WO2017138465A1 - Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery - Google Patents

Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery Download PDF

Info

Publication number
WO2017138465A1
WO2017138465A1 PCT/JP2017/004132 JP2017004132W WO2017138465A1 WO 2017138465 A1 WO2017138465 A1 WO 2017138465A1 JP 2017004132 W JP2017004132 W JP 2017004132W WO 2017138465 A1 WO2017138465 A1 WO 2017138465A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
source
producing
yttrium
Prior art date
Application number
PCT/JP2017/004132
Other languages
French (fr)
Japanese (ja)
Inventor
彰佑 伊藤
充 吉岡
武郎 石倉
良平 高野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017138465A1 publication Critical patent/WO2017138465A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a solid electrolyte, a method for producing an all-solid battery, a solid electrolyte, and an all-solid battery.
  • Patent Document 1 describes an all solid state battery in which an electrolyte membrane is a NaSICON type membrane.
  • the main object of the present invention is to improve the ionic conductivity of the solid electrolyte layer and to improve the battery characteristics of the all solid state battery.
  • the method for producing a solid electrolyte according to the present invention is a method for producing a NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition.
  • a solid electrolyte is produced using yttrium-stabilized zirconia as a Zr source and a Y source.
  • a solid electrolyte is produced using yttrium-stabilized zirconia as a Zr source and a Y source, a solid electrolyte having high ionic conductivity can be produced.
  • a solid electrolyte In the method for producing a solid electrolyte according to the present invention, it is expressed as Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.05 ⁇ x ⁇ 0.24) using yttrium-stabilized zirconia as the Zr source and the Y source. It is preferable to produce a solid electrolyte having a composition.
  • a solid electrolyte In the method for producing a solid electrolyte according to the present invention, it is represented by Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.12 ⁇ x ⁇ 0.24) using yttrium-stabilized zirconia as the Zr source and the Y source. It is preferable to produce a solid electrolyte having a composition.
  • a solid electrolyte In the method for producing a solid electrolyte according to the present invention, it is expressed as Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.12 ⁇ x ⁇ 0.18) using yttrium-stabilized zirconia as the Zr source and the Y source. It is preferable to produce a solid electrolyte having a composition.
  • an all-solid battery is obtained by joining a solid electrolyte layer containing a solid electrolyte produced by using the method for producing a solid electrolyte according to the present invention and an electrode by sintering. obtain.
  • a solid electrolyte having high ionic conductivity can be produced. Therefore, according to the manufacturing method of the all-solid-state battery which concerns on this invention, it has the solid electrolyte layer which has high ionic conductivity, and can manufacture the all-solid-state battery which has the outstanding battery characteristic.
  • the solid electrolyte according to the present invention is a NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition.
  • 2 ⁇ is 28.1 ° to 28 ° with respect to the intensity of the first peak appearing in the range of 2 ⁇ to 19.4 ° to 20.2 °.
  • It is a solid electrolyte in which the ratio of the intensity of the second peak appearing in the range of 3 ° or less ((the intensity of the second peak) / (the intensity of the first peak)) is 20% or less.
  • the solid electrolyte according to the present invention (the intensity of the second peak) / (the intensity of the first peak) is 20% or less, so the content of the heterogeneous phase in the solid electrolyte is small. Therefore, the solid electrolyte according to the present invention has excellent ionic conductivity.
  • the all solid state battery according to the present invention includes a solid electrolyte layer, a positive electrode, and a negative electrode.
  • the solid electrolyte layer includes the solid electrolyte according to the present invention.
  • the positive electrode is joined to one surface of the solid electrolyte layer by sintering.
  • the negative electrode is joined to the other surface of the solid electrolyte layer by sintering.
  • the solid electrolyte according to the present invention has excellent ionic conductivity. Therefore, the all solid state battery according to the present invention has a solid electrolyte layer having high ionic conductivity and has excellent battery characteristics.
  • the ionic conductivity of the solid electrolyte layer can be improved, and the battery characteristics of the all-solid battery can be improved.
  • FIG. 3 is an X-ray diffraction chart of a solid electrolyte layer produced in each of Comparative Example 2 and Example 2.
  • FIG. 3 is an X-ray diffraction chart of a solid electrolyte layer produced in each of Comparative Example 2 and Example 2.
  • FIG. 1 is a schematic cross-sectional view of an all solid state battery 1 according to the present embodiment. As shown in FIG. 1, a negative electrode 12, a positive electrode 11, and a solid electrolyte layer 13 are provided.
  • the positive electrode 11 includes positive electrode active material particles.
  • the positive electrode active material particles preferably used include, for example, lithium-containing phosphate compound particles having a NASICON type structure, lithium-containing phosphate compound particles having an olivine type structure, lithium-containing layered oxide particles, and lithium containing a spinel type structure. Examples thereof include oxide particles.
  • Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like.
  • Specific examples of the lithium-containing phosphate compound having an olivine structure that is preferably used include LiFePO 4 and LiMnPO 4 .
  • lithium-containing layered oxide particles preferably used include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like.
  • lithium-containing oxide having a spinel structure preferably used include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12 and the like. Only 1 type in these positive electrode active material particles may be used, and multiple types may be mixed and used.
  • the positive electrode 11 may further contain a solid electrolyte.
  • the kind of solid electrolyte contained in the positive electrode 11 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
  • the negative electrode 12 includes negative electrode active material particles.
  • the negative electrode active material particles preferably used include, for example, MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo. 0.9 ⁇ Compound particles represented by X ⁇ 2.0), graphite-lithium compound particles, lithium alloy particles, lithium-containing phosphate compound particles having NASICON type structure, lithium-containing phosphate compound particles having olivine type structure, spinel type structure And lithium-containing oxide particles.
  • Specific examples of lithium alloys preferably used include Li—Al.
  • Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like.
  • lithium-containing phosphate compound having an olivine structure that is preferably used include LiFePO 4 .
  • lithium-containing oxides having a spinel structure that are preferably used include Li 4 Ti 5 O 12 . Only 1 type in these negative electrode active material particles may be used, and multiple types may be mixed and used.
  • the negative electrode 12 may further contain a solid electrolyte.
  • the kind of solid electrolyte contained in the negative electrode 12 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
  • a solid electrolyte layer 13 is disposed between the negative electrode 12 and the positive electrode 11. That is, the negative electrode 12 is disposed on one side of the solid electrolyte layer 13 and the positive electrode 11 is disposed on the other side. Each of the negative electrode 12 and the positive electrode 11 is joined to the solid electrolyte layer 13 by sintering. That is, the positive electrode 11, the solid electrolyte layer 13, and the negative electrode 12 are an integral sintered body.
  • the solid electrolyte layer 13 contains NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition.
  • 2 ⁇ was 28.1 ° to 28.3 ° relative to the intensity of the first peak appearing in the range 2 ⁇ of 19.4 ° to 20.2 °.
  • the solid electrolyte layer 13 has high ionic conductivity. Therefore, the all solid state battery 1 having the solid electrolyte layer 13 is excellent in battery characteristics such as output density.
  • the solid electrolyte contained in the solid electrolyte layer 13 is Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.05 ⁇ x ⁇ 0.24).
  • a solid electrolyte having a composition represented by Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.12 ⁇ x ⁇ 0.24) Is more preferable, and a solid electrolyte having a composition represented by Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.12 ⁇ x ⁇ 0.18) is more preferable.
  • a raw material to be a Na source, a raw material to be a Zr source, a raw material to be a Y source, a raw material to be a Si source, and the like are weighed and mixed at a desired ratio.
  • the obtained mixed powder is temporarily fired to prepare a temporarily fired body.
  • a solid electrolyte can be obtained by baking the obtained temporary fired body.
  • Na 3 PO 4 ⁇ 12H 2 O, Na 2 CO 3 or the like is used as the Na source.
  • silicon oxide such as SiO 2 is used as the Si source.
  • Yttrium-stabilized zirconia can be used as the Zr source and the Y source.
  • the Y content in the yttrium-stabilized zirconia is preferably 2.5 mol% or more and 12.0 mol% or less with respect to the Zr content, and is 5.8 mol% or more and 12.0 mol% or less. More preferably, it is 5.8 mol% or more and 8.9 mol% or less.
  • composition of the solid electrolyte is represented by the general formula Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 , but the mol% of oxygen changes as appropriate in order to maintain the neutrality of the charge in the crystal. .
  • a solid electrolyte having high ionic conductivity can be obtained by using yttrium-stabilized zirconia as the Zr source and the Y source.
  • the reason for this is not clear, but may be as follows. That is, by using yttrium-stabilized zirconia, which is a material containing Y, as a raw material, Y dissolves in the system with high uniformity and the formation of heterogeneous phases is suppressed, so that the ionic conductivity of the obtained solid electrolyte is reduced. It is thought to improve.
  • the raw materials are weighed and mixed so as to have a composition represented by Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.05 ⁇ x ⁇ 0.24) It is more preferable that the raw materials are weighed and mixed so as to have a composition represented by Na 3 + x Zr 2 ⁇ x Y x Si 2 PO 12 (0.12 ⁇ x ⁇ 0.24), and Na 3 + x Zr It is preferable to use yttrium-stabilized zirconia having a composition represented by 2-x Y x Si 2 PO 12 (0.12 ⁇ x ⁇ 0.18).
  • yttrium-stabilized zirconia in which the amount of Y contained in the yttrium-stabilized zirconia is 2.5 mol% or more and 12 mol% or less with respect to the amount of Zr. It is more preferable to use yttrium-stabilized zirconia that is 12 mol% or less, and it is more preferable to use yttrium-stabilized zirconia that is 5.8 mol% or more and 8.9 mol% or less.
  • Zr sources and Y sources may be used in combination as the Zr source and Y source.
  • a paste is prepared by appropriately mixing a solvent, a resin, and the like with the active material particles and the solid electrolyte.
  • the paste is applied on the sheet and dried to form a first green sheet for constituting the positive electrode 11.
  • a second green sheet for forming the negative electrode 12 is formed.
  • a paste is prepared by appropriately mixing a solvent, a resin and the like with the solid electrolyte.
  • the paste is applied and dried to produce a third green sheet for constituting the solid electrolyte layer 13.
  • a laminate is produced by appropriately laminating the first to third green sheets. You may press the produced laminated body. As a preferable pressing method, an isostatic pressing or the like can be mentioned.
  • the all-solid-state battery 1 can be obtained by sintering the laminate. .
  • the Y content in yttrium-stabilized zirconia is mol% of Y with respect to Zr contained in yttrium-stabilized zirconia.
  • the mixture was placed on a hot plate heated to 90 ° C., and ethanol was removed by heating. Then, it baked at 1100 degreeC in the air atmosphere for 8 hours.
  • the obtained fired product, ethanol, and cobblestone having a diameter of 2 mm were sealed in a zirconia pot, and the fired product was pulverized by rotating the pot using a planetary ball mill device.
  • the mixture was placed on a hot plate heated to 90 ° C., and ethanol was removed by heating.
  • the baked pulverized powder is formed into a tablet having a diameter of 10 ⁇ m and a thickness of 500 ⁇ m or more and 1000 ⁇ m at a pressure of 20 kN / cm 2 , and is baked for 20 hours in an air atmosphere at a temperature range of 1100 ° C.
  • a solid electrolyte layer was obtained.
  • the obtained solid electrolyte layer was confirmed to be a dense sintered body having a relative density of 95% or more of the theoretical density.
  • Example 1 Example as in Comparative Example 1 except that yttrium-stabilized zirconia having a yttrium content of 5.8 mol% was used as the Zr source and Y source in place of ZrO 2 and Y 2 O 3. A sample according to 1 was prepared.
  • Comparative Example 2 A sample according to Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the composition was weighed to have the composition shown in Table 1 below.
  • Example 2 Example as in Comparative Example 2 except that yttrium-stabilized zirconia having a yttrium content of 5.8 mol% was used as the Zr source and Y source in place of ZrO 2 and Y 2 O 3.
  • a sample according to 2 was prepared. An X-ray diffraction chart of the produced sample is shown in FIG. From the results shown in FIG. 2, it was found that the X-ray diffraction pattern of the solid electrolyte layer produced in Example 2 substantially coincided with monoclinic Na 3 Zr 2 Si 2 PO 12 .
  • Comparative Example 3 A sample according to Comparative Example 3 was prepared in the same manner as in Comparative Example 1 except that ZrO 2 was used as the Zr source and weighed to obtain the composition shown in Table 2.
  • Example 3 Example as in Comparative Example 3 except that yttrium-stabilized zirconia having a yttrium content of 1.0 mol% was used as the Zr source and Y source instead of ZrO 2 and Y 2 O 3. A sample according to 3 was prepared.
  • Example 4 Except for using yttrium-stabilized zirconia having a yttrium content of 2.5 mol% as the Zr source and the Y source, and weighing them to have the composition shown in Table 2 below, the same as in Comparative Example 1 A sample according to Example 4 was produced.
  • Example 5 As in the case of Comparative Example 1, except that yttrium-stabilized zirconia having a yttrium content of 8.9 mol% was used as the Zr source and the Y source, and was weighed to have the composition shown in Table 2 below. A sample according to Example 5 was produced.
  • Example 6 The same procedure as in Comparative Example 1 was conducted except that yttrium-stabilized zirconia having a yttrium content of 12.4 mol% was used as the Zr source and the Y source, and was weighed to have the composition shown in Table 2 below. A sample according to Example 6 was produced.
  • Example 7 Except for using yttrium-stabilized zirconia having a yttrium content of 17.5 mol% as the Zr source and Y source, and weighing in the composition shown in Table 2 below, in the same manner as in Comparative Example 1. A sample according to Example 6 was produced.

Abstract

The present invention improves the ion conductivity of a solid electrolyte layer and improves the battery characteristics of an all-solid-state battery. Produced is a NaSICON-type solid electrolyte in which Na acts as the conduction species, and that contains Zr and Y in the composition. The solid electrolyte is produced by using yttrium-stabilized zirconia as a Zr source and a Y source.

Description

固体電解質の製造方法、全固体電池の製造方法、固体電解質及び全固体電池Solid electrolyte manufacturing method, all-solid battery manufacturing method, solid electrolyte, and all-solid battery
 本発明は、固体電解質の製造方法、全固体電池の製造方法、固体電解質及び全固体電池に関する。 The present invention relates to a method for producing a solid electrolyte, a method for producing an all-solid battery, a solid electrolyte, and an all-solid battery.
 従来、信頼性及び安全性に優れる二次電池として、全固体電池が知られている。例えば、特許文献1には、電解質膜がNaSICON型膜からなる全固体電池が記載されている。 Conventionally, an all-solid battery is known as a secondary battery excellent in reliability and safety. For example, Patent Document 1 describes an all solid state battery in which an electrolyte membrane is a NaSICON type membrane.
特表2013-510391号公報Special table 2013-510391 gazette
 全固体電池には、固体電解質層のイオン伝導度を向上し、全固体電池の電池特性を向上したいという要望がある。 There is a demand for an all solid state battery to improve the ionic conductivity of the solid electrolyte layer and to improve the battery characteristics of the all solid state battery.
 本発明の主な目的は、固体電解質層のイオン伝導度を向上し、全固体電池の電池特性を向上することにある。 The main object of the present invention is to improve the ionic conductivity of the solid electrolyte layer and to improve the battery characteristics of the all solid state battery.
 本発明に係る固体電解質の製造方法は、Naを伝導種とし、組成中にZrおよびYを含むNaSICON型の固体電解質を製造する方法である。本発明に係る固体電解質の製造方法では、Zr源及びY源としてイットリウム安定化ジルコニアを用いて固体電解質を製造する。 The method for producing a solid electrolyte according to the present invention is a method for producing a NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition. In the method for producing a solid electrolyte according to the present invention, a solid electrolyte is produced using yttrium-stabilized zirconia as a Zr source and a Y source.
 本発明に係る固体電解質の製造方法では、Zr源及びY源としてイットリウム安定化ジルコニアを用いて固体電解質を製造するため、高いイオン伝導度を有する固体電解質を製造することができる。 In the method for producing a solid electrolyte according to the present invention, since a solid electrolyte is produced using yttrium-stabilized zirconia as a Zr source and a Y source, a solid electrolyte having high ionic conductivity can be produced.
 本発明に係る固体電解質の製造方法では、Zr源及びY源としてイットリウム安定化ジルコニアを用いてNa3+xZr2-xSiPO12(0.05≦x≦0.24)で表される組成を有する固体電解質を製造することが好ましい。 In the method for producing a solid electrolyte according to the present invention, it is expressed as Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.05 ≦ x ≦ 0.24) using yttrium-stabilized zirconia as the Zr source and the Y source. It is preferable to produce a solid electrolyte having a composition.
 本発明に係る固体電解質の製造方法では、Zr源及びY源としてイットリウム安定化ジルコニアを用いてNa3+xZr2-xSiPO12(0.12≦x≦0.24)で表される組成を有する固体電解質を製造することが好ましい。 In the method for producing a solid electrolyte according to the present invention, it is represented by Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.24) using yttrium-stabilized zirconia as the Zr source and the Y source. It is preferable to produce a solid electrolyte having a composition.
 本発明に係る固体電解質の製造方法では、Zr源及びY源としてイットリウム安定化ジルコニアを用いてNa3+xZr2-xSiPO12(0.12≦x≦0.18)で表される組成を有する固体電解質を製造することが好ましい。 In the method for producing a solid electrolyte according to the present invention, it is expressed as Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.18) using yttrium-stabilized zirconia as the Zr source and the Y source. It is preferable to produce a solid electrolyte having a composition.
 本発明に係る全固体電池の製造方法では、上記本発明に係る固体電解質の製造方法を用いて製造した固体電解質を含む固体電解質層と、電極とを焼結によって接合することにより全固体電池を得る。上述のように、本発明に係る固体電解質の製造方法によれば、高いイオン伝導度を有する固体電解質を製造することができる。従って、本発明に係る全固体電池の製造方法によれば、高いイオン伝導度を有する固体電解質層を有し、優れた電池特性を有する全固体電池を製造することができる。 In the method for producing an all-solid battery according to the present invention, an all-solid battery is obtained by joining a solid electrolyte layer containing a solid electrolyte produced by using the method for producing a solid electrolyte according to the present invention and an electrode by sintering. obtain. As described above, according to the method for producing a solid electrolyte according to the present invention, a solid electrolyte having high ionic conductivity can be produced. Therefore, according to the manufacturing method of the all-solid-state battery which concerns on this invention, it has the solid electrolyte layer which has high ionic conductivity, and can manufacture the all-solid-state battery which has the outstanding battery characteristic.
 本発明に係る固体電解質は、Naを伝導種とし、組成中にZrおよびYを含むNaSICON型の固体電解質である。本発明に係る固体電解質は、X線回折を行ったとき、2θが19.4°以上~20.2°以下の範囲に現れる第1のピークの強度に対する、2θが28.1°以上~28.3°以下の範囲に現れる第2のピークの強度の比((第2のピークの強度)/(第1のピークの強度))が20%以下である固体電解質である。 The solid electrolyte according to the present invention is a NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition. When the solid electrolyte according to the present invention is subjected to X-ray diffraction, 2θ is 28.1 ° to 28 ° with respect to the intensity of the first peak appearing in the range of 2θ to 19.4 ° to 20.2 °. It is a solid electrolyte in which the ratio of the intensity of the second peak appearing in the range of 3 ° or less ((the intensity of the second peak) / (the intensity of the first peak)) is 20% or less.
 本発明に係る固体電解質では、(第2のピークの強度)/(第1のピークの強度)が20%以下であるため、固体電解質における異相の含有量が少ない。従って、本発明に係る固体電解質は、優れたイオン伝導度を有する。 In the solid electrolyte according to the present invention, (the intensity of the second peak) / (the intensity of the first peak) is 20% or less, so the content of the heterogeneous phase in the solid electrolyte is small. Therefore, the solid electrolyte according to the present invention has excellent ionic conductivity.
 本発明に係る全固体電池は、固体電解質層と、正極と、負極とを備えている。固体電解質層は、本発明に係る固体電解質を含む。正極は、固体電解質層の一方面に焼結によって接合されている。負極は、固体電解質層の他方面に焼結によって接合されている。 The all solid state battery according to the present invention includes a solid electrolyte layer, a positive electrode, and a negative electrode. The solid electrolyte layer includes the solid electrolyte according to the present invention. The positive electrode is joined to one surface of the solid electrolyte layer by sintering. The negative electrode is joined to the other surface of the solid electrolyte layer by sintering.
 上述のように、本発明に係る固体電解質は、優れたイオン伝導度を有する。従って、本発明に係る全固体電池は、高いイオン伝導度を有する固体電解質層を有し、優れた電池特性を有している。 As described above, the solid electrolyte according to the present invention has excellent ionic conductivity. Therefore, the all solid state battery according to the present invention has a solid electrolyte layer having high ionic conductivity and has excellent battery characteristics.
 本発明によれば、固体電解質層のイオン伝導度を向上し、全固体電池の電池特性を向上することができる。 According to the present invention, the ionic conductivity of the solid electrolyte layer can be improved, and the battery characteristics of the all-solid battery can be improved.
本発明の一実施形態に係る全固体電池の模式的断面図である。It is typical sectional drawing of the all-solid-state battery which concerns on one Embodiment of this invention. 比較例2及び実施例2のそれぞれにおいて作製した固体電解質層のX線回折チャートである。3 is an X-ray diffraction chart of a solid electrolyte layer produced in each of Comparative Example 2 and Example 2. FIG.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 図1は、本実施形態に係る全固体電池1の模式的断面図である。図1に示されるように、負極12と、正極11と、固体電解質層13とを備えている。 FIG. 1 is a schematic cross-sectional view of an all solid state battery 1 according to the present embodiment. As shown in FIG. 1, a negative electrode 12, a positive electrode 11, and a solid electrolyte layer 13 are provided.
 正極11は、正極活物質粒子を含んでいる。好ましく用いられる正極活物質粒子としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、リチウム含有層状酸化物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFePO、LiMnPO等が挙げられる。好ましく用いられるリチウム含有層状酸化物粒子の具体例としては、LiCoO,LiCo1/3Ni1/3Mn1/3等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiMn,LiNi0.5Mn1.5、LiTi12等が挙げられる。これらの正極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The positive electrode 11 includes positive electrode active material particles. The positive electrode active material particles preferably used include, for example, lithium-containing phosphate compound particles having a NASICON type structure, lithium-containing phosphate compound particles having an olivine type structure, lithium-containing layered oxide particles, and lithium containing a spinel type structure. Examples thereof include oxide particles. Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like. Specific examples of the lithium-containing phosphate compound having an olivine structure that is preferably used include LiFePO 4 and LiMnPO 4 . Specific examples of the lithium-containing layered oxide particles preferably used include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like. Specific examples of the lithium-containing oxide having a spinel structure preferably used include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12 and the like. Only 1 type in these positive electrode active material particles may be used, and multiple types may be mixed and used.
 正極11は、固体電解質をさらに含んでいてもよい。正極11に含まれる固体電解質の種類は特に限定されないが、固体電解質層13に含まれる固体電解質と同種の固体電解質を含むことが好ましい。 The positive electrode 11 may further contain a solid electrolyte. Although the kind of solid electrolyte contained in the positive electrode 11 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
 負極12は、負極活物質粒子を含んでいる。好ましく用いられる負極活物質粒子の具体例としては、例えば、MO(Mは、Ti,Si,Sn,Cr,Fe,Nb及びMoからなる群より選ばれた少なくとも一種である。0.9≦X≦2.0)で表される化合物粒子、黒鉛-リチウム化合物粒子、リチウム合金粒子、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるリチウム合金の具体例としては、Li-Al等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFePO等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiTi12等が挙げられる。これらの負極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The negative electrode 12 includes negative electrode active material particles. Specific examples of the negative electrode active material particles preferably used include, for example, MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo. 0.9 ≦ Compound particles represented by X ≦ 2.0), graphite-lithium compound particles, lithium alloy particles, lithium-containing phosphate compound particles having NASICON type structure, lithium-containing phosphate compound particles having olivine type structure, spinel type structure And lithium-containing oxide particles. Specific examples of lithium alloys preferably used include Li—Al. Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like. Specific examples of the lithium-containing phosphate compound having an olivine structure that is preferably used include LiFePO 4 . Specific examples of lithium-containing oxides having a spinel structure that are preferably used include Li 4 Ti 5 O 12 . Only 1 type in these negative electrode active material particles may be used, and multiple types may be mixed and used.
 負極12は、固体電解質をさらに含んでいてもよい。負極12に含まれる固体電解質の種類は特に限定されないが、固体電解質層13に含まれる固体電解質と同種の固体電解質を含むことが好ましい。 The negative electrode 12 may further contain a solid electrolyte. Although the kind of solid electrolyte contained in the negative electrode 12 is not particularly limited, it is preferable that the same kind of solid electrolyte as the solid electrolyte contained in the solid electrolyte layer 13 is included.
 負極12と正極11との間には、固体電解質層13が配されている。すなわち、固体電解質層13の一方側に負極12が配されており、他方側に正極11が配されている。負極12及び正極11のそれぞれは、固体電解質層13と焼結によって接合されている。すなわち、正極11、固体電解質層13及び負極12は、一体焼結体である。 A solid electrolyte layer 13 is disposed between the negative electrode 12 and the positive electrode 11. That is, the negative electrode 12 is disposed on one side of the solid electrolyte layer 13 and the positive electrode 11 is disposed on the other side. Each of the negative electrode 12 and the positive electrode 11 is joined to the solid electrolyte layer 13 by sintering. That is, the positive electrode 11, the solid electrolyte layer 13, and the negative electrode 12 are an integral sintered body.
 固体電解質層13は、Naを伝導種とし、組成中にZrおよびYを含むNaSICON型の固体電解質を含む。この固体電解質は、X線回折を行ったとき、2θが19.4°以上~20.2°以下の範囲に現れる第1のピークの強度に対する、2θが28.1°以上~28.3°以下の範囲に現れる第2のピークの強度の比((第2のピークの強度)/(第1のピークの強度))が20%以下である固体電解質である。このため、固体電解質層13は、高いイオン伝導度を有する。従って、固体電解質層13を有する全固体電池1は、出力密度などの電池特性に優れている。 The solid electrolyte layer 13 contains NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition. When this solid electrolyte was subjected to X-ray diffraction, 2θ was 28.1 ° to 28.3 ° relative to the intensity of the first peak appearing in the range 2θ of 19.4 ° to 20.2 °. It is a solid electrolyte in which the ratio of the intensity of the second peak appearing in the following range ((the intensity of the second peak) / (the intensity of the first peak)) is 20% or less. For this reason, the solid electrolyte layer 13 has high ionic conductivity. Therefore, the all solid state battery 1 having the solid electrolyte layer 13 is excellent in battery characteristics such as output density.
 固体電解質層13のイオン伝導度をより高くする観点からは、固体電解質層13に含まれる固体電解質は、Na3+xZr2-xSiPO12(0.05≦x≦0.24)で表される組成を有する固体電解質であることが好ましく、Na3+xZr2-xSiPO12(0.12≦x≦0.24)で表される組成を有する固体電解質であることがより好ましく、Na3+xZr2-xSiPO12(0.12≦x≦0.18)で表される組成を有する固体電解質であることがさらに好ましい。 From the viewpoint of increasing the ionic conductivity of the solid electrolyte layer 13, the solid electrolyte contained in the solid electrolyte layer 13 is Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.05 ≦ x ≦ 0.24). Is preferably a solid electrolyte having a composition represented by Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.24) Is more preferable, and a solid electrolyte having a composition represented by Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.18) is more preferable.
 (固体電解質の製造方法)
 次に、固体電解質の製造方法の一例について説明する。
(Method for producing solid electrolyte)
Next, an example of a method for producing a solid electrolyte will be described.
 まず、Na源となる原料と、Zr源となる原料と、Y源となる原料と、Si源となる原料等とを、所望の割合で秤量し、混合する。得られた混合粉末を仮焼成することにより、仮焼成体を作製する。得られた仮焼成体を焼成することにより固体電解質を得ることができる。 First, a raw material to be a Na source, a raw material to be a Zr source, a raw material to be a Y source, a raw material to be a Si source, and the like are weighed and mixed at a desired ratio. The obtained mixed powder is temporarily fired to prepare a temporarily fired body. A solid electrolyte can be obtained by baking the obtained temporary fired body.
 Na源としては、例えば、NaPO・12HOやNaCO等が用いられる。 As the Na source, for example, Na 3 PO 4 · 12H 2 O, Na 2 CO 3 or the like is used.
 Si源としては、例えば、SiOなどの酸化ケイ素等が用いられる。 For example, silicon oxide such as SiO 2 is used as the Si source.
 Zr源及びY源としては、イットリウム安定化ジルコニアを用いることができる。イットリウム安定化ジルコニアにおけるYの含有量は、Zrの含有量に対して、2.5モル%以上12.0モル%以下であることが好ましく、5.8モル%以上12.0モル%以下であることがより好ましく、5.8モル%以上8.9モル%以下であることがさらに好ましい。イットリウム安定化ジルコニアにおけるYの含有量をこのような含有量にすることによって、イットリウム安定化ジルコニアの結晶系が変化し、それに伴い、合成時における反応性が変化するため、得られる固体電解質のイオン伝導度が変化するものと考えられる。 Yttrium-stabilized zirconia can be used as the Zr source and the Y source. The Y content in the yttrium-stabilized zirconia is preferably 2.5 mol% or more and 12.0 mol% or less with respect to the Zr content, and is 5.8 mol% or more and 12.0 mol% or less. More preferably, it is 5.8 mol% or more and 8.9 mol% or less. By setting the Y content in the yttrium-stabilized zirconia to such a content, the crystal system of the yttrium-stabilized zirconia changes, and the reactivity during the synthesis changes accordingly. It is thought that the conductivity changes.
 なお、前記固体電解質の組成は、一般式Na3+xZr2-xSiPO12で表されるが、酸素のモル%は、結晶中の電荷の中性を保持するために適宜変化する。 The composition of the solid electrolyte is represented by the general formula Na 3 + x Zr 2−x Y x Si 2 PO 12 , but the mol% of oxygen changes as appropriate in order to maintain the neutrality of the charge in the crystal. .
 本実施形態のように、Zr源及びY源としてイットリウム安定化ジルコニアを用いることにより、高いイオン伝導度を有する固体電解質を得ることができる。この理由としては、定かではないが、以下の理由が考えられる。すなわち、Yを含む材料であるイットリウム安定化ジルコニアを原料として用いることで、Yが系内に高い均一性で固溶し、異相の形成が抑制されるため、得られる固体電解質のイオン伝導度が向上するものと考えられる。 As in this embodiment, a solid electrolyte having high ionic conductivity can be obtained by using yttrium-stabilized zirconia as the Zr source and the Y source. The reason for this is not clear, but may be as follows. That is, by using yttrium-stabilized zirconia, which is a material containing Y, as a raw material, Y dissolves in the system with high uniformity and the formation of heterogeneous phases is suppressed, so that the ionic conductivity of the obtained solid electrolyte is reduced. It is thought to improve.
 より高いイオン伝導度を実現する観点からは、Na3+xZr2-xSiPO12(0.05≦x≦0.24)で表される組成となるように原料を秤量、混合することが好ましく、Na3+xZr2-xSiPO12(0.12≦x≦0.24)で表される組成となるように原料を秤量、混合することがより好ましく、Na3+xZr2-xSiPO12(0.12≦x≦0.18)で表される組成となるような組成のイットリウム安定化ジルコニアを用いることが好ましい。具体的には、イットリウム安定化ジルコニアに含まれるYの量が、Zrの量に対して2.5モル%以上12モル%以下であるイットリウム安定化ジルコニアを用いることが好ましく、5.8モル%以上12モル%以下であるイットリウム安定化ジルコニアを用いることがより好ましく、5.8モル%以上8.9モル%以下であるイットリウム安定化ジルコニアを用いることがさらに好ましい。 From the viewpoint of realizing higher ionic conductivity, the raw materials are weighed and mixed so as to have a composition represented by Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.05 ≦ x ≦ 0.24) It is more preferable that the raw materials are weighed and mixed so as to have a composition represented by Na 3 + x Zr 2−x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.24), and Na 3 + x Zr It is preferable to use yttrium-stabilized zirconia having a composition represented by 2-x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.18). Specifically, it is preferable to use yttrium-stabilized zirconia in which the amount of Y contained in the yttrium-stabilized zirconia is 2.5 mol% or more and 12 mol% or less with respect to the amount of Zr. It is more preferable to use yttrium-stabilized zirconia that is 12 mol% or less, and it is more preferable to use yttrium-stabilized zirconia that is 5.8 mol% or more and 8.9 mol% or less.
 なお、Zr源及びY源として、イットリウム安定化ジルコニアに加えて、他のZr源やY源を併用してもよい。 In addition to the yttrium-stabilized zirconia, other Zr sources and Y sources may be used in combination as the Zr source and Y source.
 (全固体電池1の製造方法)
 次に、全固体電池1の製造方法の一例について説明する。
(Manufacturing method of all solid state battery 1)
Next, an example of a method for manufacturing the all solid state battery 1 will be described.
 まず、活物質粒子と固体電解質とに対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより正極11を構成するための第1のグリーンシートを形成する。同様に、負極12を構成するための第2のグリーンシートを形成する。 First, a paste is prepared by appropriately mixing a solvent, a resin, and the like with the active material particles and the solid electrolyte. The paste is applied on the sheet and dried to form a first green sheet for constituting the positive electrode 11. Similarly, a second green sheet for forming the negative electrode 12 is formed.
 固体電解質に対して、溶剤、樹脂等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、固体電解質層13を構成するための第3のグリーンシートを作製する。 A paste is prepared by appropriately mixing a solvent, a resin and the like with the solid electrolyte. The paste is applied and dried to produce a third green sheet for constituting the solid electrolyte layer 13.
 次に、第1~第3のグリーンシートを適宜積層することにより積層体を作製する。作製した積層体をプレスしてもよい。好ましいプレス方法としては、静水圧プレス等が挙げられる。 Next, a laminate is produced by appropriately laminating the first to third green sheets. You may press the produced laminated body. As a preferable pressing method, an isostatic pressing or the like can be mentioned.
 その後、積層体を焼結することにより全固体電池1を得ることができる。       Thereafter, the all-solid-state battery 1 can be obtained by sintering the laminate. .
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
 なお、以下の比較例及び実施例の説明において、イットリウム安定化ジルコニアにおけるYの含有量は、イットリウム安定化ジルコニアに含まれるZrに対するYのモル%である。 In the following description of the comparative examples and examples, the Y content in yttrium-stabilized zirconia is mol% of Y with respect to Zr contained in yttrium-stabilized zirconia.
 (比較例1)
 ZrO及びYを含む原料を下記の表1に示す組成となるように秤量した。次に、秤量した原料粉末と、エタノールと、直径が2mmの玉石とをポリエチレン製ポリポットに封入し、ポリポットを回転させることにより原料粉末及びエタノールを混合した。
(Comparative Example 1)
The raw materials containing ZrO 2 and Y 2 O 3 were weighed so as to have the composition shown in Table 1 below. Next, the weighed raw material powder, ethanol and cobblestone having a diameter of 2 mm were sealed in a polyethylene polypot, and the raw material powder and ethanol were mixed by rotating the polypot.
 次に、90℃に熱したホットプレート上に混合物を配し、加熱することによりエタノールを除去した。その後、空気雰囲気下、1100℃で8時間焼成した。 Next, the mixture was placed on a hot plate heated to 90 ° C., and ethanol was removed by heating. Then, it baked at 1100 degreeC in the air atmosphere for 8 hours.
 次に、得られた焼成物と、エタノールと、直径が2mmの玉石とをジルコニア製ポットに封入し、遊星ボールミル装置を用いてポットを回転させて焼成物を粉砕した。次に、90℃に熱したホットプレート上に混合物を配し、加熱することによりエタノールを除去した。 Next, the obtained fired product, ethanol, and cobblestone having a diameter of 2 mm were sealed in a zirconia pot, and the fired product was pulverized by rotating the pot using a planetary ball mill device. Next, the mixture was placed on a hot plate heated to 90 ° C., and ethanol was removed by heating.
 次に、焼成粉砕粉を20kN/cmの圧力でφ10mmで、厚みが500μm以上1000μmの大きさの錠剤に成形し、空気雰囲気下、1100℃以上1250℃以下の温度範囲で20時間焼成し、固体電解質層を得た。得られた固体電解質層は、理論密度の95%以上となる相対密度を有した緻密な焼結体であることを確認した。 Next, the baked pulverized powder is formed into a tablet having a diameter of 10 μm and a thickness of 500 μm or more and 1000 μm at a pressure of 20 kN / cm 2 , and is baked for 20 hours in an air atmosphere at a temperature range of 1100 ° C. A solid electrolyte layer was obtained. The obtained solid electrolyte layer was confirmed to be a dense sintered body having a relative density of 95% or more of the theoretical density.
 次に、固体電解質層の両面の上に、スパッタリング法を用いてPtからなる電極を形成し、比較例1に係るサンプル作製した。 Next, electrodes made of Pt were formed on both surfaces of the solid electrolyte layer using a sputtering method, and a sample according to Comparative Example 1 was produced.
 (実施例1)
 Zr源及びY源として、ZrO及びYに代えて、イットリウムの含有量が5.8モル%であるイットリウム安定化ジルコニアを用いたこと以外は、比較例1と同様にして実施例1に係るサンプルを作製した。
Example 1
Example as in Comparative Example 1 except that yttrium-stabilized zirconia having a yttrium content of 5.8 mol% was used as the Zr source and Y source in place of ZrO 2 and Y 2 O 3. A sample according to 1 was prepared.
 (比較例2)
 下記の表1に示す組成となるように秤量したこと以外は、比較例1と同様にして比較例2に係るサンプルを作製した。
(Comparative Example 2)
A sample according to Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the composition was weighed to have the composition shown in Table 1 below.
 作製したサンプルのX線回折チャートを図2に示す。図2に示す結果から、比較例2において作製した固体電解質層のX線回折パターンは、単斜晶のNaZrSiPO12とほぼ一致することが分かった。 An X-ray diffraction chart of the produced sample is shown in FIG. From the results shown in FIG. 2, it was found that the X-ray diffraction pattern of the solid electrolyte layer produced in Comparative Example 2 almost coincided with monoclinic Na 3 Zr 2 Si 2 PO 12 .
 (実施例2)
 Zr源及びY源として、ZrO及びYに代えて、イットリウムの含有量が5.8モル%であるイットリウム安定化ジルコニアを用いたこと以外は、比較例2と同様にして実施例2に係るサンプルを作製した。作製したサンプルのX線回折チャートを図2に示す。図2に示す結果から、実施例2において作製した固体電解質層のX線回折パターンは、単斜晶のNaZrSiPO12とほぼ一致することが分かった。
(Example 2)
Example as in Comparative Example 2 except that yttrium-stabilized zirconia having a yttrium content of 5.8 mol% was used as the Zr source and Y source in place of ZrO 2 and Y 2 O 3. A sample according to 2 was prepared. An X-ray diffraction chart of the produced sample is shown in FIG. From the results shown in FIG. 2, it was found that the X-ray diffraction pattern of the solid electrolyte layer produced in Example 2 substantially coincided with monoclinic Na 3 Zr 2 Si 2 PO 12 .
 (比較例3)
 Zr源としてZrOを用い、表2に示す組成となるように秤量したこと以外は比較例1と同様にして比較例3に係るサンプルを作製した。
(Comparative Example 3)
A sample according to Comparative Example 3 was prepared in the same manner as in Comparative Example 1 except that ZrO 2 was used as the Zr source and weighed to obtain the composition shown in Table 2.
 (実施例3)
 Zr源及びY源として、ZrO及びYに代えて、イットリウムの含有量が1.0モル%であるイットリウム安定化ジルコニアを用いたこと以外は、比較例3と同様にして実施例3に係るサンプルを作製した。
(Example 3)
Example as in Comparative Example 3 except that yttrium-stabilized zirconia having a yttrium content of 1.0 mol% was used as the Zr source and Y source instead of ZrO 2 and Y 2 O 3. A sample according to 3 was prepared.
 (実施例4)
 Zr源及びY源として、イットリウムの含有量が2.5モル%であるイットリウム安定化ジルコニアを用い、下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして実施例4に係るサンプルを作製した。
Example 4
Except for using yttrium-stabilized zirconia having a yttrium content of 2.5 mol% as the Zr source and the Y source, and weighing them to have the composition shown in Table 2 below, the same as in Comparative Example 1 A sample according to Example 4 was produced.
 (実施例5)
 Zr源及びY源として、イットリウムの含有量が8.9モル%であるイットリウム安定化ジルコニアを用い、下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして実施例5に係るサンプルを作製した。
(Example 5)
As in the case of Comparative Example 1, except that yttrium-stabilized zirconia having a yttrium content of 8.9 mol% was used as the Zr source and the Y source, and was weighed to have the composition shown in Table 2 below. A sample according to Example 5 was produced.
 (実施例6)
 Zr源及びY源として、イットリウムの含有量が12.4モル%であるイットリウム安定化ジルコニアを用い、下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして実施例6に係るサンプルを作製した。
(Example 6)
The same procedure as in Comparative Example 1 was conducted except that yttrium-stabilized zirconia having a yttrium content of 12.4 mol% was used as the Zr source and the Y source, and was weighed to have the composition shown in Table 2 below. A sample according to Example 6 was produced.
 (実施例7)
 Zr源及びY源として、イットリウムの含有量が17.5モル%であるイットリウム安定化ジルコニアを用い、下記の表2に示す組成となるように秤量したこと以外は、比較例1と同様にして実施例6に係るサンプルを作製した。
(Example 7)
Except for using yttrium-stabilized zirconia having a yttrium content of 17.5 mol% as the Zr source and Y source, and weighing in the composition shown in Table 2 below, in the same manner as in Comparative Example 1. A sample according to Example 6 was produced.
 (イオン伝導度の測定)
 各実施例及び比較例において作製したサンプルのイオン伝導度を、室温にて、周波数0.1MHz以上1MHz以下の周波数範囲で、振幅100mVでインピーダンスを測定することにより求めた。結果を表1,2に示す。なお、表1,2に示す「YSZ」はイットリウム安定化ジルコニアを示す。表1,2に示す「(第2のピークの強度)/(第1のピークの強度)」は、X線回折を行ったとき、2θが19.4°以上~20.2°以下の範囲に現れる第1のピークの強度に対する、2θが28.1°以上~28.3°以下の範囲に現れる第2のピークの強度の比を示す。
(Ion conductivity measurement)
The ionic conductivity of the samples prepared in each of the examples and comparative examples was determined by measuring the impedance with an amplitude of 100 mV in a frequency range of a frequency of 0.1 MHz to 1 MHz at room temperature. The results are shown in Tables 1 and 2. “YSZ” shown in Tables 1 and 2 indicates yttrium-stabilized zirconia. “(Intensity of second peak) / (Intensity of first peak)” shown in Tables 1 and 2 is a range where 2θ is 19.4 ° to 20.2 ° when X-ray diffraction is performed. 2 is a ratio of the intensity of the second peak appearing in the range of 28.1 ° to 28.3 ° with respect to the intensity of the first peak appearing in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1 全固体電池
11 正極
12 負極
13 固体電解質層 
DESCRIPTION OF SYMBOLS 1 All-solid-state battery 11 Positive electrode 12 Negative electrode 13 Solid electrolyte layer

Claims (7)

  1.  Naを伝導種とし、組成中にZrおよびYを含むNaSICON型の固体電解質を製造する方法であって、
     Zr源及びY源としてイットリウム安定化ジルコニアを用いて固体電解質を製造する、固体電解質の製造方法。
    A method for producing a NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition,
    A method for producing a solid electrolyte, comprising producing a solid electrolyte using yttrium-stabilized zirconia as a Zr source and a Y source.
  2.  Zr源及びY源としてイットリウム安定化ジルコニアを用いてNa3+xZr2-xSiPO12(0.05≦x≦0.24)で表される組成を有する固体電解質を製造する、請求項1に記載の固体電解質の製造方法。 Producing a solid electrolyte having a composition represented by Na 3 + x Zr 2-x Y x Si 2 PO 12 (0.05 ≦ x ≦ 0.24) using yttrium-stabilized zirconia as a Zr source and a Y source, Item 2. A method for producing a solid electrolyte according to Item 1.
  3.  Zr源及びY源としてイットリウム安定化ジルコニアを用いてNa3+xZr2-xSiPO12(0.12≦x≦0.24)で表される組成を有する固体電解質を製造する、請求項2に記載の固体電解質の製造方法。 Producing a solid electrolyte having a composition represented by Na 3 + x Zr 2-x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.24) using yttrium-stabilized zirconia as a Zr source and a Y source Item 3. A method for producing a solid electrolyte according to Item 2.
  4.  Zr源及びY源としてイットリウム安定化ジルコニアを用いてNa3+xZr2-xSiPO12(0.12≦x≦0.18)で表される組成を有する固体電解質を製造する、請求項3に記載の固体電解質の製造方法。 Producing a solid electrolyte having a composition represented by Na 3 + x Zr 2-x Y x Si 2 PO 12 (0.12 ≦ x ≦ 0.18) using yttrium-stabilized zirconia as a Zr source and a Y source Item 4. A method for producing a solid electrolyte according to Item 3.
  5.  請求項1~4のいずれか一項に記載の固体電解質の製造方法を用いて製造した固体電解質を含む固体電解質層と、電極とを焼結によって接合することにより全固体電池を得る、全固体電池の製造方法。 An all-solid battery in which an all-solid battery is obtained by joining a solid electrolyte layer containing a solid electrolyte produced using the method for producing a solid electrolyte according to any one of claims 1 to 4 and an electrode by sintering. Battery manufacturing method.
  6.  Naを伝導種とし、組成中にZrおよびYを含むNaSICON型の固体電解質であって、
     X線回折を行ったとき、2θが19.4°以上~20.2°以下の範囲に現れる第1のピークの強度に対する、2θが28.1°以上~28.3°以下の範囲に現れる第2のピークの強度の比((第2のピークの強度)/(第1のピークの強度))が20%以下である、固体電解質。
    A NaSICON type solid electrolyte containing Na as a conductive species and containing Zr and Y in the composition,
    When X-ray diffraction is performed, 2θ appears in the range of 28.1 ° to 28.3 ° relative to the intensity of the first peak that appears in the range of 29.4 ° to 20.2 °. Solid electrolyte having a second peak intensity ratio ((second peak intensity) / (first peak intensity)) of 20% or less.
  7.  請求項6に記載の固体電解質を含む固体電解質層と、
     前記固体電解質層の一方面に焼結によって接合されている正極と、
     前記固体電解質層の他方面に焼結によって接合されている負極と、
     を備える、全固体電池。 
     
    A solid electrolyte layer comprising the solid electrolyte according to claim 6;
    A positive electrode joined by sintering to one side of the solid electrolyte layer;
    A negative electrode joined by sintering to the other surface of the solid electrolyte layer;
    An all solid state battery.
PCT/JP2017/004132 2016-02-09 2017-02-03 Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery WO2017138465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016023164 2016-02-09
JP2016-023164 2016-02-09

Publications (1)

Publication Number Publication Date
WO2017138465A1 true WO2017138465A1 (en) 2017-08-17

Family

ID=59563897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004132 WO2017138465A1 (en) 2016-02-09 2017-02-03 Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery

Country Status (1)

Country Link
WO (1) WO2017138465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079769A (en) * 2017-10-27 2019-05-23 日本電気硝子株式会社 Method of manufacturing solid electrolyte sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076324A (en) * 2013-10-10 2015-04-20 株式会社村田製作所 Solid electrolytic material and all-solid battery arranged by use thereof
WO2015087734A1 (en) * 2013-12-09 2015-06-18 日本電気硝子株式会社 Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076324A (en) * 2013-10-10 2015-04-20 株式会社村田製作所 Solid electrolytic material and all-solid battery arranged by use thereof
WO2015087734A1 (en) * 2013-12-09 2015-06-18 日本電気硝子株式会社 Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IGNASZAK, A. ET AL.: "Synthesis and properties of Nasicon-type materials", THERMOCHIMICA ACTA, vol. 426, no. 1-2, February 2005 (2005-02-01), pages 7 - 14, XP027864671 *
SHQUA, K. ET AL.: "Determination of the p-electronic conduction parameter of NASICON by potentiometric measurements", ELECTROCHIMICA ACTA, vol. 49, no. 16, 15 July 2004 (2004-07-15), pages 2691 - 2696, XP004501647 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079769A (en) * 2017-10-27 2019-05-23 日本電気硝子株式会社 Method of manufacturing solid electrolyte sheet

Similar Documents

Publication Publication Date Title
WO2017154922A1 (en) Solid electrolyte, all-solid battery, solid electrolyte manufacturing method and all-solid battery manufacturing method
JP6593459B2 (en) Solid electrolyte and all-solid battery
JPWO2019093403A1 (en) All solid state battery
JP6904422B2 (en) Solid electrolytes and all-solid-state batteries
WO2013175993A1 (en) All-solid-state cell
JP6669268B2 (en) Solid electrolyte and all-solid battery
JP6262129B2 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP5516749B2 (en) All-solid battery and method for manufacturing the same
JP6197495B2 (en) All solid battery
WO2018056020A1 (en) Solid electrolyte and all-solid-state battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2017141742A1 (en) Solid electrolyte and all-solid-state battery
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
WO2017138465A1 (en) Production method for solid electrolytes, production method for all-solid-state batteries, solid electrolyte, and all-solid-state battery
WO2019044903A1 (en) Solid electrolyte material, solid electrolyte layer, and all-solid-state battery
WO2017183255A1 (en) Solid electrolyte and all-solid-state battery
JP6213340B2 (en) Solid electrolyte and all-solid battery
JP6003982B2 (en) All solid battery
WO2013133394A1 (en) All solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP