JP2015072403A - Image capturing lens, image capturing device, and mobile terminal - Google Patents

Image capturing lens, image capturing device, and mobile terminal Download PDF

Info

Publication number
JP2015072403A
JP2015072403A JP2013208752A JP2013208752A JP2015072403A JP 2015072403 A JP2015072403 A JP 2015072403A JP 2013208752 A JP2013208752 A JP 2013208752A JP 2013208752 A JP2013208752 A JP 2013208752A JP 2015072403 A JP2015072403 A JP 2015072403A
Authority
JP
Japan
Prior art keywords
lens
imaging
object side
conditional expression
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013208752A
Other languages
Japanese (ja)
Other versions
JP6160423B2 (en
Inventor
貴志 川崎
Takashi Kawasaki
貴志 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013208752A priority Critical patent/JP6160423B2/en
Publication of JP2015072403A publication Critical patent/JP2015072403A/en
Application granted granted Critical
Publication of JP6160423B2 publication Critical patent/JP6160423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compact image capturing lens which offers a larger aperture, good correction for various aberrations, and a seven-lens configuration.SOLUTION: An image capturing lens 10 includes a positive first lens L1 having a convex surface on the object side, a negative second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a negative seventh lens L7 having an object-side surface which is concave near an optical axis AX, in order from the object side, and satisfies a conditional expression: 1.5<ET2/CT2<3.0...(1), where a value CT2 represents a center thickness of the second lens L2 and a value ET2 represents an edge thickness of the second lens L2. Here, the edge thickness of the second lens L2 is defined as thickness in the optical axis direction at a position of the lesser of an effective diameter of an object-side surface S21 and that of an image-side surface S22 of the second lens L2.

Description

本発明は、小型の撮像レンズ、並びにこれを組み込んだ撮像装置及び携帯端末に関し、特に7枚のレンズを有する低背に好適な撮像レンズ、撮像装置、及び携帯端末に関する。   The present invention relates to a small imaging lens, an imaging apparatus and a portable terminal incorporating the same, and more particularly to an imaging lens suitable for a low profile having seven lenses, an imaging apparatus, and a portable terminal.

近年、CCD(Charge Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。さらに最近では、上記のような携帯情報端末等に搭載される表示素子の大型化・高精細化を受け、撮像素子も高画素化が求められており、これらの携帯情報端末等に搭載される撮像レンズに対しては、さらなる高性能化への要求が高まっている。このような用途の撮像レンズとして、5枚や6枚構成の撮像レンズが提案されている。最近では、さらなる高性能化を目指し5枚や6枚構成のレンズに比べ収差補正能力の優れた7枚構成のレンズも提案されている(例えば特許文献1、2等参照)。   In recent years, with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. More recently, with the increase in size and definition of display elements mounted on the above-described portable information terminals and the like, the imaging elements are also required to have higher pixels, and are mounted on these portable information terminals and the like. There is a growing demand for higher performance for imaging lenses. As imaging lenses for such applications, imaging lenses having five or six lenses have been proposed. Recently, a seven-lens lens having an excellent aberration correction capability compared to a five- or six-lens lens has been proposed for higher performance (see, for example, Patent Documents 1 and 2).

撮像素子に対する高画素化の要求の一方で、撮像装置の小型化の要求も強く、撮像素子については、高画素化と小型化とを両立するために、画素サイズの小型化が進んでいる。撮像素子の画素サイズが小さくなると、その分1画素当たりで受光できる光量が減少するため、S/N比が小さくなることによるノイズや、露光時間が長くなるため発生する手振れによる画像劣化が問題となる。この1画素当たりで受光できる光量の減少に起因する問題の対策のため、より明るいレンズが求められており、最近ではF1.9以下の大口径のレンズが求められている。一方で、大口径化は、受光光量の増加には寄与するが、球面収差やコマ収差などの単色収差の発生に繋がり、光学性能を劣化させてしまう。上記特許文献1には、第1レンズが正で、第2レンズが負で、7枚構成の撮像レンズが記載されているが、いずれもF2.0以上の暗い撮像レンズであり、十分な大口径化ができていない。また、これらの撮像レンズは、第2レンズの負のパワーが弱い傾向があり、F1.9以下に大口径化した際にコマ収差の補正が不足することが予想される。またコマ収差の補正が良好にできたとしても色収差の補正が困難になり、性能の維持が難しい。一方、上記特許文献2には、第1レンズが負で、第2レンズが正で、7枚構成の撮像レンズが記載されているが、上記特許文献1と同じくF2.0以上の暗い撮像レンズしか記載されておらず、十分な大口径化ができていない。また、大口径化の際に各レンズの有効径が大きくなると、それに伴い光軸方向への厚みも増加するため、光学全長の短縮が難しくなる。   On the other hand, there is a strong demand for downsizing of the image pickup apparatus on the other hand, while the demand for downsizing of the image pickup device is strong. In order to achieve both high downsizing and downsizing of the image pickup device, downsizing of the pixel size is progressing. As the pixel size of the image sensor becomes smaller, the amount of light that can be received per pixel decreases accordingly, and noise due to a decrease in the S / N ratio and image degradation due to camera shake that occurs due to a longer exposure time are problematic. Become. In order to solve the problem caused by the decrease in the amount of light that can be received per pixel, a brighter lens is demanded, and recently, a lens having a large aperture of F1.9 or less is demanded. On the other hand, increasing the diameter contributes to an increase in the amount of received light, but leads to the occurrence of monochromatic aberrations such as spherical aberration and coma aberration, and degrades optical performance. Patent Document 1 describes a seven-element imaging lens in which the first lens is positive, the second lens is negative, and both are dark imaging lenses of F2.0 or higher, and are sufficiently large. The aperture has not been made. In addition, these imaging lenses tend to have a weak negative power of the second lens, and it is expected that correction of coma aberration will be insufficient when the diameter is increased to F1.9 or less. Even if the coma aberration can be corrected satisfactorily, it becomes difficult to correct the chromatic aberration and it is difficult to maintain the performance. On the other hand, Patent Document 2 describes a seven-lens imaging lens in which the first lens is negative, the second lens is positive, and as in Patent Document 1, a dark imaging lens of F2.0 or higher is described. However, only a large diameter has not been described. Further, when the effective diameter of each lens is increased when the diameter is increased, the thickness in the optical axis direction is increased accordingly, so that it is difficult to shorten the optical total length.

中国実用新案公告第202886720号明細書China Utility Model Publication No. 2028886720 Specification 中国実用新案公告第202886713号明細書China Utility Model Notification No. 202886713

本発明は、このような問題点に鑑みてなされたものであり、従来タイプと同程度の小型の撮像レンズとしつつも、大口径化された上で、諸収差が良好に補正された、7枚構成の撮像レンズを提供することを目的とする。ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
L/2Y<1.00 … (13)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:撮像素子の撮像面対角線長(撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。
The present invention has been made in view of such a problem, and while making the imaging lens as small as that of the conventional type, the various apertures were corrected well with an increased diameter. An object of the present invention is to provide an imaging lens having a sheet configuration. Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <1.00 (13)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the imaging device (diagonal length of the rectangular effective pixel area of the imaging device)
Here, the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the value of L is calculated.

値L/2Yについては、より望ましくは、下式の範囲がよい。
L/2Y<0.95 … (13)'
The value L / 2Y is more preferably in the range of the following formula.
L / 2Y <0.95 (13) ′

上記目的を達成するため、本発明に係る撮像レンズは、物体側より順に、正の第1レンズ、負の第2レンズ、第3レンズ、第4レンズ、第5レンズ、第6レンズ及び第7レンズからなり、第7レンズの像側面は、非球面形状を有し、中心以外の有効径内に極値を有し、下記の条件式を満たす。
1.5<ET2/CT2<3.0 … (1)
CT2:第2レンズの中心厚
ET2:第2レンズの縁厚
ただし、第2レンズの縁厚とは、第2レンズの物体側面の有効径と像側面の有効径とのうち小さい方の径の位置の光軸方向の厚みとする。
なお、有効径とは、最大像高へ到達する光線束のうち、最も光軸から離れた位置を通過する光線の通過高さのことを示す。また、極値とは、有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面又は接線が光軸と垂直な平面又は線分となるような非球面上の点のことである。
In order to achieve the above object, an imaging lens according to the present invention includes, in order from the object side, a positive first lens, a negative second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. The image side surface of the seventh lens has an aspheric shape, has an extreme value within an effective diameter other than the center, and satisfies the following conditional expression.
1.5 <ET2 / CT2 <3.0 (1)
CT2: Center thickness of the second lens ET2: Edge thickness of the second lens However, the edge thickness of the second lens is the smaller of the effective diameter of the object side surface and the effective diameter of the image side surface of the second lens. The thickness of the position in the optical axis direction
The effective diameter refers to the passing height of the light beam that passes through the position farthest from the optical axis among the light beam reaching the maximum image height. The extreme value is a point on the aspheric surface where the tangential plane or tangent of the apex of the aspheric surface is a plane or line segment perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius. .

本発明に係る撮像レンズにおいては、最も物体側の第1レンズを正レンズとすることで、全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、第2レンズに負レンズを配置することで、軸上光束径の広い位置に負レンズを配置できるため、色収差の補正効果を高めることができ、高性能化することができる。また、第7レンズの像側面を有効径内の中心以外に極値又は変曲点を持った非球面とすることで、周辺像高の光線が撮像面へ入射する際の入射角を小さく抑えることが可能になるため、撮像素子を用いた場合のセンサーの受光効率を向上させることができる。   In the imaging lens according to the present invention, by using the first lens closest to the object side as a positive lens, the principal point position of the entire system is closer to the object side, which is advantageous for shortening the optical total length. In addition, by disposing the negative lens in the second lens, the negative lens can be disposed at a position where the axial light beam diameter is wide, so that the effect of correcting chromatic aberration can be enhanced and the performance can be improved. Further, by making the image side surface of the seventh lens an aspherical surface having an extreme value or an inflection point other than the center within the effective diameter, the incident angle when the light beam having the peripheral image height is incident on the imaging surface is suppressed to be small. Therefore, it is possible to improve the light receiving efficiency of the sensor when the image sensor is used.

本発明の撮像レンズに関する条件式(1)は、第2レンズの中心厚と縁厚との比を規定したものである。条件式(1)の下限を上回ることで第2レンズが中心厚に比べて縁厚の厚いレンズとなるため、強い負のパワーを持つことができるようになり、大口径化する場合に劣化しやすいコマ収差の補正を良好にしつつ、第1レンズで発生した色収差の補正も併せて良好にすることができる。一方、条件式(1)の上限を下回ることで、中心厚に比べて縁厚が厚くなり過ぎず、第2レンズが過剰に負のパワーを持つことが無いため、強い負のパワーによる球面収差及びコマ収差の過剰補正を防ぐことができる。また、中心厚と縁厚の差が大き過ぎることによるレンズ成形の難易度上昇も防ぐことができる。
条件式(1)の値については、より望ましくは、下式の範囲がよい。
1.75<ET2/CT2<2.5 … (1)'
Conditional expression (1) relating to the imaging lens of the present invention defines the ratio between the center thickness and the edge thickness of the second lens. By exceeding the lower limit of conditional expression (1), the second lens becomes a lens with a thicker edge thickness than the center thickness, so that it can have a strong negative power, which deteriorates when the aperture is increased. It is possible to improve the correction of chromatic aberration generated in the first lens while improving easy correction of coma. On the other hand, by falling below the upper limit of conditional expression (1), the edge thickness does not become too thick compared to the center thickness, and the second lens does not have excessively negative power, so spherical aberration due to strong negative power In addition, excessive correction of coma aberration can be prevented. Further, it is possible to prevent an increase in the difficulty of lens molding due to the difference between the center thickness and the edge thickness being too large.
As for the value of conditional expression (1), the range of the following expression is more desirable.
1.75 <ET2 / CT2 <2.5 (1) ′

本発明の具体的な側面によれば、上記撮像レンズにおいて、第7レンズは負レンズである。例えばオートフォーカスの撮像装置においては、撮像レンズと撮像面又はセンサーとの距離を変動させるため、レンズと撮像面との距離は、調整余裕を持たせるために、ある程度大きいことが求められる。最終レンズの第7レンズを負レンズとすることで、撮像レンズと撮像面とを遠ざけることになるためバックフォーカスを確保することができる。   According to a specific aspect of the present invention, in the imaging lens, the seventh lens is a negative lens. For example, in an autofocus imaging device, the distance between the imaging lens and the imaging surface or sensor is changed, and therefore the distance between the lens and the imaging surface is required to be large to some extent in order to provide an adjustment margin. By making the seventh lens of the final lens a negative lens, the imaging lens and the imaging surface are moved away from each other, so that back focus can be secured.

本発明の別の側面によれば、第7レンズは光軸近傍において像側に凹面を向けている。第7レンズが像側に凹面を向けることで、負の第7レンズの位置が主点位置に対して物体側に寄るため、バックフォーカスを伸ばすのに有利になる。   According to another aspect of the present invention, the seventh lens has a concave surface facing the image side in the vicinity of the optical axis. Since the seventh lens directs the concave surface to the image side, the position of the negative seventh lens is closer to the object side than the principal point position, which is advantageous for extending the back focus.

本発明のさらに別の側面によれば、第7レンズの物体側面は非球面形状を有する。第7レンズの物体側面を非球面形状とすることで、光軸付近と周辺部とで異なるパワーを持たせることが可能になるため、軸上光線と周辺光線との両方に対し最適な収差補正ができるようになる。   According to still another aspect of the present invention, the object side surface of the seventh lens has an aspherical shape. By making the object side surface of the seventh lens aspherical, it is possible to have different powers in the vicinity of the optical axis and in the peripheral part, so optimal aberration correction for both on-axis rays and peripheral rays Will be able to.

本発明のさらに別の側面によれば、第3レンズから第6レンズまでの各レンズは少なくとも片側に非球面を有する。第3レンズから第6レンズまでの各々を少なくとも片面が非球面からなるレンズとすることで、光軸付近と周辺部とで異なるパワーを持たせることが可能になるため、軸上光線と周辺光線との両方に対し最適な収差補正ができるようになる。非球面形状の自由度から、有効径内のサグ量を小さく抑えることもできるようになるため、各レンズの光軸方向に占める領域を小さく抑えることができ、光学全長の短縮に有利になる。   According to still another aspect of the present invention, each lens from the third lens to the sixth lens has an aspheric surface on at least one side. By making each of the third lens to the sixth lens a lens having at least one aspheric surface, it is possible to have different powers in the vicinity of the optical axis and in the peripheral portion. It becomes possible to correct the aberrations optimally for both. Since the amount of sag within the effective diameter can be reduced due to the degree of freedom of the aspherical shape, the area occupied by each lens in the optical axis direction can be reduced, which is advantageous for shortening the total optical length.

本発明のさらに別の側面によれば、第1レンズは物体側に凸面を向けている。第1レンズが物体側に凸面を向けることで、正の第1レンズの主点位置が物体側へ移動するため、焦点距離を維持しつつ光学全長を小さくすることができる。   According to still another aspect of the invention, the first lens has a convex surface facing the object side. Since the first lens has a convex surface directed toward the object side, the principal point position of the positive first lens moves toward the object side, so that the total optical length can be reduced while maintaining the focal length.

本発明のさらに別の側面によれば、第2レンズは像側に凹面を向けている。軸上光線束は、正の第1レンズによって収束されて第2レンズに入射するが、第2レンズが像側に凹面を向けることで、軸上光線束の第2レンズ像側面への入射角が小さくなるため、球面収差の発生を小さくすることができる。   According to still another aspect of the present invention, the second lens has a concave surface facing the image side. The axial ray bundle is converged by the positive first lens and is incident on the second lens. However, the incident angle of the axial ray bundle on the side surface of the second lens image is formed by directing the concave surface toward the image side. Therefore, the occurrence of spherical aberration can be reduced.

本発明のさらに別の側面によれば、第2レンズは物体側に凸面を向けたメニスカスレンズである。さらに、第2レンズを物体側に凸面を向けたメニスカスレンズとすることで、軸上光束の第2レンズの両面への入射角が小さくなるため、球面収差の発生を小さくすることができる。   According to still another aspect of the present invention, the second lens is a meniscus lens having a convex surface directed toward the object side. Furthermore, when the second lens is a meniscus lens having a convex surface directed toward the object side, the incident angle of the axial light beam on both surfaces of the second lens is reduced, so that the occurrence of spherical aberration can be reduced.

本発明のさらに別の側面によれば、第6レンズは像側に凸面を向けている。第6レンズが像側に凸面を向けていることで、軸上光線束に対しては、第1レンズと正のパワーを分担できるため、第1レンズに過剰な正のパワーを持たせる必要がなくなり、球面収差の発生を抑えることができる。一方で周辺光線束に対しては、入射角が小さくなるため、コマ収差の発生を抑えることができる。   According to still another aspect of the present invention, the sixth lens has a convex surface facing the image side. Since the sixth lens has a convex surface directed toward the image side, positive power can be shared with the first lens with respect to the axial ray bundle. Therefore, it is necessary to give the first lens excessive positive power. The generation of spherical aberration can be suppressed. On the other hand, since the incident angle is small with respect to the peripheral ray bundle, the occurrence of coma aberration can be suppressed.

本発明のさらに別の側面によれば、第3レンズよりも物体側に開口絞りを有する。開口絞りを第3レンズよりも物体側に配置することで、射出瞳を撮像面から遠ざけることができるため、センサー入射角を小さく抑えることができる。   According to still another aspect of the present invention, an aperture stop is provided closer to the object side than the third lens. By disposing the aperture stop closer to the object side than the third lens, the exit pupil can be moved away from the imaging surface, so that the sensor incident angle can be kept small.

本発明のさらに別の側面によれば、第5レンズと第6レンズとの少なくとも一方は、正レンズである。像面湾曲や非点収差への影響については、撮像面に近く、軸上の光線束と周辺に結像する光線束とが、光学面内の異なる位置を通過するレンズでの影響が大きく、これらの収差を補正するためには、撮像面に近いレンズに正負のパワーをバランスよく持たせる必要がある。第5レンズや第6レンズは撮像面に近いレンズであるため、第7レンズとの関係で正のパワーを持たせることで、全系のパワーにおいては第1レンズと正のパワーを分担しつつ、像面湾曲や非点収差の補正を良好にすることができる。   According to still another aspect of the present invention, at least one of the fifth lens and the sixth lens is a positive lens. As for the influence on the curvature of field and astigmatism, the influence of the lens that is close to the imaging surface and the axial ray bundle and the ray bundle that forms an image on the periphery passes through different positions in the optical surface is large. In order to correct these aberrations, it is necessary to provide positive and negative power in a balanced manner to a lens close to the imaging surface. Since the fifth lens and the sixth lens are lenses close to the imaging surface, by giving positive power in relation to the seventh lens, the positive power is shared with the first lens in the power of the entire system. Thus, it is possible to improve the correction of field curvature and astigmatism.

本発明のさらに別の側面によれば、下記の条件式を満たす。
0.4<f3456/f<1.1 … (2)
f3456:第3レンズから第6レンズまでの合成焦点距離
f:全系の焦点距離(以下省略)
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.4 <f3456 / f <1.1 (2)
f3456: Composite focal length from the third lens to the sixth lens f: Focal length of the entire system (hereinafter omitted)

条件式(2)は、第3レンズから第6レンズの合成焦点距離と全系の焦点距離の比を規定している。第1レンズを第1群、第2レンズを第2群、第3レンズから第6レンズまでを第3群、第7レンズを第4群と見た時に、第3群の正のパワーが強くなると、全系の主点位置が像側に寄せられるため、焦点距離が短くなってしまい広角化するか、焦点距離を維持しようとすると、光学全長が大きくなってしまう。条件式(2)の下限を上回ることで、第3群の正のパワーが強くなり過ぎないため、焦点距離を維持しつつ、光学全長の短縮に有利になる。一方、条件式(2)の上限を下回ることで、第3群がある程度正のパワーを持つことになるため、第1レンズと正のパワーを分担することができ、収差補正に有利になる。   Conditional expression (2) defines the ratio of the combined focal length of the third lens to the sixth lens and the focal length of the entire system. When the first lens is viewed as the first group, the second lens as the second group, the third lens through the sixth lens as the third group, and the seventh lens as the fourth group, the positive power of the third group is strong. Then, since the principal point position of the entire system is brought closer to the image side, the focal length is shortened and widened, or if the focal length is maintained, the optical total length is increased. By exceeding the lower limit of the conditional expression (2), the positive power of the third group does not become too strong, which is advantageous for shortening the optical total length while maintaining the focal length. On the other hand, by falling below the upper limit of conditional expression (2), the third lens group has a certain amount of positive power, so that the positive power can be shared with the first lens, which is advantageous for aberration correction.

条件式(2)の値については、より望ましくは、下式の範囲がよい。
0.45<f3456/f<0.8 … (2)'
さらに望ましくは下記の範囲を満たす。
0.45<f3456/f<0.6 … (2)"
As for the value of conditional expression (2), the range of the following expression is more desirable.
0.45 <f3456 / f <0.8 (2) ′
More desirably, the following range is satisfied.
0.45 <f3456 / f <0.6 (2) "

本発明のさらに別の側面によれば、下記の条件式を満たす。
0.5<f1/f<1.3 … (3)
f1:第1レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.5 <f1 / f <1.3 (3)
f1: Focal length of the first lens

条件式(3)は、第1レンズの焦点距離と全系の焦点距離との比を規定している。条件式(3)の下限を上回ることで、第1レンズのパワーが強くなり過ぎないため、球面収差やコマ収差の発生を抑えることができる。一方、条件式(3)の上限を下回ることで、第1レンズが強いパワーを持つことになるため、全系の主点位置が物体側に寄り、焦点距離を維持したまま光学全長を小さくすることができる。   Conditional expression (3) defines the ratio between the focal length of the first lens and the focal length of the entire system. By exceeding the lower limit of the conditional expression (3), the power of the first lens does not become too strong, so that the occurrence of spherical aberration and coma can be suppressed. On the other hand, since the first lens has a strong power by falling below the upper limit of conditional expression (3), the principal point position of the entire system is closer to the object side, and the total optical length is reduced while maintaining the focal length. be able to.

条件式(3)の値については、より望ましくは、下式の範囲がよい。
0.65<f1/f<1.1 … (3)'
さらに望ましくは下記の範囲を満たす。
0.80<f1/f<0.95 … (3)"
As for the value of conditional expression (3), the range of the following expression is more desirable.
0.65 <f1 / f <1.1 (3) ′
More desirably, the following range is satisfied.
0.80 <f1 / f <0.95 (3) "

本発明のさらに別の側面によれば、下記の条件式を満たす。
−2.5<f2/f<−0.8 … (4)
f2:第2レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
−2.5 <f2 / f <−0.8 (4)
f2: focal length of the second lens

条件式(4)は、第2レンズの焦点距離と全系の焦点距離との比を規定している。負の第2レンズには、正の第1レンズで発生した球面収差やコマ収差の補正、さらに色収差の補正の効果がある。条件式(4)の上限を下回ることで過剰補正を回避し、下限を上回ることで補正不足になることが無くなり、最適な収差補正をすることができる。   Conditional expression (4) defines the ratio between the focal length of the second lens and the focal length of the entire system. The negative second lens has an effect of correcting spherical aberration and coma generated in the positive first lens, and further correcting chromatic aberration. Overcorrection can be avoided by falling below the upper limit of conditional expression (4), and undercorrection can be prevented by exceeding the lower limit, and optimal aberration correction can be performed.

条件式(4)の値については、より望ましくは、下式の範囲がよい。
−2.0<f2/f<−0.9 … (4)'
さらに望ましくは下記の範囲を満たす。
−1.5<f2/f<−1.0 … (4)"
As for the value of conditional expression (4), the range of the following expression is more desirable.
−2.0 <f2 / f <−0.9 (4) ′
More desirably, the following range is satisfied.
-1.5 <f2 / f <-1.0 (4) "

本発明のさらに別の側面によれば、下記の条件式を満たす。
−2.0<f7/f<−0.30 … (5)
f7:第7レンズの焦点距離
According to still another aspect of the present invention, the following conditional expression is satisfied.
−2.0 <f7 / f <−0.30 (5)
f7: Focal length of the seventh lens

条件式(5)は、第7レンズの焦点距離と全系の焦点距離との比を規定している。第7レンズは最も像側に配置されるレンズであり、負の焦点距離を持たせることで、同じ光学全長のままバックフォーカスを伸ばすことが可能になる。条件式(5)の下限を上回ることで、第7レンズがある程度強いパワーを持つことになるため、十分なバックフォーカスの確保が可能になる。一方、条件式(5)の上限を下回ることで、第7レンズが過剰に負のパワーを持ち、バックフォーカスが長くなり過ぎることによって光学全長が増大するのを防ぐことができる。   Conditional expression (5) defines the ratio between the focal length of the seventh lens and the focal length of the entire system. The seventh lens is a lens arranged closest to the image side. By giving a negative focal length, the back focus can be extended with the same optical total length. By exceeding the lower limit of the conditional expression (5), the seventh lens has a certain degree of strong power, so that sufficient back focus can be secured. On the other hand, by falling below the upper limit of conditional expression (5), it is possible to prevent the seventh lens from having an excessively negative power and increasing the total optical length due to excessively long back focus.

条件式(5)の値については、より望ましくは、下式の範囲がよい。
−1.5<f7/f<−0.35 … (5)'
さらに望ましくは下記の範囲を満たす。
−1.0<f7/f<−0.40 … (5)"
The value of conditional expression (5) is more preferably in the range of the following expression.
−1.5 <f7 / f <−0.35 (5) ′
More desirably, the following range is satisfied.
-1.0 <f7 / f <-0.40 (5) "

本発明のさらに別の側面によれば、下記の条件式を満たす。
1.3<CT1/ET1<5.0 … (6)
CT1:第1レンズの中心厚
ET1:第1レンズの縁厚
ただし、第1レンズの縁厚とは、第1レンズの物体側面の有効径と像側面の有効径とのうち小さい方の径の位置の光軸方向の厚みとする
According to still another aspect of the present invention, the following conditional expression is satisfied.
1.3 <CT1 / ET1 <5.0 (6)
CT1: Center thickness of the first lens ET1: Edge thickness of the first lens However, the edge thickness of the first lens is a smaller one of the effective diameter of the object side surface and the effective diameter of the image side surface of the first lens. The thickness of the position in the optical axis direction

条件式(6)は、第1レンズの中心厚と縁厚との比を規定している。条件式(6)の下限を上回るとき、第1レンズは中心厚が縁厚の1.3倍以上の厚みを持つことになる。大口径化に伴い第1レンズの有効径が大きくなっても、この程度中心厚を厚くすることで、縁厚をある程度確保しつつ、第1レンズに強い正のパワーを持たせ光学全長の短縮を可能にできる。一方で、縁厚と中心厚の厚みに大きな差があると、樹脂でレンズを成形する場合に成形性が悪くなるという傾向が一般に知られている。条件式(6)の上限を下回ることで、縁厚に対し中心厚が大きくなり過ぎないため、レンズの成形性を良好にすることができる。   Conditional expression (6) defines the ratio between the center thickness of the first lens and the edge thickness. When the lower limit of conditional expression (6) is exceeded, the first lens has a center thickness that is 1.3 times or more the edge thickness. Even if the effective diameter of the first lens increases with an increase in diameter, the center thickness is increased to such an extent that the first lens has a strong positive power while shortening the overall optical length while ensuring a certain edge thickness. Can be made possible. On the other hand, it is generally known that when there is a large difference between the edge thickness and the center thickness, moldability tends to deteriorate when a lens is molded with a resin. By falling below the upper limit of conditional expression (6), the center thickness does not become too large with respect to the edge thickness, so that the lens moldability can be improved.

条件式(6)の値については、より望ましくは、下式の範囲がよい。
1.5<CT1/ET1<4.0 … (6)'
さらに望ましくは下記の範囲を満たす。
1.5<CT1/ET1<3.0 … (6)"
As for the value of conditional expression (6), the range of the following expression is more desirable.
1.5 <CT1 / ET1 <4.0 (6) '
More desirably, the following range is satisfied.
1.5 <CT1 / ET1 <3.0 (6) "

本発明のさらに別の側面によれば、第3レンズよりも物体側に開口絞りを含め少なくとも2つの所定の開口を持った絞り部材を有し、絞り部材のうち開口径が最も小さい絞り部材は最も像側に配置され、下記の条件式を満たす。
1.05<Φmax/Φmin<1.45 … (7)
Φmax:第3レンズよりも物体側に配置された絞り部材の開口径のうち最も大きい開口径
Φmin:第3レンズよりも物体側に配置された絞り部材の開口径のうち最も小さい開口径
According to still another aspect of the present invention, the aperture member having an aperture stop and having at least two predetermined apertures on the object side of the third lens has an aperture member having the smallest aperture diameter. It is arranged on the most image side and satisfies the following conditional expression.
1.05 <Φmax / Φmin <1.45 (7)
Φmax: the largest aperture diameter among the aperture diameters of the diaphragm member disposed on the object side relative to the third lens Φmin: the smallest aperture diameter among the aperture diameters of the diaphragm member disposed on the object side relative to the third lens

大口径レンズにおいては、コマ収差の発生が顕著になり、補正することが難しい。コマ収差を改善させるためには、開口絞り以外に遮光絞りを配置し、周辺像高に結像する光束のコマ収差に寄与する光線を遮断することが考えられる。第3レンズより物体側に少なくとも2つの絞り部材を持ち、その絞り部材のうち、最小の開口径を持つ絞り部材を最も像側に配置することで、コマ収差に寄与する光線を効率的に遮断することができるため、光学性能を向上させることができる。条件式(7)は、第3レンズより物体側に配置された絞り部材の最大の開口径と最小の開口径との比を規定している。条件式(7)の範囲を満たすことで、2つの絞り部材の開口径を適切にし、周辺像高の光を十分遮断しコマ収差を改善することができる。   In a large-aperture lens, coma aberration is prominent and difficult to correct. In order to improve the coma aberration, it is conceivable to arrange a light-shielding stop in addition to the aperture stop to block the light rays contributing to the coma aberration of the light beam formed at the peripheral image height. By having at least two aperture members closer to the object side than the third lens and disposing the aperture member having the smallest aperture diameter on the most image side, the light beam contributing to coma aberration can be effectively blocked. Therefore, the optical performance can be improved. Conditional expression (7) defines the ratio between the maximum aperture diameter and the minimum aperture diameter of the diaphragm member disposed on the object side from the third lens. By satisfying the range of conditional expression (7), the aperture diameters of the two diaphragm members can be made appropriate, light at the peripheral image height can be sufficiently blocked, and coma aberration can be improved.

条件式(7)の値については、より望ましくは、下式の範囲がよい。
1.15<Φmax/Φmin<1.40 … (7)'
さらに望ましくは下記の範囲を満たす。
1.25<Φmax/Φmin<1.35 … (7)"
As for the value of conditional expression (7), the range of the following expression is more desirable.
1.15 <Φmax / Φmin <1.40 (7) ′
More desirably, the following range is satisfied.
1.25 <Φmax / Φmin <1.35 (7) "

本発明のさらに別の側面によれば、下記条件式を満たす。
1.0<ΦL1/ΦL2<1.2 … (8)
ΦL1:第1レンズの最大有効径
ΦL2:第2レンズの最大有効径
According to still another aspect of the present invention, the following conditional expression is satisfied.
1.0 <ΦL1 / ΦL2 <1.2 (8)
ΦL1: Maximum effective diameter of the first lens ΦL2: Maximum effective diameter of the second lens

条件式(8)は、第1レンズの有効径と第2レンズの有効径との比を規定している。第2レンズは、軸上光線束に対しては軸上色収差や球面収差の補正、周辺光線束に対してはコマ収差の補正の効果がある。低背化する際に強い正のパワーを持った第1レンズで発生する上記の諸収差を補正するために第2レンズには強いパワーが必要になる。しかしながら、第2レンズの有効径が大きくなってしまうと、軸上光線束と周辺光線束とが第2レンズの異なる位置を通過することになるため、軸上光線束と周辺光線束との両方に対して強いパワーを発揮することができない。条件式(8)の下限を上回ることで、第2レンズの有効径が小さくなり、軸上光線束と周辺光線束とが第2レンズ内の近い位置を通過するようになる。結果として、両方に対して強いパワーを発揮できるようになるため、球面収差及び軸上色収差と、コマ収差との両方を補正することが可能になる。一方、条件式(8)の上限を下回ることで、第2レンズの有効径が小さくなり過ぎ、周辺像高の光線束のケラレ又は遮断によって周辺像高の光量が不足するのを防ぐことができる。また、第1レンズの有効径が大きくなり過ぎ、第1レンズが光軸方向に厚くなってしまうことによる光学全長の大型化を避けることができる。   Conditional expression (8) defines the ratio between the effective diameter of the first lens and the effective diameter of the second lens. The second lens has an effect of correcting axial chromatic aberration and spherical aberration with respect to the axial ray bundle and correcting coma aberration with respect to the peripheral ray bundle. In order to correct the various aberrations generated in the first lens having a strong positive power when the height is lowered, the second lens needs a strong power. However, if the effective diameter of the second lens is increased, the axial ray bundle and the peripheral ray bundle pass through different positions of the second lens. The strong power cannot be demonstrated. When the lower limit of conditional expression (8) is exceeded, the effective diameter of the second lens becomes smaller, and the axial ray bundle and the peripheral ray bundle pass through close positions in the second lens. As a result, since strong power can be exhibited for both, it is possible to correct both spherical aberration, axial chromatic aberration, and coma aberration. On the other hand, by falling below the upper limit of conditional expression (8), it is possible to prevent the effective diameter of the second lens from becoming too small, and the amount of light at the peripheral image height from being insufficient due to vignetting or blocking of the light flux at the peripheral image height. . Further, it is possible to avoid an increase in the overall optical length due to the effective diameter of the first lens becoming too large and the first lens becoming thick in the optical axis direction.

条件式(8)の値については、より望ましくは、下式の範囲がよい。
1.05<ΦL1/ΦL2<1.20 … (8)'
さらに望ましくは下記の範囲を満たす。
1.10<ΦL1/ΦL2<1.20 … (8)"
As for the value of conditional expression (8), the range of the following expression is more desirable.
1.05 <ΦL1 / ΦL2 <1.20 (8) ′
More desirably, the following range is satisfied.
1.10 <ΦL1 / ΦL2 <1.20 (8) "

本発明のさらに別の側面によれば、下記条件式を満たす。
0.51<ΦL1/f<0.75 … (9)
ΦL1:第1レンズの最大有効径
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.51 <ΦL1 / f <0.75 (9)
ΦL1: Maximum effective diameter of the first lens

条件式(9)は、第1レンズの有効径と全系の焦点距離との比を規定している。第1レンズは、最も物体側のレンズであり、大口径化する場合には有効径を大きくする必要がある。一方で、有効径の大きいレンズに強いパワーを持たせると、球面収差やコマ収差の発生が大きくなるため、収差補正が困難になる。条件式(9)の下限を上回ることにより、第1レンズの有効径が大きくなるため、大口径化が可能になる。一方、条件式(9)の上限を下回ることにより、第1レンズの有効径が大きくなり過ぎないため、強い正のパワーを持たせることが可能になり、大口径化しつつも低背化が可能になる。   Conditional expression (9) defines the ratio between the effective diameter of the first lens and the focal length of the entire system. The first lens is the most object side lens, and it is necessary to increase the effective diameter when the diameter is increased. On the other hand, if a lens having a large effective diameter is given a strong power, spherical aberration and coma aberration increase, making it difficult to correct aberrations. By exceeding the lower limit of the conditional expression (9), the effective diameter of the first lens is increased, so that the diameter can be increased. On the other hand, by falling below the upper limit of conditional expression (9), the effective diameter of the first lens does not become too large, so it is possible to have a strong positive power, and it is possible to reduce the height while increasing the diameter. become.

条件式(9)の値については、より望ましくは、下式の範囲がよい。
0.60<ΦL1/f<0.72 … (9)'
As for the value of conditional expression (9), the range of the following expression is more desirable.
0.60 <ΦL1 / f <0.72 (9) ′

本発明のさらに別の側面によれば、第3レンズの像側面は有効径の8割以上の領域が物体側に傾いており、第3レンズは有効径の端付近において正のパワーを持ち、第4レンズの像側面は有効径の8割以上の領域が物体側に傾いており、第4レンズは有効径の端付近において正のパワーを持ち、第5レンズは、有効径の端付近において負のパワーを持つ。ただし、ここでレンズのパワーとは、レンズに対し平行光を入射した際に、光線が光軸に近付く方向に屈折される場合を正のパワー、光軸から遠ざかる方向に屈折される場合を負のパワーを持つとする。
大口径レンズでは、周辺像高のコマ収差が大きくなるため、できるだけコマ収差が小さくなる構成が望ましい。第3レンズと第4レンズとの周辺部を正のパワーとすることで、周辺像高へ結像する光束が収束され小さくなり、次のレンズに入射する上下の開口端を通る光の入射角の差が小さくなるため、次のレンズ以降で発生するコマ収差の発生を小さくできる。同時に第3レンズと第4レンズとの周辺部の像側面を物体側に傾けることで、周辺へ向かう光線の入射角が小さくなるため、コマ収差の発生を小さくすることができる。また、第5レンズの周辺部を負のパワーとすることで、第3レンズと第4レンズとの周辺部の正のパワーで発生したコマ収差や像面湾曲などの収差を補正することができる。
According to still another aspect of the present invention, the image side surface of the third lens has an area of 80% or more of the effective diameter inclined toward the object side, and the third lens has a positive power near the end of the effective diameter, On the image side surface of the fourth lens, an area of 80% or more of the effective diameter is inclined toward the object side, the fourth lens has a positive power near the end of the effective diameter, and the fifth lens is near the end of the effective diameter. Has negative power. Here, the power of the lens is positive when the light beam is refracted in the direction approaching the optical axis when parallel light is incident on the lens, and negative when the light is refracted in the direction away from the optical axis. Suppose you have the power of
In a large-aperture lens, since the coma aberration at the peripheral image height is large, it is desirable that the coma aberration be as small as possible. By setting the peripheral portion of the third lens and the fourth lens to positive power, the light beam formed at the peripheral image height is converged and reduced, and the incident angle of light passing through the upper and lower aperture ends incident on the next lens Therefore, the coma aberration occurring after the next lens can be reduced. At the same time, by tilting the image side surface of the periphery of the third lens and the fourth lens toward the object side, the incident angle of the light beam toward the periphery is reduced, so that the occurrence of coma aberration can be reduced. Further, by setting the peripheral portion of the fifth lens to a negative power, it is possible to correct aberrations such as coma and field curvature that are generated by the positive power of the peripheral portion of the third lens and the fourth lens. .

本発明のさらに別の側面によれば、下記の条件式を満たす。
0.05<L5T/TTL<0.15 … (10)
L5T:第5レンズの物体側面における物体側への最凸部から、像側面における像側への最凸部までの光軸方向の距離
TTL:光学全長(最も物体側にある部材から撮像面までの距離)
According to still another aspect of the present invention, the following conditional expression is satisfied.
0.05 <L5T / TTL <0.15 (10)
L5T: distance in the optical axis direction from the most convex portion on the object side of the fifth lens to the object side on the object side to the most convex portion on the image side on the image side TTL: optical total length (from the member closest to the object side to the imaging surface) Distance)

条件式(10)は、第5レンズの物体側の有効径内における物体側への最凸部から、像側の有効径内における像側への最凸部までの光軸方向の距離と全系の焦点距離の比を規定している。値L5Tは、つまり第5レンズの光学面が光軸方向に占める領域の幅を表わしており、大き過ぎると光学全長の短縮の妨げとなり、小さ過ぎると第5レンズが小さなパワーしか持てず、像面湾曲などの収差補正が困難になる。条件式(10)を満たすことで、収差補正と光学全長の短縮とをバランスよく達成することができる。   Conditional expression (10) is the distance in the optical axis direction from the most convex part to the object side within the effective diameter on the object side of the fifth lens to the most convex part to the image side within the effective diameter on the image side. Defines the ratio of the focal lengths of the system. The value L5T represents the width of the region occupied by the optical surface of the fifth lens in the optical axis direction. If the value is too large, the total optical length is hindered. If the value is too small, the fifth lens has only a small power. It becomes difficult to correct aberrations such as surface curvature. By satisfying conditional expression (10), aberration correction and shortening of the optical total length can be achieved in a balanced manner.

本発明のさらに別の側面によれば、下記の条件式を満たす。
10°<θS8<60° … (11)
−25°<θS10<10° … (12)
θS8:第4レンズの像側面の有効径内の最大面角度
θS10:第5レンズの像側面の有効径の8割〜10割における最小面角度
ただし、面角度とは、光軸垂線と平行を0°とし、物体側に傾いている場合に正の値、像側に傾いている場合に負の値とする。
According to still another aspect of the present invention, the following conditional expression is satisfied.
10 ° <θS8 <60 ° (11)
−25 ° <θS10 <10 ° (12)
θS8: Maximum surface angle within the effective diameter of the image side surface of the fourth lens θS10: Minimum surface angle at 80% to 10% of the effective diameter of the image side surface of the fifth lens However, the surface angle is parallel to the optical axis perpendicular line 0 ° is set to a positive value when tilted toward the object side, and a negative value when tilted toward the image side.

条件式(11)は、第4レンズ像側面の有効径内における最大面の角度を規定している。条件式(11)の下限を上回ることで、第4レンズの像側面は周辺部が物体側に傾く形状になり、入射する光線に対し、垂直に近い角度とできるため、コマ収差の発生を小さくすることができる。一方、面角度が大きくなり過ぎると、レンズの成形が難しくなるが、条件式(11)の上限を下回ることで、レンズの成形が容易になる。
条件式(11)の値については、より望ましくは、下式の範囲がよい。
25°<θS8<50° … (11)'
一方、条件式(12)は、第5レンズ像側面の有効径8割より外側における最小の面角度を規定している。条件式(12)の上限を下回ることで、第5レンズ像側面の周辺部は光軸垂直に近付き、入射してくる光線を屈折させ光軸から遠ざかる方向へ跳ね上げる効果を持たせることができ、負の第2レンズと屈折を分担させることができるため、コマ収差の発生を抑えることができる。一方、条件式(12)の下限を上回ることで、第5レンズ像側面の周辺部は像側に傾き過ぎず、光線の屈折が大きくなり過ぎないため、コマ収差の発生を抑えることができる。
Conditional expression (11) defines the angle of the maximum surface within the effective diameter of the fourth lens image side surface. By exceeding the lower limit of the conditional expression (11), the image side surface of the fourth lens has a shape in which the peripheral portion is inclined toward the object side and can be set to an angle close to perpendicular to the incident light beam, thereby reducing the occurrence of coma aberration. can do. On the other hand, if the surface angle becomes too large, it is difficult to mold the lens, but the lens is easily molded by being less than the upper limit of the conditional expression (11).
The value of conditional expression (11) is more preferably in the range of the following expression.
25 ° <θS8 <50 ° (11) ′
On the other hand, conditional expression (12) defines the minimum surface angle outside the effective diameter 80% of the fifth lens image side surface. By falling below the upper limit of the conditional expression (12), the peripheral portion of the side surface of the fifth lens image approaches the optical axis perpendicularly, and an effect of refracting incident light rays and jumping away from the optical axis can be obtained. Since the refraction can be shared with the negative second lens, the occurrence of coma aberration can be suppressed. On the other hand, by exceeding the lower limit of the conditional expression (12), the peripheral portion of the side surface of the fifth lens image is not inclined too much toward the image side, and the refraction of light rays does not become too large, so that the occurrence of coma aberration can be suppressed.

条件式(12)の値については、より望ましくは、下式の範囲がよい。
−10°<θS10<5° … (12)'
As for the value of conditional expression (12), the range of the following expression is more desirable.
−10 ° <θS10 <5 ° (12) ′

本発明のさらに別の側面では、実質的にパワーを持たない光学素子をさらに有する。   In still another aspect of the present invention, the optical device further includes an optical element having substantially no power.

本発明に係る撮像装置は、上述の撮像レンズと、撮像素子とを備える。本発明の撮像レンズを用いることで、小型で明るく高性能の撮像装置を得ることができる。   An imaging apparatus according to the present invention includes the imaging lens described above and an imaging element. By using the imaging lens of the present invention, a small, bright and high-performance imaging device can be obtained.

本発明に係る携帯端末は、上述の撮像装置を備える。本発明の撮像装置を用いることで、小型で高性能の携帯端末を得ることができる。   The portable terminal which concerns on this invention is provided with the above-mentioned imaging device. By using the imaging device of the present invention, a small and high performance portable terminal can be obtained.

本発明の一実施形態の撮像レンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the imaging lens of one embodiment of the present invention. レンズや絞り部材の状態を説明する部分拡大断面図である。It is a partial expanded sectional view explaining the state of a lens or a diaphragm member. 図1の撮像装置を備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the imaging device of FIG. (A)及び(B)は、それぞれ携帯端末の表面側及び裏面側の斜視図である。(A) And (B) is a perspective view of the surface side and back surface side of a portable terminal, respectively. 実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. (A)〜(E)は、実施例1の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 1. FIG. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. (A)〜(E)は、実施例2の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. (A)〜(E)は、実施例3の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 3. FIGS. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. (A)〜(E)は、実施例4の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 4. FIGS. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. (A)〜(E)は、実施例5の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 5. FIGS. 実施例6の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 6. FIG. (A)〜(E)は、実施例6の撮像レンズの収差図である。(A)-(E) are the aberrational figures of the imaging lens of Example 6. FIG. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. (A)〜(E)は、実施例7の撮像レンズの収差図である。FIGS. 7A to 7E are aberration diagrams of the imaging lens of Example 7. FIGS. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. (A)〜(E)は、実施例8の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 8. FIGS. 実施例9の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 9. FIG. (A)〜(E)は、実施例9の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 9. FIGS. 実施例10の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 10. FIG. (A)〜(E)は、実施例10の撮像レンズの収差図である。FIGS. 9A to 9E are aberration diagrams of the imaging lens of Example 10. FIGS.

以下、図1等を参照して、本発明の一実施形態である撮像レンズ等について説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。   Hereinafter, with reference to FIG. 1 etc., the imaging lens etc. which are one Embodiment of this invention are demonstrated. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.

図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。   FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.

カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。   The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing a light beam from the object side to enter. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.

撮像レンズ10は、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、第7レンズL7とを備える。これらの第1〜第7レンズL1〜L7の間、第1レンズL1の物体側等の適所には、開口絞りASや遮光絞りFSが絞り部材として配置されている。   The imaging lens 10 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7. With. Between these first to seventh lenses L1 to L7, an aperture stop AS and a light-shielding stop FS are disposed as stop members at appropriate positions such as the object side of the first lens L1.

撮像レンズ10は、小型であり、その尺度として、以下の式(13)を満たすレベルの小型化を目指している。
L/2Y<1.00 … (13)
ここで、Lは、撮像レンズ10全系の最も物体側のレンズ面(物体側面S11)から像側焦点までの光軸AX上の距離であり、2Yは、撮像素子51の撮像面対角線長(撮像素子51の矩形実効画素領域の対角線長)であり、像側焦点とは、撮像レンズ10に光軸AXと平行な平行光線が入射した場合の像点をいう。この範囲を満たすことで、カメラモジュール50全体の小型化が可能となる。
The imaging lens 10 is small, and as a scale thereof, it is aimed to be downsized to a level that satisfies the following expression (13).
L / 2Y <1.00 (13)
Here, L is the distance on the optical axis AX from the most object side lens surface (object side surface S11) of the entire imaging lens 10 system to the image side focal point, and 2Y is the diagonal length of the imaging surface of the image sensor 51 ( The diagonal length of the rectangular effective pixel area of the image sensor 51), and the image-side focus refers to an image point when a parallel ray parallel to the optical axis AX is incident on the imaging lens 10. By satisfying this range, the entire camera module 50 can be reduced in size.

なお、撮像レンズ10の最も像側の面(像側面S72)と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲とする。
L/2Y<0.95 … (13)'
A parallel flat plate F such as an optical low-pass filter, an infrared cut filter, or a seal glass of an image pickup device package is disposed between the most image side surface (image side surface S72) of the image pickup lens 10 and the image side focal position. In this case, the value of L is calculated for the parallel flat plate F portion as an air conversion distance. More preferably, it is in the range of the following formula.
L / 2Y <0.95 (13) ′

撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの表面は、像面又は撮像面(被投影面)Iとなっている。   The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The surface of the photoelectric conversion unit 51a as the light receiving unit is an image plane or an imaging plane (projected plane) I.

配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。   The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.

撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。   On the imaging lens 10 side of the imaging element 51, a parallel plate F is disposed and fixed by a holder member (not shown) so as to cover the imaging element 51 and the like.

鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1〜L7のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、例えばボイスコイルモーターとガイドとを備え、特定の又は全部のレンズを光軸AXに沿って往復移動させる。   The lens barrel 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L7 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a includes, for example, a voice coil motor and a guide, and reciprocates a specific lens or all of the lenses along the optical axis AX.

撮像レンズ10を構成する第1〜第7レンズL1〜L7は、図示を省略しているが、周囲外側に支持用の比較的肉厚のフランジ部をそれぞれ有しており、フランジ部を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。   Although illustration is abbreviate | omitted, the 1st-7th lenses L1-L7 which comprise the imaging lens 10 have the comparatively thick flange part for a support on the outer periphery periphery, respectively, via a flange part. It is laminated with an adjacent lens and held in the lens barrel portion 54a.

図2等を参照して、鏡筒部54内に保持される撮像レンズ10の状態を説明する。撮像レンズ10を構成する第1〜第7レンズL1〜L7は、支持用のフランジ部39をそれぞれ有しており、フランジ部39を介して隣接するレンズと積層され、鏡筒部分54a内に保持されている。これらのレンズL1〜L7の間には、フランジ部39に挟まれて1つの開口絞りASと5つの遮光絞りFSとが配置され、迷光の発生を防止している。鏡筒部分54aの物体側には、レンズL1の有効径の周囲を覆うような開口絞りFSが形成されている。第7レンズL7のフランジ部39の像側にも遮光絞りFSが配置されている。以上の開口絞りASや遮光絞りFSは、いずれも結像に寄与する光線を選択的に通過させるための絞り部材である。   With reference to FIG. 2 etc., the state of the imaging lens 10 hold | maintained in the lens-barrel part 54 is demonstrated. The first to seventh lenses L1 to L7 constituting the imaging lens 10 each have a supporting flange portion 39, and are stacked with adjacent lenses via the flange portion 39, and are held in the lens barrel portion 54a. Has been. Between these lenses L1 to L7, one aperture stop AS and five light-shielding stops FS are disposed between the flange portions 39 to prevent the generation of stray light. An aperture stop FS that covers the periphery of the effective diameter of the lens L1 is formed on the object side of the lens barrel portion 54a. A light-shielding stop FS is also disposed on the image side of the flange portion 39 of the seventh lens L7. The aperture stop AS and the light-shielding stop FS described above are stop members for selectively allowing light rays contributing to image formation to pass through.

次に、図3、図4(A)及び4(B)を参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯端末300の一例について説明する。   Next, an example of a cellular phone or other portable terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 3, 4A, and 4B.

携帯端末300は、スマートフォン型の携帯通信端末であり、カメラモジュール50を有する撮像装置100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370とを備えている。   The mobile terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging device 100 having a camera module 50, a control unit (CPU) 310 that performs overall control of each unit and executes a program corresponding to each process, and communication. Various operations between a display operation unit 320 that is a touch panel that displays data related to the image, captured video, and the like and receives a user operation, an operation unit 330 including a power switch, and an external server via the antenna 341 Executed by a wireless communication unit 340 for realizing information communication, a storage unit (ROM) 360 storing necessary data such as a system program, various processing programs, and a terminal ID of the mobile terminal 300, and the control unit 310 Various processing programs and data, processing data, or imaging data by the imaging device 100 Temporary storage unit used as a work area for temporarily storing data or the like and a (RAM) 370.

撮像装置100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108等を備える。   In addition to the camera module 50 described above, the imaging apparatus 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, and the like.

制御部103は、撮像装置100の各部を制御する。制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働によって各種処理を実行する。なお、制御部103は、撮像装置100外の制御部310と通信可能に接続されており、制御信号や画像データの授受が可能になっている。   The control unit 103 controls each unit of the imaging device 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM, in cooperation with the CPU. Execute the process. The control unit 103 is communicably connected to the control unit 310 outside the imaging apparatus 100, and can exchange control signals and image data.

光学系駆動部105は、制御部103の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部105は、駆動機構55aを動作させて撮像レンズ10中の特定レンズ又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作等を行わせる。   The optical system driving unit 105 controls the state of the imaging lens 10 by operating the driving mechanism 55 a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the control unit 103. The optical system driving unit 105 operates the driving mechanism 55a to appropriately move the specific lens or all the lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation or the like.

撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動し、これから画像信号を取り出す。また、撮像素子駆動部107は、撮像素子51によって検出されデジタル化された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。   The image sensor drive unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor driving unit 107 scans and drives the image sensor 51 based on the timing signal, and extracts an image signal therefrom. The image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal detected and digitized by the image sensor 51.

画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。   The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.

ここで、上記撮像装置100を含む携帯端末300の撮影動作を説明する。携帯端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分検出する。   Here, the photographing operation of the mobile terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107 and detects an analog signal corresponding to one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.

このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータに対しては、撮像素子駆動部107にて画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてビデオ信号の生成に利用され、制御部103及び制御部310を介して、表示操作部320に出力される。   This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing in the image sensor driving unit 107 to generate a digital luminance signal Y and color difference signals Cb, Cr (image data). And stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 and used to generate a video signal, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.

この表示操作部320は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動により撮像レンズ10の合焦、露出等が設定される。   The display operation unit 320 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 105 based on an operation input performed by the user via the display operation unit 320 at any time.

このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮等の処理が施される。その処理された画像データは、制御部103及び制御部310を介して、例えば一時記憶部370等に記録される。   In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and processing such as compression is performed by the image sensor driving unit 107. The processed image data is recorded in the temporary storage unit 370, for example, via the control unit 103 and the control unit 310.

なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。   The above-described imaging apparatus 100 is an example of an imaging apparatus suitable for the present invention, and the present invention is not limited to this.

すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。   That is, the imaging device equipped with the camera module 50 or the imaging lens 10 is not limited to being built in the smartphone-type mobile terminal 300, but may be built into a mobile phone, a PHS (Personal Handyphone System), or the like. Of course, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.

以下、図1等に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、正の第1レンズL1と、負の第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6と、負の第7レンズL7と、を備える。上記撮像レンズ10において、第1レンズL1は、光軸AX近傍で物体側に凸面を向けており、第2レンズL2は、光軸AX近傍で像側に凹面を向けるとともに物体側に凸面を向けたメニスカスレンズである。第5レンズL5と第6レンズL6との少なくとも一方は、正レンズであり、第6レンズL6は、光軸AX近傍で像側に凸面を向けている。以上の第1〜第6レンズL1〜L6の物体側面及び像側面は、いずれも非球面となっている。最も像側の第7レンズL7は、光軸AX近傍で像側に凹面を向けており、その物体側面S71及び像側面S72は、非球面形状を有し、特に像側面S72は、中心以外の有効径内の位置Pに極値を持つ。
撮像レンズ10において、第3レンズL3の像側面S32は、有効径の8割以上(外側)の領域が物体側に傾いており、第3レンズL3は、有効径の端付近において正のパワーを持つ。第4レンズL4の像側面S42は、有効径の8割以上(外側)の領域が物体側に傾いており、第4レンズL4は、有効径の端付近において正のパワーを持つ。第5レンズL5は、有効径の端付近において負のパワーを持っている。
撮像レンズ10は、第3レンズL3より物体側に例えば2つ以上の絞り部材を有する。図示の例では、絞り部材としての開口絞りASが、第1及び第2レンズL1,L2の間に配置され、絞り部材としての遮光絞りFSが、第1レンズL1の物体側と、第2及び第3レンズL2,L3の間とに配置されている。
Hereinafter, returning to FIG. 1 and the like, the imaging lens 10 according to an embodiment of the present invention will be described in detail. An imaging lens 10 shown in FIG. 1 forms a subject image on an imaging surface (projected surface) I of an image sensor 51, and in order from the object side, a positive first lens L1 and a negative second lens. A lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a negative seventh lens L7 are provided. In the imaging lens 10, the first lens L1 has a convex surface facing the object side near the optical axis AX, and the second lens L2 has a concave surface facing the image side and a convex surface facing the object side near the optical axis AX. Meniscus lens. At least one of the fifth lens L5 and the sixth lens L6 is a positive lens, and the sixth lens L6 has a convex surface facing the image side in the vicinity of the optical axis AX. The object side surface and the image side surface of the first to sixth lenses L1 to L6 are both aspherical surfaces. The seventh lens L7 closest to the image side has a concave surface facing the image side in the vicinity of the optical axis AX. The object side surface S71 and the image side surface S72 have an aspherical shape, and in particular, the image side surface S72 has a region other than the center. There is an extreme value at position P within the effective diameter.
In the imaging lens 10, the image side surface S32 of the third lens L3 has an area of 80% or more (outside) of the effective diameter inclined toward the object side, and the third lens L3 exhibits positive power near the end of the effective diameter. Have. On the image side surface S42 of the fourth lens L4, an area of 80% or more (outside) of the effective diameter is inclined toward the object side, and the fourth lens L4 has a positive power near the end of the effective diameter. The fifth lens L5 has a negative power near the end of the effective diameter.
The imaging lens 10 has, for example, two or more aperture members on the object side from the third lens L3. In the illustrated example, an aperture stop AS as a stop member is disposed between the first and second lenses L1 and L2, and a light-shielding stop FS as a stop member is connected to the object side of the first lens L1, the second and second lenses L1, L2. Arranged between the third lenses L2 and L3.

上記撮像レンズ10によれば、最も物体側の第1レンズL1を正レンズとすることで、全系の主点位置が物体側に寄るため、光学全長の短縮に有利になる。また、正の第1レンズL1の次に負の第2レンズL2を配置することで、軸上光束径の広い位置に負レンズを配置できるため、色収差の補正効果を高めることができ、高性能化することができる。また、第7レンズL7の像側面S72を有効径内の位置Pに極値を持った非球面とすることで、周辺像高の光線が撮像面Iへ入射する際の入射角を小さく抑えることが可能になるため、撮像素子51の受光効率を向上させることができる。   According to the imaging lens 10, by using the first lens L1 closest to the object side as a positive lens, the principal point position of the entire system is closer to the object side, which is advantageous for shortening the optical total length. Further, since the negative second lens L2 is arranged next to the positive first lens L1, the negative lens can be arranged at a position where the axial light beam diameter is wide, so that the effect of correcting chromatic aberration can be enhanced, and high performance. Can be Further, by making the image side surface S72 of the seventh lens L7 an aspherical surface having an extreme value at the position P within the effective diameter, the incident angle when the light beam of the peripheral image height is incident on the imaging surface I can be kept small. Therefore, the light receiving efficiency of the image sensor 51 can be improved.

上記撮像レンズ10においては、値CT2を第2レンズL2の中心厚とし、値ET2を第2レンズL2の縁厚として、
1.5<ET2/CT2<3.0 … (1)
を満足するものとなっている。ただし、第2レンズL2の縁厚とは、第2レンズL2の物体側面S21の有効径と像側面S22の有効径とのうち小さい方の径の位置の光軸方向の厚みとする。
条件式(1)は、第2レンズL2の中心厚と縁厚との比を規定している。条件式(1)の値ET2/CT2が下限を上回ることで、第2レンズL2が中心厚に比べて縁厚の厚いレンズとなるため強い負のパワーを持つことができるようになり、大口径化する場合に劣化しやすいコマ収差の補正を良好にしつつ、第1レンズL1で発生した色収差の補正も併せて良好にすることができる。一方、条件式(1)の値ET2/CT2が上限を下回ることで、中心厚に比べて縁厚が厚くなり過ぎず、第2レンズL2が過剰に負のパワーを持つことが無いため、強い負のパワーによる球面収差及びコマ収差の過剰補正を防ぐことができる。また、中心厚と縁厚の差が大き過ぎることによるレンズ成形の難易度上昇も防ぐことができる。
なお、条件式(1)の値ET2/CT2については、下記の条件式(1)'の範囲内とすることがより望ましい。
1.75<ET2/CT2<2.5 … (1)'
In the imaging lens 10, the value CT2 is the center thickness of the second lens L2, and the value ET2 is the edge thickness of the second lens L2.
1.5 <ET2 / CT2 <3.0 (1)
Is satisfied. However, the edge thickness of the second lens L2 is the thickness in the optical axis direction at the position of the smaller diameter of the effective diameter of the object side surface S21 and the effective diameter of the image side surface S22 of the second lens L2.
Conditional expression (1) defines the ratio between the center thickness and the edge thickness of the second lens L2. When the value ET2 / CT2 of conditional expression (1) exceeds the lower limit, the second lens L2 becomes a lens having a thicker edge thickness than the center thickness, so that it can have a strong negative power, and has a large aperture. It is possible to improve the correction of the chromatic aberration generated in the first lens L1 while improving the correction of the coma aberration that is likely to be deteriorated. On the other hand, since the value ET2 / CT2 of conditional expression (1) is below the upper limit, the edge thickness does not become too thick compared to the center thickness, and the second lens L2 does not have excessively negative power, which is strong. It is possible to prevent overcorrection of spherical aberration and coma due to negative power. Further, it is possible to prevent an increase in the difficulty of lens molding due to the difference between the center thickness and the edge thickness being too large.
Note that the value ET2 / CT2 of the conditional expression (1) is more preferably within the range of the following conditional expression (1) ′.
1.75 <ET2 / CT2 <2.5 (1) ′

本実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(2)
0.4<f3456/f<1.1 … (2)
を満足する。ただし、値f3456は、第3レンズL3から第6レンズL6までの合成焦点距離であり、値fは全系の焦点距離である。
なお、条件式(2)の値f3456/fについては、下記の条件式(2)'の範囲内とすることがより望ましい。
0.45<f3456/f<0.8 … (2)'
値f3456/fについては、下記の条件式(2)"の範囲内とすることがさらに望ましい。
0.45<f3456/f<0.6 … (2)"
In addition to the conditional expression (1), the imaging lens 10 of the present embodiment has the conditional expression (2) already described.
0.4 <f3456 / f <1.1 (2)
Satisfied. However, the value f3456 is the combined focal length from the third lens L3 to the sixth lens L6, and the value f is the focal length of the entire system.
The value f3456 / f of the conditional expression (2) is more preferably within the range of the following conditional expression (2) ′.
0.45 <f3456 / f <0.8 (2) ′
The value f3456 / f is more preferably within the range of the following conditional expression (2) ".
0.45 <f3456 / f <0.6 (2) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(3)
0.5<f1/f<1.3 … (3)
を満足する。ただし、値f1は、第1レンズL1の焦点距離である。
なお、条件式(3)の値f1/fについては、下記の条件式(3)'の範囲内とすることがより望ましい。
0.65<f1/f<1.1 … (3)'
値f1/fについては、下記の条件式(3)"の範囲内とすることがさらに望ましい。
0.80<f1/f<0.95 … (3)"
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (3) already described.
0.5 <f1 / f <1.3 (3)
Satisfied. However, the value f1 is the focal length of the first lens L1.
The value f1 / f of conditional expression (3) is more preferably within the range of conditional expression (3) ′ below.
0.65 <f1 / f <1.1 (3) ′
The value f1 / f is more preferably within the range of the following conditional expression (3) ".
0.80 <f1 / f <0.95 (3) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(4)
−2.5<f2/f<−0.8 … (4)
を満足する。ただし、値f2は、第2レンズL2の焦点距離である。
なお、条件式(4)の値f2/fについては、下記の条件式(4)'の範囲内とすることがより望ましい。
−2.0<f2/f<−0.9 … (4)'
値f2/fについては、下記の条件式(4)"の範囲内とすることがさらに望ましい。
−1.5<f2/f<−1.0 … (4)"
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (4) already described.
−2.5 <f2 / f <−0.8 (4)
Satisfied. However, the value f2 is the focal length of the second lens L2.
The value f2 / f of conditional expression (4) is more preferably within the range of conditional expression (4) ′ below.
−2.0 <f2 / f <−0.9 (4) ′
The value f2 / f is more preferably within the range of the following conditional expression (4) ".
-1.5 <f2 / f <-1.0 (4) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(5)
−2.0<f7/f<−0.30 … (5)
を満足する。ただし、値f7は、第7レンズL7の焦点距離である。
なお、条件式(4)の値f7/fについては、下記の条件式(5)'の範囲内とすることがより望ましい。
−1.5<f7/f<−0.35 … (5)'
値f7/fについては、下記の条件式(5)"の範囲内とすることがさらに望ましい。
−1.0<f7/f<−0.40 … (5)"
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (5) already described.
−2.0 <f7 / f <−0.30 (5)
Satisfied. However, the value f7 is the focal length of the seventh lens L7.
The value f7 / f of the conditional expression (4) is more preferably within the range of the following conditional expression (5) ′.
−1.5 <f7 / f <−0.35 (5) ′
The value f7 / f is more preferably within the range of the following conditional expression (5) ".
-1.0 <f7 / f <-0.40 (5) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(6)
1.3<CT1/ET1<5.0 … (6)
を満足する。ただし、値CT1は、第1レンズL1の中心厚であり、値ET1は、第1レンズL1の縁厚である。なお、第1レンズL1の縁厚とは、第1レンズL1の物体側面S11の有効径又は光学面径と像側面S12の有効径又は光学面径とのうち小さい方の径の位置の光軸方向の厚みとする。
なお、条件式(6)の値CT1/ET1については、下記の条件式(6)'の範囲内とすることがより望ましい。
1.5<CT1/ET1<4.0 … (6)'
値CT1/ET1については、下記の条件式(6)"の範囲内とすることがさらに望ましい。
1.5<CT1/ET1<3.0 … (6)"
In the imaging lens 10 of the present embodiment, in addition to the conditional expression (1), the conditional expression (6) already described.
1.3 <CT1 / ET1 <5.0 (6)
Satisfied. However, the value CT1 is the center thickness of the first lens L1, and the value ET1 is the edge thickness of the first lens L1. The edge thickness of the first lens L1 is the optical axis at the position of the smaller one of the effective diameter or optical surface diameter of the object side surface S11 of the first lens L1 and the effective diameter or optical surface diameter of the image side surface S12. The thickness in the direction
The value CT1 / ET1 of the conditional expression (6) is more preferably within the range of the following conditional expression (6) ′.
1.5 <CT1 / ET1 <4.0 (6) '
The value CT1 / ET1 is more preferably within the range of the following conditional expression (6) ".
1.5 <CT1 / ET1 <3.0 (6) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(7)
1.05<Φmax/Φmin<1.45 … (7)
を満足する。ただし、値Φmaxは、第3レンズL3よりも物体側に配置された絞り部材AS,FSの開口径のうち最も大きい開口径であり、値Φminは、第3レンズL3よりも物体側に配置された絞り部材AS,FSの開口径のうち最も小さい開口径である。
なお、条件式(7)の値Φmax/Φminについては、下記の条件式(7)'の範囲内とすることがより望ましい。
1.15<Φmax/Φmin<1.40 … (7)'
値Φmax/Φminについては、下記の条件式(7)"の範囲内とすることがさらに望ましい。
1.25<Φmax/Φmin<1.35 … (7)"
The imaging lens 10 of the present embodiment has the conditional expression (7) already described in addition to the conditional expression (1).
1.05 <Φmax / Φmin <1.45 (7)
Satisfied. However, the value Φmax is the largest aperture diameter among the aperture diameters of the aperture members AS and FS disposed on the object side relative to the third lens L3, and the value Φmin is disposed on the object side relative to the third lens L3. It is the smallest aperture diameter among the aperture diameters of the aperture members AS and FS.
Note that the value Φmax / Φmin of the conditional expression (7) is more preferably within the range of the following conditional expression (7) ′.
1.15 <Φmax / Φmin <1.40 (7) ′
The value Φmax / Φmin is more preferably within the range of the following conditional expression (7) ".
1.25 <Φmax / Φmin <1.35 (7) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(8)
1.0<ΦL1/ΦL2<1.2 … (8)
を満足する。ただし、値ΦL1は、第1レンズL1の最大有効径であり、値ΦL2は、第2レンズL2の最大有効径である。
なお、条件式(8)の値ΦL1/ΦL2については、下記の条件式(8)'の範囲内とすることがより望ましい。
1.05<ΦL1/ΦL2<1.20 … (8)'
値ΦL1/ΦL2については、下記の条件式(8)"の範囲内とすることがさらに望ましい。
1.10<ΦL1/ΦL2<1.20 … (8)"
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (8) already described.
1.0 <ΦL1 / ΦL2 <1.2 (8)
Satisfied. However, the value ΦL1 is the maximum effective diameter of the first lens L1, and the value ΦL2 is the maximum effective diameter of the second lens L2.
The value ΦL1 / ΦL2 of the conditional expression (8) is more preferably within the range of the following conditional expression (8) ′.
1.05 <ΦL1 / ΦL2 <1.20 (8) ′
The value ΦL1 / ΦL2 is more preferably within the range of the following conditional expression (8) ″.
1.10 <ΦL1 / ΦL2 <1.20 (8) "

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(9)
0.51<ΦL1/f<0.75 … (9)
を満足する。ただし、値ΦL1は、第1レンズL1の最大有効径である。
なお、条件式(9)の値ΦL1/fについては、下記の条件式(9)'の範囲内とすることがより望ましい。
0.60<ΦL1/f<0.72 … (9)'
The imaging lens 10 of the present embodiment has the conditional expression (9) already described in addition to the conditional expression (1).
0.51 <ΦL1 / f <0.75 (9)
Satisfied. However, the value ΦL1 is the maximum effective diameter of the first lens L1.
Note that the value ΦL1 / f of the conditional expression (9) is more preferably within the range of the following conditional expression (9) ′.
0.60 <ΦL1 / f <0.72 (9) ′

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(10)
0.05<L5T/TTL<0.15 … (10)
を満足する。ただし、値L5Tは、第5レンズL5の物体側面S51における物体側への最凸部から、像側面S52における像側への最凸部までの光軸方向の距離であり、値TTLは、光学全長である。
In addition to the conditional expression (1) and the like, the imaging lens 10 of the present embodiment has the conditional expression (10) already described.
0.05 <L5T / TTL <0.15 (10)
Satisfied. However, the value L5T is the distance in the optical axis direction from the most convex portion toward the image side in the image side surface S52 from the most convex portion toward the image side in the object side surface S51 of the fifth lens L5. Full length.

本実施形態の撮像レンズ10は、上記条件式(1)等に加えて、既に説明した条件式(11)及び(12)
10°<θS8<60° … (11)
−25°<θS10<10° … (12)
を満足する。ただし、値θS8は第4レンズL4の像側面S42の有効径内の最大面角度であり、値θS10は、第5レンズL5の像側面S52の有効径の8割〜10割における最小面角度である。なお、面角度とは、光軸垂線と平行を0°とし、物体側に傾いている場合に正の値、像側に傾いている場合に負の値とする。
なお、条件式(11)の値θS8については、下記の条件式(11)'の範囲内とすることがより望ましい。
25°<θS8<50° … (11)'
条件式(12)の値θS10については、下記の条件式(12)'の範囲内とすることがより望ましい。
−10°<θS10<5° … (12)'
The imaging lens 10 of the present embodiment has the conditional expressions (11) and (12) already described in addition to the conditional expression (1).
10 ° <θS8 <60 ° (11)
−25 ° <θS10 <10 ° (12)
Satisfied. However, the value θS8 is the maximum surface angle within the effective diameter of the image side surface S42 of the fourth lens L4, and the value θS10 is the minimum surface angle at 80% to 10% of the effective diameter of the image side surface S52 of the fifth lens L5. is there. The surface angle is 0 ° parallel to the optical axis perpendicular, and is a positive value when tilted toward the object side, and a negative value when tilted toward the image side.
The value θS8 of the conditional expression (11) is more preferably within the range of the following conditional expression (11) ′.
25 ° <θS8 <50 ° (11) ′
The value θS10 of the conditional expression (12) is more preferably within the range of the following conditional expression (12) ′.
−10 ° <θS10 <5 ° (12) ′

本実施形態の撮像レンズ10では、特に図示していないが、実質的にパワーを持たないレンズその他の光学素子をさらに備えるものとできる。   Although not particularly illustrated, the imaging lens 10 of the present embodiment may further include a lens or other optical element that does not substantially have power.

以下、本発明に係る撮像レンズの具体的な実施例について説明する。各実施例において、rは曲率半径を意味し、dは軸上面間隔を意味し、ndはレンズ材料のd線に対する屈折率を意味し、vdはレンズ材料のアッベ数を意味し、「eff.dia.」は有効径を意味する。また、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。

Figure 2015072403
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
さらに、各実施例において、「STO」は開口絞りASを意味し、「FS」は遮光絞りFSを意味する。
なお、各実施例の撮像レンズが前提とする使用基本波長は587.56nmであり、曲率半径等の面形状の単位はmmである。 Hereinafter, specific examples of the imaging lens according to the present invention will be described. In each embodiment, r represents the radius of curvature, d represents the axial top surface spacing, nd represents the refractive index of the lens material with respect to the d-line, vd represents the Abbe number of the lens material, “eff. “dia.” means an effective diameter. In addition, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin, the X axis in the optical axis AX direction, The height in the direction perpendicular to the axis AX is represented by “Equation 1” below.
Figure 2015072403
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant Further, in each embodiment, “STO” means the aperture stop AS, and “FS” means the light blocking stop FS.
In addition, the use fundamental wavelength which the imaging lens of each Example presupposes is 587.56 nm, and the unit of surface shape, such as a curvature radius, is mm.

〔実施例1〕
実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.1000 2.700
2* 1.9667 0.7120 1.54470 56 2.625
3* -9.5028 0.0663 2.494
STO INFINITY 0.0000 2.443
5* 2.1268 0.1504 1.63469 23.9 2.282
6* 1.1775 0.3670 2.056
7 FS INFINITY 0.1800 2.050
8* 22.5212 0.3660 1.54470 56 2.182
9* 8.2854 0.1000 2.451
10* 2.6266 0.3717 1.54470 56 2.778
11* 4.7470 0.1535 3.036
12* 8.6726 0.2000 1.63469 23.9 3.277
13* 5.3552 0.2870 3.431
14* 8.4713 0.6176 1.54470 56 3.820
15* -1.2722 0.2844 4.092
16* 45.1563 0.3151 1.54470 56 4.908
17* 1.0531 0.4000 5.309
18 INFINITY 0.1100 1.51633 64.1 5.602
19 INFINITY 0.3790
[Example 1]
The lens surface data of Example 1 is shown in Table 1 below.
[Table 1]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.1000 2.700
2 * 1.9667 0.7120 1.54470 56 2.625
3 * -9.5028 0.0663 2.494
STO INFINITY 0.0000 2.443
5 * 2.1268 0.1504 1.63469 23.9 2.282
6 * 1.1775 0.3670 2.056
7 FS INFINITY 0.1800 2.050
8 * 22.5212 0.3660 1.54470 56 2.182
9 * 8.2854 0.1000 2.451
10 * 2.6266 0.3717 1.54470 56 2.778
11 * 4.7470 0.1535 3.036
12 * 8.6726 0.2000 1.63469 23.9 3.277
13 * 5.3552 0.2870 3.431
14 * 8.4713 0.6176 1.54470 56 3.820
15 * -1.2722 0.2844 4.092
16 * 45.1563 0.3151 1.54470 56 4.908
17 * 1.0531 0.4000 5.309
18 INFINITY 0.1100 1.51633 64.1 5.602
19 INFINITY 0.3790

実施例1のレンズ面の非球面係数を以下の表2に示す。
〔表2〕
第2面
K=-8.22802e-001, A4=1.91375e-002, A6=5.43170e-003,
A8=-5.90436e-003, A10=8.76981e-003, A12=-4.67995e-003,
A14=1.07996e-003
第3面
K=-7.98909e+001, A4=9.81762e-002, A6=-1.18737e-001,
A8=1.18025e-001, A10=-7.92024e-002, A12=3.03109e-002,
A14=-4.86274e-003
第5面
K=-2.24162e+001, A4=1.80214e-002, A6=-4.06404e-002,
A8=5.39192e-002, A10=-5.00906e-002, A12=2.27445e-002,
A14=-3.54001e-003
第6面
K=-6.33786e+000, A3=1.03847e-002, A4=1.36593e-002,
A5=1.94056e-002, A6=4.64130e-002, A8=-1.32939e-001,
A10=1.71554e-001, A12=-1.14880e-001, A14=3.23310e-002
第8面
K=-2.79837e+001, A3=-1.02503e-002, A4=1.95438e-002,
A5=-1.94346e-001, A6=2.30842e-001, A8=-2.05062e-001,
A10=1.34975e-001, A12=-5.11263e-002, A14=-3.10333e-004
第9面
K=4.97825e+000, A3=-4.48486e-002, A4=-1.72924e-001,
A5=4.01329e-003, A6=6.30455e-002, A8=-4.19386e-002,
A10=6.44463e-003, A12=6.17139e-003, A14=-4.50847e-003
第10面
K=4.89398e-001, A3=-7.49603e-002, A4=-1.53262e-001,
A5=9.45476e-003, A6=-1.14499e-002, A8=5.41254e-003,
A10=7.60970e-003, A12=1.34869e-003, A14=-1.55023e-003
第11面
K=6.32329e+000, A3=-8.08059e-002, A4=-5.21718e-002,
A5=5.05387e-002, A6=-1.28865e-001, A8=5.81021e-002,
A10=-1.28264e-002, A12=1.49895e-003
第12面
K=1.86989e+001, A3=-4.91918e-002, A4=-3.35069e-001,
A5=3.65152e-001, A6=-2.67571e-001, A8=1.01794e-001,
A10=-1.92471e-002, A12=8.87502e-004
第13面
K=-3.08174e+000, A3=-3.23757e-002, A4=-2.63810e-001,
A5=1.59983e-001, A6=-4.87836e-002, A8=6.04489e-003,
A10=6.42809e-003, A12=-2.20734e-003, A14=1.58325e-004
第14面
K=-3.38748e+001, A3=-3.88196e-003, A4=1.24503e-002,
A5=-1.20172e-001, A6=1.17358e-001, A8=-4.78783e-002,
A10=1.49422e-002, A12=-2.67805e-003, A14=2.20101e-004
第15面
K=-9.07157e+000, A3=-9.46510e-002, A4=-5.97512e-002,
A5=1.02415e-001, A6=-6.69828e-003, A8=-1.78173e-002,
A10=6.50738e-003, A12=-1.12326e-003, A14=7.68896e-005
第16面
K=7.99641e+001, A3=-1.20236e-001, A4=-9.23792e-002,
A5=3.91343e-002, A6=2.25840e-002, A8=-2.96911e-003,
A10=-3.44293e-004, A12=8.49048e-005, A14=-4.43939e-006
第17面
K=-6.37169e+000, A3=-1.87779e-003, A4=-1.49423e-001,
A5=1.11589e-001, A6=-2.92809e-002, A8=1.35999e-003,
A10=-2.30915e-004, A12=2.63067e-005, A14=-8.30657e-007
なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10−002)を、e(たとえば2.5e−002)を用いて表すものとする。
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below.
[Table 2]
Second side
K = -8.22802e-001, A4 = 1.91375e-002, A6 = 5.43170e-003,
A8 = -5.90436e-003, A10 = 8.76981e-003, A12 = -4.67995e-003,
A14 = 1.07996e-003
Third side
K = -7.98909e + 001, A4 = 9.81762e-002, A6 = -1.18737e-001,
A8 = 1.18025e-001, A10 = -7.92024e-002, A12 = 3.03109e-002,
A14 = -4.86274e-003
5th page
K = -2.24162e + 001, A4 = 1.80214e-002, A6 = -4.06404e-002,
A8 = 5.39192e-002, A10 = -5.00906e-002, A12 = 2.27445e-002,
A14 = -3.54001e-003
6th page
K = -6.33786e + 000, A3 = 1.03847e-002, A4 = 1.36593e-002,
A5 = 1.94056e-002, A6 = 4.64130e-002, A8 = -1.32939e-001,
A10 = 1.71554e-001, A12 = -1.14880e-001, A14 = 3.23310e-002
8th page
K = -2.79837e + 001, A3 = -1.02503e-002, A4 = 1.95438e-002,
A5 = -1.94346e-001, A6 = 2.30842e-001, A8 = -2.05062e-001,
A10 = 1.34975e-001, A12 = -5.11263e-002, A14 = -3.10333e-004
9th page
K = 4.97825e + 000, A3 = -4.48486e-002, A4 = -1.72924e-001,
A5 = 4.01329e-003, A6 = 6.30455e-002, A8 = -4.19386e-002,
A10 = 6.44463e-003, A12 = 6.17139e-003, A14 = -4.50847e-003
10th page
K = 4.89398e-001, A3 = -7.49603e-002, A4 = -1.53262e-001,
A5 = 9.45476e-003, A6 = -1.14499e-002, A8 = 5.41254e-003,
A10 = 7.60970e-003, A12 = 1.34869e-003, A14 = -1.55023e-003
11th page
K = 6.32329e + 000, A3 = -8.08059e-002, A4 = -5.21718e-002,
A5 = 5.05387e-002, A6 = -1.28865e-001, A8 = 5.81021e-002,
A10 = -1.28264e-002, A12 = 1.49895e-003
12th page
K = 1.86989e + 001, A3 = -4.91918e-002, A4 = -3.35069e-001,
A5 = 3.65152e-001, A6 = -2.67571e-001, A8 = 1.01794e-001,
A10 = -1.92471e-002, A12 = 8.87502e-004
Side 13
K = -3.08174e + 000, A3 = -3.23757e-002, A4 = -2.63810e-001,
A5 = 1.59983e-001, A6 = -4.87836e-002, A8 = 6.04489e-003,
A10 = 6.42809e-003, A12 = -2.20734e-003, A14 = 1.58325e-004
14th page
K = -3.38748e + 001, A3 = -3.88196e-003, A4 = 1.24503e-002,
A5 = -1.20172e-001, A6 = 1.17358e-001, A8 = -4.78783e-002,
A10 = 1.49422e-002, A12 = -2.67805e-003, A14 = 2.20101e-004
15th page
K = -9.07157e + 000, A3 = -9.46510e-002, A4 = -5.97512e-002,
A5 = 1.02415e-001, A6 = -6.69828e-003, A8 = -1.78173e-002,
A10 = 6.50738e-003, A12 = -1.12326e-003, A14 = 7.68896e-005
16th page
K = 7.99641e + 001, A3 = -1.20236e-001, A4 = -9.23792e-002,
A5 = 3.91343e-002, A6 = 2.25840e-002, A8 = -2.96911e-003,
A10 = -3.44293e-004, A12 = 8.49048e-005, A14 = -4.43939e-006
17th page
K = -6.37169e + 000, A3 = -1.87779e-003, A4 = -1.49423e-001,
A5 = 1.11589e-001, A6 = -2.92809e-002, A8 = 1.35999e-003,
A10 = -2.30915e-004, A12 = 2.63067e-005, A14 = -8.30657e-007
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −002 ) is expressed using e (for example, 2.5e−002).

実施例1の撮像レンズの特性を以下に列挙する。
FL 3.778
Fno 1.44
w 75.33
Ymax 2.916
BF 0.889
TL 5.060
BFa 0.852
TLa 5.023
ここで、FLは撮像レンズ全系の焦点距離を意味し、FnoはFナンバーを意味し、wは対角線画角を意味し、Ymaxは最大像高、すなわち撮像素子の撮像面対角線長の半値を意味し、BFはバックフォーカス(最終レンズ〜像面)を意味し、TLは光学全長を意味する。また、BFaは、バックフォーカス(最終レンズ〜像面 ※平行平板は空気換算長としたとき)、TLaは、光学全長(最終レンズ〜像面 ※平行平板は空気換算長としたとき)を意味する。なお、以上の符号は、これ以降の実施例でも同様の意味を有するものとする。
The characteristics of the imaging lens of Example 1 are listed below.
FL 3.778
Fno 1.44
w 75.33
Ymax 2.916
BF 0.889
TL 5.060
BFa 0.852
TLa 5.023
Here, FL means the focal length of the entire imaging lens system, Fno means the F number, w means the diagonal field angle, Ymax means the maximum image height, that is, the half value of the diagonal length of the imaging surface of the imaging device. BF means back focus (final lens to image plane), and TL means optical total length. BFa means back focus (final lens to image plane * when parallel plate is converted into air), and TLa means optical total length (final lens to image surface * when parallel plate is converted into air). . In addition, the above code | symbol shall have the same meaning also in the subsequent Examples.

実施例1の単レンズデータを以下の表3に示す。
〔表3〕
レンズ番号 面番号 焦点距離 有効径
Elem Surfs Focal Length Diameter
1 2- 3 3.0584 2.625
2 5- 6 -4.4284 2.282
3 8- 9 -24.2842 2.451
4 10-11 10.1673 3.036
5 12-13 -22.5866 3.431
6 14-15 2.0771 4.092
7 16-17 -1.9845 5.309
The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens number Surface number Focal length Effective diameter
Elem Surfs Focal Length Diameter
1 2- 3 3.0584 2.625
2 5- 6 -4.4284 2.282
3 8- 9 -24.2842 2.451
4 10-11 10.1673 3.036
5 12-13 -22.5866 3.431
6 14-15 2.0771 4.092
7 16-17 -1.9845 5.309

図5は、実施例1の撮像レンズ11等の断面図である。撮像レンズ11は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有し像側に凹面を向けた略平凹の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSがそれぞれ配置されている。なお、例えば第1レンズL1の光入射面と物体との間には、適当な厚さの平行平板(不図示)を配置することができ、この点は、以下の実施例でも同様である。   FIG. 5 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment. The imaging lens 11 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the third lens L3 having a substantially negative refractive power around the optical axis AX and having a concave surface facing the image side, and an object having a positive refractive power around the optical axis AX. A fourth meniscus lens L4 having a convex surface facing the side, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive refraction around the optical axis AX A biconvex sixth lens L6 having power, and a substantially plano-concave seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed. For example, a parallel plate (not shown) having an appropriate thickness can be disposed between the light incident surface of the first lens L1 and the object, and this is the same in the following embodiments.

図6(A)〜6(C)は、実施例1の撮像レンズ11の諸収差図(球面収差、非点収差、歪曲収差)を示し、図6(D)及び6(E)は、実施例1の撮像レンズ11の横収差を示している。   6A to 6C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 11 of Example 1, and FIGS. 6D and 6E show the examples. The lateral aberration of the imaging lens 11 of Example 1 is shown.

〔実施例2〕
実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 1.8839 0.7264 1.54470 56 2.625
3* -50.1886 0.0500 2.480
4* 2.0288 0.1500 1.64250 22.5 2.292
5* 1.2415 0.3882 2.063
STO INFINITY 0.0000 2.036
7* 5.2021 0.2043 1.54470 56 2.090
8* 4.9298 0.2511 2.223
9* 9.5253 0.7848 1.54470 56 2.414
10* 118.9988 0.1205 3.008
11* 15.2856 0.2000 1.63469 23.9 3.333
12* 8.0836 0.2599 3.455
13* 4.3795 0.6318 1.54470 56 3.791
14* -1.6267 0.2553 4.159
15* -27.2355 0.3177 1.54470 56 4.665
16* 1.1327 0.4000 5.218
17 INFINITY 0.1100 1.51633 64.1 5.493
18 INFINITY 0.4020
[Example 2]
The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 1.8839 0.7264 1.54470 56 2.625
3 * -50.1886 0.0500 2.480
4 * 2.0288 0.1500 1.64250 22.5 2.292
5 * 1.2415 0.3882 2.063
STO INFINITY 0.0000 2.036
7 * 5.2021 0.2043 1.54470 56 2.090
8 * 4.9298 0.2511 2.223
9 * 9.5253 0.7848 1.54470 56 2.414
10 * 118.9988 0.1205 3.008
11 * 15.2856 0.2000 1.63469 23.9 3.333
12 * 8.0836 0.2599 3.455
13 * 4.3795 0.6318 1.54470 56 3.791
14 * -1.6267 0.2553 4.159
15 * -27.2355 0.3177 1.54470 56 4.665
16 * 1.1327 0.4000 5.218
17 INFINITY 0.1100 1.51633 64.1 5.493
18 INFINITY 0.4020

実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第2面
K=-7.59338e-001, A4=2.08234e-002, A6=4.99774e-003,
A8=-4.58076e-003, A10=8.27955e-003, A12=-5.18691e-003,
A14=1.47072e-003
第3面
K=6.74025e+001, A4=6.81816e-002, A6=-9.93315e-002,
A8=1.10203e-001, A10=-7.93473e-002, A12=3.36551e-002,
A14=-6.08751e-003
第4面
K=-1.37510e+001, A4=2.50648e-003, A6=-7.11750e-002,
A8=7.47801e-002, A10=-3.60636e-002, A12=1.28884e-002,
A14=-3.54001e-003
第5面
K=-4.71840e+000, A3=-9.34023e-004, A4=2.93742e-004,
A5=9.55939e-003, A6=4.66981e-002, A8=-1.27457e-001,
A10=1.76734e-001, A12=-1.11648e-001, A14=3.01378e-002
第7面
K=-4.10655e+001, A3=-1.75932e-002, A4=2.72400e-002,
A5=-1.77478e-001, A6=2.32086e-001, A8=-1.98290e-001,
A10=1.31866e-001, A12=-6.29209e-002, A14=2.34896e-002
第8面
K=9.48496e+000, A3=-1.05131e-002, A4=-1.33268e-001,
A5=1.49346e-003, A6=5.48097e-002, A8=-4.55476e-002,
A10=-1.29692e-003, A12=9.80091e-003, A14=4.66380e-003
第9面
K=3.35953e+001, A3=-1.50895e-003, A4=-9.85876e-002,
A5=4.13232e-003, A6=2.17094e-003, A8=-9.42207e-003,
A10=-1.29077e-002, A12=1.15085e-002, A14=-1.31384e-003
第10面
K=6.67705e+001, A3=-3.41426e-002, A4=-9.74188e-002,
A5=8.68459e-002, A6=-1.06440e-001, A8=5.09913e-002,
A10=-1.63563e-002, A12=2.46831e-003
第11面
K=1.54918e+001, A3=-1.03893e-002, A4=-3.30208e-001,
A5=3.74362e-001, A6=-2.61389e-001, A8=9.74168e-002,
A10=-2.12897e-002, A12=1.57674e-003
第12面
K=1.53465e+001, A3=-1.03295e-002, A4=-2.51132e-001,
A5=1.56216e-001, A6=-5.36108e-002, A8=7.24980e-003,
A10=6.53728e-003, A12=-2.37960e-003, A14=1.86723e-004
第13面
K=3.09148e+000, A3=-2.68358e-002, A4=3.47136e-002,
A5=-1.33828e-001, A6=1.09991e-001, A8=-4.95611e-002,
A10=1.55961e-002, A12=-2.39632e-003, A14=1.49314e-004
第14面
K=-1.03524e+001, A3=-4.58449e-002, A4=-9.47123e-003,
A5=6.80135e-002, A6=-1.72306e-002, A8=-1.65561e-002,
A10=6.92533e-003, A12=-1.07198e-003, A14=5.43027e-005
第15面
K=-1.24093e+001, A3=-1.25279e-001, A4=-7.71861e-002,
A5=3.85764e-002, A6=2.27966e-002, A8=-3.26167e-003,
A10=-3.58406e-004, A12=9.11620e-005, A14=-4.77516e-006
第16面
K=-5.59367e+000, A3=-7.74392e-002, A4=-7.58586e-002,
A5=1.00112e-001, A6=-3.51443e-002, A8=1.99857e-003,
A10=-1.78001e-004, A12=1.49978e-005, A14=-4.04444e-007
The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Second side
K = -7.59338e-001, A4 = 2.08234e-002, A6 = 4.99774e-003,
A8 = -4.58076e-003, A10 = 8.27955e-003, A12 = -5.18691e-003,
A14 = 1.47072e-003
Third side
K = 6.74025e + 001, A4 = 6.81816e-002, A6 = -9.93315e-002,
A8 = 1.10203e-001, A10 = -7.93473e-002, A12 = 3.36551e-002,
A14 = -6.08751e-003
4th page
K = -1.37510e + 001, A4 = 2.50648e-003, A6 = -7.11750e-002,
A8 = 7.47801e-002, A10 = -3.60636e-002, A12 = 1.28884e-002,
A14 = -3.54001e-003
5th page
K = -4.71840e + 000, A3 = -9.34023e-004, A4 = 2.93742e-004,
A5 = 9.55939e-003, A6 = 4.66981e-002, A8 = -1.27457e-001,
A10 = 1.76734e-001, A12 = -1.11648e-001, A14 = 3.01378e-002
7th page
K = -4.10655e + 001, A3 = -1.75932e-002, A4 = 2.72400e-002,
A5 = -1.77478e-001, A6 = 2.32086e-001, A8 = -1.98290e-001,
A10 = 1.31866e-001, A12 = -6.29209e-002, A14 = 2.34896e-002
8th page
K = 9.48496e + 000, A3 = -1.05131e-002, A4 = -1.33268e-001,
A5 = 1.49346e-003, A6 = 5.48097e-002, A8 = -4.55476e-002,
A10 = -1.29692e-003, A12 = 9.80091e-003, A14 = 4.66380e-003
9th page
K = 3.35953e + 001, A3 = -1.50895e-003, A4 = -9.85876e-002,
A5 = 4.13232e-003, A6 = 2.17094e-003, A8 = -9.42207e-003,
A10 = -1.29077e-002, A12 = 1.15085e-002, A14 = -1.31384e-003
10th page
K = 6.67705e + 001, A3 = -3.41426e-002, A4 = -9.74188e-002,
A5 = 8.68459e-002, A6 = -1.06440e-001, A8 = 5.09913e-002,
A10 = -1.63563e-002, A12 = 2.46831e-003
11th page
K = 1.54918e + 001, A3 = -1.03893e-002, A4 = -3.30208e-001,
A5 = 3.74362e-001, A6 = -2.61389e-001, A8 = 9.74168e-002,
A10 = -2.12897e-002, A12 = 1.57674e-003
12th page
K = 1.53465e + 001, A3 = -1.03295e-002, A4 = -2.51132e-001,
A5 = 1.56216e-001, A6 = -5.36108e-002, A8 = 7.24980e-003,
A10 = 6.53728e-003, A12 = -2.37960e-003, A14 = 1.86723e-004
Side 13
K = 3.09148e + 000, A3 = -2.68358e-002, A4 = 3.47136e-002,
A5 = -1.33828e-001, A6 = 1.09991e-001, A8 = -4.95611e-002,
A10 = 1.55961e-002, A12 = -2.39632e-003, A14 = 1.49314e-004
14th page
K = -1.03524e + 001, A3 = -4.58449e-002, A4 = -9.47123e-003,
A5 = 6.80135e-002, A6 = -1.72306e-002, A8 = -1.65561e-002,
A10 = 6.92533e-003, A12 = -1.07198e-003, A14 = 5.43027e-005
15th page
K = -1.24093e + 001, A3 = -1.25279e-001, A4 = -7.71861e-002,
A5 = 3.85764e-002, A6 = 2.27966e-002, A8 = -3.26167e-003,
A10 = -3.58406e-004, A12 = 9.11620e-005, A14 = -4.77516e-006
16th page
K = -5.59367e + 000, A3 = -7.74392e-002, A4 = -7.58586e-002,
A5 = 1.00112e-001, A6 = -3.51443e-002, A8 = 1.99857e-003,
A10 = -1.78001e-004, A12 = 1.49978e-005, A14 = -4.04444e-007

実施例2の撮像レンズの特性を以下に列挙する。
FL 4.035
Fno 1.54
w 71.98
Ymax 2.921
BF 0.912
TL 5.252
BFa 0.875
TLa 5.215
The characteristics of the imaging lens of Example 2 are listed below.
FL 4.035
Fno 1.54
w 71.98
Ymax 2.921
BF 0.912
TL 5.252
BFa 0.875
TLa 5.215

実施例2の単レンズデータを以下の表6に示す。
〔表6〕
Elem Surfs Focal Length Diameter
1 2- 3 3.3500 2.625
2 4- 5 -5.3798 2.292
3 7- 8 -235.1066 2.223
4 9-10 18.9610 3.008
5 11-12 -27.3265 3.455
6 13-14 2.2615 4.159
7 15-16 -1.9887 5.218
The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Elem Surfs Focal Length Diameter
1 2- 3 3.3500 2.625
2 4- 5 -5.3798 2.292
3 7- 8 -235.1066 2.223
4 9-10 18.9610 3.008
5 11-12 -27.3265 3.455
6 13-14 2.2615 4.159
7 15-16 -1.9887 5.218

図7は、実施例2の撮像レンズ12等の断面図である。撮像レンズ12は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。   FIG. 7 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment. The imaging lens 12 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a negative refractive power around the optical axis AX. A second meniscus lens L2 having a convex surface facing the object side, a third meniscus lens L3 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side, and a positive lens around the optical axis AX. A substantially convex fourth lens L4 having a refracting power and a convex surface facing the object side, and a fifth meniscus lens L5 having a weak negative refracting power around the optical axis AX and a convex surface facing the object side, , A biconvex sixth lens L6 having a positive refractive power around the optical axis AX, and a substantially plano-concave seventh lens L7 having a negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1.

図8(A)〜8(C)は、実施例2の撮像レンズ12の諸収差図(球面収差、非点収差、歪曲収差)を示し、図8(D)及び8(E)は、実施例2の撮像レンズ12の横収差を示している。   8A to 8C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 12 of Example 2, and FIGS. 4 shows lateral aberration of the imaging lens 12 of Example 2.

〔実施例3〕
実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.2500 2.700
2* 1.8265 0.7706 1.54470 56 2.633
3* -9.8075 0.0500 2.483
4* 2.2119 0.1796 1.63469 23.9 2.261
5* 1.1650 0.3677 1.978
STO INFINITY 0.1500 1.963
7* -15.7609 0.1900 1.54470 56 2.113
8* 12.4701 0.1015 2.279
9* 3.4709 0.6368 1.54470 56 2.595
10* 13.7284 0.1000 2.996
11* 6.9010 0.2000 1.63469 23.9 3.132
12* 6.4920 0.5187 3.256
13* 44.5000 0.4973 1.54470 56 3.591
14* -1.1492 0.1749 3.914
15* -5.2967 0.3007 1.54470 56 4.536
16* 1.1765 0.7000 5.011
17 INFINITY 0.1100 1.51633 64.1 5.680
18 INFINITY 0.2024
Example 3
The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.2500 2.700
2 * 1.8265 0.7706 1.54470 56 2.633
3 * -9.8075 0.0500 2.483
4 * 2.2119 0.1796 1.63469 23.9 2.261
5 * 1.1650 0.3677 1.978
STO INFINITY 0.1500 1.963
7 * -15.7609 0.1900 1.54470 56 2.113
8 * 12.4701 0.1015 2.279
9 * 3.4709 0.6368 1.54470 56 2.595
10 * 13.7284 0.1000 2.996
11 * 6.9010 0.2000 1.63469 23.9 3.132
12 * 6.4920 0.5187 3.256
13 * 44.5000 0.4973 1.54470 56 3.591
14 * -1.1492 0.1749 3.914
15 * -5.2967 0.3007 1.54470 56 4.536
16 * 1.1765 0.7000 5.011
17 INFINITY 0.1100 1.51633 64.1 5.680
18 INFINITY 0.2024

実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第2面
K=-7.62402e-001, A4=2.04751e-002, A6=6.15415e-003,
A8=-6.48276e-003, A10=8.84911e-003, A12=-4.48738e-003,
A14=1.01834e-003
第3面
K=9.83262e+000, A4=9.78535e-002, A6=-1.16417e-001,
A8=1.18654e-001, A10=-7.95199e-002, A12=3.02924e-002,
A14=-4.86274e-003
第4面
K=-1.88230e+001, A4=-8.39250e-004, A6=-3.81024e-002,
A8=6.15429e-002, A10=-4.95206e-002, A12=2.10021e-002,
A14=-3.54000e-003
第5面
K=-5.13366e+000, A3=9.20875e-003, A4=1.19772e-002,
A5=1.92273e-002, A6=5.03902e-002, A8=-1.21332e-001,
A10=1.72304e-001, A12=-1.22781e-001, A14=3.79822e-002
第7面
K=-8.00000e+001, A3=-1.31138e-002, A4=4.62154e-002,
A5=-1.85231e-001, A6=2.34638e-001, A8=-1.98611e-001,
A10=1.35696e-001, A12=-5.04387e-002, A14=7.62898e-003
第8面
K=4.88218e+001, A3=-1.80239e-002, A4=-1.52562e-001,
A5=1.13531e-002, A6=6.54020e-002, A8=-3.87499e-002,
A10=1.08407e-002, A12=9.52540e-003, A14=-3.15667e-003
第9面
K=2.06211e+000, A3=-1.95698e-002, A4=-1.42525e-001,
A5=1.93943e-002, A6=-8.24714e-003, A8=3.05060e-003,
A10=7.47791e-003, A12=1.72573e-003, A14=-1.21519e-003
第10面
K=-8.00000e+001, A3=-2.74626e-002, A4=-2.19898e-002,
A5=6.27652e-002, A6=-1.24758e-001, A8=5.60335e-002,
A10=-1.42980e-002, A12=2.03003e-003
第11面
K=1.39238e+001, A3=-8.44025e-003, A4=-3.28119e-001,
A5=3.72168e-001, A6=-2.65022e-001, A8=9.88716e-002,
A10=-2.05718e-002, A12=1.06740e-003
第12面
K=1.34574e+001, A3=-1.32284e-002, A4=-2.56059e-001,
A5=1.57577e-001, A6=-5.11886e-002, A8=7.16231e-003,
A10=6.80037e-003, A12=-2.26892e-003, A14=4.15564e-005
第13面
K=8.00000e+001, A3=-9.74745e-003, A4=1.71772e-002,
A5=-1.27294e-001, A6=1.14521e-001, A8=-4.81556e-002,
A10=1.49933e-002, A12=-2.62088e-003, A14=2.30959e-004
第14面
K=-7.64107e+000, A3=-4.42792e-002, A4=-7.79999e-002,
A5=9.16848e-002, A6=-8.06985e-003, A8=-1.69608e-002,
A10=6.70296e-003, A12=-1.10843e-003, A14=6.64654e-005
第15面
K=-6.14130e+001, A3=-6.87097e-002, A4=-9.91812e-002,
A5=3.63023e-002, A6=2.20450e-002, A8=-2.94886e-003,
A10=-3.32315e-004, A12=8.65810e-005, A14=-4.83883e-006
第16面
K=-9.29155e+000, A3=-1.25830e-002, A4=-1.28523e-001,
A5=1.02833e-001, A6=-3.15161e-002, A8=1.69075e-003,
A10=-1.99522e-004, A12=2.45502e-005, A14=-1.11388e-006
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = -7.62402e-001, A4 = 2.04751e-002, A6 = 6.15415e-003,
A8 = -6.48276e-003, A10 = 8.84911e-003, A12 = -4.48738e-003,
A14 = 1.01834e-003
Third side
K = 9.83262e + 000, A4 = 9.78535e-002, A6 = -1.16417e-001,
A8 = 1.18654e-001, A10 = -7.95199e-002, A12 = 3.02924e-002,
A14 = -4.86274e-003
4th page
K = -1.88230e + 001, A4 = -8.39250e-004, A6 = -3.81024e-002,
A8 = 6.15429e-002, A10 = -4.95206e-002, A12 = 2.10021e-002,
A14 = -3.54000e-003
5th page
K = -5.13366e + 000, A3 = 9.20875e-003, A4 = 1.19772e-002,
A5 = 1.92273e-002, A6 = 5.03902e-002, A8 = -1.21332e-001,
A10 = 1.72304e-001, A12 = -1.22781e-001, A14 = 3.79822e-002
7th page
K = -8.00000e + 001, A3 = -1.31138e-002, A4 = 4.62154e-002,
A5 = -1.85231e-001, A6 = 2.34638e-001, A8 = -1.98611e-001,
A10 = 1.35696e-001, A12 = -5.04387e-002, A14 = 7.62898e-003
8th page
K = 4.88218e + 001, A3 = -1.80239e-002, A4 = -1.52562e-001,
A5 = 1.13531e-002, A6 = 6.54020e-002, A8 = -3.87499e-002,
A10 = 1.08407e-002, A12 = 9.52540e-003, A14 = -3.15667e-003
9th page
K = 2.06211e + 000, A3 = -1.95698e-002, A4 = -1.42525e-001,
A5 = 1.93943e-002, A6 = -8.24714e-003, A8 = 3.05060e-003,
A10 = 7.47791e-003, A12 = 1.72573e-003, A14 = -1.21519e-003
10th page
K = -8.00000e + 001, A3 = -2.74626e-002, A4 = -2.19898e-002,
A5 = 6.27652e-002, A6 = -1.24758e-001, A8 = 5.60335e-002,
A10 = -1.42980e-002, A12 = 2.03003e-003
11th page
K = 1.39238e + 001, A3 = -8.44025e-003, A4 = -3.28119e-001,
A5 = 3.72168e-001, A6 = -2.65022e-001, A8 = 9.88716e-002,
A10 = -2.05718e-002, A12 = 1.06740e-003
12th page
K = 1.34574e + 001, A3 = -1.32284e-002, A4 = -2.56059e-001,
A5 = 1.57577e-001, A6 = -5.11886e-002, A8 = 7.16231e-003,
A10 = 6.80037e-003, A12 = -2.26892e-003, A14 = 4.15564e-005
Side 13
K = 8.00000e + 001, A3 = -9.74745e-003, A4 = 1.71772e-002,
A5 = -1.27294e-001, A6 = 1.14521e-001, A8 = -4.81556e-002,
A10 = 1.49933e-002, A12 = -2.62088e-003, A14 = 2.30959e-004
14th page
K = -7.64107e + 000, A3 = -4.42792e-002, A4 = -7.79999e-002,
A5 = 9.16848e-002, A6 = -8.06985e-003, A8 = -1.69608e-002,
A10 = 6.70296e-003, A12 = -1.10843e-003, A14 = 6.64654e-005
15th page
K = -6.14130e + 001, A3 = -6.87097e-002, A4 = -9.91812e-002,
A5 = 3.63023e-002, A6 = 2.20450e-002, A8 = -2.94886e-003,
A10 = -3.32315e-004, A12 = 8.65810e-005, A14 = -4.83883e-006
16th page
K = -9.29155e + 000, A3 = -1.25830e-002, A4 = -1.28523e-001,
A5 = 1.02833e-001, A6 = -3.15161e-002, A8 = 1.69075e-003,
A10 = -1.99522e-004, A12 = 2.45502e-005, A14 = -1.11388e-006

実施例3の撮像レンズの特性を以下に列挙する。
FL 4.313
Fno 1.64
w 67.60
Ymax 2.921
BF 1.012
TL 5.250
BFa 0.975
TLa 5.213
The characteristics of the imaging lens of Example 3 are listed below.
FL 4.313
Fno 1.64
w 67.60
Ymax 2.921
BF 1.012
TL 5.250
BFa 0.975
TLa 5.213

実施例3の単レンズデータを以下の表9に示す。
〔表9〕
Elem Surfs Focal Length Diameter
1 2- 3 2.8944 2.633
2 4- 5 -4.1550 2.261
3 7- 8 -12.7508 2.279
4 9-10 8.3456 2.996
5 11-12 -213.0273 3.256
6 13-14 2.0645 3.914
7 15-16 -1.7389 5.011
The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Elem Surfs Focal Length Diameter
1 2- 3 2.8944 2.633
2 4- 5 -4.1550 2.261
3 7- 8 -12.7508 2.279
4 9-10 8.3456 2.996
5 11-12 -213.0273 3.256
6 13-14 2.0645 3.914
7 15-16 -1.7389 5.011

図9は、実施例3の撮像レンズ13等の断面図である。撮像レンズ13は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で負の屈折力を有する両凹の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。   FIG. 9 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment. The imaging lens 13 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the third biconcave lens L3 having negative refractive power around the optical axis AX, and the fourth meniscus having positive refractive power around the optical axis AX and having a convex surface facing the object side. Lens L4, a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and having a convex surface facing the image side A substantially planoconvex sixth lens L6 and a biconcave seventh lens L7 having negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1.

図10(A)〜10(C)は、実施例3の撮像レンズ13の諸収差図(球面収差、非点収差、歪曲収差)を示し、図10(D)及び10(E)は、実施例3の撮像レンズ13の横収差を示している。   FIGS. 10A to 10C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 13 of Example 3, and FIGS. 10D and 10E show the examples. The lateral aberration of the imaging lens 13 of Example 3 is shown.

〔実施例4〕
実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 2.5918 0.6009 1.54470 56.2 2.613
3* -7.2600 0.1267 2.504
STO INFINITY 0.0000 2.411
5* 1.8163 0.1817 1.63469 23.9 2.273
6* 1.1097 0.4600 2.104
7 FS INFINITY 0.0770 2.070
8* 28.1195 0.3514 1.54470 56.2 2.107
9* 27.7224 0.1000 2.366
10* 5.5517 0.8520 1.54470 56 2.664
11* 8.3094 0.1003 3.203
12* 2.8251 0.2013 1.63469 23.9 3.464
13* 2.7800 0.2356 3.560
14* 6.3078 0.7518 1.54470 56.2 3.749
15* -1.1548 0.2235 4.050
16* 18.6734 0.3219 1.54470 56.2 4.932
17* 0.9243 0.4000 5.406
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4550
Example 4
The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 2.5918 0.6009 1.54470 56.2 2.613
3 * -7.2600 0.1267 2.504
STO INFINITY 0.0000 2.411
5 * 1.8163 0.1817 1.63469 23.9 2.273
6 * 1.1097 0.4600 2.104
7 FS INFINITY 0.0770 2.070
8 * 28.1195 0.3514 1.54470 56.2 2.107
9 * 27.7224 0.1000 2.366
10 * 5.5517 0.8520 1.54470 56 2.664
11 * 8.3094 0.1003 3.203
12 * 2.8251 0.2013 1.63469 23.9 3.464
13 * 2.7800 0.2356 3.560
14 * 6.3078 0.7518 1.54470 56.2 3.749
15 * -1.1548 0.2235 4.050
16 * 18.6734 0.3219 1.54470 56.2 4.932
17 * 0.9243 0.4000 5.406
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4550

実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第2面
K=-4.76583e+000, A4=4.42855e-002, A6=-6.58009e-003,
A8=-6.19443e-005, A10=5.47277e-003, A12=-3.60429e-003,
A14=1.00936e-003
第3面
K=5.49560e+000, A4=1.01021e-001, A6=-1.10909e-001,
A8=1.15203e-001, A10=-7.86404e-002, A12=3.05405e-002,
A14=-4.86004e-003
第5面
K=-9.85561e+000, A4=1.06447e-002, A6=-6.19262e-002,
A8=7.15486e-002, A10=-5.64109e-002, A12=2.22086e-002,
A14=-3.54001e-003
第6面
K=-3.75385e+000, A3=1.14349e-003, A4=-2.94492e-002,
A5=-9.02417e-004, A6=8.64016e-002, A8=-1.52161e-001,
A10=1.60552e-001, A12=-9.67363e-002, A14=2.41152e-002
第8面
K=-8.00000e+001, A3=-1.64115e-002, A4=4.27003e-002,
A5=-2.02100e-001, A6=2.18962e-001, A8=-1.85348e-001,
A10=1.48282e-001, A12=-7.99091e-002, A14=1.53464e-002
第9面
K=0.00000e+000, A4=-1.55458e-001, A6=3.37252e-002,
A8=-9.80294e-003, A10=-1.20848e-003, A12=-1.96857e-003
第10面
K=0.00000e+000, A4=-1.25988e-001, A6=1.82637e-002,
A8=7.06854e-003, A10=-5.43146e-003, A12=9.13575e-004
第11面
K=2.43441e+001, A3=-9.29865e-002, A4=-6.67967e-002,
A5=1.03039e-001, A6=-1.23220e-001, A8=4.45057e-002,
A10=-1.08582e-002, A12=1.02689e-003
第12面
K=-5.86781e-001, A3=-6.83121e-002, A4=-3.40600e-001,
A5=3.62293e-001, A6=-2.72627e-001, A8=9.88045e-002,
A10=-1.98267e-002, A12=1.44581e-003
第13面
K=-6.43385e-001, A3=5.17390e-003, A4=-2.77638e-001,
A5=1.40444e-001, A6=-4.99045e-002, A8=5.67616e-003,
A10=6.07764e-003, A12=-2.00730e-003, A14=1.75629e-004
第14面
K=-8.00000e+001, A3=2.16910e-002, A4=4.18564e-002,
A5=-1.23338e-001, A6=8.87382e-002, A8=-4.21216e-002,
A10=1.65373e-002, A12=-3.63450e-003, A14=3.51079e-004
第15面
K=-7.50573e+000, A3=-5.32180e-002, A4=-8.29700e-002,
A5=1.03856e-001, A6=-9.67792e-003, A8=-1.77803e-002,
A10=6.65870e-003, A12=-1.10205e-003, A14=7.11453e-005
第16面
K=-8.00000e+001, A3=-1.07678e-001, A4=-9.02414e-002,
A5=3.30882e-002, A6=2.23725e-002, A8=-2.55974e-003,
A10=-3.39237e-004, A12=7.64085e-005, A14=-3.88590e-006
第17面
K=-5.88595e+000, A3=9.46200e-003, A4=-1.50249e-001,
A5=1.12943e-001, A6=-2.98435e-002, A8=1.31582e-003,
A10=-2.21592e-004, A12=3.04412e-005, A14=-1.38605e-006
The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
Second side
K = -4.76583e + 000, A4 = 4.42855e-002, A6 = -6.58009e-003,
A8 = -6.19443e-005, A10 = 5.47277e-003, A12 = -3.60429e-003,
A14 = 1.00936e-003
Third side
K = 5.49560e + 000, A4 = 1.01021e-001, A6 = -1.10909e-001,
A8 = 1.15203e-001, A10 = -7.86404e-002, A12 = 3.05405e-002,
A14 = -4.86004e-003
5th page
K = -9.85561e + 000, A4 = 1.06447e-002, A6 = -6.19262e-002,
A8 = 7.15486e-002, A10 = -5.64109e-002, A12 = 2.22086e-002,
A14 = -3.54001e-003
6th page
K = -3.75385e + 000, A3 = 1.14349e-003, A4 = -2.94492e-002,
A5 = -9.02417e-004, A6 = 8.64016e-002, A8 = -1.52161e-001,
A10 = 1.60552e-001, A12 = -9.67363e-002, A14 = 2.41152e-002
8th page
K = -8.00000e + 001, A3 = -1.64115e-002, A4 = 4.27003e-002,
A5 = -2.02100e-001, A6 = 2.18962e-001, A8 = -1.85348e-001,
A10 = 1.48282e-001, A12 = -7.99091e-002, A14 = 1.53464e-002
9th page
K = 0.00000e + 000, A4 = -1.55458e-001, A6 = 3.37252e-002,
A8 = -9.80294e-003, A10 = -1.20848e-003, A12 = -1.96857e-003
10th page
K = 0.00000e + 000, A4 = -1.25988e-001, A6 = 1.82637e-002,
A8 = 7.06854e-003, A10 = -5.43146e-003, A12 = 9.13575e-004
11th page
K = 2.43441e + 001, A3 = -9.29865e-002, A4 = -6.67967e-002,
A5 = 1.03039e-001, A6 = -1.23220e-001, A8 = 4.45057e-002,
A10 = -1.08582e-002, A12 = 1.02689e-003
12th page
K = -5.86781e-001, A3 = -6.83121e-002, A4 = -3.40600e-001,
A5 = 3.62293e-001, A6 = -2.72627e-001, A8 = 9.88045e-002,
A10 = -1.98267e-002, A12 = 1.44581e-003
Side 13
K = -6.43385e-001, A3 = 5.17390e-003, A4 = -2.77638e-001,
A5 = 1.40444e-001, A6 = -4.99045e-002, A8 = 5.67616e-003,
A10 = 6.07764e-003, A12 = -2.00730e-003, A14 = 1.75629e-004
14th page
K = -8.00000e + 001, A3 = 2.16910e-002, A4 = 4.18564e-002,
A5 = -1.23338e-001, A6 = 8.87382e-002, A8 = -4.21216e-002,
A10 = 1.65373e-002, A12 = -3.63450e-003, A14 = 3.51079e-004
15th page
K = -7.50573e + 000, A3 = -5.32180e-002, A4 = -8.29700e-002,
A5 = 1.03856e-001, A6 = -9.67792e-003, A8 = -1.77803e-002,
A10 = 6.65870e-003, A12 = -1.10205e-003, A14 = 7.11453e-005
16th page
K = -8.00000e + 001, A3 = -1.07678e-001, A4 = -9.02414e-002,
A5 = 3.30882e-002, A6 = 2.23725e-002, A8 = -2.55974e-003,
A10 = -3.39237e-004, A12 = 7.64085e-005, A14 = -3.88590e-006
17th page
K = -5.88595e + 000, A3 = 9.46200e-003, A4 = -1.50249e-001,
A5 = 1.12943e-001, A6 = -2.98435e-002, A8 = 1.31582e-003,
A10 = -2.21592e-004, A12 = 3.04412e-005, A14 = -1.38605e-006

実施例4の撮像レンズの特性を以下に列挙する。
FL 3.787
Fno 1.44
w 75.44
Ymax 2.921
BF 0.965
TL 5.549
BFa 0.928
TLa 5.512
The characteristics of the imaging lens of Example 4 are listed below.
FL 3.787
Fno 1.44
w 75.44
Ymax 2.921
BF 0.965
TL 5.549
BFa 0.928
TLa 5.512

実施例4の単レンズデータを以下の表12に示す。
〔表12〕
Elem Surfs Focal Length Diameter
1 2- 3 3.5835 2.613
2 5- 6 -4.9929 2.273
3 8- 9 -5e+003 2.366
4 10-11 27.6940 3.203
5 12-13 374.4482 3.560
6 14-15 1.8580 4.050
7 16-17 -1.7967 5.406
The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Elem Surfs Focal Length Diameter
1 2- 3 3.5835 2.613
2 5- 6 -4.9929 2.273
3 8- 9 -5e + 003 2.366
4 10-11 27.6940 3.203
5 12-13 374.4482 3.560
6 14-15 1.8580 4.050
7 16-17 -1.7967 5.406

図11は、実施例4の撮像レンズ14等の断面図である。撮像レンズ14は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有する略平板状の第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 11 is a cross-sectional view of the imaging lens 14 and the like of the fourth embodiment. The imaging lens 14 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. Second lens L2, a substantially flat third lens L3 having a weak negative refractive power around the optical axis AX, and a meniscus having a weak positive refractive power around the optical axis AX and having a convex surface facing the object side. The fourth lens L4, a fifth meniscus lens L5 having a weak positive refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex second lens having a positive refractive power around the optical axis AX. 6 lenses L6, and a meniscus seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.

図12(A)〜12(C)は、実施例4の撮像レンズ14の諸収差図(球面収差、非点収差、歪曲収差)を示し、図12(D)及び12(E)は、実施例4の撮像レンズ14の横収差を示している。   12A to 12C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 14 of Example 4, and FIGS. 12D and 12E show the results. 10 shows lateral aberration of the imaging lens 14 of Example 4. FIG.

〔実施例5〕
実施例5のレンズ面のデータを以下の表13に示す。
〔表13〕
面番号 r d nd vd eff. dia.
STO INFINITY -0.2500 2.625
2* 2.0635 0.7031 1.54470 56 2.625
3* -8.2734 0.0500 2.493
4* 2.2022 0.1957 1.63469 23.9 2.290
5* 1.1925 0.4520 2.045
6 FS INFINITY 0.1000 2.040
7* 47.5805 0.3000 1.54470 56 2.074
8* 25.0398 0.0884 2.326
9* 4.6503 0.9065 1.54470 56 2.828
10* 52.3411 0.1642 3.208
11* -1.7499 0.2004 1.63469 23.9 3.326
12* -1.4313 0.0500 3.557
13* 13.9998 0.4818 1.54470 56 3.698
14* -20.0000 0.3261 4.129
15* 1.2751 0.3604 1.54470 56 4.867
16* 0.7678 0.6000 5.318
17 INFINITY 0.1100 1.51633 64.1 5.700
18 INFINITY 0.1419
Example 5
The lens surface data of Example 5 is shown in Table 13 below.
[Table 13]
Surface number rd nd vd eff.dia.
STO INFINITY -0.2500 2.625
2 * 2.0635 0.7031 1.54470 56 2.625
3 * -8.2734 0.0500 2.493
4 * 2.2022 0.1957 1.63469 23.9 2.290
5 * 1.1925 0.4520 2.045
6 FS INFINITY 0.1000 2.040
7 * 47.5805 0.3000 1.54470 56 2.074
8 * 25.0398 0.0884 2.326
9 * 4.6503 0.9065 1.54470 56 2.828
10 * 52.3411 0.1642 3.208
11 * -1.7499 0.2004 1.63469 23.9 3.326
12 * -1.4313 0.0500 3.557
13 * 13.9998 0.4818 1.54470 56 3.698
14 * -20.0000 0.3261 4.129
15 * 1.2751 0.3604 1.54470 56 4.867
16 * 0.7678 0.6000 5.318
17 INFINITY 0.1100 1.51633 64.1 5.700
18 INFINITY 0.1419

実施例5のレンズ面の非球面係数を以下の表14に示す。
〔表14〕
第2面
K=-1.42862e+000, A4=2.77675e-002, A6=5.43424e-003,
A8=-6.07353e-003, A10=8.35891e-003, A12=-4.15242e-003,
A14=9.53612e-004
第3面
K=-8.00000e+001, A4=9.76993e-002, A6=-1.24374e-001,
A8=1.24899e-001, A10=-8.16539e-002, A12=3.04828e-002,
A14=-4.86208e-003
第4面
K=-1.93605e+001, A4=4.29146e-002, A6=-9.25227e-002,
A8=9.66026e-002, A10=-6.67212e-002, A12=2.46267e-002,
A14=-3.54009e-003
第5面
K=-3.93582e+000, A3=-1.12833e-002, A4=-3.64851e-002,
A5=3.27652e-002, A6=9.76461e-002, A8=-1.58322e-001,
A10=1.37490e-001, A12=-6.70341e-002, A14=1.50187e-002
第7面
K=8.00000e+001, A3=-5.10427e-002, A4=1.39741e-001,
A5=-3.81210e-001, A6=3.26202e-001, A8=-1.70718e-001,
A10=7.85483e-002, A12=-2.37923e-002, A14=1.81202e-003
第8面
K=0.00000e+000, A4=-2.73521e-001, A6=1.78928e-001,
A8=-8.65778e-002, A10=2.22277e-002, A12=-1.85128e-003
第9面
K=0.00000e+000, A4=-2.58118e-001, A6=1.43757e-001,
A8=-2.48977e-002, A10=-9.02995e-004, A12=6.19376e-004
第10面
K=8.00000e+001, A3=-1.62229e-002, A4=-1.27850e-001,
A5=6.36093e-002, A6=-8.40529e-002, A8=6.12670e-002,
A10=-2.25320e-002, A12=3.51866e-003
第11面
K=-2.65028e-001, A3=1.68317e-001, A4=-2.36497e-001,
A5=3.68567e-001, A6=-2.97211e-001, A8=9.30939e-002,
A10=-1.81863e-002, A12=1.36314e-003
第12面
K=-5.58624e-001, A3=5.09014e-001, A4=-4.45879e-001,
A5=1.53316e-001, A6=-2.61242e-002, A8=5.47005e-003,
A10=4.88155e-003, A12=-1.93135e-003, A14=1.64661e-004
第13面
K=5.39428e+001, A3=3.27596e-001, A4=-2.71244e-001,
A5=-2.35007e-002, A6=1.23190e-001, A8=-5.87165e-002,
A10=1.46150e-002, A12=-1.99635e-003, A14=9.95736e-005
第14面
K=-8.00000e+001, A3=-4.14744e-001, A4=5.25797e-001,
A5=-1.30899e-001, A6=-1.89797e-002, A8=-1.34729e-002,
A10=5.95330e-003, A12=-8.74575e-004, A14=5.16865e-005
第15面
K=-1.43986e+001, A3=-3.35318e-001, A4=9.71430e-003,
A5=4.59226e-002, A6=1.67337e-002, A8=-3.65987e-003,
A10=-2.80541e-004, A12=9.56718e-005, A14=-5.70973e-006
第16面
K=-6.17418e+000, A3=-1.20474e-002, A4=-1.86539e-001,
A5=1.61058e-001, A6=-4.60649e-002, A8=1.54960e-003,
A10=-1.18236e-004, A12=2.46917e-005, A14=-1.62982e-006
The aspheric coefficients of the lens surfaces of Example 5 are shown in Table 14 below.
[Table 14]
Second side
K = -1.42862e + 000, A4 = 2.77675e-002, A6 = 5.43424e-003,
A8 = -6.07353e-003, A10 = 8.35891e-003, A12 = -4.15242e-003,
A14 = 9.53612e-004
Third side
K = -8.00000e + 001, A4 = 9.76993e-002, A6 = -1.24374e-001,
A8 = 1.24899e-001, A10 = -8.16539e-002, A12 = 3.04828e-002,
A14 = -4.86208e-003
4th page
K = -1.93605e + 001, A4 = 4.29146e-002, A6 = -9.25227e-002,
A8 = 9.66026e-002, A10 = -6.67212e-002, A12 = 2.46267e-002,
A14 = -3.54009e-003
5th page
K = -3.93582e + 000, A3 = -1.12833e-002, A4 = -3.64851e-002,
A5 = 3.27652e-002, A6 = 9.76461e-002, A8 = -1.58322e-001,
A10 = 1.37490e-001, A12 = -6.70341e-002, A14 = 1.50187e-002
7th page
K = 8.00000e + 001, A3 = -5.10427e-002, A4 = 1.39741e-001,
A5 = -3.81210e-001, A6 = 3.26202e-001, A8 = -1.70718e-001,
A10 = 7.85483e-002, A12 = -2.37923e-002, A14 = 1.81202e-003
8th page
K = 0.00000e + 000, A4 = -2.73521e-001, A6 = 1.78928e-001,
A8 = -8.65778e-002, A10 = 2.22277e-002, A12 = -1.85128e-003
9th page
K = 0.00000e + 000, A4 = -2.58118e-001, A6 = 1.43757e-001,
A8 = -2.48977e-002, A10 = -9.02995e-004, A12 = 6.19376e-004
10th page
K = 8.00000e + 001, A3 = -1.62229e-002, A4 = -1.27850e-001,
A5 = 6.36093e-002, A6 = -8.40529e-002, A8 = 6.12670e-002,
A10 = -2.25320e-002, A12 = 3.51866e-003
11th page
K = -2.65028e-001, A3 = 1.68317e-001, A4 = -2.36497e-001,
A5 = 3.68567e-001, A6 = -2.97211e-001, A8 = 9.30939e-002,
A10 = -1.81863e-002, A12 = 1.36314e-003
12th page
K = -5.58624e-001, A3 = 5.09014e-001, A4 = -4.45879e-001,
A5 = 1.53316e-001, A6 = -2.61242e-002, A8 = 5.47005e-003,
A10 = 4.88155e-003, A12 = -1.93135e-003, A14 = 1.64661e-004
Side 13
K = 5.39428e + 001, A3 = 3.27596e-001, A4 = -2.71244e-001,
A5 = -2.35007e-002, A6 = 1.23190e-001, A8 = -5.87165e-002,
A10 = 1.46150e-002, A12 = -1.99635e-003, A14 = 9.95736e-005
14th page
K = -8.00000e + 001, A3 = -4.14744e-001, A4 = 5.25797e-001,
A5 = -1.30899e-001, A6 = -1.89797e-002, A8 = -1.34729e-002,
A10 = 5.95330e-003, A12 = -8.74575e-004, A14 = 5.16865e-005
15th page
K = -1.43986e + 001, A3 = -3.35318e-001, A4 = 9.71430e-003,
A5 = 4.59226e-002, A6 = 1.67337e-002, A8 = -3.65987e-003,
A10 = -2.80541e-004, A12 = 9.56718e-005, A14 = -5.70973e-006
16th page
K = -6.17418e + 000, A3 = -1.20474e-002, A4 = -1.86539e-001,
A5 = 1.61058e-001, A6 = -4.60649e-002, A8 = 1.54960e-003,
A10 = -1.18236e-004, A12 = 2.46917e-005, A14 = -1.62982e-006

実施例5の撮像レンズの特性を以下に列挙する。
FL 3.791
Fno 1.44
w 75.43
Ymax 2.921
BF 0.852
TL 5.231
BFa 0.814
TLa 5.193
The characteristics of the imaging lens of Example 5 are listed below.
FL 3.791
Fno 1.44
w 75.43
Ymax 2.921
BF 0.852
TL 5.231
BFa 0.814
TLa 5.193

実施例5の単レンズデータを以下の表15に示す。
〔表15〕
レンズ番号 面番号 焦点距離 有効径
Elem Surfs Focal Length Diameter
1 2- 3 3.1066 2.625
2 4- 5 -4.4312 2.290
3 7- 8 -97.4945 2.326
4 9-10 9.3074 3.208
5 11-12 9.9549 3.557
6 13-14 15.1947 4.129
7 15-16 -4.7278 5.318
The single lens data of Example 5 is shown in Table 15 below.
[Table 15]
Lens number Surface number Focal length Effective diameter
Elem Surfs Focal Length Diameter
1 2- 3 3.1066 2.625
2 4- 5 -4.4312 2.290
3 7-8 -97.4945 2.326
4 9-10 9.3074 3.208
5 11-12 9.9549 3.557
6 13-14 15.1947 4.129
7 15-16 -4.7278 5.318

図13は、実施例5の撮像レンズ15等の断面図である。撮像レンズ15は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有する略平板状の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置され、第2及び第3レンズL2,L3の間には、遮光絞りFSが配置されている。   FIG. 13 is a cross-sectional view of the imaging lens 15 and the like according to the fifth embodiment. The imaging lens 15 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L2, the substantially flat third lens L3 having a weak negative refractive power around the optical axis AX, and a substantially convex having a positive refractive power around the optical axis AX and having a convex surface facing the object side. A fourth flat lens L4, a fifth meniscus lens L5 having a positive refractive power around the optical axis AX and having a convex surface facing the image side, and a positive refractive power around the optical axis AX and having a positive refractive power toward the object side A substantially convex sixth lens L6 having a convex surface and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and a concave surface facing the image side are provided. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1, and a light-shielding stop FS is disposed between the second and third lenses L2 and L3.

図14(A)〜14(C)は、実施例5の撮像レンズ15の諸収差図(球面収差、非点収差、歪曲収差)を示し、図14(D)及び14(E)は、実施例5の撮像レンズ15の横収差を示している。   14A to 14C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 15 of Example 5, and FIGS. 14D and 14E show the results. 10 shows lateral aberrations of the imaging lens 15 of Example 5. FIG.

〔実施例6〕
実施例6のレンズ面のデータを以下の表16に示す。
〔表16〕
面番号 r d nd vd eff. dia.
STO INFINITY 0.0000 2.700
2* 2.3251 0.6383 1.54470 56.2 2.700
3* -9.2494 0.0521 2.587
4* 1.7704 0.1967 1.63469 23.9 2.366
5* 1.1060 0.4161 2.145
6 FS INFINITY 0.2000 2.140
7* -28.2481 0.5027 1.54470 56.2 2.235
8* -2.3290 0.0500 2.513
9* -3.8104 0.2954 1.54470 56 2.838
10* 13.5740 0.1000 3.017
11* 2.7825 0.2564 1.63469 23.9 3.230
12* 2.1786 0.2785 3.493
13* 5.0908 0.8611 1.54470 56.2 3.725
14* -1.3327 0.3224 4.063
15* 17.2266 0.3136 1.54470 56.2 5.048
16* 1.0912 0.5000 5.404
17 INFINITY 0.1100 1.51633 64.1 6.000
18 INFINITY 0.3000
Example 6
The lens surface data of Example 6 is shown in Table 16 below.
[Table 16]
Surface number rd nd vd eff.dia.
STO INFINITY 0.0000 2.700
2 * 2.3251 0.6383 1.54470 56.2 2.700
3 * -9.2494 0.0521 2.587
4 * 1.7704 0.1967 1.63469 23.9 2.366
5 * 1.1060 0.4161 2.145
6 FS INFINITY 0.2000 2.140
7 * -28.2481 0.5027 1.54470 56.2 2.235
8 * -2.3290 0.0500 2.513
9 * -3.8104 0.2954 1.54470 56 2.838
10 * 13.5740 0.1000 3.017
11 * 2.7825 0.2564 1.63469 23.9 3.230
12 * 2.1786 0.2785 3.493
13 * 5.0908 0.8611 1.54470 56.2 3.725
14 * -1.3327 0.3224 4.063
15 * 17.2266 0.3136 1.54470 56.2 5.048
16 * 1.0912 0.5000 5.404
17 INFINITY 0.1100 1.51633 64.1 6.000
18 INFINITY 0.3000

実施例6のレンズ面の非球面係数を以下の表17に示す。
〔表17〕
第2面
K=1.24460e-001, A4=1.21359e-002, A6=-3.97961e-003,
A8=1.88173e-003, A10=4.52445e-003, A12=-3.97779e-003,
A14=1.25422e-003
第3面
K=-5.56414e+001, A4=9.20711e-002, A6=-1.09643e-001,
A8=1.12194e-001, A10=-7.63506e-002, A12=2.99446e-002,
A14=-4.86273e-003
第4面
K=-1.05152e+001, A4=3.23255e-002, A6=-6.92713e-002,
A8=6.40918e-002, A10=-4.63078e-002, A12=1.91343e-002,
A14=-3.54001e-003
第5面
K=-4.03485e+000, A3=-2.04589e-003, A4=-2.37788e-003,
A5=8.85235e-003, A6=6.88449e-002, A8=-1.52149e-001,
A10=1.66834e-001, A12=-9.65848e-002, A14=2.32001e-002
第7面
K=8.00000e+001, A3=-1.90401e-002, A4=5.72740e-002,
A5=-2.08223e-001, A6=2.04455e-001, A8=-1.85643e-001,
A10=1.56796e-001, A12=-8.93079e-002, A14=1.82997e-002
第8面
K=0.00000e+000, A4=-1.49708e-002, A6=-9.48676e-003,
A8=-4.51000e-003, A10=-3.33351e-003, A12=-2.36607e-007
第9面
K=0.00000e+000, A4=-1.49364e-002, A6=1.24234e-003,
A8=-1.01890e-003, A10=-2.09119e-003, A12=1.17089e-003
第10面
K=7.42360e+001, A3=-3.97455e-002, A4=-1.20038e-001,
A5=1.06377e-001, A6=-1.02513e-001, A8=4.15394e-002,
A10=-1.46593e-002, A12=2.14478e-003
第11面
K=-3.73865e+000, A3=-4.82487e-002, A4=-3.48917e-001,
A5=3.62715e-001, A6=-2.70247e-001, A8=1.02059e-001,
A10=-1.92714e-002, A12=9.07473e-004
第12面
K=-6.13581e-001, A3=-5.49125e-002, A4=-2.54842e-001,
A5=1.47841e-001, A6=-5.04353e-002, A8=4.63083e-003,
A10=5.97528e-003, A12=-1.95441e-003, A14=1.59273e-004
第13面
K=-6.65783e+001, A3=-3.86596e-002, A4=9.89763e-002,
A5=-1.36689e-001, A6=8.42618e-002, A8=-3.93065e-002,
A10=1.64657e-002, A12=-3.88643e-003, A14=3.91002e-004
第14面
K=-8.18820e+000, A3=-7.54710e-002, A4=-8.23716e-002,
A5=1.08396e-001, A6=-1.21428e-002, A8=-1.77832e-002,
A10=6.82192e-003, A12=-1.09890e-003, A14=6.27220e-005
第15面
K=3.55044e+001, A3=-1.10975e-001, A4=-8.95831e-002,
A5=3.16786e-002, A6=2.20089e-002, A8=-2.41082e-003,
A10=-3.27637e-004, A12=7.07156e-005, A14=-3.53132e-006
第16面
K=-5.69567e+000, A3=4.22797e-003, A4=-1.56719e-001,
A5=1.15555e-001, A6=-2.94242e-002, A8=1.29740e-003,
A10=-2.24042e-004, A12=3.11978e-005, A14=-1.47148e-006
Table 17 below shows the aspheric coefficients of the lens surfaces of Example 6.
[Table 17]
Second side
K = 1.24460e-001, A4 = 1.21359e-002, A6 = -3.97961e-003,
A8 = 1.88173e-003, A10 = 4.52445e-003, A12 = -3.97779e-003,
A14 = 1.25422e-003
Third side
K = -5.56414e + 001, A4 = 9.20711e-002, A6 = -1.09643e-001,
A8 = 1.12194e-001, A10 = -7.63506e-002, A12 = 2.99446e-002,
A14 = -4.86273e-003
4th page
K = -1.05152e + 001, A4 = 3.23255e-002, A6 = -6.92713e-002,
A8 = 6.40918e-002, A10 = -4.63078e-002, A12 = 1.91343e-002,
A14 = -3.54001e-003
5th page
K = -4.03485e + 000, A3 = -2.04589e-003, A4 = -2.37788e-003,
A5 = 8.85235e-003, A6 = 6.88449e-002, A8 = -1.52149e-001,
A10 = 1.66834e-001, A12 = -9.65848e-002, A14 = 2.32001e-002
7th page
K = 8.00000e + 001, A3 = -1.90401e-002, A4 = 5.72740e-002,
A5 = -2.08223e-001, A6 = 2.04455e-001, A8 = -1.85643e-001,
A10 = 1.56796e-001, A12 = -8.93079e-002, A14 = 1.82997e-002
8th page
K = 0.00000e + 000, A4 = -1.49708e-002, A6 = -9.48676e-003,
A8 = -4.51000e-003, A10 = -3.33351e-003, A12 = -2.36607e-007
9th page
K = 0.00000e + 000, A4 = -1.49364e-002, A6 = 1.24234e-003,
A8 = -1.01890e-003, A10 = -2.09119e-003, A12 = 1.17089e-003
10th page
K = 7.42360e + 001, A3 = -3.97455e-002, A4 = -1.20038e-001,
A5 = 1.06377e-001, A6 = -1.02513e-001, A8 = 4.15394e-002,
A10 = -1.46593e-002, A12 = 2.14478e-003
11th page
K = -3.73865e + 000, A3 = -4.82487e-002, A4 = -3.48917e-001,
A5 = 3.62715e-001, A6 = -2.70247e-001, A8 = 1.02059e-001,
A10 = -1.92714e-002, A12 = 9.07473e-004
12th page
K = -6.13581e-001, A3 = -5.49125e-002, A4 = -2.54842e-001,
A5 = 1.47841e-001, A6 = -5.04353e-002, A8 = 4.63083e-003,
A10 = 5.97528e-003, A12 = -1.95441e-003, A14 = 1.59273e-004
Side 13
K = -6.65783e + 001, A3 = -3.86596e-002, A4 = 9.89763e-002,
A5 = -1.36689e-001, A6 = 8.42618e-002, A8 = -3.93065e-002,
A10 = 1.64657e-002, A12 = -3.88643e-003, A14 = 3.91002e-004
14th page
K = -8.18820e + 000, A3 = -7.54710e-002, A4 = -8.23716e-002,
A5 = 1.08396e-001, A6 = -1.21428e-002, A8 = -1.77832e-002,
A10 = 6.82192e-003, A12 = -1.09890e-003, A14 = 6.27220e-005
15th page
K = 3.55044e + 001, A3 = -1.10975e-001, A4 = -8.95831e-002,
A5 = 3.16786e-002, A6 = 2.20089e-002, A8 = -2.41082e-003,
A10 = -3.27637e-004, A12 = 7.07156e-005, A14 = -3.53132e-006
16th page
K = -5.69567e + 000, A3 = 4.22797e-003, A4 = -1.56719e-001,
A5 = 1.15555e-001, A6 = -2.94242e-002, A8 = 1.29740e-003,
A10 = -2.24042e-004, A12 = 3.11978e-005, A14 = -1.47148e-006

実施例6の撮像レンズの特性を以下に列挙する。
FL 3.786
Fno 1.44
w 75.44
Ymax 2.921
BF 0.910
TL 5.393
BFa 0.873
TLa 5.356
The characteristics of the imaging lens of Example 6 are listed below.
FL 3.786
Fno 1.44
w 75.44
Ymax 2.921
BF 0.910
TL 5.393
BFa 0.873
TLa 5.356

実施例6の単レンズデータを以下の表18に示す。
〔表18〕
Elem Surfs Focal Length Diameter
1 2- 3 3.4788 2.700
2 4- 5 -5.2461 2.366
3 7- 8 4.6284 2.513
4 9-10 -5.4296 3.017
5 11-12 -18.9337 3.493
6 13-14 2.0353 4.063
7 15-16 -2.1536 5.404
The single lens data of Example 6 is shown in Table 18 below.
[Table 18]
Elem Surfs Focal Length Diameter
1 2- 3 3.4788 2.700
2 4- 5 -5.2461 2.366
3 7- 8 4.6284 2.513
4 9-10 -5.4296 3.017
5 11-12 -18.9337 3.493
6 13-14 2.0353 4.063
7 15-16 -2.1536 5.404

図15は、実施例6の撮像レンズ16等の断面図である。撮像レンズ16は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で正の屈折力を有し像側に凸面を向けた略平凸の第3レンズL3と、光軸AX周辺で負の屈折力を有し両凹の第4レンズL4と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1レンズL1の外縁の物体側には、開口絞り(STO)ASが配置され、第2及び第3レンズL2,L3の間には、遮光絞りFSが配置されている。   FIG. 15 is a cross-sectional view of the imaging lens 16 and the like according to the sixth embodiment. The imaging lens 16 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. The second lens L 2, the substantially plano-convex third lens L 3 having a positive refractive power around the optical axis AX and having a convex surface facing the image side, and a biconcave lens having a negative refractive power around the optical axis AX. The fourth lens L4, a meniscus fifth lens L5 having a negative refractive power around the optical axis AX and having a convex surface facing the object side, and a biconvex sixth lens having a positive refractive power around the optical axis AX. A lens L6, and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed on the object side of the outer edge of the first lens L1, and a light-shielding stop FS is disposed between the second and third lenses L2 and L3.

図16(A)〜16(C)は、実施例6の撮像レンズ16の諸収差図(球面収差、非点収差、歪曲収差)を示し、図16(D)及び16(E)は、実施例6の撮像レンズ16の横収差を示している。   16A to 16C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 16 of Example 6, and FIGS. 16D and 16E show the examples. The lateral aberration of the imaging lens 16 of Example 6 is shown.

〔実施例7〕
実施例7のレンズ面のデータを以下の表19に示す。
〔表19〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 1.8014 0.7679 1.54470 56 2.625
3* -25.8982 0.0500 2.475
4* 2.4270 0.1500 1.63469 23.9 2.298
5* 1.2926 0.3640 2.036
STO INFINITY 0.0000 2.018
7* 5.2123 0.2221 1.54000 45 2.104
8* 5.5759 0.2648 2.227
9* 10.3502 0.7499 1.54470 56 2.389
10* 72.3374 0.1383 2.985
11* 12.0553 0.2000 1.63469 23.9 3.331
12* 8.7474 0.2952 3.439
13* 5.7117 0.5640 1.54470 56 3.785
14* -1.6943 0.2600 4.142
15* -16.2033 0.3139 1.54470 56 4.544
16* 1.1957 0.4000 5.133
17 INFINITY 0.1100 1.51633 64.1 5.483
18 INFINITY 0.4000
Example 7
The lens surface data of Example 7 is shown in Table 19 below.
[Table 19]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 1.8014 0.7679 1.54470 56 2.625
3 * -25.8982 0.0500 2.475
4 * 2.4270 0.1500 1.63469 23.9 2.298
5 * 1.2926 0.3640 2.036
STO INFINITY 0.0000 2.018
7 * 5.2123 0.2221 1.54000 45 2.104
8 * 5.5759 0.2648 2.227
9 * 10.3502 0.7499 1.54470 56 2.389
10 * 72.3374 0.1383 2.985
11 * 12.0553 0.2000 1.63469 23.9 3.331
12 * 8.7474 0.2952 3.439
13 * 5.7117 0.5640 1.54470 56 3.785
14 * -1.6943 0.2600 4.142
15 * -16.2033 0.3139 1.54470 56 4.544
16 * 1.1957 0.4000 5.133
17 INFINITY 0.1100 1.51633 64.1 5.483
18 INFINITY 0.4000

実施例7のレンズ面の非球面係数を以下の表20に示す。
〔表20〕
第2面
K=-7.40221e-001, A4=2.10580e-002, A6=5.74015e-003,
A8=-4.21666e-003, A10=8.06261e-003, A12=-5.09104e-003,
A14=1.41277e-003
第3面
K=8.00000e+001, A4=7.41141e-002, A6=-1.05055e-001,
A8=1.13053e-001, A10=-7.90913e-002, A12=3.26106e-002,
A14=-5.75829e-003
第4面
K=-2.29584e+001, A4=-5.67348e-003, A6=-5.78075e-002,
A8=7.21621e-002, A10=-3.89383e-002, A12=1.46210e-002,
A14=-3.54001e-003
第5面
K=-5.41421e+000, A3=-2.92949e-003, A4=8.18736e-003,
A5=1.57701e-002, A6=4.97446e-002, A8=-1.26949e-001,
A10=1.76346e-001, A12=-1.11323e-001, A14=3.21164e-002
第7面
K=-3.57283e+001, A3=-1.52257e-002, A4=3.17311e-002,
A5=-1.75461e-001, A6=2.34233e-001, A8=-1.99640e-001,
A10=1.33457e-001, A12=-5.85237e-002, A14=2.02494e-002
第8面
K=1.35931e+001, A3=-4.08096e-003, A4=-1.33577e-001,
A5=4.78874e-003, A6=5.71950e-002, A8=-4.70554e-002,
A10=1.39246e-003, A12=1.17779e-002, A14=1.56720e-003
第9面
K=3.64032e+001, A3=2.31875e-005, A4=-1.05039e-001,
A5=4.30647e-003, A6=-3.60461e-004, A8=-8.17235e-003,
A10=-9.45932e-003, A12=9.32529e-003, A14=-1.86514e-003
第10面
K=-8.00000e+001, A3=-2.90834e-002, A4=-9.73707e-002,
A5=8.47935e-002, A6=-1.07118e-001, A8=5.12085e-002,
A10=-1.58276e-002, A12=2.20358e-003
第11面
K=1.66508e+001, A3=-6.88585e-003, A4=-3.29408e-001,
A5=3.72791e-001, A6=-2.62951e-001, A8=9.76559e-002,
A10=-2.10110e-002, A12=1.50623e-003
第12面
K=1.28367e+001, A3=-7.28568e-003, A4=-2.51421e-001,
A5=1.57235e-001, A6=-5.27596e-002, A8=7.28793e-003,
A10=6.57310e-003, A12=-2.35825e-003, A14=1.80059e-004
第13面
K=4.12029e+000, A3=-2.00816e-002, A4=3.63279e-002,
A5=-1.32483e-001, A6=1.10028e-001, A8=-4.93752e-002,
A10=1.55553e-002, A12=-2.40542e-003, A14=1.56883e-004
第14面
K=-1.15262e+001, A3=-4.55317e-002, A4=-1.24586e-002,
A5=6.92369e-002, A6=-1.69062e-002, A8=-1.65327e-002,
A10=6.92685e-003, A12=-1.07562e-003, A14=5.41552e-005
第15面
K=-7.30298e+001, A3=-1.23670e-001, A4=-7.79516e-002,
A5=3.89205e-002, A6=2.27987e-002, A8=-3.25600e-003,
A10=-3.64818e-004, A12=8.98752e-005, A14=-4.59874e-006
第16面
K=-6.05733e+000, A3=-7.93201e-002, A4=-7.54336e-002,
A5=9.94779e-002, A6=-3.51158e-002, A8=1.99822e-003,
A10=-1.82351e-004, A12=1.55595e-005, A14=-3.80652e-007
Table 20 below shows the aspheric coefficients of the lens surfaces of Example 7.
[Table 20]
Second side
K = -7.40221e-001, A4 = 2.10580e-002, A6 = 5.74015e-003,
A8 = -4.21666e-003, A10 = 8.06261e-003, A12 = -5.09104e-003,
A14 = 1.41277e-003
Third side
K = 8.00000e + 001, A4 = 7.41141e-002, A6 = -1.05055e-001,
A8 = 1.13053e-001, A10 = -7.90913e-002, A12 = 3.26106e-002,
A14 = -5.75829e-003
4th page
K = -2.29584e + 001, A4 = -5.67348e-003, A6 = -5.78075e-002,
A8 = 7.21621e-002, A10 = -3.89383e-002, A12 = 1.46210e-002,
A14 = -3.54001e-003
5th page
K = -5.41421e + 000, A3 = -2.92949e-003, A4 = 8.18736e-003,
A5 = 1.57701e-002, A6 = 4.97446e-002, A8 = -1.26949e-001,
A10 = 1.76346e-001, A12 = -1.11323e-001, A14 = 3.21164e-002
7th page
K = -3.57283e + 001, A3 = -1.52257e-002, A4 = 3.17311e-002,
A5 = -1.75461e-001, A6 = 2.34233e-001, A8 = -1.99640e-001,
A10 = 1.33457e-001, A12 = -5.85237e-002, A14 = 2.02494e-002
8th page
K = 1.35931e + 001, A3 = -4.08096e-003, A4 = -1.33577e-001,
A5 = 4.78874e-003, A6 = 5.71950e-002, A8 = -4.70554e-002,
A10 = 1.39246e-003, A12 = 1.17779e-002, A14 = 1.56720e-003
9th page
K = 3.64032e + 001, A3 = 2.31875e-005, A4 = -1.05039e-001,
A5 = 4.30647e-003, A6 = -3.60461e-004, A8 = -8.17235e-003,
A10 = -9.45932e-003, A12 = 9.32529e-003, A14 = -1.86514e-003
10th page
K = -8.00000e + 001, A3 = -2.90834e-002, A4 = -9.73707e-002,
A5 = 8.47935e-002, A6 = -1.07118e-001, A8 = 5.12085e-002,
A10 = -1.58276e-002, A12 = 2.20358e-003
11th page
K = 1.66508e + 001, A3 = -6.88585e-003, A4 = -3.29408e-001,
A5 = 3.72791e-001, A6 = -2.62951e-001, A8 = 9.76559e-002,
A10 = -2.10110e-002, A12 = 1.50623e-003
12th page
K = 1.28367e + 001, A3 = -7.28568e-003, A4 = -2.51421e-001,
A5 = 1.57235e-001, A6 = -5.27596e-002, A8 = 7.28793e-003,
A10 = 6.57310e-003, A12 = -2.35825e-003, A14 = 1.80059e-004
Side 13
K = 4.12029e + 000, A3 = -2.00816e-002, A4 = 3.63279e-002,
A5 = -1.32483e-001, A6 = 1.10028e-001, A8 = -4.93752e-002,
A10 = 1.55553e-002, A12 = -2.40542e-003, A14 = 1.56883e-004
14th page
K = -1.15262e + 001, A3 = -4.55317e-002, A4 = -1.24586e-002,
A5 = 6.92369e-002, A6 = -1.69062e-002, A8 = -1.65327e-002,
A10 = 6.92685e-003, A12 = -1.07562e-003, A14 = 5.41552e-005
15th page
K = -7.30298e + 001, A3 = -1.23670e-001, A4 = -7.79516e-002,
A5 = 3.89205e-002, A6 = 2.27987e-002, A8 = -3.25600e-003,
A10 = -3.64818e-004, A12 = 8.98752e-005, A14 = -4.59874e-006
16th page
K = -6.05733e + 000, A3 = -7.93201e-002, A4 = -7.54336e-002,
A5 = 9.94779e-002, A6 = -3.51158e-002, A8 = 1.99822e-003,
A10 = -1.82351e-004, A12 = 1.55595e-005, A14 = -3.80652e-007

実施例7の撮像レンズの特性を以下に列挙する。
FL 4.188
Fno 1.60
w 70.00
Ymax 2.921
BF 0.910
TL 5.250
BFa 0.873
TLa 5.213
The characteristics of the imaging lens of Example 7 are listed below.
FL 4.188
Fno 1.60
w 70.00
Ymax 2.921
BF 0.910
TL 5.250
BFa 0.873
TLa 5.213

実施例7の単レンズデータを以下の表21に示す。
〔表21〕
Elem Surfs Focal Length Diameter
1 2- 3 3.1226 2.625
2 4- 5 -4.5927 2.298
3 7- 8 121.9205 2.227
4 9-10 22.0802 2.985
5 11-12 -51.4344 3.439
6 13-14 2.4652 4.142
7 15-16 -2.0314 5.133
The single lens data of Example 7 is shown in Table 21 below.
[Table 21]
Elem Surfs Focal Length Diameter
1 2- 3 3.1226 2.625
2 4- 5 -4.5927 2.298
3 7- 8 121.9205 2.227
4 9-10 22.0802 2.985
5 11-12 -51.4344 3.439
6 13-14 2.4652 4.142
7 15-16 -2.0314 5.133

図17は、実施例7の撮像レンズ17等の断面図である。撮像レンズ17は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けた略凸平の第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有する両凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側には、遮光絞りFSが配置されている。   FIG. 17 is a cross-sectional view of the imaging lens 17 and the like of the seventh embodiment. The imaging lens 17 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a negative refractive power around the optical axis AX. The second meniscus lens L2 having a convex surface facing the object side, the third meniscus lens L3 having a weak positive refractive power around the optical axis AX and the convex surface facing the object side, and weak around the optical axis AX A substantially convex fourth lens L4 having a positive refractive power and a convex surface facing the object side, and a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and a convex surface facing the object side And a biconvex sixth lens L6 having a positive refractive power around the optical axis AX and a biconcave seventh lens L7 having a negative refractive power around the optical axis AX. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and a light-shielding stop FS is disposed on the object side of the outer edge of the first lens L1.

図18(A)〜18(C)は、実施例7の撮像レンズ17の諸収差図(球面収差、非点収差、歪曲収差)を示し、図18(D)及び18(E)は、実施例7の撮像レンズ17の横収差を示している。   18A to 18C show various aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the imaging lens 17 of Example 7, and FIGS. 18D and 18E show the examples. 10 shows lateral aberration of the imaging lens 17 of Example 7. FIG.

〔実施例8〕
実施例8のレンズ面のデータを以下の表22に示す。
〔表22〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.1500 2.700
2* 2.5717 0.6047 1.54470 56 2.610
3* -7.0453 0.1420 2.497
STO INFINITY 0.0000 2.393
5* 1.8236 0.1687 1.63469 23.9 2.264
6* 1.1019 0.4572 2.108
7 FS INFINITY 0.1000 2.080
8* 37.1918 0.3890 1.54470 56 2.135
9* -21.8268 0.1039 2.412
10* 8.3148 0.5705 1.54470 56 2.767
11* 8.1875 0.1528 3.061
12* 2.6709 0.2002 1.63469 23.9 3.376
13* 4.4625 0.3514 3.442
14* -18.8765 0.6658 1.54470 56 3.617
15* -1.0741 0.2265 3.959
16* -34.1129 0.3255 1.54470 56 4.849
17* 0.9139 0.4000 5.376
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4068
Example 8
The lens surface data of Example 8 is shown in Table 22 below.
[Table 22]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.1500 2.700
2 * 2.5717 0.6047 1.54470 56 2.610
3 * -7.0453 0.1420 2.497
STO INFINITY 0.0000 2.393
5 * 1.8236 0.1687 1.63469 23.9 2.264
6 * 1.1019 0.4572 2.108
7 FS INFINITY 0.1000 2.080
8 * 37.1918 0.3890 1.54470 56 2.135
9 * -21.8268 0.1039 2.412
10 * 8.3148 0.5705 1.54470 56 2.767
11 * 8.1875 0.1528 3.061
12 * 2.6709 0.2002 1.63469 23.9 3.376
13 * 4.4625 0.3514 3.442
14 * -18.8765 0.6658 1.54470 56 3.617
15 * -1.0741 0.2265 3.959
16 * -34.1129 0.3255 1.54470 56 4.849
17 * 0.9139 0.4000 5.376
18 INFINITY 0.1100 1.51633 64.1 6.000
19 INFINITY 0.4068

実施例8のレンズ面の非球面係数を以下の表23に示す。
〔表23〕
第2面
K=-4.83126e+000, A4=4.41063e-002, A6=-6.70306e-003,
A8=9.50319e-005, A10=5.51386e-003, A12=-3.75901e-003,
A14=1.10559e-003
第3面
K=4.36307e+000, A4=1.02298e-001, A6=-1.10820e-001,
A8=1.13887e-001, A10=-7.73968e-002, A12=3.02679e-002,
A14=-4.85976e-003
第5面
K=-1.05288e+001, A4=8.03773e-003, A6=-6.31082e-002,
A8=7.23894e-002, A10=-5.66858e-002, A12=2.19704e-002,
A14=-3.54000e-003
第6面
K=-3.83762e+000, A3=3.29363e-004, A4=-2.84048e-002,
A5=-2.17539e-003, A6=8.56233e-002, A8=-1.51213e-001,
A10=1.60736e-001, A12=-9.79742e-002, A14=2.46623e-002
第8面
K=1.89728e+001, A3=-1.68594e-002, A4=4.52334e-002,
A5=-2.02623e-001, A6=2.12537e-001, A8=-1.83276e-001,
A10=1.49874e-001, A12=-8.31354e-002, A14=1.63616e-002
第9面
K=0.00000e+000, A4=-1.28346e-001, A6=1.68384e-002,
A8=-1.39014e-003, A10=-3.16422e-003, A12=-1.96502e-003
第10面
K=0.00000e+000, A4=-1.07253e-001, A6=1.33674e-002,
A8=8.06280e-003, A10=-3.12697e-003, A12=-2.27241e-005
第11面
K=2.56707e+001, A3=-1.20100e-001, A4=-6.97855e-002,
A5=1.11286e-001, A6=-1.14865e-001, A8=4.31103e-002,
A10=-1.23434e-002, A12=1.21780e-003
第12面
K=-2.92093e+000, A3=-7.14420e-002, A4=-3.41254e-001,
A5=3.68325e-001, A6=-2.69803e-001, A8=9.93874e-002,
A10=-1.96777e-002, A12=1.33253e-003
第13面
K=-2.13816e+000, A3=3.31706e-002, A4=-2.71094e-001,
A5=1.37274e-001, A6=-4.95022e-002, A8=6.95182e-003,
A10=6.40153e-003, A12=-2.02137e-003, A14=1.40635e-004
第14面
K=-7.97432e+001, A3=2.83515e-002, A4=4.51436e-002,
A5=-1.14595e-001, A6=8.66370e-002, A8=-4.36467e-002,
A10=1.65817e-002, A12=-3.57472e-003, A14=3.46104e-004
第15面
K=-6.84343e+000, A3=-3.72253e-002, A4=-8.26052e-002,
A5=9.87743e-002, A6=-1.12312e-002, A8=-1.75794e-002,
A10=6.75883e-003, A12=-1.08801e-003, A14=6.54569e-005
第16面
K=7.96137e+001, A3=-8.98099e-002, A4=-9.22669e-002,
A5=3.26750e-002, A6=2.22238e-002, A8=-2.53460e-003,
A10=-3.34788e-004, A12=7.56831e-005, A14=-3.86230e-006
第17面
K=-6.46364e+000, A3=1.49818e-004, A4=-1.42290e-001,
A5=1.12197e-001, A6=-3.04811e-002, A8=1.31927e-003,
A10=-2.22673e-004, A12=3.03972e-005, A14=-1.32693e-006
Table 23 below shows the aspheric coefficients of the lens surfaces of Example 8.
[Table 23]
Second side
K = -4.83126e + 000, A4 = 4.41063e-002, A6 = -6.70306e-003,
A8 = 9.50319e-005, A10 = 5.51386e-003, A12 = -3.75901e-003,
A14 = 1.10559e-003
Third side
K = 4.36307e + 000, A4 = 1.02298e-001, A6 = -1.10820e-001,
A8 = 1.13887e-001, A10 = -7.73968e-002, A12 = 3.02679e-002,
A14 = -4.85976e-003
5th page
K = -1.05288e + 001, A4 = 8.03773e-003, A6 = -6.31082e-002,
A8 = 7.23894e-002, A10 = -5.66858e-002, A12 = 2.19704e-002,
A14 = -3.54000e-003
6th page
K = -3.83762e + 000, A3 = 3.29363e-004, A4 = -2.84048e-002,
A5 = -2.17539e-003, A6 = 8.56233e-002, A8 = -1.51213e-001,
A10 = 1.60736e-001, A12 = -9.79742e-002, A14 = 2.46623e-002
8th page
K = 1.89728e + 001, A3 = -1.68594e-002, A4 = 4.52334e-002,
A5 = -2.02623e-001, A6 = 2.12537e-001, A8 = -1.83276e-001,
A10 = 1.49874e-001, A12 = -8.31354e-002, A14 = 1.63616e-002
9th page
K = 0.00000e + 000, A4 = -1.28346e-001, A6 = 1.68384e-002,
A8 = -1.39014e-003, A10 = -3.16422e-003, A12 = -1.96502e-003
10th page
K = 0.00000e + 000, A4 = -1.07253e-001, A6 = 1.33674e-002,
A8 = 8.06280e-003, A10 = -3.12697e-003, A12 = -2.27241e-005
11th page
K = 2.56707e + 001, A3 = -1.20100e-001, A4 = -6.97855e-002,
A5 = 1.11286e-001, A6 = -1.14865e-001, A8 = 4.31103e-002,
A10 = -1.23434e-002, A12 = 1.21780e-003
12th page
K = -2.92093e + 000, A3 = -7.14420e-002, A4 = -3.41254e-001,
A5 = 3.68325e-001, A6 = -2.69803e-001, A8 = 9.93874e-002,
A10 = -1.96777e-002, A12 = 1.33253e-003
Side 13
K = -2.13816e + 000, A3 = 3.31706e-002, A4 = -2.71094e-001,
A5 = 1.37274e-001, A6 = -4.95022e-002, A8 = 6.95182e-003,
A10 = 6.40153e-003, A12 = -2.02137e-003, A14 = 1.40635e-004
14th page
K = -7.97432e + 001, A3 = 2.83515e-002, A4 = 4.51436e-002,
A5 = -1.14595e-001, A6 = 8.66370e-002, A8 = -4.36467e-002,
A10 = 1.65817e-002, A12 = -3.57472e-003, A14 = 3.46104e-004
15th page
K = -6.84343e + 000, A3 = -3.72253e-002, A4 = -8.26052e-002,
A5 = 9.87743e-002, A6 = -1.12312e-002, A8 = -1.75794e-002,
A10 = 6.75883e-003, A12 = -1.08801e-003, A14 = 6.54569e-005
16th page
K = 7.96137e + 001, A3 = -8.98099e-002, A4 = -9.22669e-002,
A5 = 3.26750e-002, A6 = 2.22238e-002, A8 = -2.53460e-003,
A10 = -3.34788e-004, A12 = 7.56831e-005, A14 = -3.86230e-006
17th page
K = -6.46364e + 000, A3 = 1.49818e-004, A4 = -1.42290e-001,
A5 = 1.12197e-001, A6 = -3.04811e-002, A8 = 1.31927e-003,
A10 = -2.22673e-004, A12 = 3.03972e-005, A14 = -1.32693e-006

実施例8の撮像レンズの特性を以下に列挙する。
FL 3.793
Fno 1.44
w 75.44
Ymax 2.921
BF 0.917
TL 5.375
BFa 0.879
TLa 5.337
The characteristics of the imaging lens of Example 8 are listed below.
FL 3.793
Fno 1.44
w 75.44
Ymax 2.921
BF 0.917
TL 5.375
BFa 0.879
TLa 5.337

実施例8の単レンズデータを以下の表24に示す。
〔表24〕
Elem Surfs Focal Length Diameter
1 2- 3 3.5372 2.610
2 5- 6 -4.8250 2.264
3 8- 9 25.3105 2.412
4 10-11 1691.5727 3.061
5 12-13 10.0455 3.442
6 14-15 2.0637 3.959
7 16-17 -1.6287 5.376
The single lens data of Example 8 is shown in Table 24 below.
[Table 24]
Elem Surfs Focal Length Diameter
1 2- 3 3.5372 2.610
2 5- 6 -4.8250 2.264
3 8- 9 25.3105 2.412
4 10-11 1691.5727 3.061
5 12-13 10.0455 3.442
6 14-15 2.0637 3.959
7 16-17 -1.6287 5.376

図19は、実施例8の撮像レンズ18等の断面図である。撮像レンズ18は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い正の屈折力を有する略平板の第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けた略平凹の第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 19 is a cross-sectional view of the imaging lens 18 and the like of the eighth embodiment. The imaging lens 18 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. Second lens L2, a substantially flat third lens L3 having a weak positive refractive power around the optical axis AX, and a meniscus having a weak positive refractive power around the optical axis AX and a convex surface facing the object side. The fourth lens L4, a fifth meniscus lens L5 having a positive refractive power around the optical axis AX and having a convex surface facing the object side, and a positive refractive power around the optical axis AX and a convex surface facing the image side A sixth meniscus lens L6 directed to the right side, and a substantially plano-concave seventh lens L7 having negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.

図20(A)〜20(C)は、実施例8の撮像レンズ18の諸収差図(球面収差、非点収差、歪曲収差)を示し、図20(D)及び20(E)は、実施例8の撮像レンズ18の横収差を示している。   20A to 20C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 18 of Example 8, and FIGS. 20D and 20E show the results. 10 shows lateral aberration of the imaging lens 18 of Example 8. FIG.

〔実施例9〕
実施例9のレンズ面のデータを以下の表25に示す。
〔表25〕
面番号 r d nd vd eff. dia.
1 FS INFINITY 0.0000 2.700
2* 2.0234 0.7031 1.54470 56 2.625
3* -8.9993 0.0500 2.495
STO INFINITY 0.0000 2.460
5* 2.1912 0.1872 1.63469 23.9 2.290
6* 1.2026 0.3963 2.047
7 FS INFINITY 0.1500 2.100
8* 33.0211 0.3000 1.54470 56 2.181
9* 20.3240 0.0921 2.421
10* 4.4582 0.7987 1.54470 56 3.025
11* 10.7911 0.2198 3.263
12* -5.5339 0.2000 1.63469 23.9 3.446
13* -2.7265 0.0500 3.718
14* -19.7175 0.5492 1.54470 56 3.820
15* -4.1358 0.2779 4.230
16* 1.2438 0.3411 1.54470 56 4.832
17* 0.7091 0.4000 5.347
18 INFINITY 0.1100 1.51633 64.1 5.642
19 INFINITY 0.3350
Example 9
The lens surface data of Example 9 is shown in Table 25 below.
[Table 25]
Surface number rd nd vd eff.dia.
1 FS INFINITY 0.0000 2.700
2 * 2.0234 0.7031 1.54470 56 2.625
3 * -8.9993 0.0500 2.495
STO INFINITY 0.0000 2.460
5 * 2.1912 0.1872 1.63469 23.9 2.290
6 * 1.2026 0.3963 2.047
7 FS INFINITY 0.1500 2.100
8 * 33.0211 0.3000 1.54470 56 2.181
9 * 20.3240 0.0921 2.421
10 * 4.4582 0.7987 1.54470 56 3.025
11 * 10.7911 0.2198 3.263
12 * -5.5339 0.2000 1.63469 23.9 3.446
13 * -2.7265 0.0500 3.718
14 * -19.7175 0.5492 1.54470 56 3.820
15 * -4.1358 0.2779 4.230
16 * 1.2438 0.3411 1.54470 56 4.832
17 * 0.7091 0.4000 5.347
18 INFINITY 0.1100 1.51633 64.1 5.642
19 INFINITY 0.3350

実施例9のレンズ面の非球面係数を以下の表26に示す。
〔表26〕
第2面
K=-1.39095e+000, A4=2.74220e-002, A6=6.42703e-003,
A8=-7.94158e-003, A10=9.75374e-003, A12=-4.65859e-003,
A14=1.00516e-003
第3面
K=-8.00000e+001, A4=9.80286e-002, A6=-1.24570e-001,
A8=1.24848e-001, A10=-8.16542e-002, A12=3.04880e-002,
A14=-4.86278e-003
第5面
K=-1.93604e+001, A4=4.28866e-002, A6=-8.93068e-002,
A8=9.66026e-002, A10=-6.67212e-002, A12=2.43946e-002,
A14=-3.54002e-003
第6面
K=-3.94629e+000, A3=-1.27730e-002, A4=-3.64851e-002,
A5=3.27652e-002, A6=1.01463e-001, A8=-1.58322e-001,
A10=1.37490e-001, A12=-6.69981e-002, A14=1.50187e-002
第8面
K=8.00000e+001, A3=-4.90380e-002, A4=1.34760e-001,
A5=-3.81210e-001, A6=3.26202e-001, A8=-1.70718e-001,
A10=7.59383e-002, A12=-2.16692e-002, A14=1.81216e-003
第9面
K=0.00000e+000, A4=-2.68988e-001, A6=1.73129e-001,
A8=-8.56192e-002, A10=2.18613e-002, A12=-1.97464e-003
第10面
K=0.00000e+000, A4=-2.58118e-001, A6=1.43930e-001,
A8=-2.48977e-002, A10=-8.75304e-004, A12=6.19381e-004
第11面
K=3.28638e+001, A3=-3.60092e-002, A4=-1.23393e-001,
A5=7.04971e-002, A6=-8.98671e-002, A8=6.06511e-002,
A10=-2.10678e-002, A12=3.25224e-003
第12面
K=7.14544e+000, A3=-3.46988e-002, A4=-2.03350e-001,
A5=3.75098e-001, A6=-2.89325e-001, A8=9.05873e-002,
A10=-1.87320e-002, A12=1.50386e-003
第13面
K=8.75551e-001, A3=3.25418e-001, A4=-4.06240e-001,
A5=1.73562e-001, A6=-3.24475e-002, A8=3.99963e-003,
A10=4.74560e-003, A12=-1.81839e-003, A14=1.62471e-004
第14面
K=3.80208e+001, A3=3.95727e-001, A4=-2.73772e-001,
A5=-7.77810e-002, A6=1.56779e-001, A8=-5.98064e-002,
A10=1.42828e-002, A12=-2.27568e-003, A14=2.01690e-004
第15面
K=-8.00000e+001, A3=-3.12479e-001, A4=3.60011e-001,
A5=-4.55743e-002, A6=-2.78295e-002, A8=-1.60820e-002,
A10=6.31768e-003, A12=-8.45855e-004, A14=4.54774e-005
第16面
K=-1.39025e+001, A3=-3.40057e-001, A4=1.72052e-002,
A5=3.95350e-002, A6=1.70899e-002, A8=-3.54178e-003,
A10=-2.92023e-004, A12=1.01459e-004, A14=-6.32294e-006
第17面
K=-5.56221e+000, A3=-1.16361e-002, A4=-2.01889e-001,
A5=1.68552e-001, A6=-4.68669e-002, A8=1.72489e-003,
A10=-1.38224e-004, A12=1.50601e-005, A14=-5.50199e-007
Table 26 below shows the aspheric coefficients of the lens surfaces of Example 9.
[Table 26]
Second side
K = -1.39095e + 000, A4 = 2.74220e-002, A6 = 6.42703e-003,
A8 = -7.94158e-003, A10 = 9.75374e-003, A12 = -4.65859e-003,
A14 = 1.00516e-003
Third side
K = -8.00000e + 001, A4 = 9.80286e-002, A6 = -1.24570e-001,
A8 = 1.24848e-001, A10 = -8.16542e-002, A12 = 3.04880e-002,
A14 = -4.86278e-003
5th page
K = -1.93604e + 001, A4 = 4.28866e-002, A6 = -8.93068e-002,
A8 = 9.66026e-002, A10 = -6.67212e-002, A12 = 2.43946e-002,
A14 = -3.54002e-003
6th page
K = -3.94629e + 000, A3 = -1.27730e-002, A4 = -3.64851e-002,
A5 = 3.27652e-002, A6 = 1.01463e-001, A8 = -1.58322e-001,
A10 = 1.37490e-001, A12 = -6.69981e-002, A14 = 1.50187e-002
8th page
K = 8.00000e + 001, A3 = -4.90380e-002, A4 = 1.34760e-001,
A5 = -3.81210e-001, A6 = 3.26202e-001, A8 = -1.70718e-001,
A10 = 7.59383e-002, A12 = -2.16692e-002, A14 = 1.81216e-003
9th page
K = 0.00000e + 000, A4 = -2.68988e-001, A6 = 1.73129e-001,
A8 = -8.56192e-002, A10 = 2.18613e-002, A12 = -1.97464e-003
10th page
K = 0.00000e + 000, A4 = -2.58118e-001, A6 = 1.43930e-001,
A8 = -2.48977e-002, A10 = -8.75304e-004, A12 = 6.19381e-004
11th page
K = 3.28638e + 001, A3 = -3.60092e-002, A4 = -1.23393e-001,
A5 = 7.04971e-002, A6 = -8.98671e-002, A8 = 6.06511e-002,
A10 = -2.10678e-002, A12 = 3.25224e-003
12th page
K = 7.14544e + 000, A3 = -3.46988e-002, A4 = -2.03350e-001,
A5 = 3.75098e-001, A6 = -2.89325e-001, A8 = 9.05873e-002,
A10 = -1.87320e-002, A12 = 1.50386e-003
Side 13
K = 8.75551e-001, A3 = 3.25418e-001, A4 = -4.06240e-001,
A5 = 1.73562e-001, A6 = -3.24475e-002, A8 = 3.99963e-003,
A10 = 4.74560e-003, A12 = -1.81839e-003, A14 = 1.62471e-004
14th page
K = 3.80208e + 001, A3 = 3.95727e-001, A4 = -2.73772e-001,
A5 = -7.77810e-002, A6 = 1.56779e-001, A8 = -5.98064e-002,
A10 = 1.42828e-002, A12 = -2.27568e-003, A14 = 2.01690e-004
15th page
K = -8.00000e + 001, A3 = -3.12479e-001, A4 = 3.60011e-001,
A5 = -4.55743e-002, A6 = -2.78295e-002, A8 = -1.60820e-002,
A10 = 6.31768e-003, A12 = -8.45855e-004, A14 = 4.54774e-005
16th page
K = -1.39025e + 001, A3 = -3.40057e-001, A4 = 1.72052e-002,
A5 = 3.95350e-002, A6 = 1.70899e-002, A8 = -3.54178e-003,
A10 = -2.92023e-004, A12 = 1.01459e-004, A14 = -6.32294e-006
17th page
K = -5.56221e + 000, A3 = -1.16361e-002, A4 = -2.01889e-001,
A5 = 1.68552e-001, A6 = -4.68669e-002, A8 = 1.72489e-003,
A10 = -1.38224e-004, A12 = 1.50601e-005, A14 = -5.50199e-007

実施例9の撮像レンズの特性を以下に列挙する。
FL 3.792
Fno 1.44
w 75.44
Ymax 2.921
BF 0.845
TL 5.160
BFa 0.808
TLa 5.123
The characteristics of the imaging lens of Example 9 are listed below.
FL 3.792
Fno 1.44
w 75.44
Ymax 2.921
BF 0.845
TL 5.160
BFa 0.808
TLa 5.123

実施例9の単レンズデータを以下の表27に示す。
〔表27〕
Elem Surfs Focal Length Diameter
1 2- 3 3.1026 2.625
2 5- 6 -4.5329 2.290
3 8- 9 -97.8521 2.421
4 10-11 13.3524 3.263
5 12-13 8.2401 3.718
6 14-15 9.4902 4.230
7 16-17 -3.9065 5.347
The single lens data of Example 9 is shown in Table 27 below.
[Table 27]
Elem Surfs Focal Length Diameter
1 2- 3 3.1026 2.625
2 5- 6 -4.5329 2.290
3 8- 9 -97.8521 2.421
4 10-11 13.3524 3.263
5 12-13 8.2401 3.718
6 14-15 9.4902 4.230
7 16-17 -3.9065 5.347

図21は、実施例9の撮像レンズ19等の断面図である。撮像レンズ19は、物体側より順に、光軸AX周辺で正の屈折力を有する両凸の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有する略平板状の第3レンズL3と、光軸AX周辺で正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有し像側に凸面を向けたメニスカスの第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第1及び第2レンズL1,L2の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第2及び第3レンズL2,L3の間とには、遮光絞りFSが配置されている。   FIG. 21 is a cross-sectional view of the imaging lens 19 and the like of the ninth embodiment. The imaging lens 19 includes, in order from the object side, a biconvex first lens L1 having a positive refractive power around the optical axis AX, and a meniscus having a negative refractive power around the optical axis AX and a convex surface facing the object side. Second lens L2, a substantially flat third lens L3 having a weak negative refractive power around the optical axis AX, and a meniscus having a positive refractive power around the optical axis AX and a convex surface facing the object side. A fourth lens L4, a fifth lens L5 having a positive refractive power around the optical axis AX and having a convex surface facing the image side, and a positive refractive power around the optical axis AX and a convex surface facing the image side. And a sixth meniscus lens L6 having a negative refractive power around the optical axis AX and a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the first and second lenses L1 and L2, and between the object side of the outer edge of the first lens L1 and between the second and third lenses L2 and L3, A light-shielding stop FS is disposed.

図22(A)〜22(C)は、実施例9の撮像レンズ19の諸収差図(球面収差、非点収差、歪曲収差)を示し、図22(D)及び22(E)は、実施例9の撮像レンズ19の横収差を示している。   22A to 22C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 19 of Example 9, and FIGS. 22D and 22E show the results. 10 shows lateral aberrations of the imaging lens 19 of Example 9. FIG.

〔実施例10〕
実施例10のレンズ面のデータを以下の表28に示す。
〔表28〕
面番号 r d nd vd eff. dia.
1 FS INFINITY -0.2000 2.700
2* 1.7926 0.7626 1.54470 56 2.625
3* -113.1622 0.0500 2.469
4* 2.0165 0.1500 1.64250 22.5 2.266
5* 1.2311 0.3674 2.020
STO INFINITY 0.0000 2.018
7* 4.9714 0.1916 1.54470 56 1.984
8* 4.3740 0.1263 2.117
9 FS INFINITY 0.1000 2.300
10* 7.2467 0.6640 1.54470 56 2.353
11* 17.5412 0.1156 2.897
12* 9.4860 0.2000 1.63469 23.9 3.275
13* 7.6337 0.2788 3.347
14* 4.8348 0.5099 1.54470 56 3.683
15* -1.9176 0.2670 4.073
16* 16.6282 0.3070 1.54470 56 4.440
17* 1.1354 0.7000 4.979
18 INFINITY 0.1100 1.51633 64.1 5.731
19 INFINITY 0.0998
Example 10
The lens surface data of Example 10 is shown in Table 28 below.
[Table 28]
Surface number rd nd vd eff.dia.
1 FS INFINITY -0.2000 2.700
2 * 1.7926 0.7626 1.54470 56 2.625
3 * -113.1622 0.0500 2.469
4 * 2.0165 0.1500 1.64250 22.5 2.266
5 * 1.2311 0.3674 2.020
STO INFINITY 0.0000 2.018
7 * 4.9714 0.1916 1.54470 56 1.984
8 * 4.3740 0.1263 2.117
9 FS INFINITY 0.1000 2.300
10 * 7.2467 0.6640 1.54470 56 2.353
11 * 17.5412 0.1156 2.897
12 * 9.4860 0.2000 1.63469 23.9 3.275
13 * 7.6337 0.2788 3.347
14 * 4.8348 0.5099 1.54470 56 3.683
15 * -1.9176 0.2670 4.073
16 * 16.6282 0.3070 1.54470 56 4.440
17 * 1.1354 0.7000 4.979
18 INFINITY 0.1100 1.51633 64.1 5.731
19 INFINITY 0.0998

実施例10のレンズ面の非球面係数を以下の表29に示す。
〔表29〕
第2面
K=-7.32448e-001, A4=2.12231e-002, A6=6.01622e-003,
A8=-4.42254e-003, A10=8.28630e-003, A12=-5.19321e-003,
A14=1.46425e-003
第3面
K=2.28201e+001, A4=6.82123e-002, A6=-9.93415e-002,
A8=1.09933e-001, A10=-7.95018e-002, A12=3.36150e-002,
A14=-6.08554e-003
第4面
K=-1.26928e+001, A4=3.42206e-003, A6=-7.10144e-002,
A8=7.46353e-002, A10=-3.63313e-002, A12=1.26443e-002,
A14=-3.53992e-003
第5面
K=-4.48550e+000, A3=1.82361e-003, A4=3.33830e-003,
A5=1.21468e-002, A6=4.89244e-002, A8=-1.25901e-001,
A10=1.77743e-001, A12=-1.10878e-001, A14=3.09625e-002
第7面
K=-3.73773e+001, A3=-1.25000e-002, A4=3.00205e-002,
A5=-1.74971e-001, A6=2.33954e-001, A8=-1.97628e-001,
A10=1.32321e-001, A12=-6.23170e-002, A14=2.40171e-002
第8面
K=9.87345e+000, A3=-9.49519e-003, A4=-1.30748e-001,
A5=2.64057e-003, A6=5.47750e-002, A8=-4.64005e-002,
A10=-2.01369e-003, A12=9.48386e-003, A14=4.85948e-003
第10面
K=2.77556e+001, A3=-3.00569e-003, A4=-9.96057e-002,
A5=4.90875e-003, A6=3.29525e-003, A8=-8.50991e-003,
A10=-1.21297e-002, A12=1.19899e-002, A14=-1.27631e-003
第11面
K=-8.00000e+001, A3=-2.32217e-002, A4=-9.75271e-002,
A5=8.65383e-002, A6=-1.05897e-001, A8=5.17257e-002,
A10=-1.57755e-002, A12=2.73074e-003
第12面
K=2.53322e+001, A3=1.31110e-002, A4=-3.38542e-001,
A5=3.76536e-001, A6=-2.61788e-001, A8=9.73605e-002,
A10=-2.13223e-002, A12=1.55861e-003
第13面
K=1.44930e+001, A3=4.49894e-003, A4=-2.56010e-001,
A5=1.53023e-001, A6=-4.93515e-002, A8=7.42384e-003,
A10=6.52683e-003, A12=-2.39653e-003, A14=1.77958e-004
第14面
K=3.66614e+000, A3=-2.07704e-002, A4=3.71577e-002,
A5=-1.33577e-001, A6=1.09656e-001, A8=-4.95926e-002,
A10=1.56191e-002, A12=-2.48831e-003, A14=1.75730e-004
第15面
K=-1.92320e+001, A3=-1.17213e-001, A4=6.44529e-002,
A5=4.54852e-002, A6=-1.75417e-002, A8=-1.54415e-002,
A10=6.78594e-003, A12=-1.09352e-003, A14=5.85870e-005
第16面
K=8.56893e+000, A3=-2.17398e-001, A4=-4.20510e-002,
A5=4.34765e-002, A6=2.12869e-002, A8=-3.70499e-003,
A10=-3.61592e-004, A12=9.74898e-005, A14=-4.92407e-006
第17面
K=-6.13137e+000, A3=-1.08921e-001, A4=-5.65300e-002,
A5=9.82497e-002, A6=-3.75212e-002, A8=2.17622e-003,
A10=-1.88382e-004, A12=9.43182e-006, A14=6.05016e-007
Table 29 below shows the aspheric coefficients of the lens surfaces of Example 10.
[Table 29]
Second side
K = -7.32448e-001, A4 = 2.12231e-002, A6 = 6.01622e-003,
A8 = -4.42254e-003, A10 = 8.28630e-003, A12 = -5.19321e-003,
A14 = 1.46425e-003
Third side
K = 2.28201e + 001, A4 = 6.82123e-002, A6 = -9.93415e-002,
A8 = 1.09933e-001, A10 = -7.95018e-002, A12 = 3.36150e-002,
A14 = -6.08554e-003
4th page
K = -1.26928e + 001, A4 = 3.42206e-003, A6 = -7.10144e-002,
A8 = 7.46353e-002, A10 = -3.63313e-002, A12 = 1.26443e-002,
A14 = -3.53992e-003
5th page
K = -4.48550e + 000, A3 = 1.82361e-003, A4 = 3.33830e-003,
A5 = 1.21468e-002, A6 = 4.89244e-002, A8 = -1.25901e-001,
A10 = 1.77743e-001, A12 = -1.10878e-001, A14 = 3.09625e-002
7th page
K = -3.73773e + 001, A3 = -1.25000e-002, A4 = 3.00205e-002,
A5 = -1.74971e-001, A6 = 2.33954e-001, A8 = -1.97628e-001,
A10 = 1.32321e-001, A12 = -6.23170e-002, A14 = 2.40171e-002
8th page
K = 9.87345e + 000, A3 = -9.49519e-003, A4 = -1.30748e-001,
A5 = 2.64057e-003, A6 = 5.47750e-002, A8 = -4.64005e-002,
A10 = -2.01369e-003, A12 = 9.48386e-003, A14 = 4.85948e-003
10th page
K = 2.77556e + 001, A3 = -3.00569e-003, A4 = -9.96057e-002,
A5 = 4.90875e-003, A6 = 3.29525e-003, A8 = -8.50991e-003,
A10 = -1.21297e-002, A12 = 1.19899e-002, A14 = -1.27631e-003
11th page
K = -8.00000e + 001, A3 = -2.32217e-002, A4 = -9.75271e-002,
A5 = 8.65383e-002, A6 = -1.05897e-001, A8 = 5.17257e-002,
A10 = -1.57755e-002, A12 = 2.73074e-003
12th page
K = 2.53322e + 001, A3 = 1.31110e-002, A4 = -3.38542e-001,
A5 = 3.76536e-001, A6 = -2.61788e-001, A8 = 9.73605e-002,
A10 = -2.13223e-002, A12 = 1.55861e-003
Side 13
K = 1.44930e + 001, A3 = 4.49894e-003, A4 = -2.56010e-001,
A5 = 1.53023e-001, A6 = -4.93515e-002, A8 = 7.42384e-003,
A10 = 6.52683e-003, A12 = -2.39653e-003, A14 = 1.77958e-004
14th page
K = 3.66614e + 000, A3 = -2.07704e-002, A4 = 3.71577e-002,
A5 = -1.33577e-001, A6 = 1.09656e-001, A8 = -4.95926e-002,
A10 = 1.56191e-002, A12 = -2.48831e-003, A14 = 1.75730e-004
15th page
K = -1.92320e + 001, A3 = -1.17213e-001, A4 = 6.44529e-002,
A5 = 4.54852e-002, A6 = -1.75417e-002, A8 = -1.54415e-002,
A10 = 6.78594e-003, A12 = -1.09352e-003, A14 = 5.85870e-005
16th page
K = 8.56893e + 000, A3 = -2.17398e-001, A4 = -4.20510e-002,
A5 = 4.34765e-002, A6 = 2.12869e-002, A8 = -3.70499e-003,
A10 = -3.61592e-004, A12 = 9.74898e-005, A14 = -4.92407e-006
17th page
K = -6.13137e + 000, A3 = -1.08921e-001, A4 = -5.65300e-002,
A5 = 9.82497e-002, A6 = -3.75212e-002, A8 = 2.17622e-003,
A10 = -1.88382e-004, A12 = 9.43182e-006, A14 = 6.05016e-007

実施例10の撮像レンズの特性を以下に列挙する。
FL 4.027
Fno 1.53
w 72.16
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962
The characteristics of the imaging lens of Example 10 are listed below.
FL 4.027
Fno 1.53
w 72.16
Ymax 2.921
BF 0.910
TL 5.000
BFa 0.872
TLa 4.962

実施例10の単レンズデータを以下の表30に示す。
〔表30〕
Elem Surfs Focal Length Diameter
1 2- 3 3.2473 2.625
2 4- 5 -5.3172 2.266
3 7- 8 -75.3346 2.117
4 10-11 22.1651 2.897
5 12-13 -64.2873 3.347
6 14-15 2.5897 4.073
7 16-17 -2.2530 4.979
The single lens data of Example 10 is shown in Table 30 below.
[Table 30]
Elem Surfs Focal Length Diameter
1 2- 3 3.2473 2.625
2 4- 5 -5.3172 2.266
3 7-8 -75.3346 2.117
4 10-11 22.1651 2.897
5 12-13 -64.2873 3.347
6 14-15 2.5897 4.073
7 16-17 -2.2530 4.979

図23は、実施例10の撮像レンズ20等の断面図である。撮像レンズ20は、物体側より順に、光軸AX周辺で正の屈折力を有し物体側に凸面を向けた略凸平の第1レンズL1と、光軸AX周辺で負の屈折力を有し物体側に凸面を向けたメニスカスの第2レンズL2と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第3レンズL3と、光軸AX周辺で弱い正の屈折力を有し物体側に凸面を向けたメニスカスの第4レンズL4と、光軸AX周辺で弱い負の屈折力を有し物体側に凸面を向けたメニスカスの第5レンズL5と、光軸AX周辺で正の屈折力を有する両凸の第6レンズL6と、光軸AX周辺で負の屈折力を有し像側に凹面を向けたメニスカスの第7レンズL7とを備える。全てのレンズL1〜L7は、プラスチック材料から形成されている。第2及び第3レンズL2,L3の間には、開口絞り(STO)ASが配置され、第1レンズL1の外縁の物体側と、第3及び第4レンズL3,L4の間とには、遮光絞りFSが配置されている。   FIG. 23 is a cross-sectional view of the imaging lens 20 and the like of the tenth embodiment. The imaging lens 20 has, in order from the object side, a substantially convex first lens L1 having a positive refractive power around the optical axis AX and a convex surface facing the object side, and a negative refractive power around the optical axis AX. The second meniscus lens L2 having a convex surface facing the object side, the third meniscus lens L3 having a weak negative refractive power around the optical axis AX and the convex surface facing the object side, and weak around the optical axis AX A fourth meniscus lens L4 having a positive refractive power and having a convex surface facing the object side; a fifth meniscus lens L5 having a weak negative refractive power around the optical axis AX and having a convex surface facing the object side; A biconvex sixth lens L6 having a positive refractive power around the optical axis AX, and a meniscus seventh lens L7 having a negative refractive power around the optical axis AX and having a concave surface facing the image side. All the lenses L1 to L7 are made of a plastic material. An aperture stop (STO) AS is disposed between the second and third lenses L2 and L3, and between the object side of the outer edge of the first lens L1 and between the third and fourth lenses L3 and L4. A light-shielding stop FS is disposed.

図24(A)〜24(C)は、実施例10の撮像レンズ20の諸収差図(球面収差、非点収差、歪曲収差)を示し、図24(D)及び24(E)は、実施例10の撮像レンズ20の横収差を示している。   24A to 24C show various aberration diagrams (spherical aberration, astigmatism, distortion) of the imaging lens 20 of Example 10, and FIGS. 24D and 24E show the examples. The lateral aberration of the imaging lens 20 of Example 10 is shown.

以下の表31は、参考のため、各条件式(1)〜(12)に対応する各実施例1〜10の値をまとめたものである。
〔表31〕

Figure 2015072403
Table 31 below summarizes the values of Examples 1 to 10 corresponding to the conditional expressions (1) to (12) for reference.
[Table 31]
Figure 2015072403

以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、開口絞りASは、鏡筒部分54aに直接的に支持させることができるが、これに隣接する1つのレンズの外側に延びるフランジ部に固定することができ、あるいは隣接する一対のレンズの外側に延びるフランジ部に挟んで固定することができる。遮光絞りFSも、鏡筒部分54aに直接的に支持させることができるが、これに隣接する1つのレンズの外側に延びるフランジ部に固定することができ、あるいは隣接する一対のレンズの外側に延びるフランジ部に挟んで固定することができる。   In the above, the present invention has been described based on the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like. For example, the aperture stop AS can be directly supported by the lens barrel portion 54a, but can be fixed to a flange portion extending to the outside of one adjacent lens, or the outside of a pair of adjacent lenses. And can be fixed by being sandwiched between flange portions extending in the direction. Although the light-shielding stop FS can also be directly supported by the lens barrel portion 54a, it can be fixed to a flange portion that extends to the outside of one adjacent lens, or extends to the outside of a pair of adjacent lenses. It can be fixed by being sandwiched between flange portions.

開口絞りASや遮光絞りFSは、金属板に限らず、樹脂又はセラミックスの板状部材とすることができ、レンズのフランジ部を遮光性の材料で塗装することによっても組み込むことができる。さらに、開口絞りASや遮光絞りFSは、完全な遮光体に限らず、口径外で減光を行うものであってもよい。遮光絞りFSを遮光板等とする場合、一対のレンズ間に複数の遮光板等を配置することもできる。   The aperture stop AS and the light-shielding stop FS are not limited to metal plates, but can be plate members made of resin or ceramics, and can also be incorporated by painting the flange portion of the lens with a light-shielding material. Further, the aperture stop AS and the light-shielding stop FS are not limited to a complete light-shielding body, and may be one that performs light reduction outside the aperture. When the light-shielding stop FS is a light-shielding plate or the like, a plurality of light-shielding plates or the like can be arranged between a pair of lenses.

10,11〜20…撮像レンズ、 50…カメラモジュール、 51…撮像素子、 100…撮像装置、 300…携帯通信端末、 AX…光軸、 L1−L7…レンズ、 AS,FS…絞り   DESCRIPTION OF SYMBOLS 10,11-20 ... Imaging lens 50 ... Camera module 51 ... Imaging device 100 ... Imaging device 300 ... Portable communication terminal AX ... Optical axis L1-L7 ... Lens, AS, FS ... Aperture

Claims (25)

物体側より順に、正の第1レンズ、負の第2レンズ、第3レンズ、第4レンズ、第5レンズ、第6レンズ及び第7レンズからなり、
前記第7レンズの像側面は、非球面形状を有し、中心以外の有効径内に極値を有し、
下記の条件式を満たす、撮像レンズ。
1.5<ET2/CT2<3.0 … (1)
CT2:前記第2レンズの中心厚
ET2:前記第2レンズの縁厚
ただし、前記第2レンズの縁厚とは、前記第2レンズの物体側面の有効径と像側面の有効径とのうち小さい方の径の位置の光軸方向の厚みとする
In order from the object side, a positive first lens, a negative second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens,
The image side surface of the seventh lens has an aspheric shape, has an extreme value within an effective diameter other than the center,
An imaging lens that satisfies the following conditional expression.
1.5 <ET2 / CT2 <3.0 (1)
CT2: Center thickness of the second lens ET2: Edge thickness of the second lens However, the edge thickness of the second lens is smaller between the effective diameter of the object side surface and the effective diameter of the image side surface of the second lens The thickness in the direction of the optical axis at the position of the diameter
前記第7レンズは、負レンズである、請求項1に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the seventh lens is a negative lens. 前記第7レンズは、光軸近傍において像側に凹面を向けている、請求項2に記載の撮像レンズ。   The imaging lens according to claim 2, wherein the seventh lens has a concave surface facing the image side in the vicinity of the optical axis. 前記第7レンズの物体側面は、非球面形状を有する、請求項1〜3のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein an object side surface of the seventh lens has an aspheric shape. 前記第3レンズから前記第6レンズまでの各レンズは、少なくとも片側に非球面を有する、請求項1〜4のいずれか一項に記載の撮像レンズ。   5. The imaging lens according to claim 1, wherein each lens from the third lens to the sixth lens has an aspheric surface on at least one side. 前記第1レンズは、物体側に凸面を向けている、請求項1〜5のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the first lens has a convex surface directed toward the object side. 前記第2レンズは、像側に凹面を向けている、請求項1〜6のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the second lens has a concave surface facing the image side. 前記第2レンズは、物体側に凸面を向けたメニスカスレンズである、請求項7に記載の撮像レンズ。   The imaging lens according to claim 7, wherein the second lens is a meniscus lens having a convex surface directed toward the object side. 前記第6レンズは、像側に凸面を向けている、請求項1〜8のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, wherein the sixth lens has a convex surface facing the image side. 前記第3レンズよりも物体側に開口絞りを有する、請求項1〜9のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, further comprising an aperture stop closer to the object side than the third lens. 前記第5レンズと前記第6レンズとの少なくとも一方は、正レンズである、請求項1〜10に記載の撮像レンズ。   The imaging lens according to claim 1, wherein at least one of the fifth lens and the sixth lens is a positive lens. 下記の条件式を満たす、請求項1〜11のいずれか一項に記載の撮像レンズ。
0.4<f3456/f<1.1 … (2)
f3456:前記第3レンズから前記第6レンズまでの合成焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 11, which satisfies the following conditional expression.
0.4 <f3456 / f <1.1 (2)
f3456: Composite focal length from the third lens to the sixth lens f: Focal length of the entire system
下記の条件式を満たす、請求項1〜12のいずれか一項に記載の撮像レンズ。
0.5<f1/f<1.3 … (3)
f1:前記第1レンズの焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 12, which satisfies the following conditional expression.
0.5 <f1 / f <1.3 (3)
f1: Focal length of the first lens f: Focal length of the entire system
下記の条件式を満たす、請求項1〜13のいずれか一項に記載の撮像レンズ。
−2.5<f2/f<−0.8 … (4)
f2:前記第2レンズの焦点距離
f:全系の焦点距離
The imaging lens according to any one of claims 1 to 13, which satisfies the following conditional expression.
−2.5 <f2 / f <−0.8 (4)
f2: focal length of the second lens f: focal length of the entire system
下記の条件式を満たす、請求項1〜14のいずれか一項に記載の撮像レンズ。
−2.0<f7/f<−0.30 … (5)
f7:前記第7レンズの焦点距離
f:全系の焦点距離
The imaging lens according to claim 1, which satisfies the following conditional expression.
−2.0 <f7 / f <−0.30 (5)
f7: focal length of the seventh lens f: focal length of the entire system
下記の条件式を満たす、請求項1〜15のいずれか一項に記載の撮像レンズ。
1.3<CT1/ET1<5.0 … (6)
CT1:前記第1レンズの中心厚
ET1:前記第1レンズの縁厚
ただし、前記第1レンズの縁厚とは、前記第1レンズの物体側面の有効径と像側面の有効径とのうち小さい方の径の位置の光軸方向の厚みとする
The imaging lens according to claim 1, which satisfies the following conditional expression.
1.3 <CT1 / ET1 <5.0 (6)
CT1: Center thickness of the first lens ET1: Edge thickness of the first lens However, the edge thickness of the first lens is smaller between the effective diameter of the object side surface and the effective diameter of the image side surface of the first lens. The thickness in the direction of the optical axis at the position of the diameter
前記第3レンズよりも物体側に開口絞りを含め少なくとも二つの所定の開口を持った絞り部材を有し、
前記絞り部材のうち開口径が最も小さい絞り部材は最も像側に配置され、
下記の条件式を満たす、請求項1〜17のいずれか一項に記載の撮像レンズ。
1.05<Φmax/Φmin<1.45 … (7)
Φmax:前記第3レンズよりも物体側に配置された絞り部材の開口径のうち最も大きい開口径
Φmin:前記第3レンズよりも物体側に配置された絞り部材の開口径のうち最も小さい開口径
An aperture member having at least two predetermined apertures including an aperture stop closer to the object side than the third lens;
Of the diaphragm members, the diaphragm member having the smallest opening diameter is disposed closest to the image side,
The imaging lens according to claim 1, which satisfies the following conditional expression.
1.05 <Φmax / Φmin <1.45 (7)
Φmax: the largest aperture diameter of the aperture members disposed on the object side of the third lens Φmin: the smallest aperture diameter of the aperture members disposed on the object side of the third lens
下記条件式を満たす、請求項1〜17のいずれか一項に記載の撮像レンズ。
1.0<ΦL1/ΦL2<1.2 … (8)
ΦL1:前記第1レンズの最大有効径
ΦL2:前記第2レンズの最大有効径
The imaging lens according to claim 1, which satisfies the following conditional expression.
1.0 <ΦL1 / ΦL2 <1.2 (8)
ΦL1: Maximum effective diameter of the first lens ΦL2: Maximum effective diameter of the second lens
下記の条件式を満たす、請求項1〜18のいずれか一項に記載の撮像レンズ。
0.51<ΦL1/f<0.75 … (9)
ΦL1:前記第1レンズの最大有効径
f:全系の焦点距離
The imaging lens according to claim 1, which satisfies the following conditional expression.
0.51 <ΦL1 / f <0.75 (9)
ΦL1: Maximum effective diameter of the first lens f: Focal length of the entire system
前記第3レンズの像側面は、有効径の8割以上の領域が物体側に傾いており、
前記第3レンズは、有効径の端付近において正のパワーを持ち、
前記第4レンズの像側面は、有効径の8割以上の領域が物体側に傾いており、
前記第4レンズは、有効径の端付近において正のパワーを持ち、
前記第5レンズは、有効径の端付近において負のパワーを持つ、請求項1〜19のいずれか一項に記載の撮像レンズ。
On the image side surface of the third lens, an area of 80% or more of the effective diameter is inclined toward the object side,
The third lens has a positive power near the end of the effective diameter,
On the image side surface of the fourth lens, an area of 80% or more of the effective diameter is inclined toward the object side,
The fourth lens has a positive power near the end of the effective diameter,
The imaging lens according to claim 1, wherein the fifth lens has a negative power near an end of an effective diameter.
下記の条件式を満たす、請求項1〜20のいずれか一項に記載の撮像レンズ。
0.05<L5T/TTL<0.15 … (10)
L5T:前記第5レンズの物体側面における物体側への最凸部から、像側面における像側への最凸部までの光軸方向の距離
TTL:光学全長
The imaging lens according to claim 1, which satisfies the following conditional expression.
0.05 <L5T / TTL <0.15 (10)
L5T: distance in the optical axis direction from the most convex portion on the object side surface of the fifth lens to the object side on the object side surface to the most convex portion on the image side surface on the image side. TTL: total optical length
下記の条件式を満たす、請求項1〜21のいずれか一項に記載の撮像レンズ。
10°<θS8<60° … (11)
−25°<θS10<10° … (12)
θS8:前記第4レンズ像側面の有効径内の最大面角度
θS10:前記第5レンズ像側面の有効径の8割〜10割における最小面角度
ただし、面角度とは、光軸垂線と平行を0°とし、物体側に傾いている場合に正の値、像側に傾いている場合に負の値とする
The imaging lens according to any one of claims 1 to 21, which satisfies the following conditional expression.
10 ° <θS8 <60 ° (11)
−25 ° <θS10 <10 ° (12)
θS8: Maximum surface angle within the effective diameter of the fourth lens image side surface θS10: Minimum surface angle at 80% to 10% of the effective diameter of the fifth lens image side surface However, the surface angle is parallel to the optical axis perpendicular line 0 °, positive value when tilted to the object side, negative value when tilted to the image side
実質的にパワーを持たない光学素子をさらに有する、請求項1〜22のいずれか一項に記載の撮像レンズ。   The imaging lens according to claim 1, further comprising an optical element having substantially no power. 請求項1〜23のいずれか一項に記載の撮像レンズと、前記撮像素子とを備える、撮像装置。   An imaging apparatus comprising the imaging lens according to any one of claims 1 to 23 and the imaging element. 請求項24に記載の撮像装置を備える、携帯端末。   A portable terminal comprising the imaging device according to claim 24.
JP2013208752A 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal Active JP6160423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208752A JP6160423B2 (en) 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208752A JP6160423B2 (en) 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal

Publications (2)

Publication Number Publication Date
JP2015072403A true JP2015072403A (en) 2015-04-16
JP6160423B2 JP6160423B2 (en) 2017-07-12

Family

ID=53014805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208752A Active JP6160423B2 (en) 2013-10-04 2013-10-04 Imaging lens, imaging device, and portable terminal

Country Status (1)

Country Link
JP (1) JP6160423B2 (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161871A (en) * 2014-02-28 2015-09-07 株式会社オプトロジック imaging lens
JP2015179228A (en) * 2014-03-20 2015-10-08 株式会社オプトロジック imaging lens
JP5890947B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5890948B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US20160124191A1 (en) * 2014-10-29 2016-05-05 Kantatsu Co., Ltd. Imaging lens
JP5951912B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5951913B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US20170082835A1 (en) * 2015-09-17 2017-03-23 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
TWI600920B (en) * 2015-09-17 2017-10-01 先進光電科技股份有限公司 Optical image capturing system
TWI608268B (en) * 2015-09-24 2017-12-11 先進光電科技股份有限公司 Optical image capturing system
TWI608247B (en) * 2015-11-13 2017-12-11 先進光電科技股份有限公司 Optical image capturing system
US9857561B2 (en) 2015-11-06 2018-01-02 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
CN108508580A (en) * 2018-03-22 2018-09-07 广东旭业光电科技股份有限公司 A kind of optical imaging system
CN108535848A (en) * 2018-07-05 2018-09-14 浙江舜宇光学有限公司 Optical imagery eyeglass group
WO2018224025A1 (en) * 2017-06-08 2018-12-13 宁波舜宇光电信息有限公司 Optical lens and lens module
CN109358415A (en) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 Optical imaging lens
CN109407277A (en) * 2018-12-06 2019-03-01 浙江舜宇光学有限公司 Optical imaging system
CN109669257A (en) * 2015-09-30 2019-04-23 大立光电股份有限公司 Imagery optical system, image-taking device and electronic device
CN109683294A (en) * 2018-12-28 2019-04-26 瑞声光电科技(苏州)有限公司 Camera optical camera lens
CN109856778A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109856777A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109856770A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
US10324272B2 (en) 2016-02-04 2019-06-18 Largan Precision., Ltd. Photographing optical lens assembly, image capturing device and electronic device
CN110412746A (en) * 2016-02-04 2019-11-05 大立光电股份有限公司 Optical lens for shooting group, image-taking device and electronic device
CN110456481A (en) * 2019-08-19 2019-11-15 浙江舜宇光学有限公司 Optical imaging lens
CN110515186A (en) * 2019-09-25 2019-11-29 浙江舜宇光学有限公司 Optical imaging lens
CN110542999A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
CN110542996A (en) * 2019-09-27 2019-12-06 浙江舜宇光学有限公司 Optical imaging lens group
CN110542986A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
US10558020B2 (en) 2014-01-10 2020-02-11 Kantatsu Co., Ltd. Imaging lens
CN110858026A (en) * 2018-08-23 2020-03-03 大立光电股份有限公司 Image capturing lens system, image capturing device and electronic device
CN110879455A (en) * 2018-09-05 2020-03-13 大立光电股份有限公司 Image capturing lens system, image capturing device and electronic device
CN110908073A (en) * 2019-11-14 2020-03-24 玉晶光电(厦门)有限公司 Optical imaging lens
CN111025551A (en) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
US10663693B2 (en) 2018-01-25 2020-05-26 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US10690886B2 (en) 2017-06-30 2020-06-23 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
CN111367043A (en) * 2018-12-26 2020-07-03 大立光电股份有限公司 Photographing optical system, image capturing device and electronic device
JP2020109495A (en) * 2018-12-31 2020-07-16 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN111458847A (en) * 2020-06-16 2020-07-28 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111538132A (en) * 2020-01-20 2020-08-14 瑞声通讯科技(常州)有限公司 Camera lens
CN111694137A (en) * 2020-06-22 2020-09-22 玉晶光电(厦门)有限公司 Optical imaging lens
KR20200115427A (en) * 2018-01-24 2020-10-07 삼성전기주식회사 Optical system
KR20200143850A (en) 2019-06-17 2020-12-28 삼성전기주식회사 Imaging Lens System
KR20210008135A (en) * 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
KR20210008131A (en) * 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
CN112269248A (en) * 2020-12-24 2021-01-26 诚瑞光学(苏州)有限公司 Image pickup optical lens
CN112285905A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens
CN112285910A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens
WO2021022524A1 (en) * 2019-08-07 2021-02-11 南昌欧菲精密光学制品有限公司 Optical system, lens module and electronic equipment
JP2021033287A (en) * 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN112526714A (en) * 2018-05-29 2021-03-19 三星电机株式会社 Optical imaging system
CN112904536A (en) * 2021-02-22 2021-06-04 浙江舜宇光学有限公司 Optical imaging system
US11029501B2 (en) 2017-10-25 2021-06-08 Zhejiang Sunny Optical Co., Ltd Camera lens assembly
JP2021089413A (en) * 2019-12-05 2021-06-10 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Imaging optical lens
CN113238339A (en) * 2019-07-11 2021-08-10 华为技术有限公司 Lens, camera and electronic equipment
CN113238348A (en) * 2019-05-16 2021-08-10 浙江舜宇光学有限公司 Optical imaging lens
CN113448059A (en) * 2019-11-06 2021-09-28 浙江舜宇光学有限公司 Optical imaging lens
CN113568147A (en) * 2019-07-03 2021-10-29 浙江舜宇光学有限公司 Optical imaging lens
JP2021184070A (en) * 2020-05-20 2021-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
US11194128B2 (en) 2019-01-21 2021-12-07 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing apparatus and electronic device
CN113835194A (en) * 2017-10-31 2021-12-24 三星电机株式会社 Optical imaging system
JP2021196595A (en) * 2020-06-16 2021-12-27 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
JP2022003380A (en) * 2020-06-23 2022-01-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing lens
CN113933966A (en) * 2021-10-13 2022-01-14 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
JP2022020542A (en) * 2020-07-20 2022-02-01 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Image capturing optical lens
WO2022145961A1 (en) * 2020-12-28 2022-07-07 엘지이노텍 주식회사 Optical system and camera module comprising same
CN115061265A (en) * 2022-07-01 2022-09-16 厦门力鼎光电股份有限公司 Compact commodity circulation scanning detection camera lens
US11487091B2 (en) 2017-07-19 2022-11-01 Largan Precision Co., Ltd. Photographing lens assembly, imaging apparatus and electronic device
US11644647B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system having seven lenses of various refractive powers
US11675169B2 (en) 2017-01-04 2023-06-13 Largan Precision Co., Ltd. Image picking-up system, image capturing apparatus and electronic device
CN116500759A (en) * 2023-06-20 2023-07-28 江西联益光学有限公司 Optical lens
US11796763B2 (en) 2018-07-02 2023-10-24 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11960145B2 (en) 2018-05-29 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Optical imaging system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799219B (en) * 2021-03-22 2021-07-16 江西晶超光学有限公司 Optical lens group, camera module and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886720U (en) * 2012-07-06 2013-04-17 大立光电股份有限公司 Optical image pickup system
JP2014102408A (en) * 2012-11-21 2014-06-05 Kantatsu Co Ltd Image capturing lens
JP2015004842A (en) * 2013-06-21 2015-01-08 カンタツ株式会社 Image capturing lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886720U (en) * 2012-07-06 2013-04-17 大立光电股份有限公司 Optical image pickup system
JP2014102408A (en) * 2012-11-21 2014-06-05 Kantatsu Co Ltd Image capturing lens
JP2015004842A (en) * 2013-06-21 2015-01-08 カンタツ株式会社 Image capturing lens

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712540B2 (en) 2014-01-10 2020-07-14 Kantatsu Co., Ltd. Imaging lens
US10690888B2 (en) 2014-01-10 2020-06-23 Kantatsu Co., Ltd. Imaging lens
US10558020B2 (en) 2014-01-10 2020-02-11 Kantatsu Co., Ltd. Imaging lens
US10620406B2 (en) 2014-02-28 2020-04-14 Kantatsu Co., Ltd. Imaging lens
JP2015161871A (en) * 2014-02-28 2015-09-07 株式会社オプトロジック imaging lens
US10126526B2 (en) 2014-02-28 2018-11-13 Kantatsu Co., Ltd. Imaging lens
US10545316B2 (en) 2014-02-28 2020-01-28 Kantatsu Co., Ltd. Imaging lens
US10558021B2 (en) 2014-02-28 2020-02-11 Kantatsu Co., Ltd. Imaging lens
US10613300B2 (en) 2014-02-28 2020-04-07 Kantatsu Co., Ltd. Imaging lens
US10613301B2 (en) 2014-02-28 2020-04-07 Kantatsu Co., Ltd. Imaging lens
JP2015179228A (en) * 2014-03-20 2015-10-08 株式会社オプトロジック imaging lens
US10678027B2 (en) 2014-10-29 2020-06-09 Kantatsu Co., Ltd. Imaging lens
US10725270B2 (en) 2014-10-29 2020-07-28 Kantatsu Co., Ltd. Imaging lens
US10191248B2 (en) * 2014-10-29 2019-01-29 Kantatsu Co., Ltd. Imaging lens
US10732388B2 (en) 2014-10-29 2020-08-04 Kantatsu Co., Ltd. Imaging lens
US10656390B2 (en) 2014-10-29 2020-05-19 Kantatsu Co., Ltd. Imaging lens
US20160124191A1 (en) * 2014-10-29 2016-05-05 Kantatsu Co., Ltd. Imaging lens
US10481368B2 (en) 2015-04-16 2019-11-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US11391927B2 (en) 2015-04-16 2022-07-19 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US9671591B2 (en) 2015-04-16 2017-06-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10788650B2 (en) 2015-04-16 2020-09-29 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US10133033B2 (en) 2015-04-16 2018-11-20 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US20170082835A1 (en) * 2015-09-17 2017-03-23 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10018807B2 (en) 2015-09-17 2018-07-10 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10012818B2 (en) * 2015-09-17 2018-07-03 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
TWI600920B (en) * 2015-09-17 2017-10-01 先進光電科技股份有限公司 Optical image capturing system
TWI608268B (en) * 2015-09-24 2017-12-11 先進光電科技股份有限公司 Optical image capturing system
US10247913B2 (en) 2015-09-24 2019-04-02 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
CN109669257B (en) * 2015-09-30 2021-06-04 大立光电股份有限公司 Imaging optical system, image capturing device and electronic device
CN109669257A (en) * 2015-09-30 2019-04-23 大立光电股份有限公司 Imagery optical system, image-taking device and electronic device
US9857561B2 (en) 2015-11-06 2018-01-02 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
TWI608247B (en) * 2015-11-13 2017-12-11 先進光電科技股份有限公司 Optical image capturing system
US9759894B2 (en) 2016-01-07 2017-09-12 AAC Technologies Pte. Ltd. Camera lens
CN105866925A (en) * 2016-01-07 2016-08-17 瑞声科技(新加坡)有限公司 Camera lens
JP5890947B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP2017122843A (en) * 2016-01-07 2017-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5890948B1 (en) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US9703078B1 (en) 2016-01-07 2017-07-11 AAC Technologies Pte. Ltd. Camera lens
JP2017122844A (en) * 2016-01-07 2017-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5951913B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
JP5951912B1 (en) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US10168509B2 (en) 2016-01-08 2019-01-01 AAC Technologies Pte. Ltd. Camera lens
JP2017122875A (en) * 2016-01-08 2017-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
US9835832B2 (en) 2016-01-08 2017-12-05 AAC Technologies Pte. Ltd. Camera lens
CN105866921B (en) * 2016-01-08 2018-09-21 瑞声科技(新加坡)有限公司 Pick-up lens
JP2017122876A (en) * 2016-01-08 2017-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
CN105866921A (en) * 2016-01-08 2016-08-17 瑞声科技(新加坡)有限公司 Camera lens
US11892608B2 (en) 2016-02-04 2024-02-06 Largan Precision Co., Ltd. Photographing optical lens assembly including seven lenses of +-++--+, +---+-+, +--+--+, +--++-+, +-+---+ or +-+-+-- refractive powers, image capturing device and electronic device
CN110412746B (en) * 2016-02-04 2021-09-28 大立光电股份有限公司 Optical lens assembly for image capturing, image capturing device and electronic device
US10656395B2 (en) 2016-02-04 2020-05-19 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11630284B2 (en) 2016-02-04 2023-04-18 Largan Precision Co., Ltd. Photographing optical lens assembly including seven lenses of +−++−−+, +−−−+−+, +−−+−−+, +−−++−+, +−+−−−+ or +−+−+−−refractive powers, image capturing device and electronic device
CN110412746A (en) * 2016-02-04 2019-11-05 大立光电股份有限公司 Optical lens for shooting group, image-taking device and electronic device
US10444476B2 (en) 2016-02-04 2019-10-15 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10324272B2 (en) 2016-02-04 2019-06-18 Largan Precision., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11675169B2 (en) 2017-01-04 2023-06-13 Largan Precision Co., Ltd. Image picking-up system, image capturing apparatus and electronic device
WO2018224025A1 (en) * 2017-06-08 2018-12-13 宁波舜宇光电信息有限公司 Optical lens and lens module
US10690886B2 (en) 2017-06-30 2020-06-23 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US11487091B2 (en) 2017-07-19 2022-11-01 Largan Precision Co., Ltd. Photographing lens assembly, imaging apparatus and electronic device
CN113093372A (en) * 2017-07-19 2021-07-09 大立光电股份有限公司 Optical image capturing lens
US11656443B2 (en) 2017-07-19 2023-05-23 Largan Precision Co., Ltd. Photographing lens assembly, imaging apparatus and electronic device
US11029501B2 (en) 2017-10-25 2021-06-08 Zhejiang Sunny Optical Co., Ltd Camera lens assembly
US11906706B2 (en) 2017-10-31 2024-02-20 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN113835194A (en) * 2017-10-31 2021-12-24 三星电机株式会社 Optical imaging system
CN113835194B (en) * 2017-10-31 2022-12-27 三星电机株式会社 Optical imaging system
KR20200115427A (en) * 2018-01-24 2020-10-07 삼성전기주식회사 Optical system
KR20210123274A (en) * 2018-01-24 2021-10-13 삼성전기주식회사 Optical system
KR102529724B1 (en) 2018-01-24 2023-05-10 삼성전기주식회사 Optical system
US11340429B2 (en) 2018-01-24 2022-05-24 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11867885B2 (en) 2018-01-24 2024-01-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
KR102311478B1 (en) * 2018-01-24 2021-10-13 삼성전기주식회사 Optical system
KR102424946B1 (en) 2018-01-24 2022-07-27 삼성전기주식회사 Optical system
KR20220107127A (en) * 2018-01-24 2022-08-02 삼성전기주식회사 Optical system
US10663693B2 (en) 2018-01-25 2020-05-26 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
CN108508580A (en) * 2018-03-22 2018-09-07 广东旭业光电科技股份有限公司 A kind of optical imaging system
US11644643B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN112130281A (en) * 2018-05-29 2020-12-25 三星电机株式会社 Optical imaging system
US11789239B2 (en) 2018-05-29 2023-10-17 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN112130283A (en) * 2018-05-29 2020-12-25 三星电机株式会社 Optical imaging system
KR102561943B1 (en) * 2018-05-29 2023-08-02 삼성전기주식회사 Optical Imaging System
KR20210008135A (en) * 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
KR20210008131A (en) * 2018-05-29 2021-01-20 삼성전기주식회사 Optical Imaging System
US11960145B2 (en) 2018-05-29 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110542999A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
US11644647B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system having seven lenses of various refractive powers
KR102629491B1 (en) * 2018-05-29 2024-01-29 삼성전기주식회사 Optical Imaging System
US11714263B2 (en) 2018-05-29 2023-08-01 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11644641B2 (en) 2018-05-29 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN112987250A (en) * 2018-05-29 2021-06-18 三星电机株式会社 Optical imaging system
US11675163B2 (en) 2018-05-29 2023-06-13 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN112526717A (en) * 2018-05-29 2021-03-19 三星电机株式会社 Optical imaging system
CN112526714A (en) * 2018-05-29 2021-03-19 三星电机株式会社 Optical imaging system
US11353686B2 (en) 2018-05-29 2022-06-07 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110542986A (en) * 2018-05-29 2019-12-06 三星电机株式会社 Optical imaging system
US11796763B2 (en) 2018-07-02 2023-10-24 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
WO2020007069A1 (en) * 2018-07-05 2020-01-09 浙江舜宇光学有限公司 Optical imaging lens set
CN108535848A (en) * 2018-07-05 2018-09-14 浙江舜宇光学有限公司 Optical imagery eyeglass group
CN110858026A (en) * 2018-08-23 2020-03-03 大立光电股份有限公司 Image capturing lens system, image capturing device and electronic device
CN110879455A (en) * 2018-09-05 2020-03-13 大立光电股份有限公司 Image capturing lens system, image capturing device and electronic device
CN110879455B (en) * 2018-09-05 2021-09-07 大立光电股份有限公司 Image capturing lens system, image capturing device and electronic device
CN109407277A (en) * 2018-12-06 2019-03-01 浙江舜宇光学有限公司 Optical imaging system
CN109358415B (en) * 2018-12-24 2024-04-09 浙江舜宇光学有限公司 Optical imaging lens
CN109358415A (en) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 Optical imaging lens
CN111367043A (en) * 2018-12-26 2020-07-03 大立光电股份有限公司 Photographing optical system, image capturing device and electronic device
CN109856777A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109856770B (en) * 2018-12-27 2021-05-04 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN109856778B (en) * 2018-12-27 2021-05-04 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN109856778A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109856770A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN109856777B (en) * 2018-12-27 2021-03-23 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN109683294A (en) * 2018-12-28 2019-04-26 瑞声光电科技(苏州)有限公司 Camera optical camera lens
JP2020109495A (en) * 2018-12-31 2020-07-16 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
US11194128B2 (en) 2019-01-21 2021-12-07 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing apparatus and electronic device
US11543627B2 (en) 2019-05-16 2023-01-03 Zhejiang Sunny Optical Co., Ltd Optical imaging lens assembly
CN113238348A (en) * 2019-05-16 2021-08-10 浙江舜宇光学有限公司 Optical imaging lens
KR20220101057A (en) 2019-06-17 2022-07-19 삼성전기주식회사 Imaging Lens System
KR20210082408A (en) 2019-06-17 2021-07-05 삼성전기주식회사 Imaging Lens System
KR20220060518A (en) 2019-06-17 2022-05-11 삼성전기주식회사 Imaging Lens System
US11454782B2 (en) 2019-06-17 2022-09-27 Samsung Electro-Mechanics Co., Ltd. Imaging lens system
KR20200143850A (en) 2019-06-17 2020-12-28 삼성전기주식회사 Imaging Lens System
CN113568147A (en) * 2019-07-03 2021-10-29 浙江舜宇光学有限公司 Optical imaging lens
CN113568147B (en) * 2019-07-03 2022-09-09 浙江舜宇光学有限公司 Optical imaging lens
CN113238339B (en) * 2019-07-11 2023-04-07 华为技术有限公司 Lens, camera and electronic equipment
CN113238339A (en) * 2019-07-11 2021-08-10 华为技术有限公司 Lens, camera and electronic equipment
WO2021022524A1 (en) * 2019-08-07 2021-02-11 南昌欧菲精密光学制品有限公司 Optical system, lens module and electronic equipment
JP2021033287A (en) * 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
CN110456481A (en) * 2019-08-19 2019-11-15 浙江舜宇光学有限公司 Optical imaging lens
CN110515186A (en) * 2019-09-25 2019-11-29 浙江舜宇光学有限公司 Optical imaging lens
CN110542996A (en) * 2019-09-27 2019-12-06 浙江舜宇光学有限公司 Optical imaging lens group
CN113448059A (en) * 2019-11-06 2021-09-28 浙江舜宇光学有限公司 Optical imaging lens
CN113448059B (en) * 2019-11-06 2022-07-08 浙江舜宇光学有限公司 Optical imaging lens
CN110908073A (en) * 2019-11-14 2020-03-24 玉晶光电(厦门)有限公司 Optical imaging lens
JP2021089413A (en) * 2019-12-05 2021-06-10 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Imaging optical lens
CN111025551B (en) * 2019-12-23 2021-11-09 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111025551A (en) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111538132A (en) * 2020-01-20 2020-08-14 瑞声通讯科技(常州)有限公司 Camera lens
WO2021147470A1 (en) * 2020-01-20 2021-07-29 诚瑞光学(深圳)有限公司 Camera lens
JP2021184070A (en) * 2020-05-20 2021-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
JP2021196595A (en) * 2020-06-16 2021-12-27 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
US11209630B1 (en) 2020-06-16 2021-12-28 AAC Optrics Solutions Pte. Ltd. Camera optical lens comprising seven lenses of +-+-+- refractive powers
CN111458847A (en) * 2020-06-16 2020-07-28 瑞声通讯科技(常州)有限公司 Image pickup optical lens
JP6998639B2 (en) 2020-06-16 2022-02-04 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging optical lens
CN111694137A (en) * 2020-06-22 2020-09-22 玉晶光电(厦门)有限公司 Optical imaging lens
JP2022003380A (en) * 2020-06-23 2022-01-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing lens
JP2022020542A (en) * 2020-07-20 2022-02-01 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Image capturing optical lens
JP7083388B2 (en) 2020-07-20 2022-06-10 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Imaging optical lens
CN112269248A (en) * 2020-12-24 2021-01-26 诚瑞光学(苏州)有限公司 Image pickup optical lens
CN112269248B (en) * 2020-12-24 2021-03-09 诚瑞光学(苏州)有限公司 Image pickup optical lens
WO2022145961A1 (en) * 2020-12-28 2022-07-07 엘지이노텍 주식회사 Optical system and camera module comprising same
CN112285910B (en) * 2020-12-31 2021-03-02 常州市瑞泰光电有限公司 Image pickup optical lens
CN112285910A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens
CN112285905B (en) * 2020-12-31 2021-03-16 常州市瑞泰光电有限公司 Image pickup optical lens
CN112285905A (en) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 Image pickup optical lens
CN112904536A (en) * 2021-02-22 2021-06-04 浙江舜宇光学有限公司 Optical imaging system
CN113933966B (en) * 2021-10-13 2023-08-08 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN113933966A (en) * 2021-10-13 2022-01-14 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN115061265A (en) * 2022-07-01 2022-09-16 厦门力鼎光电股份有限公司 Compact commodity circulation scanning detection camera lens
CN116500759B (en) * 2023-06-20 2023-10-03 江西联益光学有限公司 optical lens
CN116500759A (en) * 2023-06-20 2023-07-28 江西联益光学有限公司 Optical lens

Also Published As

Publication number Publication date
JP6160423B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6160423B2 (en) Imaging lens, imaging device, and portable terminal
JP6191820B2 (en) Imaging lens, imaging device, and portable terminal
JP2015072404A (en) Image capturing lens, image capturing device, and mobile terminal
JP2015072402A (en) Image capturing lens, image capturing device, and mobile terminal
JP5304117B2 (en) Imaging lens, imaging device, and portable terminal
JP6836142B2 (en) Imaging optical system and imaging device
US7307799B2 (en) Imaging optical system
JP5742737B2 (en) Imaging lens, imaging device, and portable terminal
US8681436B2 (en) Imaging lens, imaging device and information device
JP4556148B2 (en) Imaging lens and imaging apparatus
JP2014153577A (en) Imaging lens, and imaging device and portable terminal
US20060139767A1 (en) Inner zoom lens system
WO2010134260A1 (en) Image pickup lens and image pickup device using the same
JP2014153576A (en) Imaging lens, and imaging device and portable terminal
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
KR20060004994A (en) Small imaging lens and imaging device
JP2015114505A (en) Imaging lens and imaging device
JP2014153575A (en) Imaging lens, and imaging device and portable terminal
JP6064422B2 (en) Imaging optical system, camera device, and portable information terminal device
JP2011257448A (en) Image pickup lens and image pickup apparatus
JP6001430B2 (en) Imaging lens
JP2007155868A (en) Imaging lens and imaging apparatus
US9170399B2 (en) Imaging lens and imaging apparatus
WO2014050476A1 (en) Image pickup lens, image pickup device, and mobile terminal
JP2013044755A (en) Zoom lens and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6160423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150