JP6260185B2 - Solid electrolyte material and all-solid battery using the same - Google Patents
Solid electrolyte material and all-solid battery using the same Download PDFInfo
- Publication number
- JP6260185B2 JP6260185B2 JP2013212890A JP2013212890A JP6260185B2 JP 6260185 B2 JP6260185 B2 JP 6260185B2 JP 2013212890 A JP2013212890 A JP 2013212890A JP 2013212890 A JP2013212890 A JP 2013212890A JP 6260185 B2 JP6260185 B2 JP 6260185B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- solid electrolyte
- examples
- electrolyte material
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、電解質材料および電池に関し、詳しくは、固体電解質材料およびそれを用いた全固体電池に関する。 The present invention relates to an electrolyte material and a battery, and more particularly to a solid electrolyte material and an all-solid battery using the same.
近年、携帯電話やポータブルコンピュータなどに、種々の電池(二次電池)が広く用いられている。そして、従来より広く用いられてきた電池においては、イオンを移動させる媒体として、有機溶媒などの液体の電解質(電解液)が一般的に使用されている。 In recent years, various batteries (secondary batteries) have been widely used for mobile phones and portable computers. In a battery that has been widely used conventionally, a liquid electrolyte (electrolytic solution) such as an organic solvent is generally used as a medium for moving ions.
しかし、液体の電解質(電解液)を用いた電池においては、電解液の漏液などの問題を生ずる可能性があり、信頼性に関し、改善すべき点がある。また、電解液に一般的に用いられる有機溶媒などは可燃性物質であり、安全上、好ましくないという問題がある。 However, in a battery using a liquid electrolyte (electrolytic solution), problems such as leakage of the electrolytic solution may occur, and there is a point to be improved regarding reliability. Moreover, the organic solvent etc. which are generally used for electrolyte solution are combustible substances, and there exists a problem that it is unpreferable on safety.
このため、電解液に代えて固体電解質を用いることが提案されており、また、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成された固体二次電池の開発が進められている。 For this reason, it has been proposed to use a solid electrolyte instead of the electrolytic solution, and the development of a solid secondary battery in which a solid electrolyte is used as the electrolyte and the other components are also made of solid is being promoted. .
そして、特許文献1には、全固体電池を構成する固体電解質として各種のカチオンを導電体としたNASICON構造を有する化合物について、様々な組成が開示されている。
しかしながら、本願の発明者等が検討を行った結果、特許文献1で開示されている、Tiを含むNASICON構造を有する固体電解質を還元した場合には、固体電解質のイオン伝導度が低下することがわかった。すなわち、Tiを中心金属に含むNASICON構造の固体電解質を、固体電池の電解質として用いた場合には、負極の電位によってTiを含むNASICON構造の固体電解質が還元されることによりイオン伝導度が低下し、固体電池の性能が著しく低下することが確認された。
However, as a result of investigations by the inventors of the present application, when a solid electrolyte having a NASICON structure containing Ti disclosed in
本発明は、上記課題を解決するものであり、還元されてイオン伝導度が低下し、固体電池の性能が低下することを防止することが可能な信頼性の高い固体電解質材料およびそれを用いた全固体電池を提供することを目的とする。 The present invention solves the above-mentioned problems, and uses a solid electrolyte material with high reliability capable of preventing reduction in ion conductivity due to reduction and deterioration in performance of a solid battery and the same. An object is to provide an all-solid-state battery.
本発明の発明者等は、上記課題を解決するため、固体電解質材料について検討を行った。その結果、LiZr(PO4)3組成の固体電解質は、様々な晶系を形成しやすいために、単一相を得ることが難しいという知見を得た。
かかる知見に基づき、さらに種々の実験および検討を行い、NASICON構造の固体電解質に関して、LiZr(PO4)3組成の固体電解質を構成するLiの一部を他の元素で置換することにより、優れた充放電特性を示す場合があることを知り、さらに検討を進めて本発明を完成した。
The inventors of the present invention studied solid electrolyte materials in order to solve the above problems. As a result, it has been found that a solid electrolyte having a composition of LiZr (PO 4 ) 3 easily forms various crystal systems, and thus it is difficult to obtain a single phase.
Based on this knowledge, various experiments and examinations were further performed, and regarding the solid electrolyte having a NASICON structure, a part of Li constituting the solid electrolyte having a LiZr (PO 4 ) 3 composition was replaced with another element, which was excellent. Knowing that charge / discharge characteristics may be exhibited, the inventors further studied and completed the present invention.
本発明の固体電解質材料は、
NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質材料であって、
一般式:(LiaM1b)(Ti2-cM2c)(PO4)3の組成で表され、M1はLiよりイオン半径の大きい元素であって、K、Na、Ca、Agからなる群より選ばれる少なくとも1種であり、a=0.50〜1.79、b=0.01〜0.50、c≦0.8(0は含まない)の要件を満たし、
前記M2が、Al、Geからなる群より選ばれる少なくとも1種であること
を特徴としている。
The solid electrolyte material of the present invention is
A solid electrolyte material having a crystal structure similar to NASICON type or NASICON type,
It is represented by the composition of the general formula : ( Li a M1 b ) (Ti 2-c M2 c ) (PO 4 ) 3 , where M1 is an element having an ionic radius larger than that of Li , and is composed of K, Na, Ca, and Ag. At least one selected from the group , satisfying the requirements of a = 0.50-1.79, b = 0.01-0.50, c ≦ 0.8 (not including 0),
The M2 is at least one selected from the group consisting of Al and Ge .
また、前記M1が、Naであることが好ましい。 The M1 is preferably Na.
M1としてNaを用いることにより、より高いイオン伝導度を示す固体電解質材料を得ることが可能になる。また、Naが最も容易に固溶体を形成することがわかっており、その点でもNaを用いた場合に、最も大きい効果を得ることができる。 By using Na as M1, it becomes possible to obtain a solid electrolyte material exhibiting higher ionic conductivity. In addition, it has been found that Na forms a solid solution most easily. In this respect, the greatest effect can be obtained when Na is used.
また、本発明の全固体電池は、
上記本発明の固体電解質材料を用いて形成した電解質グリーンシートを介して、正極用グリーンシート、負極用グリーンシートが積層された積層体を焼結したものであることを特徴としている。
The all solid state battery of the present invention is
A laminate in which a positive electrode green sheet and a negative electrode green sheet are stacked is sintered through an electrolyte green sheet formed using the solid electrolyte material of the present invention.
また、本発明の全固体電池は、
上記本発明の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含むものであることを特徴としている。
The all solid state battery of the present invention is
The solid electrolyte material of the present invention is included in at least one of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.
本発明の固体電解質材料は、NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質材料であって、一般式:(LiaM1b)(Ti2-cM2c)(PO4)3の組成で表され、M1はLiよりイオン半径の大きい元素であって、K、Na、Ca、Agからなる群より選ばれる少なくとも1種であり、a=0.50〜1.79、b=0.01〜0.50、c≦0.8(0は含まない)の要件を満たし、M2が、Al、Geからなる群より選ばれる少なくとも1種である。かかる構成を備えていることから、還元されてイオン伝導度が低下することがない固体電解質材料を得ることができる。
また、本発明の固体電解質材料を電解質として用いることにより、性能が低下しにくい、信頼性の高い全固体電池を得ることが可能になる。
The solid electrolyte material of the present invention is a solid electrolyte material having a crystal structure similar to NASICON type or NASICON type, and having a composition of the general formula : ( Li a M1 b ) (Ti 2−c M2 c ) (PO 4 ) 3 M1 is an element having an ionic radius larger than that of Li, and is at least one selected from the group consisting of K, Na, Ca, and Ag, and a = 0.50 to 1.79, b = 0. It satisfies the requirements of 01 to 0.50, c ≦ 0.8 (not including 0), and M2 is at least one selected from the group consisting of Al and Ge . Since such a configuration is provided, it is possible to obtain a solid electrolyte material that is not reduced and does not lower the ionic conductivity.
In addition, by using the solid electrolyte material of the present invention as an electrolyte, it is possible to obtain a highly reliable all solid state battery whose performance is unlikely to deteriorate.
また、本発明の全固体電池は、上記本発明の固体電解質材料を用いて形成した電解質グリーンシートを介して、正極用グリーンシート、負極用グリーンシートが積層された積層体を焼結したものであるか、上記本発明の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含むものであることから、より優れた充放電特性を持つ固体電池を得ることができる。 Moreover, the all solid state battery of the present invention is obtained by sintering a laminate in which a positive electrode green sheet and a negative electrode green sheet are laminated through an electrolyte green sheet formed using the solid electrolyte material of the present invention. Alternatively, since the solid electrolyte material of the present invention is included in at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, a solid battery having more excellent charge / discharge characteristics can be obtained.
なお、例えば、NASICON型もしくはNASICON型類似の結晶構造を有する固体電解質と、活物質、あるいは焼結助剤その他の添加剤などが混在した状態で焼成して全固体電池を作製することで、活物質、焼結助剤その他の添加剤などと、上記固体電解質との間で何らかの元素拡散を生じさせることにより、上述のような本発明の固体電解質材料を得ることも可能である。 For example, an all-solid battery is manufactured by firing in a state where a solid electrolyte having a crystal structure similar to NASICON or NASICON is mixed with an active material, a sintering aid, or other additives. It is also possible to obtain the solid electrolyte material of the present invention as described above by causing some element diffusion between the substance, sintering aid and other additives and the solid electrolyte.
以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be described below to describe the features of the present invention in more detail.
[実施形態1]
以下に説明する方法で、表1Aおよび表1Bに示す実施例1〜18の試料と、比較例1および2の試料を作製した。ただし、実施例1〜4、9〜13および18の試料は、本発明の要件を満たしていない参考試料である。
[Embodiment 1]
Samples of Examples 1 to 18 and Samples of Comparative Examples 1 and 2 shown in Table 1A and Table 1B were prepared by the method described below. However, the samples of Examples 1 to 4, 9 to 13, and 18 are reference samples that do not satisfy the requirements of the present invention.
なお、実施例1〜18の試料は、一般式 (LiaM1b)(Ti2-cM2c)(PO4)3で表される材料のLiサイトをM1で元素置換した試料(固体電解質材料)である。
また、表1Aの実施例5〜8、表1Bの14〜18の試料は、LiサイトをM1で元素置換したことに加えて、TiサイトをM2で元素置換した試料(固体電解質材料)である。
また、表1Aの比較例1および2の試料は、LiサイトをM1で元素置換していない試料(固体電解質材料)である。
The samples of Examples 1 to 18 are samples (solid electrolytes) in which the Li site of the material represented by the general formula (Li a M1 b ) (Ti 2 -c M2 c ) (PO 4 ) 3 is replaced with M1. Material).
In addition, the samples of Examples 5 to 8 in Table 1A and 14 to 18 in Table 1B are samples (solid electrolyte materials) in which the Ti site is replaced with M2 in addition to the Li site being replaced with M1. .
Moreover, the samples of Comparative Examples 1 and 2 in Table 1A are samples (solid electrolyte materials) in which the Li site is not replaced with M1.
なお、表1A、表1Bにおけるイオン半径の単位はオングストロームである。
表1A、表1Bにおけるイオン半径は以下の論文を参照し、配位数が6のイオン半径を参考とした。
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)
In Tables 1A and 1B, the unit of ion radius is angstrom.
The ionic radii in Tables 1A and 1B were referred to the following paper, and the ionic radii having a coordination number of 6 were used as a reference.
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)
<固体電解質材料の合成>
実施例1〜18、比較例1および2の固体電解質を以下に説明する手順で作製した。
まず、原料として、炭酸リチウムLi2CO3、酸化チタンTiO2、リン酸二水素アンモニウムNH4H2PO4、炭酸ナトリウムNa2CO3、酸化銀AgO、酸化アルミニウムAl2O3、炭酸カルシウムCaCO3、炭酸カリウムK2CO3を用意した。
<Synthesis of solid electrolyte material>
The solid electrolytes of Examples 1 to 18 and Comparative Examples 1 and 2 were prepared according to the procedure described below.
First, as raw materials, lithium carbonate Li 2 CO 3 , titanium oxide TiO 2 , ammonium dihydrogen phosphate NH 4 H 2 PO 4 , sodium carbonate Na 2 CO 3 , silver oxide AgO, aluminum oxide Al 2 O 3 , calcium carbonate CaCO 3. Potassium carbonate K 2 CO 3 was prepared.
これを適宜秤量し、500mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。それから、混合物を空気雰囲気下、500℃で1時間、800℃で6時間焼成し、揮発成分を除去した。 This was weighed appropriately, sealed in a 500 ml polyethylene polypot and rotated on a pot rack at 150 rpm for 16 hours to mix the raw materials. Then, the mixture was baked in an air atmosphere at 500 ° C. for 1 hour and at 800 ° C. for 6 hours to remove volatile components.
次に、水、φ5mmの玉石とともに500mlのポリエチレン製ポリポットに封入し、ポット架上で150rpm、16時間回転させて粉砕した。その後、120℃のホットプレート上で水分を除去した。 Next, it was enclosed in a 500 ml polyethylene polypot together with water and φ5 mm cobblestone, and pulverized by rotating on a pot rack at 150 rpm for 16 hours. Thereafter, moisture was removed on a hot plate at 120 ° C.
空気雰囲気下、1200℃で20時間焼成し、表1A、表1Bの実施例1〜18および比較例1および2の組成となる固体電解質材料の粉末(試料)を得た。 Firing was performed at 1200 ° C. for 20 hours in an air atmosphere to obtain powders (samples) of solid electrolyte materials having the compositions of Examples 1 to 18 and Comparative Examples 1 and 2 in Table 1A and Table 1B.
<固体電解質材料の結晶構造の評価>
実施例1〜18、比較例1および2の試料(固体電解質材料の粉末)を、25℃で4.0°/分のスキャン速度、測角範囲10°〜60°でXRD(X線回折装置)により結晶構造を調べた(図1,4,6,8参照)。
<Evaluation of crystal structure of solid electrolyte material>
Samples of Examples 1 to 18 and Comparative Examples 1 and 2 (solid electrolyte material powder) were subjected to XRD (X-ray diffractometer) at a scan rate of 4.0 ° / min at 25 ° C. and a measurement range of 10 ° to 60 °. ) To examine the crystal structure (see FIGS. 1, 4, 6, and 8).
各図中には、
(a)菱面体晶のLiTi2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、
(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、
(c)菱面体晶のNaTi2(PO4)3のJCPDSカード(No.01−084−2009)のパターンと、
(d)菱面体晶のKTi2(PO4)3のJCPDSカード(No.00−025−0691)のパターンと、
(e)単斜晶のKTiP2O7のJCPDSカード(No.00−052−0302)のパターン
のうちの関連のあるものを併せて示した。
In each figure,
(A) a pattern of rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140);
(B) a pattern of orthorhombic AlPO 4 JCPDS card (No. 01-074-3255);
(C) a pattern of rhombohedral NaTi 2 (PO 4 ) 3 JCPDS card (No. 01-084-2009);
(D) a pattern of rhombohedral KTi 2 (PO 4 ) 3 JCPDS card (No. 00-025-0691);
(E) Related patterns of monoclinic KTiP 2 O 7 JCPDS card (No. 00-052-0302) are also shown.
<固体電解質材料のイオン伝導度の評価>
実施例1〜18、比較例1および2の試料について、イオン伝導度を以下の方法で測定した。
<Evaluation of ionic conductivity of solid electrolyte material>
For the samples of Examples 1 to 18 and Comparative Examples 1 and 2, the ionic conductivity was measured by the following method.
(1)焼結タブレットの作製
上述のようにして作製した固体電解質材料、ポリビニルアセタール樹脂、アルコールを、98:15:140の重量比率で秤取して、十分に混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるポリビニルアセタール樹脂で被覆された固体電解質材料粉末を得た。
(1) Production of sintered tablet The solid electrolyte material, polyvinyl acetal resin, and alcohol produced as described above were weighed at a weight ratio of 98: 15: 140 and mixed thoroughly, and then heated at 80 ° C. The alcohol was removed on the plate to obtain a solid electrolyte material powder coated with a polyvinyl acetal resin as a binder.
元素M2を含まない比較例1と実施例1〜4、9〜13の試料については、焼結助剤としてLi2Oを、固体電解質材料粉末:焼結助剤=98:2の重量比率で添加した。 For the sample of Comparative Example 1 and Example 1~4,9~13 containing no element M2, the Li 2 O as a sintering aid, the solid electrolyte material powder: the sintering aid = 98: 2 in weight ratio Added.
次いで、焼結助剤が添加された固体電解質材料粉末を、錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。
それから、タブレット状に成型された固体電解質材料を、2枚の多孔性のセッターで挟持した後、焼成することにより焼結タブレットを作製した。
焼成は、1体積%の酸素を含む窒素ガス雰囲気中、500℃の温度条件下で焼成(脱バインダー)することにより、ポリビニルアセタール樹脂を除去した後、窒素ガス雰囲気中で1000℃の温度で実施することにより、焼結タブレットを得た。得られた焼結タブレットの質量、厚み、および直径を表2に示す。
Next, the solid electrolyte material powder to which the sintering aid was added was pressed into a tablet by pressing at 90 MPa using a tablet molding machine.
Then, the solid electrolyte material molded into a tablet shape was sandwiched between two porous setters and then fired to produce a sintered tablet.
Baking is performed at a temperature of 1000 ° C. in a nitrogen gas atmosphere after removing the polyvinyl acetal resin by baking (debinding) in a nitrogen gas atmosphere containing 1% by volume of oxygen at a temperature of 500 ° C. As a result, a sintered tablet was obtained. Table 2 shows the mass, thickness, and diameter of the obtained sintered tablet.
(2)イオン伝導度の測定
上述のようにして作製した焼結タブレットの片面にスパッタリングによって、集電体層となる白金(Pt)層を形成した後、焼結タブレットを100℃で乾燥し、水分を除去した。
(2) Measurement of ion conductivity After forming a platinum (Pt) layer to be a current collector layer by sputtering on one side of the sintered tablet produced as described above, the sintered tablet was dried at 100 ° C. Water was removed.
対極となる金属リチウム上にPMMAゲル電解質(電解液を含有したゲル状の電解質)を塗布した後、塗布面に焼結タブレットの、集電体層を形成していない面が接触するように、焼結タブレットと金属リチウムを積層し、2032型のコインセルで封止した。そして、封止後のセルについて、交流インピーダンス測定によりイオン伝導度を算出した。以下、このイオン伝導度を「開回路状態でのイオン伝導度」という。 After applying PMMA gel electrolyte (gel electrolyte containing electrolyte) on metallic lithium as the counter electrode, the surface of the sintered tablet that does not form the current collector layer is in contact with the application surface. The sintered tablet and metallic lithium were laminated and sealed with a 2032 type coin cell. And about the cell after sealing, ion conductivity was computed by alternating current impedance measurement. Hereinafter, this ionic conductivity is referred to as “ionic conductivity in an open circuit state”.
その後、集電体層となる白金側を、対極となる金属リチウムに対して、1.0 V v.s. Li+/Liの電位まで走査し、還元電流の測定を行った。
その後、集電体層となる白金側を、1.0V v.s. Li+/Liの電位で30分間保持した後、かかる電位で保持した状態で交流インピーダンス測定によりイオン伝導度を算出した。以下、このイオン伝導度を「還元状態でのイオン伝導度」という。
Thereafter, the platinum side serving as a current collector layer was scanned to a potential of 1.0 V vs Li + / Li with respect to metallic lithium serving as a counter electrode, and the reduction current was measured.
Thereafter, the platinum side serving as the current collector layer was held at a potential of 1.0 V vs Li + / Li for 30 minutes, and then the ionic conductivity was calculated by AC impedance measurement in a state where the platinum side was held. Hereinafter, this ionic conductivity is referred to as “ionic conductivity in the reduced state”.
なお、交流インピーダンス測定にはSolartron社製周波数応答アナライザ(FRA)を用い、周波数範囲0.1〜1MHz、振幅±10mVの条件で測定を実施した。 The AC impedance measurement was performed using a Solartron frequency response analyzer (FRA) under conditions of a frequency range of 0.1 to 1 MHz and an amplitude of ± 10 mV.
イオン伝導度は、交流インピーダンス測定より得られたcole−coleプロットから各固体電解質の抵抗(粒子と粒界抵抗の和)を求め、次の方程式:(1)より算出した。
イオン伝導度=(t/A)×(1/R) ……(1)
t:試料の厚さ、A:電極の面積、R:固体電解質の抵抗。
The ionic conductivity was calculated from the following equation: (1) by obtaining the resistance of each solid electrolyte (the sum of the particle and grain boundary resistance) from a coll-coll plot obtained from AC impedance measurement.
Ionic conductivity = (t / A) × (1 / R) (1)
t: thickness of sample, A: area of electrode, R: resistance of solid electrolyte.
還元電流の測定にはSolartron社製ポテンショ/ガルバノスタットを用い、サイクリックボルタンメトリー(CV)測定を、走査電位範囲:1.0 V v.s. Li+/Li〜開回路電位、走査速度:0.1mV/秒で実施した。
なお、すべての試験は、25℃で実施した。
The reduction current was measured using a Solartron potentio / galvanostat, and cyclic voltammetry (CV) measurement was performed using a scanning potential range: 1.0 V vs Li + / Li to an open circuit potential, scanning speed: 0.1 mV / Carried out in seconds.
All tests were conducted at 25 ° C.
表3A、表3Bに、実施例1〜18の試料と、比較例1および2の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度と、還元状態のイオン伝導度を示す。 Tables 3A and 3B show the crystal phases detected from the XRD measurements of the samples of Examples 1 to 18 and the samples of Comparative Examples 1 and 2, the ionic conductivity in the open circuit state, and the ionic conductivity in the reduced state. .
<評価1>
また、図1に、実施例1〜4の試料および比較例1の試料についてのXRD測定の結果を示す。図1には、(a)菱面体晶のLiTi2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(d)菱面体晶のKTi2(PO4)3のJCPDSカード(No.00−025−0691)のパターンと、(e)単斜晶のKTiP2O7のJCPDSカード(No.00−052−0302)のパターンを併せて示す。
<
Moreover, the result of the XRD measurement about the sample of Examples 1-4 and the sample of the comparative example 1 is shown in FIG. FIG. 1 shows a pattern of (a) rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140) and (d) rhombohedral crystal. The pattern of KTi 2 (PO 4 ) 3 JCPDS card (No. 00-025-0691) and the pattern of (e) monoclinic KTiP 2 O 7 JCPDS card (No. 00-052-0302) are combined. Show.
また、図2に、インピーダンス測定で得られた実施例1の試料のcole−coleプロットを示す。 FIG. 2 shows a colle-coll plot of the sample of Example 1 obtained by impedance measurement.
さらに、図3(a),(b)に、還元電流を測定して得られた、実施例1〜4の試料および比較例1の試料についての充放電曲線を示す。 Furthermore, the charging / discharging curve about the sample of Examples 1-4 obtained by measuring a reduction current and the sample of the comparative example 1 to FIG. 3 (a), (b) is shown.
比較例1の、LiサイトおよびTiサイトのいずれについても、M1あるいはM2で置換していない無置換の試料(LiTi2(PO4)3)の場合、XRD測定から検出した結晶相は、菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。 In the case of the non-substituted sample (LiTi 2 (PO 4 ) 3 ) that is not substituted with M1 or M2 for any of the Li site and Ti site in Comparative Example 1, the crystal phase detected from the XRD measurement is rhombohedral. It was confirmed to match the card pattern of crystalline LiTi 2 (PO 4 ) 3 .
また、比較例1の試料においては、充放電試験の結果、約2.5VにTiのレドックスに起因したピーク電流が確認された(図3(a))。さらに、比較例1の試料の場合、OCVのイオン伝導度(開回路状態のイオン伝導度)は4.0×10-4S/cmであったが、1.0V v.s. Li+/Liのイオン伝導度(還元状態のイオン伝導度)は1.1×10-6S/cmまで著しく低下することがわかった。 Further, in the sample of Comparative Example 1, as a result of the charge / discharge test, a peak current due to the redox of Ti was confirmed at about 2.5 V (FIG. 3A). Further, in the case of the sample of Comparative Example 1, the ionic conductivity of OCV (ionic conductivity in an open circuit state) was 4.0 × 10 −4 S / cm, but 1.0V vs Li + / Li ion The conductivity (reduced state ionic conductivity) was found to be significantly reduced to 1.1 × 10 −6 S / cm.
また、実施例1〜4のLiの一部を置換した試料の場合も、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。 Further, in the case of the samples in which a part of Li in Examples 1 to 4 was replaced, the crystal phase detected from the XRD measurement may be consistent with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern. confirmed.
また、実施例4の、LiサイトをK(M1)で元素置換した試料のみ、ごく僅かに異相が確認された。異相はKTi2(PO4)3、および、KTiP2O7のカードパターンと一致した。これは、置換元素Kのイオン半径が、実施例1〜3の置換元素(Ag、Ca、Na)のイオン半径に比べて大きく、全量を固溶させることができなかったことによるものである。 Further, only a slightly different phase was confirmed in the sample of Example 4 in which the Li site was replaced with K (M1). The heterogeneous phase was consistent with the KTi 2 (PO 4 ) 3 and KTiP 2 O 7 card patterns. This is because the ionic radius of the substituting element K is larger than the ionic radii of the substituting elements (Ag, Ca, Na) in Examples 1 to 3, and the entire amount could not be dissolved.
また、cole−coleプロット(図2)の円弧の右端の終端の値を、実施例1の試料の抵抗(粒子と粒界抵抗の和)とした。 Further, the value at the end of the right end of the arc in the colle-core plot (FIG. 2) was defined as the resistance of the sample of Example 1 (the sum of the grain and grain boundary resistance).
表3Aに示すように、実施例1〜4の試料の開回路状態(OCV)のイオン伝導度は1.2×10-4〜4.1×10-4S/cmであり、いずれも比較例1の試料(無置換のLiTi2(PO4)3)と同等であった。 As shown in Table 3A, the ionic conductivity in the open circuit state (OCV) of the samples of Examples 1 to 4 is 1.2 × 10 −4 to 4.1 × 10 −4 S / cm, both of which are compared. It was equivalent to the sample of Example 1 (unsubstituted LiTi 2 (PO 4 ) 3 ).
さらに、表3Aに示すように、実施例1〜4の試料の1.0V v.s. Li+/Liの還元状態でのイオン伝導度は1.0×10-4〜2.8×10-4S/cmであり、開回路状態のイオン伝導度と比べていずれもわずかに低下しているだけであり、比較例1の試料(無置換のLiTi2(PO4)3)に比べて低下の割合が小さいことが確認された。 Furthermore, as shown in Table 3A, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li of the samples of Examples 1 to 4 is 1.0 × 10 −4 to 2.8 × 10 −4 S. / Cm, both of which are only slightly lower than the ionic conductivity in the open circuit state, and the rate of decrease compared to the sample of Comparative Example 1 (unsubstituted LiTi 2 (PO 4 ) 3 ) Was confirmed to be small.
また、図3(a),(b)の充放電曲線から、比較例1の試料(無置換のLiTi2(PO4)3)に比べて、実施例1〜4のLiの一部を置換した試料の場合、いずれも、約2.5V v.s. Li+/LiのTiのレドックス(Ti4+→Ti3+の還元反応)に起因したピーク電流値が小さく(図3(a))、Tiのレドックスの総量を表わすピーク電流値の積分値(充電容量)も小さいことが確認された(図3(b))。 Further, from the charge / discharge curves of FIGS. 3A and 3B, a part of Li in Examples 1 to 4 is replaced as compared with the sample of Comparative Example 1 (unsubstituted LiTi 2 (PO 4 ) 3 ). In each of the samples, the peak current value due to Ti redox (Ti 4+ → Ti 3+ reduction reaction) of about 2.5 V vs. Li + / Li is small (FIG. 3A). It was also confirmed that the integrated value (charge capacity) of the peak current value representing the total amount of redox was small (FIG. 3B).
これらの結果から、LiTi2(PO4)3組成の固体電解質は、Liの一部をLi+のイオン半径0.90Åより大きなイオン半径の元素M1で置換することでTi4+→Ti3+のTiの還元反応が生じにくくなり、Liイオン伝導度の低下が抑制されることが確認された。 These results, LiTi 2 (PO 4) 3 composition of the solid electrolyte, Ti 4+ by replacing a large ionic radius of the element M1 part than the ion radius 0.90Å of Li + of Li → Ti 3+ It was confirmed that the reduction reaction of Ti was less likely to occur, and the decrease in Li ion conductivity was suppressed.
また、特に、Liの一部をNaで置換した場合に、最も大きい効果が得られることが確認された。これはLiと同じ一価のカチオンであるアルカリ金属(Na)で置換することでLiイオンの数の低下を抑制することができたことによるものと考えられる。 In particular, it was confirmed that the greatest effect was obtained when a part of Li was replaced with Na. This is considered to be because the decrease in the number of Li ions could be suppressed by substitution with alkali metal (Na), which is the same monovalent cation as Li.
なお、Naよりイオン半径の大きなアルカリ金属であるKでLiの一部を置換した実施例4の試料のイオン伝導度が、Naで置換した実施例3の試料のイオン伝導度より小さくなったのは、単一相を得ることが困難で、異相を含む混相となったことによるものと考えられる。 It should be noted that the ionic conductivity of the sample of Example 4 in which a part of Li was substituted with K, which is an alkali metal having an ionic radius larger than that of Na, was smaller than the ionic conductivity of the sample of Example 3 substituted with Na. It is considered that this is because it is difficult to obtain a single phase and a mixed phase including different phases is obtained.
<評価2>
また、Liの一部をM1で置換し、Tiの一部をM2で置換した、表1Aの実施例5〜8の試料およびTiの一部をM2(Al)で置換した比較例2の試料について評価を行った。
<
Further, a sample of Examples 5 to 8 in Table 1A in which a part of Li was replaced with M1 and a part of Ti was replaced with M2, and a sample of Comparative Example 2 in which a part of Ti was replaced with M2 (Al) Was evaluated.
図4に、実施例5〜8の試料および比較例2の試料についてのXRD測定の結果を示す。なお、図4には、(a)菱面体晶のLiTi2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、(d)菱面体晶のKTi2(PO4)3のJCPDSカード(No.00−025−0691)のパターンと、(e)単斜晶のKTiP2O7のJCPDSカード(No.00−052−0302)のパターンを併せて示す。 In FIG. 4, the result of the XRD measurement about the sample of Examples 5-8 and the sample of the comparative example 2 is shown. FIG. 4 shows (a) a rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140) pattern, and (b) an oblique pattern. A pattern of crystal AlPO 4 JCPDS card (No. 01-074-3255), a pattern of (d) rhombohedral KTi 2 (PO 4 ) 3 JCPDS card (No. 00-025-0691), (E) A pattern of a monoclinic KTiP 2 O 7 JCPDS card (No. 00-052-0302) is also shown.
さらに、図5(a),(b)に、還元電流を測定して得られた、実施例5〜8の試料および比較例2の試料についての充放電曲線を示す。 Furthermore, the charging / discharging curve about the sample of Examples 5-8 and the sample of the comparative example 2 which were obtained by measuring a reduction current in Fig.5 (a), (b) is shown.
また、表3Aに、実施例5〜8の試料と、比較例2の試料のXRD測定から検出した結晶相と、開回路状態および還元状態のイオン伝導度を示す。 Table 3A shows the crystal phases detected from the XRD measurement of the samples of Examples 5 to 8 and the sample of Comparative Example 2, and the ionic conductivity in the open circuit state and the reduced state.
比較例2の、Li1.3Ti1.7Al0.3(PO4)3の場合、XRD測定から検出した結晶相は、菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。 In the case of Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 in Comparative Example 2, it was confirmed that the crystal phase detected from the XRD measurement coincided with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern. .
また、比較例2の試料の場合、充放電試験の結果、約2.5VにTiのレドックスに起因したピーク電流が確認された(図5(a))。
さらに、比較例2の試料の場合、OCVのイオン伝導度(開回路状態のイオン伝導度)は4.0×10−4S/cmであったが、1.0V v.s. Li+/Liのイオン伝導度(還元状態のイオン伝導度)は1.7×10-6S/cmまで著しく低下することがわかった。
Moreover, in the case of the sample of the comparative example 2, the peak current resulting from the redox of Ti was confirmed to be about 2.5 V as a result of the charge / discharge test (FIG. 5A).
Furthermore, if the sample of Comparative Example 2, but ion conductivity of OCV (ionic conductivity of the open-circuit state) was 4.0 × 10- 4 S / cm, the 1.0V vs Li + / Li-ion It was found that the conductivity (the ionic conductivity in the reduced state) was significantly reduced to 1.7 × 10 −6 S / cm.
また、実施例5〜8のLiの一部を置換した固体電解質材料の場合も、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。 Also, in the case of the solid electrolyte material in which a part of Li in Examples 5 to 8 was substituted, the crystal phase detected from the XRD measurement was consistent with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern. It was confirmed.
また、実施例8の、LiサイトをK(M1)で元素置換した試料のみ、ごく僅かに異相が確認された。異相はKTi2(PO4)3、および、KTiP2O7のカードパターンと一致した。これは、置換元素Kのイオン半径が、実施例5〜7の置換元素(Ag、Ca、Na)のイオン半径に比べて大きく、全量を固溶させることができなかったことによるものである。 Further, only a slightly different phase was confirmed in the sample of Example 8 in which the Li site was replaced with K (M1). The heterogeneous phase was consistent with the KTi 2 (PO 4 ) 3 and KTiP 2 O 7 card patterns. This is because the ionic radius of the substituting element K is larger than that of the substituting elements (Ag, Ca, Na) of Examples 5 to 7, and the entire amount could not be dissolved.
実施例5〜8の試料の開回路状態(OCV)のイオン伝導度は3.0×10-4〜8.1×10-4S/cmであった。
さらに、1.0V v.s. Li+/Liの還元状態でのイオン伝導度は1.0×10-4〜8.2×10-4S/cmであり、開回路状態のイオン伝導度と比べていずれも僅かに低下しているだけであり、比較例2の試料(無置換のLiTi2(PO4)3)に比べて低下の程度が小さいことが確認された(表3A参照)。
The ionic conductivity in the open circuit state (OCV) of the samples of Examples 5 to 8 was 3.0 × 10 −4 to 8.1 × 10 −4 S / cm.
Furthermore, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li is 1.0 × 10 −4 to 8.2 × 10 −4 S / cm, which is compared with the ionic conductivity in the open circuit state. All were only slightly decreased, and it was confirmed that the degree of decrease was small compared to the sample of Comparative Example 2 (unsubstituted LiTi 2 (PO 4 ) 3 ) (see Table 3A).
また、図5(a),(b)の充放電曲線から、比較例2の試料(Liの一部を置換していない無置換のLi1.3Ti1.7Al0.3(PO4)3)に比べて、実施例5〜8のLiの一部をM1で置換した試料の場合、いずれも、約2.5V v.s. LiのTiのレドックス(Ti4+→Ti3+の還元反応)に起因したピーク電流値が小さく(図5(a))、Tiのレドックスの総量を表わすピーク電流値の積分値(充電容量)も小さいことが確認された(図5(b))。 Also, from the charge / discharge curves of FIGS. 5A and 5B, compared to the sample of Comparative Example 2 (unsubstituted Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 in which a part of Li is not substituted). In each of the samples obtained by substituting a part of Li in Examples 5 to 8 with M1, the peak current caused by Ti redox (Ti 4+ → Ti 3+ reduction reaction) of about 2.5 V vs Li It was confirmed that the value was small (FIG. 5A) and the integrated value (charge capacity) of the peak current value representing the total amount of Ti redox was also small (FIG. 5B).
これらの結果を検討することにより、Tiの一部を他の元素(Al)で置換した場合にも、実施例5〜8の試料のように、Liの一部をLi+のイオン半径0.90Åより大きな元素(例えば、Ag、Ca、Na、K)で置換することで、Ti4+→Ti3+のTiの還元反応が生じにくくなり、Liイオン伝導度の低下が抑制されることが確認された。 By examining these results, even when a part of Ti is substituted with another element (Al), a part of Li is made to have an ionic radius of Li + of 0, as in the samples of Examples 5 to 8. By substituting with an element larger than 90 例 え ば (for example, Ag, Ca, Na, K), Ti 4+ → Ti 3+ Ti reduction reaction is less likely to occur, and the decrease in Li ion conductivity is suppressed. confirmed.
<評価3>
また、Liの一部をNaで置換した試料において、置換元素Naの置換量を変化させた、表1Bの実施例9〜13の試料について評価を行った。
図6に、実施例9〜13の試料についてのXRD測定の結果を示す。図6には、(a)菱面体晶のLiTi2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、(c)菱面体晶のNaTi2(PO4)3のJCPDSカード(No.01−084−2009)のパターンを併せて示す。
<
In addition, in the sample in which a part of Li was replaced with Na, the samples of Examples 9 to 13 in Table 1B in which the substitution amount of the substitution element Na was changed were evaluated.
In FIG. 6, the result of the XRD measurement about the sample of Examples 9-13 is shown. FIG. 6 shows a pattern of (a) rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140), and (b) orthorhombic crystal. A pattern of an AlPO 4 JCPDS card (No. 01-074-3255) and a pattern of a (c) rhombohedral NaTi 2 (PO 4 ) 3 JCPDS card (No. 01-084-2009) are shown together. .
さらに、図7(a),(b)に、還元電流を測定して得られた、実施例9〜13の試料についての充放電曲線を示す。
なお、表3Bに、実施例9〜13の試料のXRD測定から検出した結晶相と、開回路状態および還元状態のイオン伝導度を示す。
Furthermore, the charging / discharging curve about the sample of Examples 9-13 obtained by measuring a reduction current to Fig.7 (a), (b) is shown.
Table 3B shows the crystal phases detected from the XRD measurements of the samples of Examples 9 to 13, and the ionic conductivity of the open circuit state and the reduced state.
Liの一部をNaで置換した、実施例9〜13の試料の場合、置換量にかかわらず、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。 In the case of the samples of Examples 9 to 13 in which a part of Li was substituted with Na, the crystal phase detected from the XRD measurement was a rhombohedral LiTi 2 (PO 4 ) 3 card regardless of the substitution amount. It was confirmed to match the pattern.
また、Na量の多い実施例12,13の試料の場合、一部NaTi2(PO4)3のパターンも確認された。 Further, in the case of the samples of Examples 12 and 13 with a large amount of Na, a pattern of NaTi 2 (PO 4 ) 3 was partially confirmed.
さらに、実施例9〜13の試料の、1.0V v.s. Li+/Liの還元状態でのイオン伝導度は、0.8×10-4〜4.7×10-4S/cmであり、開回路状態のイオン伝導度と比べていずれも殆ど低下していないことが確認された(表3B参照)。 Furthermore, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li of the samples of Examples 9 to 13 is 0.8 × 10 −4 to 4.7 × 10 −4 S / cm, It was confirmed that none of the ionic conductivity in the open circuit state almost decreased (see Table 3B).
また、実施例9〜13の試料のうち、Naの置換量が0.01〜0.50の試料(実施例9〜12の試料)では、還元状態および開回路状態のいずれの場合もイオン伝導度が高い値を示し、さらに、Naの置換量が0.01〜0.10の試料(実施例9〜11の試料)においては、特に高い値を示すことが確認された。 In addition, among the samples of Examples 9 to 13, the sample with the Na substitution amount of 0.01 to 0.50 (the samples of Examples 9 to 12) is ion-conducted in both the reduced state and the open circuit state. It was confirmed that the sample showed a particularly high value in the samples with the Na substitution amount of 0.01 to 0.10 (samples of Examples 9 to 11).
また、試料番号13の試料のように、Naの置換量が0.5を超えると、還元状態および開回路状態のいずれの場合もイオン伝導度が低くなることが確認された(表3B)。 Further, as in the sample of Sample No. 13, it was confirmed that when the amount of Na substitution exceeded 0.5, the ionic conductivity was lowered in both the reduced state and the open circuit state (Table 3B).
<評価4>
また、Liの一部をNaで置換し、Tiの一部をAlで置換するとともに、置換元素Naの置換量を変化させた、表1Bの実施例14〜18の試料について評価を行った。
図8に、実施例14〜18の試料についてのXRD測定の結果を示す。図8には、(a)菱面体晶のLiTi2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−6140)のパターンと、(b)斜方晶のAlPO4のJCPDSカード(No.01−074−3255)のパターンと、(c)菱面体晶のNaTi2(PO4)3のJCPDSカード(No.01−084−2009)のパターンを併せて示す。
<
In addition, evaluation was performed on samples of Examples 14 to 18 in Table 1B in which a part of Li was substituted with Na, a part of Ti was substituted with Al, and the substitution amount of the substitution element Na was changed.
In FIG. 8, the result of the XRD measurement about the sample of Examples 14-18 is shown. FIG. 8 shows a pattern of (a) rhombohedral LiTi 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-6140), and (b) orthorhombic crystal. A pattern of an AlPO 4 JCPDS card (No. 01-074-3255) and a pattern of a (c) rhombohedral NaTi 2 (PO 4 ) 3 JCPDS card (No. 01-084-2009) are shown together. .
さらに、図9(a),(b)に、還元電流を測定して得られた、実施例14〜18の試料についての充放電曲線を示す。
なお、表3Bに、実施例14〜18の試料の、XRD測定から検出した結晶相と、開回路状態および還元状態のイオン伝導度を示す。
Furthermore, the charging / discharging curve about the sample of Examples 14-18 obtained by measuring a reduction current is shown to Fig.9 (a), (b).
Table 3B shows the crystal phases detected from the XRD measurement and the ionic conductivities in the open circuit state and the reduced state of the samples of Examples 14 to 18.
Liの一部をNaで置換し、Tiの一部をAlで置換するとともに、置換元素Naの量を変化させた実施例14〜18の試料の場合、XRD測定から検出した結晶相は、LiのNaによる置換量にかかわらず、いずれも菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。
また、Na量の多い実施例17,18の試料の場合、一部NaTi2(PO4)3のパターンも確認された。
In the case of the samples of Examples 14 to 18 in which a part of Li was replaced with Na, a part of Ti was replaced with Al, and the amount of the substitution element Na was changed, the crystal phase detected from the XRD measurement was Li Regardless of the amount of Na replaced by Na, it was confirmed that both coincided with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern.
Further, in the case of the samples of Examples 17 and 18 with a large amount of Na, a pattern of NaTi 2 (PO 4 ) 3 was partially confirmed.
さらに、実施例14〜18の試料の場合、1.0V v.s. Li+/Liの還元状態でのイオン伝導度は1.2×10-4〜8.2×10-4S/cmで、開回路状態のイオン伝導度と比べていずれも殆ど低下していないことが確認された(表3B参照)。 Further, in the case of the samples of Examples 14 to 18, the ionic conductivity in the reduced state of 1.0 V vs Li + / Li is 1.2 × 10 −4 to 8.2 × 10 −4 S / cm, and the open state is open. It was confirmed that none of the ionic conductivity in the circuit state almost decreased (see Table 3B).
また、実施例14〜18の試料のうち、Naの置換量が0.01〜0.50の範囲内の試料(実施例14〜17の試料)では、還元状態および開回路状態のいずれの場合もイオン伝導度が高い値を示し、さらに、Naの置換量が0.01〜0.10の範囲の試料(実施例14〜16の試料)において、特に高い値を示すことが確認された。 Further, among the samples of Examples 14 to 18, the sample in which the Na substitution amount is in the range of 0.01 to 0.50 (the samples of Examples 14 to 17) is in either the reduced state or the open circuit state. In addition, it was confirmed that the sample showed a particularly high value in the sample in which the substitution amount of Na was in the range of 0.01 to 0.10 (samples of Examples 14 to 16).
また、試料番号18の試料のように、Naの置換量が0.5を超えると、還元状態および開回路状態のいずれの場合もイオン伝導度が低くなることが確認された(表3B)。 Further, as in the sample of sample number 18, when the Na substitution amount exceeded 0.5, it was confirmed that the ionic conductivity was lowered in both the reduced state and the open circuit state (Table 3B).
また、実施例14〜18の試料についての充放電曲線(図9(a),(b))は、上述の実施例1〜4の試料の場合に類似していることが確認された。 Moreover, it was confirmed that the charging / discharging curve (FIG. 9 (a), (b)) about the sample of Examples 14-18 is similar to the case of the sample of above-mentioned Examples 1-4.
以下では、本発明と関連する発明の実施形態(実施形態2)について説明する。
[実施形態2]
以下に説明する方法で、表4に示す実施例21〜32の試料と、比較例3の試料を作製した。
Hereinafter, an embodiment (Embodiment 2) of the invention related to the present invention will be described.
[Embodiment 2]
The samples of Examples 21 to 32 shown in Table 4 and the sample of Comparative Example 3 were produced by the method described below.
なお、実施例21〜25の試料は、一般式、LiZr2(PO4)3で表される材料のLiサイトをM1で元素置換した試料((LiaM1b)Zr2(PO4)3で表される固体電解質材料)である。
また、表4の実施例26〜32の試料は、LiサイトをM1で元素置換したことに加えて、ZrサイトをM2で元素置換した試料(一般式(LiaM1b)(Zr2-cM2c)(PO4)3で表される固体電解質材料)である。
また、表4の比較例3の試料は、LiサイトおよびZrサイトのいずれについてもM1あるいはM2で元素置換を行っていない試料(固体電解質材料)である。
The samples of Examples 21 to 25 are samples ((Li a M1 b ) Zr 2 (PO 4 ) 3 in which the Li site of the material represented by the general formula LiZr 2 (PO 4 ) 3 is replaced with M1. A solid electrolyte material represented by
Samples of Examples 26 to 32 in Table 4 are samples in which the Zr site was replaced with M2 in addition to the Li site replaced with M1 (general formula (Li a M1 b ) (Zr 2-c M2 c ) (PO 4 ) 3 ).
In addition, the sample of Comparative Example 3 in Table 4 is a sample (solid electrolyte material) in which neither Li site nor Zr site is subjected to element substitution with M1 or M2.
なお、表4におけるイオン半径は以下の論文を参照し、配位数が6のイオン半径を参考とした。
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)
In addition, the ionic radius in Table 4 was referred to the following paper, and the ionic radius having a coordination number of 6 was used as a reference.
Structural Crystallography and Crystal Chemistry Volume 25, Part 5 (May 1969)
<固体電解質材料の合成>
実施例21〜32の試料、比較例3の試料(固体電解質材料)を以下の手順で作製した。
まず、原料として、炭酸リチウムLi2CO3、酸化ジルコニウムZrO2、リン酸二水素アンモニウムNH4H2PO4、炭酸ナトリウムNa2CO3、酸化銀AgO、酸化アルミニウムAl2O3、酸化チタンTiO2、酸化ゲルマニウムGeO2、炭酸カルシウムCaCO3、炭酸カリウムK2CO3を用意した。
<Synthesis of solid electrolyte material>
The samples of Examples 21 to 32 and the sample of Comparative Example 3 (solid electrolyte material) were prepared by the following procedure.
First, as raw materials, lithium carbonate Li 2 CO 3 , zirconium oxide ZrO 2 , ammonium dihydrogen phosphate NH 4 H 2 PO 4 , sodium carbonate Na 2 CO 3 , silver oxide AgO, aluminum oxide Al 2 O 3 , titanium oxide TiO 2 , germanium oxide GeO 2 , calcium carbonate CaCO 3 , potassium carbonate K 2 CO 3 were prepared.
これを適宜秤量し、500mlのポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。それから、混合物を空気雰囲気下、500℃で1時間、800℃で6時間焼成し、揮発成分を除去した。 This was weighed appropriately, sealed in a 500 ml polyethylene polypot and rotated on a pot rack at 150 rpm for 16 hours to mix the raw materials. Then, the mixture was baked in an air atmosphere at 500 ° C. for 1 hour and at 800 ° C. for 6 hours to remove volatile components.
次に、水、φ5mmの玉石とともに500mlのポリエチレン製ポリポットに封入し、ポット架上で150rpm、16時間回転させて粉砕した。その後、120℃のホットプレート上で水分を除去した。
空気雰囲気下、1200℃で20時間焼成し、表4の実施例21〜32および比較例3の組成となる固体電解質材料の粉末(試料)を得た。
Next, it was enclosed in a 500 ml polyethylene polypot together with water and φ5 mm cobblestone, and pulverized by rotating on a pot rack at 150 rpm for 16 hours. Thereafter, moisture was removed on a hot plate at 120 ° C.
Firing was performed at 1200 ° C. for 20 hours in an air atmosphere to obtain powders (samples) of solid electrolyte materials having the compositions of Examples 21 to 32 and Comparative Example 3 in Table 4.
<固体電解質材料の結晶構造の評価>
実施例21〜32、比較例3の試料(固体電解質材料の粉末)を、25℃で4.0°/分のスキャン速度、測角範囲10°〜60°でXRD(X線回折装置)により結晶構造を調べた(図10〜12参照)。
<Evaluation of crystal structure of solid electrolyte material>
The samples of Examples 21 to 32 and Comparative Example 3 (solid electrolyte material powder) were scanned at 25 ° C. at a scan rate of 4.0 ° / min and at an angle measurement range of 10 ° to 60 ° by XRD (X-ray diffractometer). The crystal structure was examined (see FIGS. 10 to 12).
各図中には、
(a’)菱面体晶のLiZr2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(No.01−072−7742)のパターンと、
(b’)三斜晶のLiZr2(PO4)3のJCPDSカード(No.01−074−2562)のパターンと、
(c’)単斜晶のLiZr2(PO4)3のJCPDSカード(No.01−070−5819)のパターンと、
(d’)菱面体晶のKZr2(PO4)3のJCPDSカード(No.01−070−1905)のパターン
のうち関連のあるものを併せて示した。
すなわち、図10には、上記(a’)〜(d’)の各パターンを併せて示し、また、図11および図12には、上記(a’)〜(c’)の各パターンを併せて示した。
In each figure,
(A ′) the pattern of rhombohedral LiZr 2 (PO 4 ) 3 JCPDS (Joint Committee on Powder Diffraction Standards) card (No. 01-072-7742);
(B ′) a pattern of a triclinic LiZr 2 (PO 4 ) 3 JCPDS card (No. 01-074-2562);
(C ′) a pattern of a monoclinic LiZr 2 (PO 4 ) 3 JCPDS card (No. 01-070-5819);
(D ′) Related patterns of rhombohedral KZr 2 (PO 4 ) 3 JCPDS card (No. 01-070-1905) are also shown.
That is, FIG. 10 shows the patterns (a ′) to (d ′) together, and FIGS. 11 and 12 show the patterns (a ′) to (c ′) together. Showed.
<固体電解質材料のイオン伝導度の評価>
実施例21〜32、比較例3の試料について、イオン伝導度を以下の方法で測定した。
<Evaluation of ionic conductivity of solid electrolyte material>
For the samples of Examples 21 to 32 and Comparative Example 3, the ionic conductivity was measured by the following method.
(1)焼結タブレットの作製
上述のようにして作製した固体電解質材料、ポリビニルアセタール樹脂、アルコールを、100:15:140の重量比率で秤取して、十分に混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるポリビニルアセタール樹脂で被覆された固体電解質材料粉末を得た。
次いで、上記固体電解質材料粉末を、錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。
(1) Production of Sintered Tablet The solid electrolyte material, polyvinyl acetal resin, and alcohol produced as described above were weighed in a weight ratio of 100: 15: 140 and mixed sufficiently, and then heated at 80 ° C. The alcohol was removed on the plate to obtain a solid electrolyte material powder coated with a polyvinyl acetal resin as a binder.
Next, the solid electrolyte material powder was pressed into a tablet by pressing at 90 MPa using a tablet molding machine.
それから、タブレット状に成型した固体電解質材料を、2枚の多孔性のセッターで挟持した後、焼成することにより焼結タブレットを作製した。焼成は、1体積%の酸素を含む窒素ガス雰囲気中、500℃の温度条件下で焼成(脱バインダー)することにより、ポリビニルアセタール樹脂を除去した後、窒素ガス雰囲気中で1000℃の温度で実施することにより、実施例21〜32および比較例3にかかる焼結タブレットを得た。得られた焼結タブレットの質量、厚み、および直径を表5に示す。 Then, the solid electrolyte material molded into a tablet shape was sandwiched between two porous setters, and then fired to produce a sintered tablet. Baking is performed at a temperature of 1000 ° C. in a nitrogen gas atmosphere after removing the polyvinyl acetal resin by baking (debinding) in a nitrogen gas atmosphere containing 1% by volume of oxygen at a temperature of 500 ° C. By doing this, the sintered tablet concerning Examples 21-32 and the comparative example 3 was obtained. Table 5 shows the mass, thickness, and diameter of the obtained sintered tablet.
(2)イオン伝導度の測定
上述のようにして作製した焼結タブレットの両面にスパッタリングによって、集電体層となる白金(Pt)層を形成した後、焼結タブレットを100℃で乾燥し、水分を除去した。それから、焼結タブレットを2032型のコインセルで封止した。
(2) Measurement of ion conductivity After forming the platinum (Pt) layer used as a collector layer by sputtering on both surfaces of the sintered tablet produced as described above, the sintered tablet was dried at 100 ° C. Water was removed. Then, the sintered tablet was sealed with a 2032 type coin cell.
そして、各固体電解質材料を用いて形成した焼結タブレットを、0.1〜1MHz(±100mV)の範囲で室温(25℃)にて交流インピーダンス測定を行い、イオン伝導度(開回路状態でのイオン伝導度)を評価した。 And the alternating current impedance measurement was carried out at room temperature (25 degreeC) in the range of 0.1-1 MHz (± 100 mV) for the sintered tablet formed using each solid electrolyte material, and the ionic conductivity (in an open circuit state) Ionic conductivity) was evaluated.
<評価1>
図10に、実施例21〜25の試料および比較例3の試料についてのXRD測定の結果を示す。
また、表6に、実施例21〜25の試料と、比較例3の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度とを示す。
<
In FIG. 10, the result of the XRD measurement about the sample of Examples 21-25 and the sample of the comparative example 3 is shown.
Table 6 shows the crystal phases detected from the XRD measurement of the samples of Examples 21 to 25 and the sample of Comparative Example 3, and the ionic conductivity in the open circuit state.
表6に示すように、比較例3の、LiサイトおよびZrサイトのいずれも置換していない無置換の試料(LiZr2(PO4)3)の場合、菱面体晶の他に、三斜晶や単斜晶が混相していることが確認された。また、開回路状態でのイオン伝導度は、1.1×10-6S/cmであることが確認された。 As shown in Table 6, in the case of the unsubstituted sample (LiZr 2 (PO 4 ) 3 ) in which neither the Li site nor the Zr site was substituted in Comparative Example 3, in addition to the rhombohedral crystal, a triclinic crystal And monoclinic crystals were mixed. Moreover, it was confirmed that the ionic conductivity in an open circuit state is 1.1 × 10 −6 S / cm.
また、Liの一部をM1で置換した実施例21〜25の試料の場合、XRD測定から検出した結晶相は、いずれも菱面体晶のLiZr2(PO4)3のカードパターンに一致することが確認された。 In addition, in the case of the samples of Examples 21 to 25 in which a part of Li was replaced with M1, the crystal phases detected from the XRD measurement must all match the rhombohedral LiZr 2 (PO 4 ) 3 card pattern. Was confirmed.
また、実施例25の、LiサイトをKで元素置換した試料のみ、ごく僅かに異相が確認された。異相はKZr2(PO4)3のカードパターンと一致した。これは、実施例25の試料の置換元素Kのイオン半径が、実施例21〜24の置換元素(Ag、Ca、Na)のイオン半径に比べて大きく、全量を固溶させることができなかったことによるものである。 Further, only a slightly different phase was confirmed in the sample of Example 25 in which the Li site was replaced with K. The heterogeneous phase was consistent with the KZr 2 (PO 4 ) 3 card pattern. This is because the ionic radius of the substitution element K of the sample of Example 25 was larger than the ionic radius of the substitution elements (Ag, Ca, Na) of Examples 21 to 24, and the entire amount could not be dissolved. It is because.
また、菱面体晶を形成している実施例21〜25の試料の、開回路状態のイオン伝導度は、LiサイトおよびZrサイトのどちらも置換していない無置換の比較例3の試料(LiZr2(PO4)3)に比べて高い値であることが確認された(表6)。 Moreover, the ionic conductivity of the open circuit state of the samples of Examples 21 to 25 forming rhombohedral crystals was the same as that of the non-substituted Comparative Example 3 in which neither the Li site nor the Zr site was substituted (LiZr). 2 (PO 4 ) 3 ) (Table 6).
これらの結果より、LiZr2(PO4)3組成の固体電解質は、Liの一部をLi+のイオン半径0.90Åより大きなイオン半径の元素M1で置換することで、Tiの還元反応(Ti4+→Ti3+)が生じにくくなり、Liイオン伝導度の低下が抑制されることがわかった。 From these results, a solid electrolyte having a composition of LiZr 2 (PO 4 ) 3 is obtained by substituting a part of Li with an element M1 having an ionic radius larger than the ionic radius of Li + of 0.90Å, thereby reducing Ti (Ti 4 + → Ti 3+ ) is less likely to occur, and a decrease in Li ion conductivity is suppressed.
特に、Liの一部をNaで置換した場合に、最も大きな効果を得ることができた。これはLiと同じ一価のカチオンであるアルカリ金属(Na)で置換することでLiイオンの数の低下を抑制することができたことによるものである。 In particular, the greatest effect could be obtained when a part of Li was replaced with Na. This is because the decrease in the number of Li ions could be suppressed by substitution with alkali metal (Na), which is the same monovalent cation as Li.
なお、Naよりイオン半径の大きなアルカリ金属であるKでLiの一部を置換した試料(実施例25の試料)においては、イオン伝導度が、Naで置換したLiZr2(PO4)3のイオン伝導度より小さくなったが、これは、単一相を得ることが困難で、異相を含む混相となったことによるものと考えられる。 In the sample in which a part of Li was substituted with K, which is an alkali metal having an ion radius larger than that of Na (the sample of Example 25), the ion conductivity was LiZr 2 (PO 4 ) 3 ion substituted with Na. Although it became smaller than the conductivity, it is considered that this is because it was difficult to obtain a single phase and a mixed phase including different phases was obtained.
<評価2>
図11に、実施例26〜30の試料についてのXRD測定の結果を示す。
また、表7に、実施例26〜30の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度とを示す。
<
In FIG. 11, the result of the XRD measurement about the sample of Examples 26-30 is shown.
Table 7 shows the crystal phase detected from the XRD measurement of the samples of Examples 26 to 30 and the ionic conductivity in the open circuit state.
表7に示すように、実施例26〜30の、Liの一部をNaで置換し、さらに、Zrの一部を、Zrよりもイオン半径の小さい元素(Al)で置換した試料の場合、いずれも菱面体晶のLiZr2(PO4)3のカードパターンに一致することが確認できた。 As shown in Table 7, in the case of the samples of Examples 26 to 30, in which a part of Li was replaced with Na and a part of Zr was replaced with an element (Al) having an ionic radius smaller than Zr, It was confirmed that both coincided with the rhombohedral LiZr 2 (PO 4 ) 3 card pattern.
また、実施例26〜30の試料の開回路状態のイオン伝導度は、Liと置換される元素M1(Na)の割合が0.01〜0.50の範囲の試料(試料番号26〜29の試料)において高い値を示し、0.01〜0.10の範囲の試料(試料番号26〜28の試料)においてさらに高い値を示すことが確認された。 In addition, the ionic conductivity in the open circuit state of the samples of Examples 26 to 30 is the sample in which the ratio of the element M1 (Na) substituted for Li is 0.01 to 0.50 (sample numbers 26 to 29). It was confirmed that the sample showed a high value and the sample in the range of 0.01 to 0.10 (sample Nos. 26 to 28) showed a higher value.
また、実施例30の試料のように、Liと置換される元素M1(Na)の割合が0.5より多くなると、開回路状態のイオン伝導度が低くなることが確認された(表7)。 Moreover, when the ratio of the element M1 (Na) substituted with Li was more than 0.5 like the sample of Example 30, it was confirmed that the ionic conductivity of an open circuit state will become low (Table 7). .
<評価3>
図12に、Liの一部をNaで置換し、さらに、Zrの一部を、Zrよりもイオン半径の小さい元素(Ti、Ge)で置換した実施例31および32の試料についてのXRD測定の結果を示す。
また、表8に、実施例31および32の試料のXRD測定から検出した結晶相と、開回路状態のイオン伝導度とを示す。
なお、表8には、試料番号26の試料(Liの一部をNaで置換し、Zrの一部をAlで置換した試料)と、LiとZrのいずれについても置換をしていない比較例3の試料の、XRD測定から検出した結晶相と、イオン伝導度を併せて示す。
<
FIG. 12 shows XRD measurement results for the samples of Examples 31 and 32 in which a part of Li was replaced with Na and a part of Zr was replaced with an element (Ti, Ge) having an ionic radius smaller than that of Zr. Results are shown.
Table 8 shows the crystal phase detected from the XRD measurement of the samples of Examples 31 and 32 and the ionic conductivity in the open circuit state.
Table 8 shows a sample of sample number 26 (a sample in which a part of Li is replaced with Na and a part of Zr is replaced with Al) and a comparative example in which neither Li nor Zr is substituted. 3 shows the crystal phase detected from the XRD measurement and the ionic conductivity of the three samples.
表8に示すように、実施例31および32の、Liの一部をNaで置換し、さらに、Zrの一部をZrよりもイオン半径の小さい元素(TiあるいはGe)で置換した試料の場合、XRD測定から検出した結晶相は、いずれも菱面体晶のLiTi2(PO4)3のカードパターンに一致することが確認された。 As shown in Table 8, in the samples of Examples 31 and 32, a part of Li was replaced with Na, and a part of Zr was replaced with an element (Ti or Ge) having an ionic radius smaller than Zr. The crystal phases detected from the XRD measurement were confirmed to coincide with the rhombohedral LiTi 2 (PO 4 ) 3 card pattern.
また、実施例26,31,32の、Liの一部をNaで置換し、さらに、Zrの一部をZrよりもイオン半径の小さい元素で置換した各試料は、LiとZrのいずれについても置換をしていない比較例3の試料に比べて高いイオン伝導度を示すことが確認された(表8参照)。 In each of Examples 26, 31, and 32, each sample in which a part of Li was replaced with Na and a part of Zr was replaced with an element having an ionic radius smaller than that of Zr was obtained for both Li and Zr. It was confirmed that the ion conductivity was higher than that of the sample of Comparative Example 3 that was not substituted (see Table 8).
また、実施例26の試料と、実施例31の試料について、還元電流を測定して充放電曲線を得た。
還元電流を測定して充放電曲線を得るにあたっては、まず、Liの一部をNaで置換し、Zrの一部を典型金属元素で非遷移金属元素であるAlで置換した実施例26の固体電解質材料と、Liの一部をNaで置換し、Zrの一部を遷移金属元素のTiで置換した実施例31の固体電解質材料を用いて形成した各焼結タブレットの片面にスパッタリングによって、集電体層となる白金(Pt)層を形成した。その後、焼結タブレットを100℃で乾燥し、水分を除去した後、もう一方の面に電解液を含有させたゲル状の電解質を介してLi箔を貼り付けて、2032型のコインセルで封止した。
Moreover, about the sample of Example 26 and the sample of Example 31, the reduction current was measured and the charging / discharging curve was obtained.
In obtaining the charge / discharge curve by measuring the reduction current, first, a part of Li was replaced with Na, and a part of Zr was replaced with a typical metal element with Al which is a non-transition metal element. Sputtering was applied to one side of each sintered tablet formed using the electrolyte material and the solid electrolyte material of Example 31 in which part of Li was replaced with Na and part of Zr was replaced with Ti as a transition metal element. A platinum (Pt) layer to be an electric layer was formed. Then, after drying the sintered tablet at 100 ° C. to remove moisture, the other surface is pasted with Li foil via a gel electrolyte containing an electrolyte and sealed with a 2032 type coin cell. did.
そして、この焼結タブレットを0.1mV/秒、0.0〜3.0V v.s. Li+/Liの範囲で室温(25℃)にて充放電試験を行った。この際、0.0V v.s. Li+/Liで電位を保持して、0.1〜1MHz(±100mV)の範囲で交流インピーダンス測定を行い、イオン伝導度を評価した。
図13に実施例26の試料の充放電曲線、図14に実施例31の試料の充放電曲線を示す。
Then, this sintered tablet was subjected to a charge / discharge test at room temperature (25 ° C.) in the range of 0.1 mV / second and 0.0 to 3.0 V vs Li + / Li. At this time, the potential was held at 0.0 V vs Li + / Li, and AC impedance measurement was performed in the range of 0.1 to 1 MHz (± 100 mV) to evaluate ion conductivity.
FIG. 13 shows the charge / discharge curve of the sample of Example 26, and FIG. 14 shows the charge / discharge curve of the sample of Example 31.
また、表9に、実施例26および実施例31の試料のイオン伝導度を示す。 Table 9 shows the ionic conductivity of the samples of Example 26 and Example 31.
図13および図14から明らかなように、Zrの一部を遷移金属元素のTiで置換した実施例31の試料の場合、Tiのレッドクスに起因した充放電反応の発生が確認された(図14)が、Zrの一部を典型金属元素で非遷移金属元素であるAlで置換した実施例26の試料の場合、充放電反応の発生は確認されなかった(図13)。 As is clear from FIG. 13 and FIG. 14, in the case of the sample of Example 31 in which a part of Zr was substituted with the transition metal element Ti, the occurrence of charge / discharge reaction due to the Ti reds was confirmed (FIG. 14). However, in the case of the sample of Example 26 in which a part of Zr was replaced with Al which is a non-transition metal element with a typical metal element, the occurrence of charge / discharge reaction was not confirmed (FIG. 13).
したがって、実施例31の材料を用いた全固体電池の場合、Tiのレッドクスに起因した充放電反応が発生しない範囲で使用することが必要になり、使用条件が制約されるが、実施例26の試料の場合にはそのような制約がない。したがって、この点からは、Zrを置換する元素(M2)として、TiとAlを比較すると、Alを用いることが望ましいことがわかる。 Therefore, in the case of the all-solid-state battery using the material of Example 31, it is necessary to use it in a range where the charge / discharge reaction due to the Ti Reds does not occur, and the usage conditions are restricted. There is no such restriction in the case of a sample. Therefore, from this point, it is found that it is desirable to use Al as an element (M2) that substitutes Zr when Ti and Al are compared.
なお、例えば、正極用グリーンシートと、負極用グリーンシートとが、本発明の固体電解質材料を用いて形成した電解質グリーンシートを介して積層された構造の積層体を形成し、これを焼結することにより、特性の良好な全固体電池を得ることができる。 In addition, for example, a green body for a positive electrode and a green sheet for a negative electrode are formed through the electrolyte green sheet formed using the solid electrolyte material of the present invention, and a laminate is formed and sintered. As a result, an all-solid battery having good characteristics can be obtained.
また、本発明の全固体電池は、上述の本発明の固体電解質材料を、正極層、負極層、固体電解質層の少なくともいずれか一層に含む構成とすることも可能である。 Moreover, the all-solid-state battery of this invention can also be set as the structure which contains the above-mentioned solid electrolyte material of this invention in at least any one layer of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.
本発明は上記実施形態に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment, and various applications and modifications can be made within the scope of the invention.
Claims (4)
一般式:(LiaM1b)(Ti2-cM2c)(PO4)3の組成で表され、M1はLiよりイオン半径の大きい元素であって、K、Na、Ca、Agからなる群より選ばれる少なくとも1種であり、a=0.50〜1.79、b=0.01〜0.50、c≦0.8(0は含まない)の要件を満たし、
前記M2が、Al、Geからなる群より選ばれる少なくとも1種であること
を特徴とする固体電解質材料。 A solid electrolyte material having a crystal structure similar to NASICON type or NASICON type,
It is represented by the composition of the general formula : ( Li a M1 b ) (Ti 2-c M2 c ) (PO 4 ) 3 , where M1 is an element having an ionic radius larger than that of Li , and is composed of K, Na, Ca, and Ag. At least one selected from the group , satisfying the requirements of a = 0.50-1.79, b = 0.01-0.50, c ≦ 0.8 (not including 0),
The solid electrolyte material, wherein M2 is at least one selected from the group consisting of Al and Ge .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013212890A JP6260185B2 (en) | 2013-10-10 | 2013-10-10 | Solid electrolyte material and all-solid battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013212890A JP6260185B2 (en) | 2013-10-10 | 2013-10-10 | Solid electrolyte material and all-solid battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015076324A JP2015076324A (en) | 2015-04-20 |
JP6260185B2 true JP6260185B2 (en) | 2018-01-17 |
Family
ID=53001014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013212890A Active JP6260185B2 (en) | 2013-10-10 | 2013-10-10 | Solid electrolyte material and all-solid battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6260185B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11245131B2 (en) | 2015-12-25 | 2022-02-08 | Samsung Electronics Co., Ltd. | Solid electrolyte and lithium battery including the same |
WO2017138465A1 (en) * | 2016-02-09 | 2017-08-17 | 株式会社村田製作所 | Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery |
WO2017141742A1 (en) * | 2016-02-18 | 2017-08-24 | 株式会社村田製作所 | Solid electrolyte and all-solid-state battery |
JPWO2017154922A1 (en) * | 2016-03-08 | 2018-11-22 | 株式会社村田製作所 | Solid electrolyte, all-solid battery, method for producing solid electrolyte, and method for producing all-solid battery |
EP3447837A4 (en) * | 2016-04-19 | 2019-11-06 | Murata Manufacturing Co., Ltd. | Solid electrolyte and all-solid-state battery |
DE112017003877T5 (en) | 2016-08-04 | 2019-04-18 | Tdk Corporation | Electrochemical element and lithium-ion solid-state accumulator |
JP6864323B2 (en) * | 2016-11-09 | 2021-04-28 | 第一稀元素化学工業株式会社 | Method for producing lithium-containing zirconium phosphate and its calcined powder and sintered body |
DE112018001738T5 (en) | 2017-03-30 | 2019-12-12 | Tdk Corporation | SOLID SOLUTION ELECTROLYTE AND SOLID SECONDARY BATTERY |
JP7040519B2 (en) * | 2017-03-30 | 2022-03-23 | Tdk株式会社 | Solid electrolyte and all-solid-state lithium-ion secondary battery |
DE112018001661T5 (en) | 2017-03-30 | 2019-12-19 | Tdk Corporation | SOLID SOLUTION ELECTROLYTE AND SOLID SECONDARY BATTERY |
CN110313038B (en) | 2017-03-30 | 2021-01-19 | Tdk株式会社 | All-solid-state secondary battery |
JP2020095776A (en) * | 2017-03-30 | 2020-06-18 | Tdk株式会社 | Solid electrolyte and all-solid type secondary battery |
CN110299559B (en) * | 2018-03-22 | 2024-06-18 | 松下知识产权经营株式会社 | Solid electrolyte and secondary battery using the same |
CN110299558B (en) * | 2018-03-22 | 2024-06-18 | 松下知识产权经营株式会社 | Solid electrolyte and secondary battery using the same |
WO2021215403A1 (en) * | 2020-04-22 | 2021-10-28 | 株式会社オハラ | Lithium ion-conductive glass ceramic |
US12062790B2 (en) | 2020-09-30 | 2024-08-13 | Samsung Electronics Co., Ltd. | Solid-state lithium-ion conductor and methods of manufacture thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3177304B2 (en) * | 1992-02-18 | 2001-06-18 | 三洋電機株式会社 | Solid electrolyte and lithium battery using the same |
JP5721540B2 (en) * | 2011-05-30 | 2015-05-20 | 株式会社オハラ | Lithium ion conductive inorganic material |
WO2013137224A1 (en) * | 2012-03-15 | 2013-09-19 | 株式会社 村田製作所 | All solid state cell and method for producing same |
-
2013
- 2013-10-10 JP JP2013212890A patent/JP6260185B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015076324A (en) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6260185B2 (en) | Solid electrolyte material and all-solid battery using the same | |
Liu et al. | Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition | |
Dong et al. | Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte | |
Yu et al. | Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility | |
JP5721540B2 (en) | Lithium ion conductive inorganic material | |
CN102308425B (en) | Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same | |
JP5078120B2 (en) | All solid battery | |
JP6861942B2 (en) | Solid electrolyte sheet and its manufacturing method, and sodium ion all-solid-state secondary battery | |
WO2013137224A1 (en) | All solid state cell and method for producing same | |
Suzuki et al. | Synthesis and Electrochemical Properties of I 4̅-Type Li1+ 2 x Zn1–x PS4 Solid Electrolyte | |
Nakayama et al. | Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li, La) TiO3 | |
JP5811191B2 (en) | All-solid battery and method for manufacturing the same | |
JP2011070939A (en) | All-solid type lithium secondary battery | |
Pitillas Martinez et al. | The cathode composition, a key player in the success of Li-metal solid-state batteries | |
JP2013149493A (en) | Lithium ion-conducting material | |
JP6194719B2 (en) | All solid battery | |
JP6649641B2 (en) | Solid electrolyte and all-solid battery | |
Luo et al. | Heterovalent cation substitution to enhance the ionic conductivity of halide electrolytes | |
WO2019102762A1 (en) | Negative electrode material, negative electrode and battery | |
KR101909727B1 (en) | Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same | |
Liu et al. | Gel polymer electrolyte membranes boosted with sodium-conductive β-alumina nanoparticles: application for Na-ion batteries | |
Yang et al. | Titanium dioxide doping toward high-lithium-ion-conducting Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass-ceramics for all-solid-state lithium batteries | |
JP2016051539A (en) | Solid electrolytic material, and all-solid battery | |
WO2013100002A1 (en) | All-solid-state battery, and manufacturing method therefor | |
Trevisanello et al. | Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6260185 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |