また、Naが最も容易に固溶体を形成することがわかっており、その点でもNaを用いた場合に、最も大きい効果を得ることができる。   By using Na as M1, it becomes possible to obtain a solid electrolyte material exhibiting higher ionic conductivity. In addition, it has been found that Na forms a solid solution most easily. In this respect, the greatest effect can be obtained when Na is used.

また、前記RがTiであり、Tiの一部を他の元素M2で置換した(LiaM1b)(Ti2-cM2c)(PO43の組成で表され、a=0.50〜1.79、b=0.01〜0.50、c≦0.8(0は含まない)の要件を満たすものであることが好ましい。 Further, R is Ti, and is represented by a composition of (Li a M1 b ) (Ti 2−c M2 c ) (PO 4 ) 3 in which a part of Ti is substituted with another element M2, and a = 0. It is preferable to satisfy the requirements of 50 to 1.79, b = 0.01 to 0.50, and c ≦ 0.8 (0 is not included).

上記構成とすることにより、より確実に高いイオン伝導度を示す固体電解質材料を得ることができる。   By setting it as the said structure, the solid electrolyte material which shows high ion conductivity more reliably can be obtained.

Li量は、価数的に中性であればよく、Liの係数aが0.5以上の範囲であれば好ましい。さらには、Li量(Liの係数a)は、0.5〜1.79の範囲とすることが好ましい。   The amount of Li should just be neutral valence, and if the Li coefficient a is 0.5 or more, it is preferable. Furthermore, the Li amount (Li coefficient a) is preferably in the range of 0.5 to 1.79.

また、Liの一部を置換する、Liよりイオン半径の大きなM1は、Liに比べて極めてイオン伝導しにくいため、M1の量(M1の係数bの値)の増大に伴いイオン伝導度は低下する傾向にある。したがって、M1は、TiのTi4+→Ti3+の還元反応が生じ難くなるのに必要な最少量のみを用いればよく、M1の係数bは、0.01〜0.50の範囲とすることが好ましく、さらには、0.01〜0.10の範囲とすることが最も好ましい。 Further, M1, which replaces a part of Li and has a larger ionic radius than Li, is much less likely to conduct ions compared to Li, so that the ionic conductivity decreases as the amount of M1 (the value of the coefficient b of M1) increases. Tend to. Therefore, only the minimum amount necessary for the reduction reaction of Ti 4+ → Ti 3+ to be less likely to occur is used for M1, and the coefficient b of M1 is in the range of 0.01 to 0.50. More preferably, the range is most preferably in the range of 0.01 to 0.10.

また、Li量とM1量(すなわち、Liの係数aとM1の係数b)は、NASICON型もしくはNASICON型類似の結晶中の、正の電荷と負の電荷の中性を保つために、上記の範囲(a=0.50〜1.79、b=0.01〜0.50)の中で適宜調整することが好ましい。
また、M2量(M2の係数c)は、0.8以下(0は含まない)の範囲が好ましく、Tiと置換元素の総量を2.0とすることが好ましい。
In addition, the Li amount and the M1 amount (that is, the Li coefficient a and the M1 coefficient b) are as described above in order to maintain the neutrality of the positive charge and the negative charge in the NASICON type or NASICON type similar crystal. It is preferable to adjust appropriately within the range (a = 0.50-1.79, b = 0.01-0.50).
Further, the amount of M2 (the coefficient c of M2) is preferably in the range of 0.8 or less (excluding 0), and the total amount of Ti and substitution elements is preferably 2.0.

また、前記M2が、Mg、Ca、Sr、Al、Ga、In、Ge、Sn、Sbからなる群より選ばれる少なくとも1種であることが好ましい。   The M2 is preferably at least one selected from the group consisting of Mg, Ca, Sr, Al, Ga, In, Ge, Sn, and Sb.

M2として、典型金属元素または半金属元素である、Mg、Ca、Sr、Al、Ga、In、Ge、Sn、Sbからなる群より選ばれる少なくとも1種を用いることにより、さらに大きい効果を得ることができる。   By using at least one selected from the group consisting of Mg, Ca, Sr, Al, Ga, In, Ge, Sn, and Sb as typical metal elements or metalloid elements as M2, an even greater effect can be obtained. Can do.

なお、元素M2は、Tiと置換してもNASICON型もしくはNASICON型類似の結晶構造を形成できるものであればよく、上記以外にも、例えば、Sc、Y、Hf、Nb、Cr、Fe、Ru、Co、Al、La、Lu、Ni、Mn、Co、Fe、Cu、Agなどを用いることが可能である。   The element M2 may be any element as long as it can form a NASICON type or a NASICON type-like crystal structure even if it is replaced with Ti. For example, Sc, Y, Hf, Nb, Cr, Fe, Ru Co, Al, La, Lu, Ni, Mn, Co, Fe, Cu, Ag, or the like can be used.

また、前記RがZrであり、Zrの一部を他の元素M2で置換した(LiaM1b)(Zr2-cM2c)(PO43の組成で表され、a=0.50〜1.49、b=0.01〜0.50、c≦1.0(0は含まない)の要件を満たすものであることが好ましい。 The R is Zr, and is represented by a composition of (Li a M1 b ) (Zr 2−c M2 c ) (PO 4 ) 3 in which a part of Zr is substituted with another element M2, and a = 0. It is preferable to satisfy the requirements of 50 to 1.49, b = 0.01 to 0.50, and c ≦ 1.0 (not including 0).

中心金属であるZrを他の元素M2で置換することで、菱面体晶を形成しやすくなる。また、M2の量(M2の係数cの値)は菱面体晶を安定化するために必要な量で有ればよく、M2の係数cは1.0以下(0は含まない)の範囲とすることが好ましい。   Substituting Zr, which is the central metal, with another element M2, facilitates the formation of rhombohedral crystals. The amount of M2 (the value of the coefficient c of M2) may be an amount necessary for stabilizing the rhombohedral crystal, and the coefficient c of M2 is in the range of 1.0 or less (not including 0). It is preferable to do.

また、前記M2が、Zrよりもイオン半径の小さな元素であることが好ましい。   The M2 is preferably an element having an ionic radius smaller than that of Zr.

Zrと置換する元素M2を、Zrよりもイオン半径の小さな元素とすることで、高イオン伝導相の菱面体晶がより形成されやすくなり、高いイオン伝導度を得ることができる。   By making the element M2 replacing Zr an element having an ionic radius smaller than that of Zr, a rhombohedral crystal having a high ion conduction phase is more easily formed, and a high ion conductivity can be obtained.

また、前記M2が、Mg、Al、Ti、Cu、Ga、Ge、Ag、Snからなる群より選ばれる少なくとも1種であることが好ましい。   The M2 is preferably at least one selected from the group consisting of Mg, Al, Ti, Cu, Ga, Ge, Ag, and Sn.

M2として、Mg、Al、Ti、Cu、Ga、Ge、Ag、Snの少なくとも1種を用いることにより、イオン伝導性に関し、より大きい効果を得ることができる。   By using at least one of Mg, Al, Ti, Cu, Ga, Ge, Ag, and Sn as M2, a greater effect can be obtained with respect to ion conductivity.

また、本発明の全固体電池は、
上記本発明の固体電解質材料を用いて形成した電解質グリーンシートを介して、正極用グリーンシート、負極用グリーンシートが積層された積層体を焼結したものであることを特徴としている。
The all solid state battery of the present invention is
A laminate in which a positive electrode green sheet and a negative electrode green sheet are stacked is sintered through an electrolyte green sheet formed using the solid electrolyte material of the present invention.

また、本発明の全固体電池は、
上記本発明の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含むものであることを特徴としている。
The all solid state battery of the present invention is
The solid electrolyte material of the present invention is included in at least one of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.

本発明の固体電解質材料は、NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質材料であって、一般式:LiaM1b2(PO43(M1はLiよりイオン半径の大きい元素であり、RはTiまたはZr、a=0.50〜1.79、b=0.01〜1.00)で表わされるものであり、かかる構成を備えていることから、還元されてイオン伝導度が低下することがない固体電解質材料を得ることができる。
また、本発明の固体電解質材料を電解質として用いることにより、性能が低下しにくい、信頼性の高い全固体電池を得ることが可能になる。
The solid electrolyte material of the present invention is a solid electrolyte material having a crystal structure similar to NASICON type or NASICON type, and has a general formula: Li a M1 b R 2 (PO 4 ) 3 (M1 is an element having an ionic radius larger than that of Li) And R is represented by Ti or Zr, a = 0.50-1.79, b = 0.01-1.00). It is possible to obtain a solid electrolyte material in which the degree does not decrease.
In addition, by using the solid electrolyte material of the present invention as an electrolyte, it is possible to obtain a highly reliable all solid state battery whose performance is unlikely to deteriorate.

また、本発明の全固体電池は、上記本発明の固体電解質材料を用いて形成した電解質グリーンシートを介して、正極用グリーンシート、負極用グリーンシートが積層された積層体を焼結したものであるか、上記本発明の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含むものであることから、より優れた充放電特性を持つ固体電池を得ることができる。   Moreover, the all solid state battery of the present invention is obtained by sintering a laminate in which a positive electrode green sheet and a negative electrode green sheet are laminated through an electrolyte green sheet formed using the solid electrolyte material of the present invention. Alternatively, since the solid electrolyte material of the present invention is included in at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, a solid battery having more excellent charge / discharge characteristics can be obtained.

なお、例えば、NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質と、活物質、あるいは焼結助剤その他の添加剤などが混在した状態で焼成して全固体電池を作製することで、活物質、焼結助剤その他の添加剤などと、上記固体電解質との間で何らかの元素拡散を生じさせることにより、上述のような本発明の固体電解質材料を得ることも可能である。   For example, an all-solid battery is manufactured by firing in a state where a solid electrolyte having a crystal structure similar to NASICON or NASICON is mixed with an active material, a sintering aid, or other additives. It is also possible to obtain the solid electrolyte material of the present invention as described above by causing some element diffusion between the substance, sintering aid and other additives and the solid electrolyte.

本発明の実施例1〜4および比較例1の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Examples 1-4 of this invention, and the comparative example 1. FIG. インピーダンス測定で得られた本発明の実施例1の試料のcole−coleプロットを示す図である。It is a figure which shows the colle-core plot of the sample of Example 1 of this invention obtained by impedance measurement. 還元電流を測定して得られた、実施例1〜4の試料および比較例1の試料についての充放電曲線を示す図であり、(a)は電位と電流の関係、(b)は容量と電位の関係を示す図である。It is a figure which shows the charging / discharging curve about the sample of Examples 1-4 obtained by measuring reduction current, and the sample of the comparative example 1, (a) is a relationship between an electric potential and an electric current, (b) is a capacity | capacitance. It is a figure which shows the relationship of an electric potential. 本発明の実施例5〜8および比較例2の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Examples 5-8 and the comparative example 2 of this invention. 還元電流を測定して得られた、実施例5〜8の試料および比較例2の試料についての充放電曲線を示す図であり、(a)は電位と電流の関係、(b)は容量と電位の関係を示す図である。It is a figure which shows the charging / discharging curve about the sample of Examples 5-8 obtained by measuring reduction current, and the sample of the comparative example 2, (a) is a relationship between an electric potential and an electric current, (b) is a capacity | capacitance. It is a figure which shows the relationship of an electric potential. 本発明の実施例9〜13の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Examples 9-13 of this invention. 還元電流を測定して得られた、実施例9〜13の試料についての充放電曲線を示す図であり、(a)は電位と電流の関係、(b)は容量と電位の関係を示す図である。It is a figure which shows the charging / discharging curve about the sample of Examples 9-13 obtained by measuring a reduction current, (a) is a relationship between an electric potential and an electric current, (b) is a figure which shows a relationship between a capacity | capacitance and an electric potential. It is. 本発明の実施例14〜18の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Examples 14-18 of this invention. 還元電流を測定して得られた、実施例14〜18の試料についての充放電曲線を示す図であり、(a)は電位と電流の関係、(b)は容量と電位の関係を示す図である。It is a figure which shows the charging / discharging curve about the sample of Examples 14-18 obtained by measuring reduction current, (a) is a relationship between an electric potential and an electric current, (b) is a figure which shows a relationship between a capacity | capacitance and an electric potential. It is. 本発明の実施例21〜25および比較例3の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Examples 21-25 of this invention, and the comparative example 3. FIG. 本発明の実施例26〜30の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Examples 26-30 of this invention. 本発明の実施例31および32の試料(固体電解質材料)についてのXRD測定の結果を示す図である。It is a figure which shows the result of the XRD measurement about the sample (solid electrolyte material) of Example 31 and 32 of this invention. 実施例26の試料についての充放電曲線(電位と電流の関係)を示す図である。It is a figure which shows the charging / discharging curve (relationship between an electric potential and an electric current) about the sample of Example 26. 実施例31の試料についての充放電曲線(電位と電流の関係)を示す図である。It is a figure which shows the charging / discharging curve (relationship between an electric potential and an electric current) about the sample of Example 31.

以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。   Embodiments of the present invention will be described below to describe the features of the present invention in more detail.

[実施形態1]
以下に説明する方法で、表1Aおよび表1Bに示す実施例1〜18の試料と、比較例1および2の試料を作製した。
[Embodiment 1]
Samples of Examples 1 to 18 and Samples of Comparative Examples 1 and 2 shown in Table 1A and Table 1B were prepared by the method described below.

なお、実施例1〜18の試料は、一般式 (LiaM1b)(Ti2-cM2c)(PO43で表される材料のLiサイトをM1で元素置換した試料(固体電解質材料)である。
また、表1Aの実施例5〜8、表1Bの14〜18の試料は、LiサイトをM1で元素置換したことに加えて、TiサイトをM2で元素置換した試料(固体電解質材料)である。
また、表1Aの比較例1および2の試料は、LiサイトをM1で元素置換していない試料(固体電解質材料)である。
The samples of Examples 1 to 18 are samples (solid electrolytes) in which the Li site of the material represented by the general formula (Li a M1 b ) (Ti 2 -c M2 c ) (PO 4 ) 3 is replaced with M1. Material).
In addition, the samples of Examples 5 to 8 in Table 1A and 14 to 18 in Table 1B are samples (solid electrolyte materials) in which the Ti site is replaced with M2 in addition to the Li site being replaced with M1. .
Moreover, the samples of Comparative Examples 1 and 2 in Table 1A are samples (solid electrolyte materials) in which the Li site is not replaced with M1.

Figure 2015076324
Figure 2015076324

Figure 2015076324
Figure 2015076324

なお、表1A、表1Bにおけるイオン半径の単位はオングストロームである。
表1A、表1Bにおけるイオン半径は以下の論文を参照し、配位数が6のイオン半径を参考とした。
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)
In Tables 1A and 1B, the unit of ion radius is angstrom.
The ionic radii in Tables 1A and 1B were referred to the following paper, and the ionic radii having a coordination number of 6 were used as a reference.
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)

<固体電解質材料の合成>
実施例1〜18、比較例1および2の固体電解質を以下に説明する手順で作製した。
まず、原料として、炭酸リチウムLi2CO3、酸化チタンTiO2、リン酸二水素アンモニウムNH42PO4、炭酸ナトリウムNa2CO3、酸化銀AgO、酸化アルミニウムAl23、炭酸カルシウムCaCO3、炭酸カリウムK2CO3を用意した。
<Synthesis of solid electrolyte material>
The solid electrolytes of Examples 1 to 18 and Comparative Examples 1 and 2 were prepared according to the procedure described below.
First, as raw materials, lithium carbonate Li 2 CO 3 , titanium oxide TiO 2 , ammonium dihydrogen phosphate NH 4 H 2 PO 4 , sodium carbonate Na 2 CO 3 , silver oxide AgO, aluminum oxide Al 2 O 3 , calcium carbonate CaCO 3. Potassium carbonate K 2 CO 3 was prepared.

これを適宜秤量し、500mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。それから、混合物を空気雰囲気下、500℃で1時間、800℃で6時間焼成し、揮発成分を除去した。   This was weighed appropriately, sealed in a 500 ml polyethylene polypot and rotated on a pot rack at 150 rpm for 16 hours to mix the raw materials. Then, the mixture was baked in an air atmosphere at 500 ° C. for 1 hour and at 800 ° C. for 6 hours to remove volatile components.

次に、水、φ5mmの玉石とともに500mlのポリエチレン製ポリポットに封入し、ポット架上で150rpm、16時間回転させて粉砕した。その後、120℃のホットプレート上で水分を除去した。   Next, it was enclosed in a 500 ml polyethylene polypot together with water and φ5 mm cobblestone, and pulverized by rotating on a pot rack at 150 rpm for 16 hours. Thereafter, moisture was removed on a hot plate at 120 ° C.

空気雰囲気下、1200℃で20時間焼成し、表1A、表1Bの実施例1〜18および比較例1および2の組成となる固体電解質材料の粉末(試料)を得た。   Firing was performed at 1200 ° C. for 20 hours in an air atmosphere to obtain powders (samples) of solid electrolyte materials having the compositions of Examples 1 to 18 and Comparative Examples 1 and 2 in Table 1A and Table 1B.

<固体電解質材料の結晶構造の評価>
実施例1〜18、比較例1および2の試料(固体電解質材料の粉末)を、25℃で4.0°/分のスキャン速度、測角範囲10°〜60°でXRD(X線回折装置)により結晶構造を調べた(図1,4,6,8参照)。
<Evaluation of crystal structure of solid electrolyte material>
Samples of Examples 1 to 18 and Comparative Examples 1 and 2 (solid electrolyte material powder) were subjected to XRD (X-ray diffractometer) at a scan rate of 4.0 ° / min at 25 ° C. and a measurement range of 10 ° to 60 °. ) To examine the crystal structure (see FIGS. 1, 4, 6, and 8).

各図中には、
(a)菱面体晶のLiTi2(PO43のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、
(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、
(c)菱面体晶のNaTi2(PO43のJCPDSカード(No.01−084−2009)のパターンと、
(d)菱面体晶のKTi2(PO43のJCPDSカード(No.00−025−0691)のパターンと、
(e)単斜晶のKTiP27のJCPDSカード(No.00−052−0302)のパターン
のうちの関連のあるものを併せて示した。
In each figure,
(A) a pattern of rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140);
(B) a pattern of orthorhombic AlPO 4 JCPDS card (No. 01-074-3255);
(C) a pattern of rhombohedral NaTi 2 (PO 4 ) 3 JCPDS card (No. 01-084-2009);
(D) a pattern of rhombohedral KTi 2 (PO 4 ) 3 JCPDS card (No. 00-025-0691);
(E) Related patterns of monoclinic KTiP 2 O 7 JCPDS card (No. 00-052-0302) are also shown.

<固体電解質材料のイオン伝導度の評価>
実施例1〜18、比較例1および2の試料について、イオン伝導度を以下の方法で測定した。
<Evaluation of ionic conductivity of solid electrolyte material>
For the samples of Examples 1 to 18 and Comparative Examples 1 and 2, the ionic conductivity was measured by the following method.

(1)焼結タブレットの作製
上述のようにして作製した固体電解質材料、ポリビニルアセタール樹脂、アルコールを、98:15:140の重量比率で秤取して、十分に混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるポリビニルアセタール樹脂で被覆された固体電解質材料粉末を得た。
(1) Production of sintered tablet The solid electrolyte material, polyvinyl acetal resin, and alcohol produced as described above were weighed at a weight ratio of 98: 15: 140 and mixed thoroughly, and then heated at 80 ° C. The alcohol was removed on the plate to obtain a solid electrolyte material powder coated with a polyvinyl acetal resin as a binder.

元素M2を含まない比較例1と実施例1〜4、9〜13の試料については、焼結助剤としてLi2Oを、固体電解質材料粉末:焼結助剤=98:2の重量比率で添加した。 For the sample of Comparative Example 1 and Example 1~4,9~13 containing no element M2, the Li 2 O as a sintering aid, the solid electrolyte material powder: the sintering aid = 98: 2 in weight ratio Added.

次いで、焼結助剤が添加された固体電解質材料粉末を、錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。
それから、タブレット状に成型された固体電解質材料を、2枚の多孔性のセッターで挟持した後、焼成することにより焼結タブレットを作製した。
焼成は、1体積%の酸素を含む窒素ガス雰囲気中、500℃の温度条件下で焼成(脱バインダー)することにより、ポリビニルアセタール樹脂を除去した後、窒素ガス雰囲気中で1000℃の温度で実施することにより、焼結タブレットを得た。得られた焼結タブレットの質量、厚み、および直径を表2に示す。
Next, the solid electrolyte material powder to which the sintering aid was added was pressed into a tablet by pressing at 90 MPa using a tablet molding machine.
Then, the solid electrolyte material molded into a tablet shape was sandwiched between two porous setters and then fired to produce a sintered tablet.
Baking is performed at a temperature of 1000 ° C. in a nitrogen gas atmosphere after removing the polyvinyl acetal resin by baking (debinding) in a nitrogen gas atmosphere containing 1% by volume of oxygen at a temperature of 500 ° C. As a result, a sintered tablet was obtained. Table 2 shows the mass, thickness, and diameter of the obtained sintered tablet.


Figure 2015076324
Figure 2015076324

(2)イオン伝導度の測定
上述のようにして作製した焼結タブレットの片面にスパッタリングによって、集電体層となる白金(Pt)層を形成した後、焼結タブレットを100℃で乾燥し、水分を除去した。
(2) Measurement of ion conductivity After forming a platinum (Pt) layer to be a current collector layer by sputtering on one side of the sintered tablet produced as described above, the sintered tablet was dried at 100 ° C. Water was removed.

対極となる金属リチウム上にPMMAゲル電解質(電解液を含有したゲル状の電解質)を塗布した後、塗布面に焼結タブレットの、集電体層を形成していない面が接触するように、焼結タブレットと金属リチウムを積層し、2032型のコインセルで封止した。そして、封止後のセルについて、交流インピーダンス測定によりイオン伝導度を算出した。以下、このイオン伝導度を「開回路状態でのイオン伝導度」という。   After applying PMMA gel electrolyte (gel electrolyte containing electrolyte) on metallic lithium as the counter electrode, the surface of the sintered tablet that does not form the current collector layer is in contact with the application surface. The sintered tablet and metallic lithium were laminated and sealed with a 2032 type coin cell. And about the cell after sealing, ion conductivity was computed by alternating current impedance measurement. Hereinafter, this ionic conductivity is referred to as “ionic conductivity in an open circuit state”.

その後、集電体層となる白金側を、対極となる金属リチウムに対して、1.0 V v.s. Li+/Liの電位まで走査し、還元電流の測定を行った。
その後、集電体層となる白金側を、1.0V v.s. Li+/Liの電位で30分間保持した後、かかる電位で保持した状態で交流インピーダンス測定によりイオン伝導度を算出した。以下、このイオン伝導度を「還元状態でのイオン伝導度」という。
Thereafter, the platinum side serving as a current collector layer was scanned to a potential of 1.0 V vs Li + / Li with respect to metallic lithium serving as a counter electrode, and the reduction current was measured.
Thereafter, the platinum side serving as the current collector layer was held at a potential of 1.0 V vs Li + / Li for 30 minutes, and then the ionic conductivity was calculated by AC impedance measurement in a state where the platinum side was held. Hereinafter, this ionic conductivity is referred to as “ionic conductivity in the reduced state”.

なお、交流インピーダンス測定にはSolartron社製周波数応答アナライザ(FRA)を用い、周波数範囲0.1〜1MHz、振幅±10mVの条件で測定を実施した。   The AC impedance measurement was performed using a Solartron frequency response analyzer (FRA) under conditions of a frequency range of 0.1 to 1 MHz and an amplitude of ± 10 mV.

イオン伝導度は、交流インピーダンス測定より得られたcole−coleプロットから各固体電解質の抵抗(粒子と粒界抵抗の和)を求め、次の方程式:(1)より算出した。
イオン伝導度=(t/A)×(1/R) ……(1)
t:試料の厚さ、A:電極の面積、R:固体電解質の抵抗。
The ionic conductivity was calculated from the following equation: (1) by obtaining the resistance of each solid electrolyte (the sum of the particle and grain boundary resistance) from a coll-coll plot obtained from AC impedance measurement.
Ionic conductivity = (t / A) × (1 / R) (1)
t: thickness of sample, A: area of electrode, R: resistance of solid electrolyte.

還元電流の測定にはSolartron社製ポテンショ/ガルバノスタットを用い、サイクリックボルタンメトリー(CV)測定を、走査電位範囲:1.0 V v.s. Li+/Li〜開回路電位、走査速度:0.1mV/秒で実施した。
なお、すべての試験は、25℃で実施した。
The reduction current was measured using a Solartron potentio / galvanostat, and cyclic voltammetry (CV) measurement was performed using a scanning potential range: 1.0 V vs Li + / Li to an open circuit potential, scanning speed: 0.1 mV / Carried out in seconds.
All tests were conducted at 25 ° C.

表3A、表3Bに、実施例1〜18の試料と、比較例1および2の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度と、還元状態のイオン伝導度を示す。   Tables 3A and 3B show the crystal phases detected from the XRD measurements of the samples of Examples 1 to 18 and the samples of Comparative Examples 1 and 2, the ionic conductivity in the open circuit state, and the ionic conductivity in the reduced state. .

Figure 2015076324
Figure 2015076324

Figure 2015076324
Figure 2015076324

<評価1>
また、図1に、実施例1〜4の試料および比較例1の試料についてのXRD測定の結果を示す。図1には、(a)菱面体晶のLiTi2(PO43のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(d)菱面体晶のKTi2(PO43のJCPDSカード(No.00−025−0691)のパターンと、(e)単斜晶のKTiP27のJCPDSカード(No.00−052−0302)のパターンを併せて示す。
<Evaluation 1>
Moreover, the result of the XRD measurement about the sample of Examples 1-4 and the sample of the comparative example 1 is shown in FIG. FIG. 1 shows a pattern of (a) rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140) and (d) rhombohedral crystal. The pattern of KTi 2 (PO 4 ) 3 JCPDS card (No. 00-025-0691) and the pattern of (e) monoclinic KTiP 2 O 7 JCPDS card (No. 00-052-0302) are combined. Show.

また、図2に、インピーダンス測定で得られた実施例1の試料のcole−coleプロットを示す。   FIG. 2 shows a colle-coll plot of the sample of Example 1 obtained by impedance measurement.

さらに、図3(a),(b)に、還元電流を測定して得られた、実施例1〜4の試料および比較例1の試料についての充放電曲線を示す。   Furthermore, the charging / discharging curve about the sample of Examples 1-4 obtained by measuring a reduction current and the sample of the comparative example 1 to FIG. 3 (a), (b) is shown.

比較例1の、LiサイトおよびTiサイトのいずれについても、M1あるいはM2で置換していない無置換の試料(LiTi2(PO43)の場合、XRD測定から検出した結晶相は、菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。 In the case of the non-substituted sample (LiTi 2 (PO 4 ) 3 ) that is not substituted with M1 or M2 for any of the Li site and Ti site in Comparative Example 1, the crystal phase detected from the XRD measurement is rhombohedral. It was confirmed to match the card pattern of crystalline LiTi 2 (PO 4 ) 3 .

また、比較例1の試料においては、充放電試験の結果、約2.5VにTiのレドックスに起因したピーク電流が確認された(図3(a))。さらに、比較例1の試料の場合、OCVのイオン伝導度(開回路状態のイオン伝導度)は4.0×10-4S/cmであったが、1.0V v.s. Li+/Liのイオン伝導度(還元状態のイオン伝導度)は1.1×10-6S/cmまで著しく低下することがわかった。 Further, in the sample of Comparative Example 1, as a result of the charge / discharge test, a peak current due to the redox of Ti was confirmed at about 2.5 V (FIG. 3A). Further, in the case of the sample of Comparative Example 1, the ionic conductivity of OCV (ionic conductivity in an open circuit state) was 4.0 × 10 −4 S / cm, but 1.0V vs Li + / Li ion The conductivity (reduced state ionic conductivity) was found to be significantly reduced to 1.1 × 10 −6 S / cm.

また、実施例1〜4のLiの一部を置換した試料の場合も、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。 Further, in the case of the samples in which a part of Li in Examples 1 to 4 was replaced, the crystal phase detected from the XRD measurement may be consistent with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern. confirmed.

また、実施例4の、LiサイトをK(M1)で元素置換した試料のみ、ごく僅かに異相が確認された。異相はKTi2(PO43、および、KTiP27のカードパターンと一致した。これは、置換元素Kのイオン半径が、実施例1〜3の置換元素(Ag、Ca、Na)のイオン半径に比べて大きく、全量を固溶させることができなかったことによるものである。 Further, only a slightly different phase was confirmed in the sample of Example 4 in which the Li site was replaced with K (M1). The heterogeneous phase was consistent with the KTi 2 (PO 4 ) 3 and KTiP 2 O 7 card patterns. This is because the ionic radius of the substituting element K is larger than the ionic radii of the substituting elements (Ag, Ca, Na) in Examples 1 to 3, and the entire amount could not be dissolved.

また、cole−coleプロット(図2)の円弧の右端の終端の値を、実施例1の試料の抵抗(粒子と粒界抵抗の和)とした。   Further, the value at the end of the right end of the arc in the colle-core plot (FIG. 2) was defined as the resistance of the sample of Example 1 (the sum of the grain and grain boundary resistance).

表3Aに示すように、実施例1〜4の試料の開回路状態(OCV)のイオン伝導度は1.2×10-4〜4.1×10-4S/cmであり、いずれも比較例1の試料(無置換のLiTi2(PO43)と同等であった。 As shown in Table 3A, the ionic conductivity in the open circuit state (OCV) of the samples of Examples 1 to 4 is 1.2 × 10 −4 to 4.1 × 10 −4 S / cm, both of which are compared. It was equivalent to the sample of Example 1 (unsubstituted LiTi 2 (PO 4 ) 3 ).

さらに、表3Aに示すように、実施例1〜4の試料の1.0V v.s. Li+/Liの還元状態でのイオン伝導度は1.0×10-4〜2.8×10-4S/cmであり、開回路状態のイオン伝導度と比べていずれもわずかに低下しているだけであり、比較例1の試料(無置換のLiTi2(PO43)に比べて低下の割合が小さいことが確認された。 Furthermore, as shown in Table 3A, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li of the samples of Examples 1 to 4 is 1.0 × 10 −4 to 2.8 × 10 −4 S. / Cm, both of which are only slightly lower than the ionic conductivity in the open circuit state, and the rate of decrease compared to the sample of Comparative Example 1 (unsubstituted LiTi 2 (PO 4 ) 3 ) Was confirmed to be small.

また、図3(a),(b)の充放電曲線から、比較例1の試料(無置換のLiTi2(PO43)に比べて、実施例1〜4のLiの一部を置換した試料の場合、いずれも、約2.5V v.s. Li+/LiのTiのレドックス(Ti4+→Ti3+の還元反応)に起因したピーク電流値が小さく(図3(a))、Tiのレドックスの総量を表わすピーク電流値の積分値(充電容量)も小さいことが確認された(図3(b))。 Further, from the charge / discharge curves of FIGS. 3A and 3B, a part of Li in Examples 1 to 4 is replaced as compared with the sample of Comparative Example 1 (unsubstituted LiTi 2 (PO 4 ) 3 ). In each of the samples, the peak current value due to Ti redox (Ti 4+ → Ti 3+ reduction reaction) of about 2.5 V vs. Li + / Li is small (FIG. 3A). It was also confirmed that the integrated value (charge capacity) of the peak current value representing the total amount of redox was small (FIG. 3B).

これらの結果から、LiTi2(PO43組成の固体電解質は、Liの一部をLi+のイオン半径0.90Åより大きなイオン半径の元素M1で置換することでTi4+→Ti3+のTiの還元反応が生じにくくなり、Liイオン伝導度の低下が抑制されることが確認された。 These results, LiTi 2 (PO 4) 3 composition of the solid electrolyte, Ti 4+ by replacing a large ionic radius of the element M1 part than the ion radius 0.90Å of Li + of Li → Ti 3+ It was confirmed that the reduction reaction of Ti was less likely to occur, and the decrease in Li ion conductivity was suppressed.

また、特に、Liの一部をNaで置換した場合に、最も大きい効果が得られることが確認された。これはLiと同じ一価のカチオンであるアルカリ金属(Na)で置換することでLiイオンの数の低下を抑制することができたことによるものと考えられる。   In particular, it was confirmed that the greatest effect was obtained when a part of Li was replaced with Na. This is considered to be because the decrease in the number of Li ions could be suppressed by substitution with alkali metal (Na), which is the same monovalent cation as Li.

なお、Naよりイオン半径の大きなアルカリ金属であるKでLiの一部を置換した実施例4の試料のイオン伝導度が、Naで置換した実施例3の試料のイオン伝導度より小さくなったのは、単一相を得ることが困難で、異相を含む混相となったことによるものと考えられる。   It should be noted that the ionic conductivity of the sample of Example 4 in which a part of Li was substituted with K, which is an alkali metal having an ionic radius larger than that of Na, was smaller than the ionic conductivity of the sample of Example 3 substituted with Na. It is considered that this is because it is difficult to obtain a single phase and a mixed phase including different phases is obtained.

<評価2>
また、Liの一部をM1で置換し、Tiの一部をM2で置換した、表1Aの実施例5〜8の試料およびTiの一部をM2(Al)で置換した比較例2の試料について評価を行った。
<Evaluation 2>
Further, a sample of Examples 5 to 8 in Table 1A in which a part of Li was replaced with M1 and a part of Ti was replaced with M2, and a sample of Comparative Example 2 in which a part of Ti was replaced with M2 (Al) Was evaluated.

図4に、実施例5〜8の試料および比較例2の試料についてのXRD測定の結果を示す。なお、図4には、(a)菱面体晶のLiTi2(PO43のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、(d)菱面体晶のKTi2(PO43のJCPDSカード(No.00−025−0691)のパターンと、(e)単斜晶のKTiP27のJCPDSカード(No.00−052−0302)のパターンを併せて示す。 In FIG. 4, the result of the XRD measurement about the sample of Examples 5-8 and the sample of the comparative example 2 is shown. FIG. 4 shows (a) a rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140) pattern, and (b) an oblique pattern. A pattern of crystal AlPO 4 JCPDS card (No. 01-074-3255), a pattern of (d) rhombohedral KTi 2 (PO 4 ) 3 JCPDS card (No. 00-025-0691), (E) A pattern of a monoclinic KTiP 2 O 7 JCPDS card (No. 00-052-0302) is also shown.

さらに、図5(a),(b)に、還元電流を測定して得られた、実施例5〜8の試料および比較例2の試料についての充放電曲線を示す。   Furthermore, the charging / discharging curve about the sample of Examples 5-8 and the sample of the comparative example 2 which were obtained by measuring a reduction current in Fig.5 (a), (b) is shown.

また、表3Aに、実施例5〜8の試料と、比較例2の試料のXRD測定から検出した結晶相と、開回路状態および還元状態のイオン伝導度を示す。   Table 3A shows the crystal phases detected from the XRD measurement of the samples of Examples 5 to 8 and the sample of Comparative Example 2, and the ionic conductivity in the open circuit state and the reduced state.

比較例2の、Li1.3Ti1.7Al0.3(PO43の場合、XRD測定から検出した結晶相は、菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。 In the case of Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 in Comparative Example 2, it was confirmed that the crystal phase detected from the XRD measurement coincided with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern. .

また、比較例2の試料の場合、充放電試験の結果、約2.5VにTiのレドックスに起因したピーク電流が確認された(図5(a))。
さらに、比較例2の試料の場合、OCVのイオン伝導度(開回路状態のイオン伝導度)は4.0×10−4S/cmであったが、1.0V v.s. Li+/Liのイオン伝導度(還元状態のイオン伝導度)は1.7×10-6S/cmまで著しく低下することがわかった。
Moreover, in the case of the sample of the comparative example 2, the peak current resulting from the redox of Ti was confirmed to be about 2.5 V as a result of the charge / discharge test (FIG. 5A).
Furthermore, if the sample of Comparative Example 2, but ion conductivity of OCV (ionic conductivity of the open-circuit state) was 4.0 × 10- 4 S / cm, the 1.0V vs Li + / Li-ion It was found that the conductivity (the ionic conductivity in the reduced state) was significantly reduced to 1.7 × 10 −6 S / cm.

また、実施例5〜8のLiの一部を置換した固体電解質材料の場合も、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。 Also, in the case of the solid electrolyte material in which a part of Li in Examples 5 to 8 was substituted, the crystal phase detected from the XRD measurement was consistent with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern. It was confirmed.

また、実施例8の、LiサイトをK(M1)で元素置換した試料のみ、ごく僅かに異相が確認された。異相はKTi2(PO43、および、KTiP27のカードパターンと一致した。これは、置換元素Kのイオン半径が、実施例5〜7の置換元素(Ag、Ca、Na)のイオン半径に比べて大きく、全量を固溶させることができなかったことによるものである。 Further, only a slightly different phase was confirmed in the sample of Example 8 in which the Li site was replaced with K (M1). The heterogeneous phase was consistent with the KTi 2 (PO 4 ) 3 and KTiP 2 O 7 card patterns. This is because the ionic radius of the substituting element K is larger than that of the substituting elements (Ag, Ca, Na) of Examples 5 to 7, and the entire amount could not be dissolved.

実施例5〜8の試料の開回路状態(OCV)のイオン伝導度は3.0×10-4〜8.1×10-4S/cmであった。
さらに、1.0V v.s. Li+/Liの還元状態でのイオン伝導度は1.0×10-4〜8.2×10-4S/cmであり、開回路状態のイオン伝導度と比べていずれも僅かに低下しているだけであり、比較例2の試料(無置換のLiTi2(PO43)に比べて低下の程度が小さいことが確認された(表3A参照)。
The ionic conductivity in the open circuit state (OCV) of the samples of Examples 5 to 8 was 3.0 × 10 −4 to 8.1 × 10 −4 S / cm.
Furthermore, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li is 1.0 × 10 −4 to 8.2 × 10 −4 S / cm, which is compared with the ionic conductivity in the open circuit state. All were only slightly decreased, and it was confirmed that the degree of decrease was small compared to the sample of Comparative Example 2 (unsubstituted LiTi 2 (PO 4 ) 3 ) (see Table 3A).

また、図5(a),(b)の充放電曲線から、比較例2の試料(Liの一部を置換していない無置換のLi1.3Ti1.7Al0.3(PO43)に比べて、実施例5〜8のLiの一部をM1で置換した試料の場合、いずれも、約2.5V v.s. LiのTiのレドックス(Ti4+→Ti3+の還元反応)に起因したピーク電流値が小さく(図5(a))、Tiのレドックスの総量を表わすピーク電流値の積分値(充電容量)も小さいことが確認された(図5(b))。 Also, from the charge / discharge curves of FIGS. 5A and 5B, compared to the sample of Comparative Example 2 (unsubstituted Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 in which a part of Li is not substituted). In each of the samples obtained by substituting a part of Li in Examples 5 to 8 with M1, the peak current caused by Ti redox (Ti 4+ → Ti 3+ reduction reaction) of about 2.5 V vs Li It was confirmed that the value was small (FIG. 5A) and the integrated value (charge capacity) of the peak current value representing the total amount of Ti redox was also small (FIG. 5B).

これらの結果を検討することにより、Tiの一部を他の元素(Al)で置換した場合にも、実施例5〜8の試料のように、Liの一部をLi+のイオン半径0.90Åより大きな元素(例えば、Ag、Ca、Na、K)で置換することで、Ti4+→Ti3+のTiの還元反応が生じにくくなり、Liイオン伝導度の低下が抑制されることが確認された。 By examining these results, even when a part of Ti is substituted with another element (Al), a part of Li is made to have an ionic radius of Li + of 0, as in the samples of Examples 5 to 8. By substituting with an element larger than 90 例 え ば (for example, Ag, Ca, Na, K), Ti 4+ → Ti 3+ Ti reduction reaction is less likely to occur, and the decrease in Li ion conductivity is suppressed. confirmed.

<評価3>
また、Liの一部をNaで置換した試料において、置換元素Naの置換量を変化させた、表1Bの実施例9〜13の試料について評価を行った。
図6に、実施例9〜13の試料についてのXRD測定の結果を示す。図6には、(a)菱面体晶のLiTi2(PO43のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、(c)菱面体晶のNaTi2(PO43のJCPDSカード(No.01−084−2009)のパターンを併せて示す。
<Evaluation 3>
In addition, in the sample in which a part of Li was replaced with Na, the samples of Examples 9 to 13 in Table 1B in which the substitution amount of the substitution element Na was changed were evaluated.
In FIG. 6, the result of the XRD measurement about the sample of Examples 9-13 is shown. FIG. 6 shows a pattern of (a) rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140), and (b) orthorhombic crystal. A pattern of an AlPO 4 JCPDS card (No. 01-074-3255) and a pattern of a (c) rhombohedral NaTi 2 (PO 4 ) 3 JCPDS card (No. 01-084-2009) are shown together. .

さらに、図7(a),(b)に、還元電流を測定して得られた、実施例9〜13の試料についての充放電曲線を示す。
なお、表3Bに、実施例9〜13の試料のXRD測定から検出した結晶相と、開回路状態および還元状態のイオン伝導度を示す。
Furthermore, the charging / discharging curve about the sample of Examples 9-13 obtained by measuring a reduction current to Fig.7 (a), (b) is shown.
Table 3B shows the crystal phases detected from the XRD measurements of the samples of Examples 9 to 13, and the ionic conductivity of the open circuit state and the reduced state.

Liの一部をNaで置換した、実施例9〜13の試料の場合、置換量にかかわらず、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。 In the case of the samples of Examples 9 to 13 in which a part of Li was substituted with Na, the crystal phase detected from the XRD measurement was a rhombohedral LiTi 2 (PO 4 ) 3 card regardless of the substitution amount. It was confirmed to match the pattern.

また、Na量の多い実施例12,13の試料の場合、一部NaTi2(PO43のパターンも確認された。 Further, in the case of the samples of Examples 12 and 13 with a large amount of Na, a pattern of NaTi 2 (PO 4 ) 3 was partially confirmed.

さらに、実施例9〜13の試料の、1.0V v.s. Li+/Liの還元状態でのイオン伝導度は、0.8×10-4〜4.7×10-4S/cmであり、開回路状態のイオン伝導度と比べていずれも殆ど低下していないことが確認された(表3B参照)。 Furthermore, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li of the samples of Examples 9 to 13 is 0.8 × 10 −4 to 4.7 × 10 −4 S / cm, It was confirmed that none of the ionic conductivity in the open circuit state almost decreased (see Table 3B).

また、実施例9〜13の試料のうち、Naの置換量が0.01〜0.50の試料(実施例9〜12の試料)では、還元状態および開回路状態のいずれの場合もイオン伝導度が高い値を示し、さらに、Naの置換量が0.01〜0.10の試料(実施例9〜11の試料)においては、特に高い値を示すことが確認された。   In addition, among the samples of Examples 9 to 13, the sample with the Na substitution amount of 0.01 to 0.50 (the samples of Examples 9 to 12) is ion-conducted in both the reduced state and the open circuit state. It was confirmed that the sample showed a particularly high value in the samples with the Na substitution amount of 0.01 to 0.10 (samples of Examples 9 to 11).

また、試料番号13の試料のように、Naの置換量が0.5を超えると、還元状態および開回路状態のいずれの場合もイオン伝導度が低くなることが確認された(表3B)。   Further, as in the sample of Sample No. 13, it was confirmed that when the amount of Na substitution exceeded 0.5, the ionic conductivity was lowered in both the reduced state and the open circuit state (Table 3B).

<評価4>
また、Liの一部をNaで置換し、Tiの一部をAlで置換するとともに、置換元素Naの置換量を変化させた、表1Bの実施例14〜18の試料について評価を行った。
図8に、実施例14〜18の試料についてのXRD測定の結果を示す。図8には、(a)菱面体晶のLiTi2(PO43のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、(c)菱面体晶のNaTi2(PO43のJCPDSカード(No.01−084−2009)のパターンを併せて示す。
<Evaluation 4>
In addition, evaluation was performed on samples of Examples 14 to 18 in Table 1B in which a part of Li was substituted with Na, a part of Ti was substituted with Al, and the substitution amount of the substitution element Na was changed.
In FIG. 8, the result of the XRD measurement about the sample of Examples 14-18 is shown. FIG. 8 shows a pattern of (a) rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140), and (b) orthorhombic crystal. A pattern of an AlPO 4 JCPDS card (No. 01-074-3255) and a pattern of a (c) rhombohedral NaTi 2 (PO 4 ) 3 JCPDS card (No. 01-084-2009) are shown together. .

さらに、図9(a),(b)に、還元電流を測定して得られた、実施例14〜18の試料についての充放電曲線を示す。
なお、表3Bに、実施例14〜18の試料の、XRD測定から検出した結晶相と、開回路状態および還元状態のイオン伝導度を示す。
Furthermore, the charging / discharging curve about the sample of Examples 14-18 obtained by measuring a reduction current is shown to Fig.9 (a), (b).
Table 3B shows the crystal phases detected from the XRD measurement and the ionic conductivities in the open circuit state and the reduced state of the samples of Examples 14 to 18.

Liの一部をNaで置換し、Tiの一部をAlで置換するとともに、置換元素Naの量を変化させた実施例14〜18の試料の場合、XRD測定から検出した結晶相は、LiのNaによる置換量にかかわらず、いずれも菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。
また、Na量の多い実施例17,18の試料の場合、一部NaTi2(PO43のパターンも確認された。
In the case of the samples of Examples 14 to 18 in which a part of Li was replaced with Na, a part of Ti was replaced with Al, and the amount of the substitution element Na was changed, the crystal phase detected from the XRD measurement was Li Regardless of the amount of Na replaced by Na, it was confirmed that both coincided with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern.
Further, in the case of the samples of Examples 17 and 18 with a large amount of Na, a pattern of NaTi 2 (PO 4 ) 3 was partially confirmed.

さらに、実施例14〜18の試料の場合、1.0V v.s. Li+/Liの還元状態でのイオン伝導度は1.2×10-4〜8.2×10-4S/cmで、開回路状態のイオン伝導度と比べていずれも殆ど低下していないことが確認された(表3B参照)。 Further, in the case of the samples of Examples 14 to 18, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li is 1.2 × 10 −4 to 8.2 × 10 −4 S / cm, and the open state is open. It was confirmed that none of the ionic conductivity in the circuit state almost decreased (see Table 3B).

また、実施例14〜18の試料のうち、Naの置換量が0.01〜0.50の範囲内の試料(実施例14〜17の試料)では、還元状態および開回路状態のいずれの場合もイオン伝導度が高い値を示し、さらに、Naの置換量が0.01〜0.10の範囲の試料(実施例14〜16の試料)において、特に高い値を示すことが確認された。   Further, among the samples of Examples 14 to 18, the sample in which the Na substitution amount is in the range of 0.01 to 0.50 (the samples of Examples 14 to 17) is in either the reduced state or the open circuit state. In addition, it was confirmed that the sample showed a particularly high value in the sample in which the substitution amount of Na was in the range of 0.01 to 0.10 (samples of Examples 14 to 16).

また、試料番号18の試料のように、Naの置換量が0.5を超えると、還元状態および開回路状態のいずれの場合もイオン伝導度が低くなることが確認された(表3B)。   Further, as in the sample of sample number 18, when the Na substitution amount exceeded 0.5, it was confirmed that the ionic conductivity was lowered in both the reduced state and the open circuit state (Table 3B).

また、実施例14〜18の試料についての充放電曲線(図9(a),(b))は、上述の実施例1〜4の試料の場合に類似していることが確認された。   Moreover, it was confirmed that the charging / discharging curve (FIG. 9 (a), (b)) about the sample of Examples 14-18 is similar to the case of the sample of above-mentioned Examples 1-4.

[実施形態2]
以下に説明する方法で、表4に示す実施例21〜32の試料と、比較例3の試料を作製した。
[Embodiment 2]
The samples of Examples 21 to 32 shown in Table 4 and the sample of Comparative Example 3 were produced by the method described below.

なお、実施例21〜25の試料は、一般式、LiZr2(PO43で表される材料のLiサイトをM1で元素置換した試料((LiaM1b)Zr2(PO43で表される固体電解質材料)である。
また、表4の実施例26〜32の試料は、LiサイトをM1で元素置換したことに加えて、ZrサイトをM2で元素置換した試料(一般式(LiaM1b)(Zr2-cM2c)(PO43で表される固体電解質材料)である。
また、表4の比較例3の試料は、LiサイトおよびZrサイトのいずれについてもM1あるいはM2で元素置換を行っていない試料(固体電解質材料)である。
The samples of Examples 21 to 25 are samples ((Li a M1 b ) Zr 2 (PO 4 ) 3 in which the Li site of the material represented by the general formula LiZr 2 (PO 4 ) 3 is replaced with M1. A solid electrolyte material represented by
Samples of Examples 26 to 32 in Table 4 are samples in which the Zr site was replaced with M2 in addition to the Li site replaced with M1 (general formula (Li a M1 b ) (Zr 2-c M2 c ) (PO 4 ) 3 ).
In addition, the sample of Comparative Example 3 in Table 4 is a sample (solid electrolyte material) in which neither Li site nor Zr site is subjected to element substitution with M1 or M2.

Figure 2015076324
Figure 2015076324

なお、表4におけるイオン半径は以下の論文を参照し、配位数が6のイオン半径を参考とした。
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)
In addition, the ionic radius in Table 4 was referred to the following paper, and the ionic radius having a coordination number of 6 was used as a reference.
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)

<固体電解質材料の合成>
実施例21〜32の試料、比較例3の試料(固体電解質材料)を以下の手順で作製した。
まず、原料として、炭酸リチウムLi2CO3、酸化ジルコニウムZrO2、リン酸二水素アンモニウムNH42PO4、炭酸ナトリウムNa2CO3、酸化銀AgO、酸化アルミニウムAl23、酸化チタンTiO2、酸化ゲルマニウムGeO2、炭酸カルシウムCaCO3、炭酸カリウムK2CO3を用意した。
<Synthesis of solid electrolyte material>
The samples of Examples 21 to 32 and the sample of Comparative Example 3 (solid electrolyte material) were prepared by the following procedure.
First, as raw materials, lithium carbonate Li 2 CO 3 , zirconium oxide ZrO 2 , ammonium dihydrogen phosphate NH 4 H 2 PO 4 , sodium carbonate Na 2 CO 3 , silver oxide AgO, aluminum oxide Al 2 O 3 , titanium oxide TiO 2 , germanium oxide GeO 2 , calcium carbonate CaCO 3 , potassium carbonate K 2 CO 3 were prepared.

これを適宜秤量し、500mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。それから、混合物を空気雰囲気下、500℃で1時間、800℃で6時間焼成し、揮発成分を除去した。   This was weighed appropriately, sealed in a 500 ml polyethylene polypot and rotated on a pot rack at 150 rpm for 16 hours to mix the raw materials. Then, the mixture was baked in an air atmosphere at 500 ° C. for 1 hour and at 800 ° C. for 6 hours to remove volatile components.

次に、水、φ5mmの玉石とともに500mlのポリエチレン製ポリポットに封入し、ポット架上で150rpm、16時間回転させて粉砕した。その後、120℃のホットプレート上で水分を除去した。
空気雰囲気下、1200℃で20時間焼成し、表4の実施例21〜32および比較例3の組成となる固体電解質材料の粉末(試料)を得た。
Next, it was enclosed in a 500 ml polyethylene polypot together with water and φ5 mm cobblestone, and pulverized by rotating on a pot rack at 150 rpm for 16 hours. Thereafter, moisture was removed on a hot plate at 120 ° C.
Firing was performed at 1200 ° C. for 20 hours in an air atmosphere to obtain powders (samples) of solid electrolyte materials having the compositions of Examples 21 to 32 and Comparative Example 3 in Table 4.

<固体電解質材料の結晶構造の評価>
実施例21〜32、比較例3の試料(固体電解質材料の粉末)を、25℃で4.0°/分のスキャン速度、測角範囲10°〜60°でXRD(X線回折装置)により結晶構造を調べた(図10〜12参照)。
<Evaluation of crystal structure of solid electrolyte material>
The samples of Examples 21 to 32 and Comparative Example 3 (solid electrolyte material powder) were scanned at 25 ° C. at a scan rate of 4.0 ° / min and at an angle measurement range of 10 ° to 60 ° by XRD (X-ray diffractometer). The crystal structure was examined (see FIGS. 10 to 12).

各図中には、
(a’)菱面体晶のLiZr2(PO43のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−7742)のパターンと、
(b’)三斜晶のLiZr2(PO43のJCPDSカード(No.01−074−2562)のパターンと、
(c’)単斜晶のLiZr2(PO43のJCPDSカード(No.01−070−5819)のパターンと、
(d’)菱面体晶のKZr2(PO43のJCPDSカード(No.01−070−1905)のパターン
のうち関連のあるものを併せて示した。
すなわち、図10には、上記(a’)〜(d’)の各パターンを併せて示し、また、図11および図12には、上記(a’)〜(c’)の各パターンを併せて示した。
In each figure,
(A ′) the pattern of rhombohedral LiZr 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-7742);
(B ′) a pattern of a triclinic LiZr 2 (PO 4 ) 3 JCPDS card (No. 01-074-2562);
(C ′) a pattern of a monoclinic LiZr 2 (PO 4 ) 3 JCPDS card (No. 01-070-5819);
(D ′) Related patterns of rhombohedral KZr 2 (PO 4 ) 3 JCPDS card (No. 01-070-1905) are also shown.
That is, FIG. 10 shows the patterns (a ′) to (d ′) together, and FIGS. 11 and 12 show the patterns (a ′) to (c ′) together. Showed.

<固体電解質材料のイオン伝導度の評価>
実施例21〜32、比較例3の試料について、イオン伝導度を以下の方法で測定した。
<Evaluation of ionic conductivity of solid electrolyte material>
For the samples of Examples 21 to 32 and Comparative Example 3, the ionic conductivity was measured by the following method.

(1)焼結タブレットの作製
上述のようにして作製した固体電解質材料、ポリビニルアセタール樹脂、アルコールを、100:15:140の重量比率で秤取して、十分に混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるポリビニルアセタール樹脂で被覆された固体電解質材料粉末を得た。
次いで、上記固体電解質材料粉末を、錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。
(1) Production of Sintered Tablet The solid electrolyte material, polyvinyl acetal resin, and alcohol produced as described above were weighed in a weight ratio of 100: 15: 140 and mixed sufficiently, and then heated at 80 ° C. The alcohol was removed on the plate to obtain a solid electrolyte material powder coated with a polyvinyl acetal resin as a binder.
Next, the solid electrolyte material powder was pressed into a tablet by pressing at 90 MPa using a tablet molding machine.

それから、タブレット状に成型した固体電解質材料を、2枚の多孔性のセッターで挟持した後、焼成することにより焼結タブレットを作製した。焼成は、1体積%の酸素を含む窒素ガス雰囲気中、500℃の温度条件下で焼成(脱バインダー)することにより、ポリビニルアセタール樹脂を除去した後、窒素ガス雰囲気中で1000℃の温度で実施することにより、実施例21〜32および比較例3にかかる焼結タブレットを得た。得られた焼結タブレットの質量、厚み、および直径を表5に示す。   Then, the solid electrolyte material molded into a tablet shape was sandwiched between two porous setters, and then fired to produce a sintered tablet. Baking is performed at a temperature of 1000 ° C. in a nitrogen gas atmosphere after removing the polyvinyl acetal resin by baking (debinding) in a nitrogen gas atmosphere containing 1% by volume of oxygen at a temperature of 500 ° C. By doing this, the sintered tablet concerning Examples 21-32 and the comparative example 3 was obtained. Table 5 shows the mass, thickness, and diameter of the obtained sintered tablet.

Figure 2015076324
Figure 2015076324

(2)イオン伝導度の測定
上述のようにして作製した焼結タブレットの両面にスパッタリングによって、集電体層となる白金(Pt)層を形成した後、焼結タブレットを100℃で乾燥し、水分を除去した。それから、焼結タブレットを2032型のコインセルで封止した。
(2) Measurement of ion conductivity After forming the platinum (Pt) layer used as a collector layer by sputtering on both surfaces of the sintered tablet produced as described above, the sintered tablet was dried at 100 ° C. Water was removed. Then, the sintered tablet was sealed with a 2032 type coin cell.

そして、各固体電解質材料を用いて形成した焼結タブレットを、0.1〜1MHz(±100mV)の範囲で室温(25℃)にて交流インピーダンス測定を行い、イオン伝導度(開回路状態でのイオン伝導度)を評価した。   And the alternating current impedance measurement was carried out at room temperature (25 degreeC) in the range of 0.1-1 MHz (± 100 mV) for the sintered tablet formed using each solid electrolyte material, and the ionic conductivity (in an open circuit state) Ionic conductivity) was evaluated.

<評価1>
図10に、実施例21〜25の試料および比較例3の試料についてのXRD測定の結果を示す。
また、表6に、実施例21〜25の試料と、比較例3の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度とを示す。
<Evaluation 1>
In FIG. 10, the result of the XRD measurement about the sample of Examples 21-25 and the sample of the comparative example 3 is shown.
Table 6 shows the crystal phases detected from the XRD measurement of the samples of Examples 21 to 25 and the sample of Comparative Example 3, and the ionic conductivity in the open circuit state.

Figure 2015076324
Figure 2015076324

表6に示すように、比較例3の、LiサイトおよびZrサイトのいずれも置換していない無置換の試料(LiZr2(PO43)の場合、菱面体晶の他に、三斜晶や単斜晶が混相していることが確認された。また、開回路状態でのイオン伝導度は、1.1×10-6S/cmであることが確認された。 As shown in Table 6, in the case of the unsubstituted sample (LiZr 2 (PO 4 ) 3 ) in which neither the Li site nor the Zr site was substituted in Comparative Example 3, in addition to the rhombohedral crystal, a triclinic crystal And monoclinic crystals were mixed. Moreover, it was confirmed that the ionic conductivity in an open circuit state is 1.1 × 10 −6 S / cm.

また、Liの一部をM1で置換した実施例21〜25の試料の場合、XRD測定から検出した結晶相は、いずれも菱面体晶のLiZr2(PO43のカードパターンに一致することが確認された。 In addition, in the case of the samples of Examples 21 to 25 in which a part of Li was replaced with M1, the crystal phases detected from the XRD measurement must all match the rhombohedral LiZr 2 (PO 4 ) 3 card pattern. Was confirmed.

また、実施例25の、LiサイトをKで元素置換した試料のみ、ごく僅かに異相が確認された。異相はKZr2(PO43のカードパターンと一致した。これは、実施例25の試料の置換元素Kのイオン半径が、実施例21〜24の置換元素(Ag、Ca、Na)のイオン半径に比べて大きく、全量を固溶させることができなかったことによるものである。 Further, only a slightly different phase was confirmed in the sample of Example 25 in which the Li site was replaced with K. The heterogeneous phase was consistent with the KZr 2 (PO 4 ) 3 card pattern. This is because the ionic radius of the substitution element K of the sample of Example 25 was larger than the ionic radius of the substitution elements (Ag, Ca, Na) of Examples 21 to 24, and the entire amount could not be dissolved. It is because.

また、菱面体晶を形成している実施例21〜25の試料の、開回路状態のイオン伝導度は、LiサイトおよびZrサイトのどちらも置換していない無置換の比較例3の試料(LiZr2(PO43)に比べて高い値であることが確認された(表6)。 Moreover, the ionic conductivity of the open circuit state of the samples of Examples 21 to 25 forming rhombohedral crystals was the same as that of the non-substituted Comparative Example 3 in which neither the Li site nor the Zr site was substituted (LiZr). 2 (PO 4 ) 3 ) (Table 6).

これらの結果より、LiZr2(PO43組成の固体電解質は、Liの一部をLi+のイオン半径0.90Åより大きなイオン半径の元素M1で置換することで、Tiの還元反応(Ti4+→Ti3+)が生じにくくなり、Liイオン伝導度の低下が抑制されることがわかった。 From these results, a solid electrolyte having a composition of LiZr 2 (PO 4 ) 3 is obtained by substituting a part of Li with an element M1 having an ionic radius larger than the ionic radius of Li + of 0.90Å, thereby reducing Ti (Ti 4 + → Ti 3+ ) is less likely to occur, and a decrease in Li ion conductivity is suppressed.

特に、Liの一部をNaで置換した場合に、最も大きな効果を得ることができた。これはLiと同じ一価のカチオンであるアルカリ金属(Na)で置換することでLiイオンの数の低下を抑制することができたことによるものである。   In particular, the greatest effect could be obtained when a part of Li was replaced with Na. This is because the decrease in the number of Li ions could be suppressed by substitution with alkali metal (Na), which is the same monovalent cation as Li.

なお、Naよりイオン半径の大きなアルカリ金属であるKでLiの一部を置換した試料(実施例25の試料)においては、イオン伝導度が、Naで置換したLiZr2(PO43のイオン伝導度より小さくなったが、これは、単一相を得ることが困難で、異相を含む混相となったことによるものと考えられる。 In the sample in which a part of Li was substituted with K, which is an alkali metal having an ion radius larger than that of Na (the sample of Example 25), the ion conductivity was LiZr 2 (PO 4 ) 3 ion substituted with Na. Although it became smaller than the conductivity, it is considered that this is because it was difficult to obtain a single phase and a mixed phase including different phases was obtained.

<評価2>
図11に、実施例26〜30の試料についてのXRD測定の結果を示す。
また、表7に、実施例26〜30の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度とを示す。
<Evaluation 2>
In FIG. 11, the result of the XRD measurement about the sample of Examples 26-30 is shown.
Table 7 shows the crystal phase detected from the XRD measurement of the samples of Examples 26 to 30 and the ionic conductivity in the open circuit state.

Figure 2015076324
Figure 2015076324

表7に示すように、実施例26〜30の、Liの一部をNaで置換し、さらに、Zrの一部を、Zrよりもイオン半径の小さい元素(Al)で置換した試料の場合、いずれも菱面体晶のLiZr2(PO43のカードパターンに一致することが確認できた。 As shown in Table 7, in the case of the samples of Examples 26 to 30, in which a part of Li was replaced with Na and a part of Zr was replaced with an element (Al) having an ionic radius smaller than Zr, It was confirmed that both coincided with the rhombohedral LiZr 2 (PO 4 ) 3 card pattern.

また、実施例26〜30の試料の開回路状態のイオン伝導度は、Liと置換される元素M1(Na)の割合が0.01〜0.50の範囲の試料(試料番号26〜29の試料)において高い値を示し、0.01〜0.10の範囲の試料(試料番号26〜28の試料)においてさらに高い値を示すことが確認された。   In addition, the ionic conductivity in the open circuit state of the samples of Examples 26 to 30 is the sample in which the ratio of the element M1 (Na) substituted for Li is 0.01 to 0.50 (sample numbers 26 to 29). It was confirmed that the sample showed a high value and the sample in the range of 0.01 to 0.10 (sample Nos. 26 to 28) showed a higher value.

また、実施例30の試料のように、Liと置換される元素M1(Na)の割合が0.5より多くなると、開回路状態のイオン伝導度が低くなることが確認された(表7)。   Moreover, when the ratio of the element M1 (Na) substituted with Li was more than 0.5 like the sample of Example 30, it was confirmed that the ionic conductivity of an open circuit state will become low (Table 7). .

<評価3>
図12に、Liの一部をNaで置換し、さらに、Zrの一部を、Zrよりもイオン半径の小さい元素(Ti、Ge)で置換した実施例31および32の試料についてのXRD測定の結果を示す。
また、表8に、実施例31および32の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度とを示す。
なお、表8には、試料番号26の試料(Liの一部をNaで置換し、Zrの一部をAlで置換した試料)と、LiとZrのいずれについても置換をしていない比較例3の試料の、XRD測定から検出した結晶相と、イオン伝導度を併せて示す。
<Evaluation 3>
FIG. 12 shows XRD measurement results for the samples of Examples 31 and 32 in which a part of Li was replaced with Na and a part of Zr was replaced with an element (Ti, Ge) having an ionic radius smaller than that of Zr. Results are shown.
Table 8 shows the crystal phase detected from the XRD measurement of the samples of Examples 31 and 32 and the ionic conductivity in the open circuit state.
Table 8 shows a sample of sample number 26 (a sample in which a part of Li is replaced with Na and a part of Zr is replaced with Al) and a comparative example in which neither Li nor Zr is substituted. 3 shows the crystal phase detected from the XRD measurement and the ionic conductivity of the three samples.

Figure 2015076324
Figure 2015076324

表8に示すように、実施例31および32の、Liの一部をNaで置換し、さらに、Zrの一部をZrよりもイオン半径の小さい元素(TiあるいはGe)で置換した試料の場合、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO43のカードパターンに一致することが確認された。 As shown in Table 8, in the samples of Examples 31 and 32, a part of Li was replaced with Na, and a part of Zr was replaced with an element (Ti or Ge) having an ionic radius smaller than Zr. The crystal phases detected from the XRD measurement were confirmed to coincide with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern.

また、実施例26,31,32の、Liの一部をNaで置換し、さらに、Zrの一部をZrよりもイオン半径の小さい元素で置換した各試料は、LiとZrのいずれについても置換をしていない比較例3の試料に比べて高いイオン伝導度を示すことが確認された(表8参照)。   In each of Examples 26, 31, and 32, each sample in which a part of Li was replaced with Na and a part of Zr was replaced with an element having an ionic radius smaller than that of Zr was obtained for both Li and Zr. It was confirmed that the ion conductivity was higher than that of the sample of Comparative Example 3 that was not substituted (see Table 8).

また、実施例26の試料と、実施例31の試料について、還元電流を測定して充放電曲線を得た。
還元電流を測定して充放電曲線を得るにあたっては、まず、Liの一部をNaで置換し、Zrの一部を典型金属元素で非遷移金属元素であるAlで置換した実施例26の固体電解質材料と、Liの一部をNaで置換し、Zrの一部を遷移金属元素のTiで置換した実施例31の固体電解質材料を用いて形成した各焼結タブレットの片面にスパッタリングによって、集電体層となる白金(Pt)層を形成した。その後、焼結タブレットを100℃で乾燥し、水分を除去した後、もう一方の面に電解液を含有させたゲル状の電解質を介してLi箔を貼り付けて、2032型のコインセルで封止した。
Moreover, about the sample of Example 26 and the sample of Example 31, the reduction current was measured and the charging / discharging curve was obtained.
In obtaining the charge / discharge curve by measuring the reduction current, first, a part of Li was replaced with Na, and a part of Zr was replaced with a typical metal element with Al which is a non-transition metal element. Sputtering was applied to one side of each sintered tablet formed using the electrolyte material and the solid electrolyte material of Example 31 in which part of Li was replaced with Na and part of Zr was replaced with Ti as a transition metal element. A platinum (Pt) layer to be an electric layer was formed. Then, after drying the sintered tablet at 100 ° C. to remove moisture, Li foil is pasted on the other surface via a gel electrolyte containing an electrolyte and sealed with a 2032 type coin cell. did.

そして、この焼結タブレットを0.1mV/秒、0.0〜3.0V v.s. Li+/Liの範囲で室温(25℃)にて充放電試験を行った。この際、0.0V v.s. Li+/Liで電位を保持して、0.1〜1MHz(±100mV)の範囲で交流インピーダンス測定を行い、イオン伝導度を評価した。
図13に実施例26の試料の充放電曲線、図14に実施例31の試料の充放電曲線を示す。
Then, this sintered tablet was subjected to a charge / discharge test at room temperature (25 ° C.) in the range of 0.1 mV / second and 0.0 to 3.0 V vs Li + / Li. At this time, the potential was held at 0.0 V vs Li + / Li, and AC impedance measurement was performed in the range of 0.1 to 1 MHz (± 100 mV) to evaluate ion conductivity.
FIG. 13 shows the charge / discharge curve of the sample of Example 26, and FIG. 14 shows the charge / discharge curve of the sample of Example 31.

また、表9に、実施例26および実施例31の試料のイオン伝導度を示す。   Table 9 shows the ionic conductivity of the samples of Example 26 and Example 31.

Figure 2015076324
Figure 2015076324

図13および図14から明らかなように、Zrの一部を遷移金属元素のTiで置換した実施例31の試料の場合、Tiのレッドクスに起因した充放電反応の発生が確認された(図14)が、Zrの一部を典型金属元素で非遷移金属元素であるAlで置換した実施例26の試料の場合、充放電反応の発生は確認されなかった(図13)。   As is clear from FIG. 13 and FIG. 14, in the case of the sample of Example 31 in which a part of Zr was substituted with the transition metal element Ti, the occurrence of charge / discharge reaction due to the Ti reds was confirmed (FIG. 14). However, in the case of the sample of Example 26 in which a part of Zr was replaced with Al which is a non-transition metal element with a typical metal element, the occurrence of charge / discharge reaction was not confirmed (FIG. 13).

したがって、実施例31の材料を用いた全固体電池の場合、Tiのレッドクスに起因した充放電反応が発生しない範囲で使用することが必要になり、使用条件が制約されるが、実施例26の試料の場合にはそのような制約がない。したがって、この点からは、Zrを置換する元素(M2)として、TiとAlを比較すると、Alを用いることが望ましいことがわかる。   Therefore, in the case of the all-solid-state battery using the material of Example 31, it is necessary to use it in a range where the charge / discharge reaction due to the Ti Reds does not occur, and the usage conditions are restricted. There is no such restriction in the case of a sample. Therefore, from this point, it is found that it is desirable to use Al as an element (M2) that substitutes Zr when Ti and Al are compared.

なお、例えば、正極用グリーンシートと、負極用グリーンシートとが、本発明の固体電解質材料を用いて形成した電解質グリーンシートを介して積層された構造の積層体を形成し、これを焼結することにより、特性の良好な全固体電池を得ることができる。   In addition, for example, a green body for a positive electrode and a green sheet for a negative electrode are formed through the electrolyte green sheet formed using the solid electrolyte material of the present invention, and a laminate is formed and sintered. As a result, an all-solid battery having good characteristics can be obtained.

また、本発明の全固体電池は、上述の本発明の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含む構成とすることも可能である。   Moreover, the all-solid-state battery of this invention can also be set as the structure which contains the above-mentioned solid electrolyte material of this invention in at least any one layer of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.

本発明は上記実施形態に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above embodiment, and various applications and modifications can be made within the scope of the invention.

Claims (10)

NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質材料であって、
一般式:LiaM1b2(PO43(M1はLiよりイオン半径の大きい元素であり、RはTiまたはZr、a=0.50〜1.79、b=0.01〜1.00)で表わされること
を特徴とする固体電解質材料。
A solid electrolyte material having a crystal structure similar to NASICON type or NASICON type,
General formula: Li a M1 b R 2 (PO 4 ) 3 (M1 is an element having an ionic radius larger than Li, and R is Ti or Zr, a = 0.50 to 1.79, b = 0.01 to 1 .00). A solid electrolyte material characterized by
前記M1が、Li以外のアルカリ金属であることを特徴とする請求項1記載の固体電解質材料。   2. The solid electrolyte material according to claim 1, wherein M1 is an alkali metal other than Li. 前記M1が、Naであることを特徴とする請求項2記載の固体電解質材料。   The solid electrolyte material according to claim 2, wherein M1 is Na. 前記RがTiであり、Tiの一部を他の元素M2で置換した(LiaM1b)(Ti2-cM2c)(PO43の組成で表され、a=0.50〜1.79、b=0.01〜0.50、c≦0.8(0は含まない)の要件を満たすものであることを特徴とする請求項1〜3のいずれかに記載の固体電解質材料。 R is Ti, and is represented by a composition of (Li a M1 b ) (Ti 2−c M2 c ) (PO 4 ) 3 in which a part of Ti is substituted with another element M2, a = 0.50 The solid electrolyte according to claim 1, wherein the solid electrolyte satisfies the requirements of 1.79, b = 0.01 to 0.50, and c ≦ 0.8 (0 is not included). material. 前記M2が、Mg、Ca、Sr、Al、Ga、In、Ge、Sn、Sbからなる群より選ばれる少なくとも1種であることを特徴とする請求項5記載の固体電解質材料。   6. The solid electrolyte material according to claim 5, wherein the M2 is at least one selected from the group consisting of Mg, Ca, Sr, Al, Ga, In, Ge, Sn, and Sb. 前記RがZrであり、Zrの一部を他の元素M2で置換した(LiaM1b)(Zr2-cM2c)(PO43の組成で表され、a=0.50〜1.49、b=0.01〜0.50、c≦1.0(0は含まない)の要件を満たすものであることを特徴とする請求項1〜3のいずれかに記載の固体電解質材料。 R is Zr, and is represented by a composition of (Li a M1 b ) (Zr 2−c M2 c ) (PO 4 ) 3 in which a part of Zr is substituted with another element M2, a = 0.50 The solid electrolyte according to claim 1, wherein the solid electrolyte satisfies the requirements of 1.49, b = 0.01 to 0.50, and c ≦ 1.0 (not including 0). material. 前記M2が、Zrよりもイオン半径の小さい元素であることを特徴とする請求項6記載の固体電解質材料。   7. The solid electrolyte material according to claim 6, wherein M2 is an element having an ionic radius smaller than that of Zr. 前記M2が、Mg、Al、Ti、Cu、Ga、Ge、Ag、Snからなる群より選ばれる少なくとも1種であることを特徴とする請求項6記載の固体電解質材料。   7. The solid electrolyte material according to claim 6, wherein the M2 is at least one selected from the group consisting of Mg, Al, Ti, Cu, Ga, Ge, Ag, and Sn. 請求項1〜8のいずれかに記載の固体電解質材料を用いて形成した電解質グリーンシートを介して、正極用グリーンシート、負極用グリーンシートが積層された積層体を焼結したものであることを特徴とする全固体電池。   It is what sintered the laminated body by which the green sheet for positive electrodes and the green sheet for negative electrodes were laminated | stacked through the electrolyte green sheet formed using the solid electrolyte material in any one of Claims 1-8. All-solid battery featuring. 請求項1〜8のいずれかに記載の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含むものであることを特徴とする全固体電池。   An all-solid battery comprising the solid electrolyte material according to claim 1 in at least one of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.
JP2013212890A 2013-10-10 2013-10-10 Solid electrolyte material and all-solid battery using the same Active JP6260185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212890A JP6260185B2 (en) 2013-10-10 2013-10-10 Solid electrolyte material and all-solid battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212890A JP6260185B2 (en) 2013-10-10 2013-10-10 Solid electrolyte material and all-solid battery using the same

Publications (2)

Publication Number Publication Date
JP2015076324A true JP2015076324A (en) 2015-04-20
JP6260185B2 JP6260185B2 (en) 2018-01-17

Family

ID=53001014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212890A Active JP6260185B2 (en) 2013-10-10 2013-10-10 Solid electrolyte material and all-solid battery using the same

Country Status (1)

Country Link
JP (1) JP6260185B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138465A1 (en) * 2016-02-09 2017-08-17 株式会社村田製作所 Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery
WO2017141742A1 (en) * 2016-02-18 2017-08-24 株式会社村田製作所 Solid electrolyte and all-solid-state battery
WO2017183255A1 (en) * 2016-04-19 2017-10-26 株式会社村田製作所 Solid electrolyte and all-solid-state battery
WO2018088424A1 (en) * 2016-11-09 2018-05-17 第一稀元素化学工業株式会社 Lithium-containing zirconium phosphate, calcined powder of same, and method for producing sintered body
WO2018181812A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 Solid electrolyte and all-solid secondary battery
WO2018181578A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 Solid electrolyte and all-solid secondary battery
JPWO2017154922A1 (en) * 2016-03-08 2018-11-22 株式会社村田製作所 Solid electrolyte, all-solid battery, method for producing solid electrolyte, and method for producing all-solid battery
CN110299559A (en) * 2018-03-22 2019-10-01 松下知识产权经营株式会社 Solid electrolyte and the secondary cell for having used the solid electrolyte
CN110299558A (en) * 2018-03-22 2019-10-01 松下知识产权经营株式会社 Solid electrolyte and the secondary cell for having used the solid electrolyte
CN110462913A (en) * 2017-03-30 2019-11-15 Tdk株式会社 Solid electrolyte and all-solid-state lithium-ion secondary battery
CN110521048A (en) * 2017-03-30 2019-11-29 Tdk株式会社 Solid electrolyte and all solid state secondary battery
WO2021215403A1 (en) * 2020-04-22 2021-10-28 株式会社オハラ Lithium ion-conductive glass ceramic
US11245131B2 (en) 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
US11374261B2 (en) 2016-08-04 2022-06-28 Tdk Corporation Electrochemical device and solid-state lithium ion rechargeable battery
US11411244B2 (en) 2017-03-30 2022-08-09 Tdk Corporation All-solid secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299101A (en) * 1992-02-18 1993-11-12 Sanyo Electric Co Ltd Solid electrolyte and lithium battery using the same
JP2012246196A (en) * 2011-05-30 2012-12-13 Ohara Inc Lithium ion conductive inorganic substance
WO2013137224A1 (en) * 2012-03-15 2013-09-19 株式会社 村田製作所 All solid state cell and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299101A (en) * 1992-02-18 1993-11-12 Sanyo Electric Co Ltd Solid electrolyte and lithium battery using the same
JP2012246196A (en) * 2011-05-30 2012-12-13 Ohara Inc Lithium ion conductive inorganic substance
WO2013137224A1 (en) * 2012-03-15 2013-09-19 株式会社 村田製作所 All solid state cell and method for producing same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955602B2 (en) 2015-12-25 2024-04-09 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
US11245131B2 (en) 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
WO2017138465A1 (en) * 2016-02-09 2017-08-17 株式会社村田製作所 Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery
WO2017141742A1 (en) * 2016-02-18 2017-08-24 株式会社村田製作所 Solid electrolyte and all-solid-state battery
US10601073B2 (en) 2016-03-08 2020-03-24 Murata Manufacturing Co., Ltd. Solid electrolyte, all solid state battery, method for producing solid electrolyte, and method for producing all solid state battery
JPWO2017154922A1 (en) * 2016-03-08 2018-11-22 株式会社村田製作所 Solid electrolyte, all-solid battery, method for producing solid electrolyte, and method for producing all-solid battery
WO2017183255A1 (en) * 2016-04-19 2017-10-26 株式会社村田製作所 Solid electrolyte and all-solid-state battery
JPWO2017183255A1 (en) * 2016-04-19 2018-10-25 株式会社村田製作所 Solid electrolyte and all-solid battery
CN109075389A (en) * 2016-04-19 2018-12-21 株式会社村田制作所 solid electrolyte and all-solid-state battery
EP3447837A4 (en) * 2016-04-19 2019-11-06 Murata Manufacturing Co., Ltd. Solid electrolyte and all-solid-state battery
US11374261B2 (en) 2016-08-04 2022-06-28 Tdk Corporation Electrochemical device and solid-state lithium ion rechargeable battery
WO2018088424A1 (en) * 2016-11-09 2018-05-17 第一稀元素化学工業株式会社 Lithium-containing zirconium phosphate, calcined powder of same, and method for producing sintered body
JPWO2018088424A1 (en) * 2016-11-09 2019-07-18 第一稀元素化学工業株式会社 Lithium-containing zirconium phosphate, and method for producing calcined powder and sintered body thereof
CN110521048A (en) * 2017-03-30 2019-11-29 Tdk株式会社 Solid electrolyte and all solid state secondary battery
DE112018001798B4 (en) 2017-03-30 2023-06-29 Tdk Corporation SOLID ELECTROLYTE AND SOLID STATE LITHIUM ION SECONDARY BATTERY
DE112018001738T5 (en) 2017-03-30 2019-12-12 Tdk Corporation SOLID SOLUTION ELECTROLYTE AND SOLID SECONDARY BATTERY
WO2018181812A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 Solid electrolyte and all-solid secondary battery
US11855253B2 (en) 2017-03-30 2023-12-26 Tdk Corporation Solid electrolyte and all-solid secondary battery
CN110462913B (en) * 2017-03-30 2023-09-15 Tdk株式会社 Solid electrolyte and all-solid lithium ion secondary battery
WO2018181578A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 Solid electrolyte and all-solid secondary battery
US11411244B2 (en) 2017-03-30 2022-08-09 Tdk Corporation All-solid secondary battery
US11548824B2 (en) 2017-03-30 2023-01-10 Tdk Corporation Solid electrolyte and all-solid secondary battery
US11594754B2 (en) 2017-03-30 2023-02-28 Tdk Corporation Solid electrolyte and all-solid lithium-ion secondary battery
CN110462913A (en) * 2017-03-30 2019-11-15 Tdk株式会社 Solid electrolyte and all-solid-state lithium-ion secondary battery
CN110521048B (en) * 2017-03-30 2023-07-04 Tdk株式会社 Solid electrolyte and all-solid secondary battery
CN110299559A (en) * 2018-03-22 2019-10-01 松下知识产权经营株式会社 Solid electrolyte and the secondary cell for having used the solid electrolyte
CN110299558A (en) * 2018-03-22 2019-10-01 松下知识产权经营株式会社 Solid electrolyte and the secondary cell for having used the solid electrolyte
WO2021215403A1 (en) * 2020-04-22 2021-10-28 株式会社オハラ Lithium ion-conductive glass ceramic

Also Published As

Publication number Publication date
JP6260185B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6260185B2 (en) Solid electrolyte material and all-solid battery using the same
Liu et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition
Lu et al. Effects of fluorine doping on structural and electrochemical properties of Li6. 25Ga0. 25La3Zr2O12 as electrolytes for solid-state lithium batteries
JP5721540B2 (en) Lithium ion conductive inorganic material
JP6460316B2 (en) Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery
CN102308425B (en) Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP5701741B2 (en) Sulfide-based solid electrolyte
Dong et al. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte
CN107851843B (en) Solid electrolyte sheet, method for producing same, and sodium ion all-solid-state secondary battery
JP7394757B2 (en) Amorphous solid electrolyte and all-solid-state secondary battery using it
JPWO2013137224A1 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
KR101909727B1 (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP2013149493A (en) Lithium ion-conducting material
WO2019102762A1 (en) Negative electrode material, negative electrode and battery
JP6504515B2 (en) Solid electrolyte material and all solid battery
Liu et al. Gel polymer electrolyte membranes boosted with sodium-conductive β-alumina nanoparticles: application for Na-ion batteries
JP2023021987A (en) Lithium ion conductive solid electrolyte and production method for lithium ion conductive solid electrolyte
Yang et al. Titanium dioxide doping toward high-lithium-ion-conducting Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass-ceramics for all-solid-state lithium batteries
Ahmed et al. LiSn 2 (PO 4) 3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
Trevisanello et al. Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes
JP2018008843A (en) Solid electrolyte, all-solid battery and manufacturing method thereof
Chen et al. High Li-ionic conductivity of Li29Zr9Nb3O40 ceramic sintered in oxygen-deficient atmosphere
Das et al. Highly conductive ceramic-in-polymer composite electrolyte enabling superior electrochemical performance for all-solid-state lithium batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6260185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150