JP2015068963A - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
JP2015068963A
JP2015068963A JP2013202294A JP2013202294A JP2015068963A JP 2015068963 A JP2015068963 A JP 2015068963A JP 2013202294 A JP2013202294 A JP 2013202294A JP 2013202294 A JP2013202294 A JP 2013202294A JP 2015068963 A JP2015068963 A JP 2015068963A
Authority
JP
Japan
Prior art keywords
light
light source
optical
optical fiber
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013202294A
Other languages
English (en)
Inventor
仁 長野
Hitoshi Nagano
仁 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2013202294A priority Critical patent/JP2015068963A/ja
Publication of JP2015068963A publication Critical patent/JP2015068963A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】光源からの出射光を伝送先に光ファイバーで伝送する光源装置において、光ファイバーの接続部に汎用の光ファイバーコネクタを用いた場合であっても、光ファイバーが正しく接続されているか否かを検知できる機構を備えた構成を実現する。
【解決手段】 異なる発光色で発光する複数の光源部と、光学アダプタと、前記複数の光源部から射出された光を前記発光色毎に光学アダプタに伝送する複数の光ファイバーで構成された光ファイバー群を備えた光源装置であって、光学アダプタは、光ファイバー群を含む光路を経由して伝送された複数の光源部からの射出光を外部に出力する出力部を備え、複数の光源部のそれぞれは、当該光源部の発光色の光を検知せず、他の発光色の光を検知できる検知部を備える。
【選択図】 図1

Description

本発明は、光源からの出射光を光ファイバーで伝送する光源装置に関する。
従来、投影装置の光源に半導体レーザやLEDを用い、これらの光源から放射される光を光ファイバーで伝送する投影装置が知られている(例えば、特許文献1参照)。
特開2007−178767号公報
昨今より、投影装置(プロジェクタ)に用いられる光源としては、より明るく出力の高いものが求められており、高出力のレーザ装置が用いられることがある。しかし、このように高出力のレーザ装置を光源に配置し、このレーザ装置から発されるレーザ光を光ファイバーで伝送する場合、光ファイバーが仮に正しく接続されていない状態でレーザ装置が点灯すると、高出力のレーザ光が外部に漏れ出すことになる。このとき、場合によってはこの漏れ光が人間の目に直接入ったり、周囲のものを加熱したりするおそれがある。このような事態を未然に防ぐためには、光ファイバーが正しく接続されているか否かの確認をするためのインタロック機構を設けることが考えられる。
従来、光の伝送元や伝送先と光ファイバーとを接続するためのコネクタとしては、いくつかの汎用品が市場に供給されている。これらの汎用コネクタは、入手性も良く比較的安価に手に入れることができる反面、非常に小型の構造である上に規格で規定された形状のため、接続確認のためのインタロック機構を追加的に設けることが困難であるという事情がある。
汎用コネクタとは別に、インタロック機構を備えた専用の光ファイバーコネクタを特注で製作することは可能であるが、専用品であるため非常に入手性が悪い上、高価なものになってしまう。
本発明は、上記の課題に鑑み、光源からの出射光を伝送先に光ファイバーで伝送する光源装置において、光ファイバーの接続部に汎用の光ファイバーコネクタを用いた場合であっても、光ファイバーが正しく接続されているか否かを検知できる機構を備えた構成を実現することを目的とする。
異なる発光色で発光する複数の光源部と、光学アダプタと、前記複数の光源部から射出された光を前記発光色毎に前記光学アダプタに伝送する複数の光ファイバーで構成された光ファイバー群を備えた光源装置であって、
前記光学アダプタは、前記光ファイバー群を含む光路を経由して伝送された前記複数の光源部からの射出光を外部に出力する出力部を備え、
複数の光源部のそれぞれは、当該光源部の前記発光色の光を検知せず、他の発光色の光を検知できる検知部を備えたことを特徴とする。
ここで、本発明が対象とする光源装置は、光源部から離れた位置に光学アダプタを備えており、この光学アダプタに対して光源部から光ファイバー群を介して光が伝送された後、当該伝送された光が、必要に応じて合成、分光、集光、拡散、反射等の光束に対する処理が施されて、利用対象装置(例えば投影装置等)に出力される構成である。
複数の光源部は、例えば赤色光を発する光源、緑色光を発する光源、及び青色光を発する光源を有する構成とすることができる。また、それぞれの色の光源についても、単独の発光部で構成されていても構わないし、同じ色の光を発する複数の発光部で構成されていても構わない。
光ファイバー群は複数の光ファイバーで構成されており、異なる色の光は、色毎に対応した光ファイバー、すなわち異なる光ファイバーを介して、光源部から光学アダプタに伝送される構成である。
複数の光源部のそれぞれには、各光源部における発光色の光は検知せず、他の発光色の光を検知する検知部が備えられている。例えば、複数の光源部が、赤色光源、緑色光源、及び青色光源を有する場合、赤色光源内に設けられた検知部は、赤色光を検知せず、他の色の光を検知する。ここで、他の色としては、青色であっても緑色であってもよく、青色と緑色の双方を検知する構成としてもよい。なお、このような検知部としては、例えば検知対象から外すべき色の光に対応した波長以外の波長の光を透過するフィルタを設けた光学センサとして構成することができる。
ここで、いずれかの光ファイバーが正しく接続されていない場合について検討する。このとき、当該光ファイバーは、光源部側の光ファイバー接続部(以下、「第1接続部」という。)と、光学アダプタ側の光ファイバー接続部(以下、「第2接続部」という。)の間を正しく連結していない状態となる。仮に、第1接続部と光ファイバーが正しく接続されていない場合には、第1接続部より光源部内に太陽光や照明光といった外乱光が入射される可能性がある。また、第1接続部と光ファイバーは正しく接続されているものの、第2接続部と光ファイバーが正しく接続されていない場合には、光ファイバーの先端より光ファイバーを介して光源部内に前記外乱光が入射される可能性がある。
前述したように、検知部は、光源部における発光色の光は検知せず、他の色の光を検知する構成であるため、前記の外乱光が光源部内に入射されると、この検知部によって外乱光が検知される。なぜなら、このような外乱光は一般的に白色光であり、赤色光、緑色光及び青色光が混在した光であるためである。
他方、全ての光ファイバーが正しく接続されている場合には、第1接続部や光ファイバーの先端から外乱光が入射されることはない。よって、検知部が光を検知した旨の信号を発したことをもって、外乱光が光源部内に入射されていることを認識できるため、光を検知した検知部を含む光源部と光学アダプタの間が光ファイバーで正しく接続されていないことを認識することができる。
以上のように、この構成によれば、光ファイバーを接続するコネクタ部分にインタロック機構を備える必要がないため、汎用の光ファイバーコネクタを用いながらも、光ファイバーが正しく接続されているか否かを検知することが可能になる。
なお、本構成によれば、光源装置の点灯開始前のみならず、点灯中においても光ファイバーの接続確認が可能である。
すなわち、点灯開始前であれば、上述したように全ての光源部が備える検知部が光を検知していないことをもって、全ての光ファイバーが正しく接続されていることを認識することができる。よって、この状態が確認された後で各光源部を点灯させる構成とすることで、例えば各光源部が高出力のレーザ光源で構成されている場合においても、当該高出力のレーザ光が外部に漏れ出ることを防止できる。
また、点灯中においては、各光源部からはそれぞれの発光色に対応する色の光が発される。しかし、各光源部内に備えられた検知部は、いずれも各発光色の光を検知しない構成であるため、光ファイバーが正しく接続されていれば、上記と同様に検知部において光が検知されることはない。そして、点灯中に万一何らかの原因によって光ファイバーの接続が外れたような場合には、当該接続が外れた光ファイバーに対応した光源部内の検知部が外乱光を検知するため、検知部がその旨の信号を出力する。つまり、検知部の信号に基づいて光ファイバーの接続が外れていることが認識されるため、この信号が得られた場合には例えば光源部の点灯を消灯する等の処理を行うことで、高出力の光が外部に漏れ出る時間を最小限に抑制することができる。
また、本発明の光源装置は、上記構成に加えて、
前記光学アダプタは、前記光路を経由して伝送された前記複数の光源部から射出された異なる色の光を合成すると共に、前記出力部側から前記光路を逆向きに進行する白色光を異なる色の光に分光する光処理部を備え、
前記出力部側から前記光路を逆向きに進行した白色光は、前記光処理部を通過することで異なる色の光に分光された後、当該色毎に、前記発光色に対応した前記光ファイバー側に導かれる構成とすることができる。
例えば、複数の光源部が、赤色光源、緑色光源、及び青色光源を有する構成である場合を想定して説明する。このとき、各光源から射出され、発光色毎に対応した光ファイバーによって光学アダプタに伝送された各色の光は、光処理部によって合成されて白色光となり出力部へと導かれる。そして、出力部に連結された投影装置等にこの白色光が出力され、投影装置側で利用される。
ここで、光源装置の利用時において、投影装置側から光が光源装置側に逆方向に進行する可能性はゼロではない。例えば、投影装置によってスクリーン上に所定の映像を投射している場合において、スクリーンによって反射されたごく一部の白色光が投影装置内に入射され、この光が光源装置側へと導かれることも考えられる。このような事態が生じた場合を想定すると、出力部を介して光学アダプタ内に白色光が入射され、光路上を逆方向に進行し、光処理部において各色に分光される。
この例では、光処理部において、前記の白色光は赤色の検査用光、緑色の検査用光、及び青色の検査用光に分光された後、それぞれの色に対応した光ファイバーを介して各光源部へと伝送される。各光源部が備える検知部は、当該光源部の発光色の光を検知しない構成である。このため、全ての光ファイバーが正しく接続されており、出力部側からの戻り光が万一各光源部内に入射されたとしても、光源部内の検知部が検知することはない。これにより、利用時において出力部側からの戻り光を検知して光ファイバーが正しく接続されていないと誤認識する事態が防止される。
光処理部としては、例えばダイクロイックミラーを採用することができる。より具体的な一例としては、複数の光源部が、赤色光源、緑色光源、及び青色光源を有する構成である場合、赤色光を反射するダイクロイックミラー、赤色光を透過して緑色光を反射するダイクロイックミラー、赤色光及び緑色光を反射して青色光を透過するダイクロイックミラーを光路上に設置する。これにより、複数の光源部からの射出光が白色光に合成されて出力部へと導かれ、また、万一出力部側から逆向きに進行する白色の戻り光が発生した場合には、当該戻り光が各色に分光されて各色に対応した光ファイバー側へと導かれる。
別の具体的な構成として、
前記出力部側から前記光路を逆向きに進行した異なる色の光が、当該色毎に、前記発光色に対応した前記光ファイバー側に導かれる構成とすることができる。
上述した構成では、複数の光源部より複数の光ファイバーを介して発光色毎に光学アダプタに伝送される。このため、光学アダプタの出力部において色毎に光を取り出す構成である場合には、必ずしも白色光に合成する必要はない。そして、光学装置として投影装置を想定した場合、入射された各色の光は、通常投影装置内において合成された後スクリーン上に投射される。
この構成においても、投影装置等から光源装置に向かう戻り光が生じる可能性がある。この場合は、投影装置側で白色光としての戻り光が各色に分光された後、各色の戻り光がそのまま投影装置から光学アダプタの出力部に入射される。従って、この戻り光を色毎に対応した光ファイバーに導く構成とすることで、光ファイバーが正しく接続されている場合には、光源部内に配置された検知部によって当該戻り光を外乱光と誤検知される事態を防止できる。
また、本発明の光源装置は、上記構成に加えて、
前記複数の光源部を制御する制御部を備え、
前記制御部は、少なくともいずれか一の前記検知部から光を検知した旨の信号が与えられると、前記複数の光源部に対する点灯制御を実行しないか、又は消灯制御を実行する構成とすることができる。
本発明の光源装置によれば、光ファイバーの接続部に汎用の光ファイバーコネクタを用いた場合であっても、光ファイバーが正しく接続されているか否かを検知することが可能になる。
光源装置の一実施形態の構成を模式的に示すブロック図である。 光源装置において、一の光ファイバーが正しく接続されていない場合における構成を模式的に示すブロック図である。 光源装置の別の一実施形態の構成を模式的に示すブロック図である。 図1に示す光源装置と光学装置としての一実施形態である投影装置とを組み合わせた構成を模式的に示すブロック図である。 図3に示す光源装置と光学装置としての一実施形態である投影装置とを組み合わせた構成を模式的に示すブロック図である。
[構成]
本発明の光源装置の実施形態につき、図面を参照して説明する。図1は、光源装置の一実施形態の構成を模式的に示すブロック図である。光源装置1は、異なる色の光を発光する複数の光源部(10,20,30)を含む光源ユニット2と、光学アダプタ3と、複数の光源部(10,20,30)から射出された光をそれぞれの発光色毎に光学アダプタ3に伝送する複数の光ファイバー(14,24,34)を備える。つまり、光源装置1としては、光源ユニット2と光学アダプタ3が別の場所に設置され、光ファイバー群(14,24,34)を介して連結されている構成を想定している。そして、この光学アダプタ3から出力される光が、光源装置1からの光を利用する装置としての光学装置70に供給される。この光学装置70としては、例えば投影装置等が採用される。
図1に示す構成では、光源部10が青色(B)の光を発光する発光部11を備えており、当該発光部11から射出された青色光が光ファイバー14で伝送される。光源部20が緑色(G)の光を発光する発光部21を備えており、当該発光部21から射出された緑色光が光ファイバー24で伝送される。光源部30が赤色(R)の光を発光する発光部31を備えており、当該発光部31から射出された赤色光が光ファイバー34で伝送される。
発光部11は、青色光を発光する一以上の発光素子を含む装置で構成されており、例えば高出力のレーザ装置で構成することができる。発光部21及び発光部31においても、発光色を異ならせた同様のレーザ装置で構成することができる。
光源部10は、発光部11、及び当該発光部11の発光色の光すなわち青色光を検知せず他の発光色の光を検知できる検知部12を備える。この検知部12は、例えば青色光を遮断し、他の色の光を透過するフィルタを備えた光学センサで構成される。同様に、光源部20は、発光部21、及び当該発光部21の発光色の光すなわち緑色光を検知せず他の発光色の光を検知できる検知部22を備える。光源部30は、発光部31、及び当該発光部31の発光色の光すなわち赤色光を検知せず他の発光色の光を検知できる検知部32を備える。
光源装置1は、制御部7を備える。制御部7は、各検知部(12,22,32)から与えられる信号に基づいて後述する判定処理を行う判定部5を備える。また、光源装置1は、各光源部(10,20,30)に対する駆動を行う駆動部(19,29,39)を備えており、これらの駆動部(19,29,39)は制御部7からの制御信号に基づいて制御される。
駆動部19は、制御部7からの制御信号に基づき、発光部11に対して所定量の電流を供給し、発光部11を所定の発光量で発光させる。駆動部29は、制御部7からの制御信号に基づき、発光部21に対して所定量の電流を供給し、発光部21を所定の発光量で発光させる。駆動部39は、制御部7からの制御信号に基づき、発光部31に対して所定量の電流を供給し、発光部31を所定の発光量に発光させる。
各光源部(10,20,30)からの出射光は、光ファイバー群(14,24,34)によって色毎に光学アダプタ3に伝送される。光学アダプタ3は、ダイクロイックミラー(41,42,43)を備えている。このダイクロイックミラー(41,42,43)が「光処理部」に対応する。
光ファイバー34によって伝搬された赤色光はダイクロイックミラー43によって進行方向が変化し、光ファイバー24によって伝送された緑色光と合成される。この合成光はダイクロイックミラー42によって進行方向が変化し、光ファイバー14によって伝送された青色光と更に合成されて白色光が生成され、光路45上を順方向d1に沿って進行し、出力部51へと導かれる。この白色光は、出力部51より光源装置1の光を利用する光学装置70へと出力される。なお、ダイクロイックミラー(41,42,43)と出力部51の間や、ダイクロイックミラー(41,42,43)と光ファイバー群(14,24,34)の間には、適宜別途の光学系を配置しても構わない。
また、光学装置70の利用状況によっては、光学装置70側から出力部51を介して光学アダプタ3内に白色光の戻り光が入射されることも考えられる。もし、このような白色光が出力部51より光学アダプタ3内に入射されると、光路45上を逆方向d2に進行し、ダイクロイックミラー(41,42,43)を通過することで、白色光がR,G,B各色の光に分光され、対応する色の光ファイバー(14,24,34)を介して各光源部(10,20,30)に伝送される。
[動作]
以下において、光源装置1の動作内容について説明する。
まず、図2に示すように、光ファイバー(14,24,34)のうち、一の光ファイバー34が光源ユニット2と光学アダプタ3の間に正しく接続されていない場合について説明する。ここでは、光ファイバー34が、光源ユニット2側の端部(以下、「第1接続部」という。)とは正しく接続されているが、光学アダプタ3側の端部(以下、「第2接続部」という。)とは正しく接続されていない場合について説明する。
図2に示す状態においては、光ファイバー34の一端が第2接続部と正しく接続されていない。つまり、光ファイバー34の一端より照明光や太陽光といった外乱光が入射可能な状態であり、この外乱光が光ファイバー34を介して光源部30内に入射される。この時、光源部30に配置された検知部32は、赤色光を検知せず他の色の光を検知することができる構成であるため、光源部30内に入射された外乱光は検知部32によって検知される。なぜなら、このような外乱光は一般的に白色光であり、赤色光、緑色光及び青色光が混在した光であるためである。従って、判定部5は、検知部32より光を検知した旨の信号を取得する。
なお、図2に示す状態においては、光ファイバー14及び光ファイバー24については第1接続部及び第2接続部共にいずれも正しく接続されている。このため、外乱光が光源部10及び光源部20に入射されることはない。よって、判定部5は、検知部12及び検知部22より光を検知した旨の信号が入力されることはない。
判定部5は、検知部32から光を検知した旨の信号が入力されると、当該検知部32に対応した光ファイバー34が正しく接続されていないと判定する。なお、判定部5は検知部12及び検知部22からは光を検知した旨の信号が入力されないため、検知部12に対応した光ファイバー14及び検知部22に対応した光ファイバー24については、正しく接続されていると判定することができる。
一方、図1に示すように、全ての光ファイバー(14,24,34)が正しく接続されている場合には、判定部5には全ての検知部(12,22,32)から光を検知した旨の信号が入力されない。よって、判定部5はこの状態をもって、全ての光ファイバー(14,24,34)が正しく接続されていると判定する。
例えば利用者によって光源装置1の電源がONにされる等、光源装置1に対して外部から点灯指示が与えられると、制御部7は、判定部5における判定結果を確認する。図2に示す状態であれば、判定部5において検知部32から光を検知した旨の信号が得られており、対応する光ファイバー34が正しく接続されていないと判定されているため、制御部7は、各発光部(11,21,31)に対する発光制御は行わない。そして、例えばアラートを出力する等して、利用者に光ファイバー34が正しく接続されていないことを通知する制御を行うものとすることができる。これにより、光ファイバー34が正しく接続されていないにも関わらず、光源部30から高出力の光が出力されることで、当該光が外部に漏れ出るのを未然に防止できる。
一方、図1に示す状態であれば、判定部5において全ての光ファイバー(14,24,34)が正しく接続されていると判定されているため、各発光部(11,21,31)に対する発光制御を行う。
なお、図2では、光ファイバー34が光源ユニット2側の第1接続部とは正しく接続されているが、光学アダプタ3側の第2接続部とは正しく接続されていない場合を想定した。これに代えて、光ファイバー34が第2接続部には正しく接続されているが第1接続部には正しく接続されていない場合や、双方に正しく接続されていない場合においても、外乱光が光源部30に入射されるため、同様の議論が可能である。また、ここでは光ファイバー34が正しく接続されていない場合について説明したが、他の光ファイバー(14,24)が正しく接続されていない場合においても、同様の説明が可能である。
上記構成によれば、光源部(10,20,30)内に検知部(12,22,32)を備えることで、光ファイバー(14,24,34)が正しく接続されているか否かの判断が行える。よって、光ファイバー(14,24,34)の接続部(コネクタ)自体にインタロック機構を備える必要がないため、接続部分においては汎用のファイバーコネクタが利用できる。
なお、上記構成を採用することで、各発光部(11,21,31)が発光中、すなわち光源装置1の駆動中においても、光ファイバー(14,24,34)の接続確認が可能である。
検知部12は発光部11の発光色の光は検知しない構成であり、検知部22は発光部21の発光色の光は検知しない構成であり、検知部32は発光部31の発光色の光は検知しない構成である。このため、光ファイバー(14,24,34)が正しく接続されており、各発光部(11,21,31)が発光中においては、各検知部(12,22,32)が光を検知することはない。
光源装置1の駆動中においては、出力部51から光学アダプタ3内において合成された白色光が光学装置70に出力され、光学装置70側においてこの白色光が利用される。このとき、光学装置70側から一部の戻り光が光学アダプタ3内に入射される可能性もゼロではない。例えば、光学装置70として投影装置を想定し、この投影装置によってスクリーン上に所定の映像を投射している場合において、スクリーンによって反射されたごく一部の白色光が投影装置内に入射され、この光が出力部51を介して光学アダプタ3へと導かれることも考えられる。
この場合、白色の戻り光は、光路45上を逆方向d2の向きに進行し、ダイクロイックミラー(41,42,43)へと入射される。白色光は、青色光、緑色光、及び赤色光の各波長帯の光が合成されたものであり、ダイクロイックミラー41において、このうちの青色光のみが透過され、この透過された青色光が光ファイバー14に対して、光学アダプタ3から光源ユニット2の向きに入射される。
また、白色光のうち、青色光以外の光成分はダイクロイックミラー41において反射され、ダイクロイックミラー42へと入射される。そして、ダイクロイックミラー42において、入射光のうちの緑色光のみが反射され、他の光成分が透過してダイクロイックミラー43へと入射される。そして、ダイクロイックミラー43において、入射光のうちの赤色光のみが反射される。ダイクロイックミラー42において反射された緑色光は、光ファイバー24に対して、光学アダプタ3から光源ユニット2の向きに入射される。同様に、ダイクロイックミラー43において反射された赤色光は、光ファイバー34に対して、光学アダプタ3から光源ユニット2の向きに入射される。
光学アダプタ3側から光ファイバー14に対して入射された青色の戻り光は、光ファイバー14を介して光源ユニット2、より詳細には光源部10へと伝送される。ここで、上述したように、光源部10内に備えられた検知部12は、発光部11の発光色の光(すなわち青色光)を検知しない構成であるため、仮に青色の戻り光が光源部10内に入射されたとしても、検知部12においてこの光が検知されることはない。
同様に、光学アダプタ3側から光ファイバー24に対して入射された緑色の戻り光は、光ファイバー24を介して光源ユニット2、より詳細には光源部20へと伝送されるが、検知部22において当該戻り光が検知されることはない。同様に、光学アダプタ3側から光ファイバー34に対して入射された赤色の戻り光は、光ファイバー34を介して光源ユニット2、より詳細には光源部30へと伝送されるが、検知部32において当該戻り光が検知されることはない。
よって、光源装置1の駆動時において、仮に光学装置70側から光源装置1側へと戻り光が入射された場合であっても、光ファイバー(14,24,34)が正しく接続されていれば各検知部(12,22,32)が光を検知することはない。
一方、光源装置1の駆動中に何らかのアクシデントが発生して光ファイバー34の接続が外れて図2のような状態になった場合を想定する。このとき、上述したように光源部30内には外乱光が入射されるため、検知部32は光を検知した旨の信号を判定部5に出力する。判定部5は、この信号を受信すると、光ファイバー34が正しく接続されていないと判定し、制御部7は、この判定部5の判定結果に基づいて各発光部(11,21,31)に対する消灯制御を行うと共に、例えばアラートを出力する等して、利用者に光ファイバー34が正しく接続されていないことを通知する制御を行うものとすることができる。これにより、光源装置1が駆動中に光ファイバー34の接続が外れた場合においても、直ちに各発光部(11,21,31)を停止させることができるので、高出力の光が外部に漏れ出る時間を最小限に抑制することができる。
[別実施形態]
以下、別実施形態について説明する。
〈1〉 上述の実施形態では、光源部10が青色光を発し、光源部20が緑色光を発し、光源部30が赤色光を発する構成であるとし、すなわち、複数の光源部(10,20,30)がRGB3色の光を発する構成であるとして説明した。しかし、本発明の光源装置1が備える光源部は2色以上の光を発し、発光色毎に異なる光ファイバーで伝送される構成であればよく、必ずしもRGB3色の光に限定されるものではない。
〈2〉 上述の実施形態では、光源装置1が、青色光を伝送する光ファイバー14、緑色光を伝送する光ファイバー24、及び赤色光を伝送する光ファイバー34を備える構成とした。しかし、光ファイバー14、光ファイバー24、及び光ファイバー34のそれぞれが必ずしも単一の光ファイバーで構成される必要はなく、それぞれが複数本の光ファイバー、又は複数本の光ファイバーがバンドルされてなるファイババンドルで構成されていても構わない。
〈3〉 上述した実施形態では、光学アダプタ3が光処理部(より詳細にはダイクロイックミラー(41,42,43))を備える構成である場合を想定して説明した。これは、光源ユニット2から伝送された各色の光を白色光に合成した後、出力部51から出力させる構成を想定したものである。しかし、図3に示すように、光源ユニット2から伝送された各色の光が、合成されることなくそのままの色の光として出力部(51,52,53)から出力される場合には、光学アダプタ3がダイクロイックミラー(41,42,43)を備える必要がない。
〈4〉 図4及び図5は、光源装置1からの光を利用する光学装置70として投影装置を採用した場合の構造の一例を模式的に示すブロック図である。図4は、光学装置70が図1に示す光源装置1からの光を利用する場合に対応し、図5は、光学装置70が図3に示す光源装置1からの光を利用する場合に対応する。なお、各図において、光学装置70が備える各光学系に関し、同一の機能を示す要素については対応する色に応じてr(赤色),g(緑色),b(青色)の符号を末尾に付記して記載することで、それぞれが同一の機能を示すことを表現している。
図4の構成において、光源装置1の出力部51から入射された白色光は、ダイクロイックミラー(61,62,63)を介して、青色光、緑色光、及び赤色光に分光された後、各色に対応した光ファイバー(81b,81g,81r)に入射される。なお、光ファイバー(81b,81g,81r)に入射する際には、光を効率的に入射させるために図示しない光学系を各ファイバーの入射端より前段に配置しても構わない。なお、ミラー64,65は単に光の進行方向を変化させるために設けたものであり、各ダイクロイックミラー(61,62,63)の配置位置と各光ファイバー(81b,81g,81r)の入射端の配置位置に応じて、他のミラーを配置したり、図示したミラー64,65の配置を省略したりすることが可能である。図5に示すミラー66,67についても同様である。
以下、図4に示す光学装置70におけるダイクロイックミラー61によって分光された青色光について説明する。
光ファイバー81bの射出端より射出された青色光は、コリメートレンズ49bによって略平行な光束に変換され、ミラー83bによって光の進行方向が変えられた後、前段フライアイレンズ54b、後段フライアイレンズ55b、偏光整列機能素子57b、及び照明レンズを有する光均一化手段59bを介して、二次元光振幅変調素子73bに照射される。
前段フライアイレンズ54b及び後段フライアイレンズ55bは、共に同一焦点距離で同一形状の四角形のレンズが縦横それぞれに多数配置されることで構成されている。前段フライアイレンズ54bの各レンズと、それぞれの後段に配置された後段フライアイレンズ55bの対応する各レンズとは、ケーラー照明光学系と呼ばれる光学系を構成している。すなわち、前段フライアイレンズ54b及び後段フライアイレンズ55bを構成する各レンズにより、ケーラー照明光学系が縦横に多数並んでいることになる。
一般に、ケーラー照明光学系は2枚(一対)のレンズから構成され、前段レンズが光を集めて対象面を照明するに際し、前段レンズは、対象面に光源像を結像するのではなく、後段レンズ中央の面上に光源像を結像する。そして、後段レンズは、前段レンズの外形の四角形を対象面(照明したい面)に結像するよう配置されることで、対象面を均一に照明する。もし後段レンズが存在しなければ、光源が完全な点光源でなく有限の大きさを持つとき、その光源の大きさに依存して対象面の四角形の周囲部の照度が落ちるという現象が生じ得る。後段レンズは、かかる現象の発現を防止する目的で設けられており、後段レンズによって、光源の大きさに依存せずに、対象面の四角形の周囲部まで均一な照度にすることができる。
ここで、図4に示す光学系の場合、光均一化手段50bには略平行光束が入力されることを基本としているため、前段フライアイレンズ54bと後段フライアイレンズ55bとの間隔は、それらの焦点距離に等しくなるように配置される。つまり、ケーラー照明光学系としての均一照明の対象面の像は無限遠に生成される。ただし、後段フライアイレンズ55bの後段には照明レンズ59bが配置されているため、対象面は無限遠から照明レンズ59bの焦点面上に引き寄せられる。
縦横に多数並んでいるケーラー照明光学系は、入射光軸に平行であり、それぞれの中心軸に対して略軸対称に光束が入力される。つまり、出力光束も略軸対称であるから、レンズ面に同じ角度で入射した光線は、レンズ面上の入射位置によらず焦点面上の同じ点に向かうよう屈折される、というレンズの性質、すなわちレンズのフーリエ変換作用により、全てのケーラー照明光学系の出力は照明レンズ59bの焦点面上の同じ対象面に結像される。この結果、前段フライアイレンズ54bの各レンズ面での照度分布が全て重ね合わされることで、ケーラー照明光学系が1個の場合よりも照度分布が更に均一化された1個の合成四角形の像が入射光軸上に形成される。
そして、前記合成四角形の像の位置に二次元光振幅変調素子73bを配置することにより、光均一化手段50bの射出端から出力された光によって、照明対象である二次元光振幅変調素子73bが照明される。
ダイクロイックミラー62によって分光された緑色光、ダイクロイックミラー63によって分光された赤色光についても、上記と同様に、光均一化手段50gの射出端から出力された光によって二次元光振幅変調素子73gが照明され、光均一化手段50rの射出端から出力された光によって二次元光振幅変調素子73rが照明される。そして、各二次元光振幅変調素子(73b,73g,73r)からの透過光が、ダイクロイックプリズム76を介して3色合成され、投影レンズ77によってスクリーン80上に投影される。なお、図4及び図5では、二次元光振幅変調素子(73b,73g,73r)として透過型の二次元光振幅変調素子を用いているが、反射型の二次元光振幅変調素子を用いても構わない。
図4に示す構成において、仮にスクリーン80上に映像を投影している最中に、スクリーン80から反射された一部の白色光が投影レンズ77に入射された場合、この白色光はダイクロイックプリズム76によって青色光、緑色光、及び赤色光に分光された後、各色に対応した光ファイバー(81b,81g,81r)内を逆向きに進行する。そして、これらの光がダイクロイックミラー(61,62,63)へと導かれ、このダイクロイックミラー(61,62,63)で白色光に合成された後、光源装置1の出力部51に戻り光として入射される。
図1を参照して説明したように、この戻り光は、光学アダプタ3内をd2方向に進行した後、ダイクロイックミラー(41,42,43)によって再び青色光、緑色光、及び赤色光にそれぞれ分光された後、各色に対応した光ファイバー(14,24,34)を介して各光源部(10,20,30)に入射される。しかし、各光源部(10,20,30)が備える各検知部(12,22,32)は、当該光源部(10,20,30)からの発光色を検知しない構成であるため、光ファイバー(14,24,34)を介して入射された各色の戻り光についても、各検知部(12,22,32)によって検知されることはない。よって、判定部5において光ファイバー(14,24,34)が正しく接続されていないと誤判定することはないため、光源装置1は引き続き稼動状態を示す。
図5に示す構成は、各色に対応した出力部(51,52,53)から出力された各色の光が、合成や分光が行われることなく各色に対応した光ファイバー(81b,81g,81r)に入射される点が図4とは異なっており、他の要素は共通である。この構成において、仮にスクリーン80上に映像を投影している最中に、スクリーン80から反射された一部の白色光が投影レンズ77に入射された場合、この白色光はダイクロイックプリズム76によって青色光、緑色光、及び赤色光に分光された後、各色に対応した光ファイバー(81b,81g,81r)内を逆向きに進行する。そして、これらの光が各色に対応した出力部(51,52,53)に戻り光として入射される。
図3を参照して説明したように、この戻り光は、光学アダプタ3内をd2方向に進行した後、各色に対応した光ファイバー(14,24,34)を介して各光源部(10,20,30)に入射される。しかし、各光源部(10,20,30)が備える各検知部(12,22,32)は、当該光源部(10,20,30)からの発光色を検知しない構成であるため、光ファイバー(14,24,34)を介して入射された各色の戻り光についても、各検知部(12,22,32)によって検知されることはない。よって、判定部5において光ファイバー(14,24,34)が正しく接続されていないと誤判定することはないため、光源装置1は引き続き稼動状態を示す。
1 : 光源装置
2 : 光源ユニット
3 : 光学アダプタ
5 : 判定部
7 : 制御部
10 : 光源部(B)
11 : 発光部(B)
12 : 検知部(B)
14 : 光ファイバー(B)
19 : 駆動部(B)
20 : 光源部(G)
21 : 発光部(G)
22 : 検知部(G)
24 : 光ファイバー(G)
29 : 駆動部(G)
30 : 光源部(R)
31 : 発光部(R)
32 : 検知部(R)
34 : 光ファイバー(R)
39 : 駆動部(R)
41,42,43 : ダイクロイックミラー
45 : 光路
49b,49g,49r : コリメートレンズ
50b,50g,50r : 光均一化手段
51,52,53 : 出力部
54b,54g,54r : 前段フライアイレンズ
55b,55g,55r : 後段フライアイレンズ
57b,57g,57r : 偏光整列機能素子
59b,59g,59r : 照明レンズ
61,62,63 : ダイクロイックミラー
64,65,66,67 : ミラー
73b,73g,73r : 二次元光振幅変調素子
76 : ダイクロイックプリズム
77 : 投影レンズ
80 : スクリーン
81b,81g,81r : 光ファイバー
83b,83g,83r : ミラー
d1 : 順方向
d2 : 逆方向

Claims (6)

  1. 異なる発光色で発光する複数の光源部と、光学アダプタと、前記複数の光源部から射出された光を前記発光色毎に前記光学アダプタに伝送する複数の光ファイバーで構成された光ファイバー群を備えた光源装置であって、
    前記光学アダプタは、前記光ファイバー群を含む光路を経由して伝送された前記複数の光源部からの射出光を外部に出力する出力部を備え、
    複数の光源部のそれぞれは、当該光源部の前記発光色の光を検知せず、他の発光色の光を検知できる検知部を備えたことを特徴とする光源装置。
  2. 前記光学アダプタは、前記光路を経由して伝送された前記複数の光源部から射出された異なる色の光を合成すると共に、前記出力部側から前記光路を逆向きに進行する白色光を異なる色の光に分光する光処理部を備え、
    前記出力部側から前記光路を逆向きに進行した白色光は、前記光処理部を通過することで異なる色の光に分光された後、当該色毎に、前記発光色に対応した前記光ファイバー側に導かれる構成であることを特徴とする請求項1に記載の光源装置。
  3. 前記光処理部がダイクロイックミラーで構成されていることを特徴とする請求項2に記載の光源装置。
  4. 前記出力部側から前記光路を逆向きに進行した異なる色の光が、当該色毎に、前記発光色に対応した前記光ファイバー側に導かれる構成であることを特徴とする請求項1に記載の光源装置。
  5. 前記検知部は、当該検知部が配置された前記光源部の前記発光色の光を遮断するフィルタを備えていることを特徴とする請求項1〜4のいずれか1項に記載の光源装置。
  6. 前記複数の光源部を制御する制御部を備え、
    前記制御部は、少なくともいずれか一の前記検知部から光を検知した旨の信号が与えられると、前記複数の光源部に対する点灯制御を実行しないか、又は消灯制御を実行することを特徴とする請求項1〜5のいずれか1項に記載の光源装置。
JP2013202294A 2013-09-27 2013-09-27 光源装置 Pending JP2015068963A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202294A JP2015068963A (ja) 2013-09-27 2013-09-27 光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202294A JP2015068963A (ja) 2013-09-27 2013-09-27 光源装置

Publications (1)

Publication Number Publication Date
JP2015068963A true JP2015068963A (ja) 2015-04-13

Family

ID=52835688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202294A Pending JP2015068963A (ja) 2013-09-27 2013-09-27 光源装置

Country Status (1)

Country Link
JP (1) JP2015068963A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113593A (ja) * 2017-01-12 2018-07-19 株式会社Jvcケンウッド 投射型画像表示装置及び投射型画像表示システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113593A (ja) * 2017-01-12 2018-07-19 株式会社Jvcケンウッド 投射型画像表示装置及び投射型画像表示システム

Similar Documents

Publication Publication Date Title
EP3290992B1 (en) Illuminator and projector
US8982463B2 (en) Tilted plate normal incidence color combiner with a polarizing beam splitter
US10474022B2 (en) Illuminator and projector
TWI486640B (zh) 立體投影裝置與應用其之顯示方法
US10627710B2 (en) Light source apparatus and projector
US7874677B2 (en) Stereo projection optical system
JP6632231B2 (ja) 光源装置及びこれを用いた照明装置、投射型表示装置
JP2008300106A (ja) 照明装置、プロジェクタ及びモニタ装置
WO2012039993A2 (en) Tilted dichroic color combiner i
US10474023B2 (en) Light source apparatus, illuminator, and projector
JP2009187926A (ja) 電子装置及び電子装置の使用方法
EP3407131A1 (en) Projector
JP2015068963A (ja) 光源装置
JP2005084325A (ja) 照明装置及びこれを用いたプロジェクタ
WO2014199485A1 (ja) 照明光学系、プロジェクターおよびプロジェクターシステム
JP4910354B2 (ja) 均一化光学素子、照明装置及びプロジェクタ
JP5800049B1 (ja) 光源装置及び画像投影装置
JP5818555B2 (ja) 画像投射装置、及び投射光学系を有する画像投射装置
US11809069B2 (en) Coaxial laser light source apparatus
JP2008292547A (ja) 画像表示用光学ユニット、マイクロレンズアレイおよび画像表示装置
US10809540B2 (en) Projector having at least four projection light sources and a beam splitter device comprising a polarization beam splitter and projection optics having a beam splitter device
JP2015069790A (ja) 光源装置
US10295895B2 (en) Projection type image display apparatus for improving illumination of a light source
KR20150077036A (ko) 레이저 영상기기용 화이트밸런스 조정 장치 및 방법
CN117311067A (zh) 投影光机