JP2015068829A - 温度補正機能付きタイミング信号発生器 - Google Patents

温度補正機能付きタイミング信号発生器 Download PDF

Info

Publication number
JP2015068829A
JP2015068829A JP2014193367A JP2014193367A JP2015068829A JP 2015068829 A JP2015068829 A JP 2015068829A JP 2014193367 A JP2014193367 A JP 2014193367A JP 2014193367 A JP2014193367 A JP 2014193367A JP 2015068829 A JP2015068829 A JP 2015068829A
Authority
JP
Japan
Prior art keywords
signal
frequency
oscillator
temperature
time unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014193367A
Other languages
English (en)
Other versions
JP5931151B2 (ja
Inventor
ダヴィド・リュフィユー
Ruffieux David
ニコラ・スコラーリ
Scolari Nicola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Crystal AG
Original Assignee
Micro Crystal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Crystal AG filed Critical Micro Crystal AG
Publication of JP2015068829A publication Critical patent/JP2015068829A/ja
Application granted granted Critical
Publication of JP5931151B2 publication Critical patent/JP5931151B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/04Temperature-compensating arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】個々の発振がそれぞれ熱に対して補正される信号発生器を提供する。【解決手段】温度補正機能付きタイミング信号発生器は、基準時間信号を生成する水晶発振器112と、基準時間信号を受け、粗い時間単位信号を出力するように構成するディバイダー回路114とを有し、粗い時間単位信号は、水晶発振器112の温度の関数として所望の周波数に対して逸脱している実際の周波数を有する。この信号発生器は、さらに、水晶発振器112の周波数よりも大きな周波数を有する補間信号を生成するように構成する高周波発振器116を有する。有限状態マシン124は、温度の関数として偏差補正信号を計算し、この偏差補正信号は、ディバイダー回路114において抑制又は注入されるパルスの整数の数を表す整数部分と、及び残りの偏差を補正するために新しい時間単位信号パルスの出力をさらにどれくらい遅延すべきかということを表す端数部分とを有する。【選択図】図4

Description

本発明は、温度補正機能付きタイミング信号発生器に関する。本発明は、より詳細には、温度変化を補正するためにパルス抑制及び/又はパルス注入を使用するようなタイミング信号発生器に関する。
タイミング信号発生器が知られている。タイミング信号発生器は、タイミング信号を提供する発振器を有する。発振器は、振動周波数を安定させるために水晶共振器が使用される。原理的には、水晶発振器は非常に正確であるが、精度が温度によって左右されることが知られている。水晶は、基本的には、機械的な共振器のように機能し、温度が少しでも変化すると水晶が非常にわずかに拡大又は収縮し、これによって、共振振動数が変わる。共振振動数の変化の問題を克服するために、従来技術のいくつかのアプローチが知られている。
図1は、水晶制御発振器1、一連のバイナリーディバイダー(フリップフロップ)2、及び腕時計の針の形態である計時器の表示手段4を駆動するように構成するステッピングモーター3を有する従来技術計時器の機能図である。このような計時器では、多くの場合、水晶は、32,768Hz水晶音叉共振器である。32,768は215と等しい。したがって、ディバイダーの連鎖は15のバイナリーディバイダーを有することができ、その結果、この連鎖の出力周波数は1Hzであり、これは、ステッピングモーター3を駆動するのに適している。
32,768Hz水晶音叉共振器は、周波数を温度に対してプロットすると、約25℃を中央とする放物線を定めるように通常切断される。すなわち、水晶音叉共振器は、室温で公称周波数の近くで共振するが、しかし、温度が室温から上昇又は減少すると速度を落とす。32,768Hz音叉共振器用の共通の放物線の係数は、−0.04ppm/℃2である。
温度センサーを装備し温度変化を補正することができる計時器が知られている。特許文献US3,895,486は、温度補正される計時デバイス及び温度補正方法について記載する。抑制補正として知られているこの特定の方法は、タイミング信号の周波数を低下させるために使用される。この方法を実装するために、意図的に多少速く動くように水晶共振器を作らなければならない。パルス抑制補正は、10秒又は1分のような一定間隔で少ない数のサイクルをディバイダー連鎖が飛ばすようにすることを伴う。毎時間スキップするサイクルの数は、温度に依存し、プログラムされた参照テーブルによって決定される。
温度変化を補正する別の既知の方法として、パルス注入補正がある。抑制補正とは反対に、注入補正はタイミング信号の周波数を増加させることによって機能する。例えば、特許文献US3,978,650で説明されるように、注入補正は、バイナリーディバイダーの連鎖を通して供給されるデジタル信号に追加の補正用パルスを組み入れること(注入すること)を伴う。再び、注入するパルスの数は、温度センサー及びプログラムされた参照テーブルによって決定される。
抑制補正及び注入補正の両方は、量化エラーに関係している。量化エラーは、パルスの一部のみを加えたり抑えたりすることが可能ではないということから生じる。発振器の周波数がfである場合、量化の分解能が1秒当たり1/fに制限される。共振器の振動周波数がf=32768Hzである場合、分解能は高々30.5ppmしかなく、これは、約±15ppmのエラーを発生させる。例えば、1ppmの分解能を得るためには、少なくとも100万のサイクルにわたって補正することが必要である。このことは、32768Hzの共振器の場合には、抑制補正又は注入補正を適用する前に少なくとも31秒待つことを意味する。したがって、この種の補正では、バイナリーディバイダー2の連鎖から出力される1Hzの周波数は、30番目のパルスまでは公称周波数からわずかに偏差を生じる傾向にあり、31番目のパルスで累積誤差が全体として補正される。このことは、時間積算計器である腕時計では問題にならない。しかし、例えば、タイミング信号発生器の場合には、個々のパルスの精度は1ppmよりも良い必要がある。この場合、上記の温度補正方法では不十分である。したがって、本発明は、個々の発振がそれぞれ熱に対して補正される信号発生器を提供することを目的とする。
本発明は、請求項1記載の温度補正機能付きタイミング信号発生器を提供することである。
本発明に従って、温度補正機能付きタイミング信号発生器は、各時間単位パルスの継続時間の粗い熱に対する補正のための抑制補正及び/又は注入補正を実装する。また、この信号発生器は、さらに、抑制補正及び/又は注入補正に関連づけられた量化エラーを修正することを可能にする補間方法として、「端数抑制」を実装する。
添付図面を参照しながら以下の説明を読むことで(これらに限定されない)、本発明の他の特徴及び利点が明らかになる。
タイムベース及び周波数分割器、さらに、周波数分割器によって作動するモーター及び時間インジケーター手段を有する従来技術のクロックの基礎的な機能図である。 水晶音叉共振器及びRC発振器の周波数の温度依存性を示す図である。 本発明の特定の実施形態に係る温度補正機能付きタイミング信号発生器を示す基礎的な機能ブロック図である。 図3の温度補正機能付きタイミング信号発生器の代替実装例を示す詳細な機能ブロック図である。 図4のタイミング信号発生器によって出力として提供されるタイミング信号に対する温度補正の効果を示すタイミング図である。
図3は、本発明の第1の実施形態に係る温度補正機能付きタイミング信号発生器を示すブロック図である。図3のタイミング信号発生器は、出力20を介して一連の温度補正時間単位信号パルスを提供するように設計されている。この発生器は、基準時間信号を生成するように構成する水晶発振器12を有する。この水晶発振器は、例えば、従来の32.768kHzの水晶音叉共振器に基づくことができる。図示した発生器は、さらに、基準時間信号の発振をすべて数えて、基準時間信号の32,768の発振それぞれに対して1つのクロックパルスを水晶発振器から出力するように構成する周波数分割器14を有する。
引き続き図3を参照すると、本発明に係る温度補正機能付きタイミング信号発生器が、さらに、高周波発振器16を有することがわかる。発振器16は、可変遅延を表すブロック38にクロック信号を供給するように構成する。可変遅延38は、タイミング信号のエッジのオンセットをわずかに遅延させることによって、温度変化を補正するために提供される。この可変遅延の動作をさらに説明する。高周波発振器は発生器によって提供される温度補正タイミング信号の周波数以上よりも少なくとも6桁大きい周波数を有するように選択される。好ましくは、高周波発振器の周波数は、温度補正タイミング信号の周波数よりも少なくとも107倍大きい。例えば、温度補正タイミング信号のための目標周波数が1Hzである場合、高周波発振器は、1MHz発振器、好ましくは、10MHz発振器である。例えば、チップ上で集積される10MHzのRC発振器である。
図示した温度補正機能付きタイミング信号発生器は、符号17によって全体で識別される温度補正手段をさらに有する。図3を再び参照すると、温度補正手段が、温度を表す信号を出力22を介して提供するように構成する温度信号生成ブロック18と、ブロック18からの信号とブロック40によって提供される周波数比信号との両方を受け、かつ、整数及び小数の両方の偏差補正信号を出力として供給するように構成する偏差補正信号生成ブロック24と、端数抑制指令信号を出力37を介して可変遅延38へと提供するために、小数偏差補正信号を入力28を介して受け、それを前の小数偏差補正信号からの剰余に加えるように構成する小数蓄積ブロック30と、及び入力26を介して整数偏差補正信号を受け、出力36を介して周波数分割手段14のための抑制/注入指令信号を提供するように構成する「抑制/注入制御」ブロック34とを有する。
より詳細には、温度信号生成ブロック18は、水晶発振器12に熱的につながれた温度センサーを有する。この温度センサーは、水晶発振器の温度を測定するように構成する。この温度センサーは、当業者に知られている任意の種類のものであってもよい。例えば、温度センサーはサーミスターとすることができる。この温度センサーは、周波数が温度に依存する発振器であってもよい。より具体的には、特定の実施形態によれば、温度センサーは、高周波発振器16とすることができる。ブロック18は、出力22を介して温度信号をブロック24へと提供するように構成する。ブロック24は、水晶発振器12の周波数/温度のふるまいに関するデータにアクセスすることができ、ブロック24はこのデータと温度信号の両方を使用して所望の周波数からの水晶発振器の温度に関係する偏差を補正する偏差補正信号を提供するように構成する。前記周波数/温度に関連するデータの少なくとも一部は、ブロック24の非揮発性メモリーに記録される。
本発明に係る温度補正機能付きタイミング信号発生器が、時間単位が1秒であるような時間単位信号を提供するように構成する特定の場合には、ブロック24が生成する偏差補正信号は、好ましくは、公称周波数からの水晶発振器12の周波数の偏差に対応する。本発明に係る温度補正機能付きタイミング信号発生器が、時間単位が1秒とは異なるような時間単位信号を提供するように構成する場合には、基準時間信号の周波数を、秒当たりの振動数としてではなく、時間単位当たりの振動数として表現することが好ましい。したがって、公称周波数からの偏差が、水晶共振子12の振動数として表現することが好ましいと理解できるであろう。水晶発振器の振動の整数部分と、水晶発振器の振動の残りの小数部分に対応する残余小数部分との組み合わせとして偏差が表現される。これは、ブロック24によって提供される偏差補正信号が、周波数分割器14へと抑制又は注入される水晶発振器のパルスの整数部分に対応する整数部分と、残るいずれの偏差をも補正するように意図された端数部分との両方を有する理由である。また、水晶発振器の周波数が公称周波数よりも高い場合、パルス抑制によって偏差の整数部分が補正され、端数抑制によって端数部分が補正されることを理解することができるであろう。他方では、水晶発振器の周波数が公称周波数よりも低い場合には、偏差の整数部分がパルス注入によって補正され、端数部分が常に端数抑制によって補正される。整数抑制又は端数抑制であるかどうかにかかわらず、タイミング信号の周波数が抑制によって増加することはない。したがって、水晶発振器の周波数が公称周波数よりも低い場合には、周波数分割器に注入されるパルスの整数の数は、タイミング信号の周波数を少なくとも所望の高さに増やすことができるほど十分大きい必要がある。その後、量化エラーに起因する過剰な補正をなくすようにわずかに周波数を低下させるために、端数抑制を使用することができる。すなわち、水晶発振器の周波数が公称周波数よりも高いか、逆に低いかによって、偏差補正信号の整数部分と端数部分は、異なる手法で組み合わせられるべきである。水晶発振器の周波数が公称周波数より高いような第1の場合には、偏差は、抑制するためのパルスの整数の数と、端数抑制に対応する残余の端数との和として表現することが好ましい。他方、水晶発振器の周波数が公称周波数より低いような第2の場合には、端数な引かれたパルスの整数の数として偏差を表現することが好ましい。
ブロック24は、出力26を介して偏差補正信号の整数部分を提供し、出力28を介して偏差補正信号の端数部分を提供するように構成する。本発明によれば、偏差補正信号の端数部分は、さらに、高周波発振器16の対応する周期の数に変換される。高周波発振器16の振動周期が水晶発振器12の振動周期よりも何倍も小さいので、偏差補正信号の端数部分の変換された値は、一般に、高周波発振器のいくつかの周期を超える。したがって、偏差補正信号の変換された端数部分は、精度を著しく劣化させずに高周波発振器の周期の整数倍となる。
一実施形態によれば、偏差補正信号生成ブロック24は、選択された温度範囲に対応する偏差の値を予めロードした参照テーブルを有する。ブロック24が受けた温度信号に基づいて、参照テーブルは、出力26を介して整数偏差補正信号を、出力28を介して端数偏差補正信号を提供する。上述のように、端数偏差補正信号は、高周波発振器16の周期の整数倍として表現される。高周波発振器の周期の点でこのように偏差を表現するためには、2つの発振器12及び16どうしの周波数の関係を知っていることが必要となる。図示した例によれば、水晶発振器12及び高周波発振器16どうしの周波数の間の比に対応する周波数比信号をブロック40からブロック24が利用可能である。ブロック24は、この比を、水晶発振器12の周期の小数部分に対応する端数偏差補正信号を高周波発振器16の周期の対応する整数の数に変換するために使用する。
当業者は、ブロック40が周波数比を決定する方法が多数あることを理解できるであろう。別の実施形態によれば、ブロック40は、水晶発振器の振動周期内の高周波発振器からのパルスの数をカウントすることによって、又は所定温度範囲中の異なる温度に対する比の値が予めロードされた参照テーブルを使用することによって、水晶発振器12と高周波発振器16の周波数の間の比を決定することができる。
ブロック24の出力28は、温度補正タイミング信号(出力20を介して提供される)の各パルスの間に、端数蓄積ブロック30に新しい偏差補正信号の端数部分を提供するように構成する。この新しい温度補正信号の端数部分は、既に端数蓄積ブロック30にある偏差補正信号の端数の累積的な量に加えられる。偏差補正信号の端数部分が高周波発振器16の周期の整数倍として表現されるので、端数蓄積ブロックの状態が高周波発振器の周期の累積的な数に対応する値であることを理解できるであろう。高周波発振器の周期の累積的な数が水晶発振器12の1周期を超えるほどに増大すると常に、水晶発振器の正確に1周期が端数蓄積ブロックの内容から減じられる。このようにして、端数蓄積ブロック30によって提供される端数抑制指令信号は、常に、偏差補正信号の整数部分の1単位よりも小さい値に対応する。端数蓄積ブロック30の内容から減じられる水晶発振器のいずれの周期全体も、出力32を介して抑制/注入制御ブロック34に送られ、ここで、偏差補正信号の整数部分と合流して(加算又は減算)、抑制/噴射指令信号を構成する。しかし、本発明の代替実施形態によれば、端数蓄積ブロックに含まれる累積周期数が、それらの周期を端数蓄積ブロックの内容から減じる前に、水晶発振器12の数周期分にまで増大することになる可能性があることを理解できるであろう。
抑制/注入制御ブロック34は、温度補正タイミング信号のすべての周期毎に1回、周波数分割手段14の状態を修正するように構成する。抑制又は注入のいずれでも温度補正を行うことができることが当業者に知られている。しかし、上の項目において説明したように、抑制又は注入によって得られた温度補正は粗く(すなわち、分解能が低い)、また、本発明は、より精密な分解能で温度補正を行うことが目標の1つである。本発明は、より精密な第2の温度補正を実装するために可変遅延38を制御するように偏差補正信号の端数部分をさらに使用することによって、この目標を達成する。
図示した実施形態によれば、可変遅延38は、例えば、入力として端数蓄積ブロック30から端数抑制指令信号を受け、かつ、出力信号を生成する前にゼロまでカウントダウンするように構成するデジタル計数器である。一方では、可変遅延38が高周波発振器16によってクロックされ、他方では、端数抑制指令信号が、高周波発振器16の周期の整数倍として表現されることを留意すべきである。したがって、本発明に係る温度補正機能付きタイミング信号発生器の図示した実施形態が、高周波発振器16の周期と等しい精度まで温度を補正することが可能であることを理解できるであろう。例えば、温度補正タイミング信号の目標周波数が1Hzで、高周波発振器が1MHz発振器ならば、周波数分解能は1ppmになる。
図4は、図3に示す本発明の実施形態の代替実装例としての温度補正機能付きタイミング信号発生器の機能ブロック図である。この代替実装例によれば、本発明に係るタイミング信号発生器は、秒当たり正確に1パルスのタイミング信号発生器の形態である。図4の発生器は、出力120を介して、温度補正1Hzタイミング信号を提供するように設計されている。この発生器は、従来の水晶音叉共振器を利用した32.768kHzの水晶発振器112を有する。図示した発生器は、さらに、水晶発振器112からの振動をすべて数えて、32,768回の水晶発振器にカウントするたびに1つのクロックパルスを出力するように構成するカウンター114を有する。その後、このカウンター114は次の1秒のカウント(すなわち、32.768)を開始するためにリセットされる。このタイミング信号発生器は、さらに、10MHzのRC発振器116を有する。発振器116は、可変遅延ブロック138にクロック信号を供給するように構成する。可変遅延ブロック138は、温度変化を補正するために設けられる。可変遅延の動作をさらに説明する。
図4に示した温度補正機能付きタイミング信号発生器は、さらに、符号117によって全体として識別される温度補正手段を有する。図示した温度補正手段は、機能ブロック118、124、130、134及び142で構成する。機能ブロック118は、水晶発振器112及びRC発振器116から出力信号を受ける。ブロック118は、水晶発振器112の振動周期の所定数(P)の範囲内にあるRC発振器116のパルスの数(M)をカウントするために設けられる。例えば、機能ブロック118は、2つの発振器からのパルスをカウントするように構成する1対のカウンターによって実装することができる。カウンターのうちの1つが水晶発振器からのPパルスをカウントするとすぐに、別のカウンターがRC発振器からのパルスをカウントすることを止める。止められたときのこの第2のカウンターの状態は、パルスカウントMである。Mは、2つの発振器の温度(T)に依存する整数である。機能ブロック118は、温度補正タイミング信号の1周期ごとに1回M(T)を計算するように構成する。したがって、カウントM(T)の新しい値が毎秒計算される。さらに、RC発振器116は、水晶発振器112と熱的に接触している。したがって、2つの発振器は、同じ温度Tを有する。
図2は、一方では、水晶音叉共振器を有する水晶発振器の典型的な周波数fXTの温度依存性曲線を示し、他方では、RC発振器の周波数fRCの典型的な温度依存性曲線を示す図である。図の水平及び垂直方向のスケールは同じではないが、RC発振器116の周波数fRCの温度に応じた変化率が、一般に、水晶発振器112の周波数fXTの変化率よりも相当に大きいことを理解できるであろう。さらに、温度に応じたRC発振器の周波数の変化は、実質的に線形である。したがって、カウントM(T)と温度Tの関係が所定の動作範囲内で一義的(明白)であるように発振器を選択することができる。このようにして、機能ブロック118にて計算されるカウントM(T)を温度信号として使用することができる。このパルスカウントM(T)は、次の式(1)で計算することができる。
M(T)=floor(P * fRC / fXT); (1)
ここで、周波数fRC及びfXTが両方とも温度Tに依存する(本出願で使用する「floor」、「ceiling」及び「sawtooth」の各関数は、Wikipediaのエントリー「floor and ceiling functions」(インターネットURL:http://en.wikipedia.org/wiki/Floor_and_ceiling_functions)において定義されている。このエントリーを参照によって本明細書に組み込む。)。
図4の機能ブロック118を、図3の温度信号生成ブロック18の特定の実装例と考えることができることに注目することは有益である。
温度信号M(T)は、機能ブロック118の出力122を介して、偏差補正信号生成ブロック124に提供される。図示した例によれば、偏差補正信号生成ブロック124は、所定の動作範囲内の温度信号M(T)のいずれの値に対しても偏差補正信号を供給するために較正データを用いて構成される有限状態マシンを有する。較正されると、この有限状態マシンは、動作範囲内のM(T)のいずれの新しい値に対しても水晶発振器112の偏差(偏差=fXT−32,768)を計算することができる。偏差補正信号生成ブロック124は、1Hz温度補正タイミング信号ごとに1回新しい偏差補正信号を提供するように構成する。すなわち、偏差補正信号の新しい値が、新しいカウントM(T)ごとに提供される。
有限状態マシンの構成は、非常に単純であることができる。実際に、音叉水晶共振器の周波数−温度ふるまいが、放物線によって緊密に近似することができることは広く知られている。したがって、単純な2次多項式フィッティングによって、合理的に良好な精度を有する水晶発振器112の動作が可能となる。予めロードされた参照テーブルを使用する代わりに多項式フィッティングで計算することの利点は、多項式フィッティングでは、3つの異なる温度TL、T0及びTH(図2に示される)に対してだけしか、温度信号M(T)、及び周波数fXT(M)の値を予めロードすることが必要ではないからである。さらに、上述のように、公称周波数は32,768Hzである。すなわち、215Hzである。これは、水晶共振器の公称周波数を2進数1,000,000,000,000,000としても表現することができることを意味する。したがって、10進の周波数偏移fXT−32,768が、2進表記では、fXT−1,000,000,000,000,000になることになる。温度に関連する周波数偏移が公称周波数と比較して小さいので、二進数の周波数偏移のモジュラスにおいては、非ゼロの桁が、重みが小さいいくつかの桁においてのみあってよい。この特徴に関連した利点の1つは、周波数偏移を計算するために、より単純なアルゴリズムを選ぶことが可能になり、したがって、必要な計算量を減らすことができることにある。
偏差補正信号生成ブロック124が周波数偏移の整数部分(以下、文字「K」で表す)を計算するだけではなく、所定数の二進小数位置まで偏差の端数部分(以下、文字「n」で表す)を計算するということに留意することは重要である。したがって、fXT−32,768>0である場合、総周波数偏差はK+nと等しい。ここで、0<n<1である。Kとnは、次の2つの式(2)及び(3)でそれぞれ計算することができる。
K=floor(fXT−32,768) (2) (Kは正の整数又はゼロである)
n=fXT−32,768−K (3) (0≦n<1)
また、fXT−32,768<0の場合でも、K及びnは、上記と同じ2つの式で計算することができる。
K=floor(fXT−32,768) (2’)(ただし、Kは負の整数である)
n=fXT−32,768−K (3’)(0≦n<1は常に真である)
また、総周波数偏差は、常に、K+nである(Kが負の場合、パルス抑制ではなく、パルス注入を使用すべきであることを意味する)。図3の実施形態に関する説明と同様に、機能ブロック124は、さらに、n(偏差補正信号の端数部分)を等価なRC発振器116の周期の数npに変換する。1MHzに対応する振動周期が32.768kHzに対応する振動周期よりも何倍も小さいので、偏差補正信号の端数部分nの変換された値npは、一般に、RC発振器のいくつかの周期を超える。したがって、精度を過剰に落とさずに、npを整数の数の周期に丸めることができる。「np」は、次の式(4)で計算することができる。
np=floor(n*M/P)(4)
ここで、Mは、機能ブロック118によって計算されるM(T)であり、Pは、Mがカウントされる水晶発振器112の振動周期の数である。
図3に関連して既に説明したように、npは、基本的に、温度を補正するために温度補正1Hzタイミング信号の新しいパルスのオンセットが遅延するべきRC発振器の周期の数に対応する。しかし、1Hz信号の特定のパルスが遅延する場合、以下のパルスも遅延しなければならない(さもないと、次のパルスが短すぎることになる)ことを理解できるであろう。したがって、遅延は、np及び前のパルスの遅延の値の両方を考慮に入れるべきである。引き続き図4を参照すると、ブロック124の出力128が、新しい偏差補正信号の端数部分npを菱形の機能ブロック130へと提供するように構成することを理解できるであろう。機能ブロック130は、新しい偏差補正信号の端数部分の値npが前の端数抑制指令信号に対応する値nINTに加えられるようなアキュムレーターとしてはたらく。前の端数抑制指令信号値nINTは、機能ブロック142によって提供される。例えば、機能ブロック142は、Dフリップフロップで構成するレジスターとすることができる。
機能ブロック130は、機能ブロック134と連係して、さらに、次の決定を行うように構成する。
If np+nINT≧M/P then nINT’=np+nINT−M/P
else nINT’=np+nINT
ここで、nINT’は、新しい端数抑制指令信号であり、温度を補正するために温度補正1Hzタイミング信号の新しいパルスのオンセットが遅延するべきRC発振器の周期の数に対応する。Mは、機能ブロック118によって計算されるM(T)であり、比M/Pは、RC発振器の周期と等しい単位で表現される水晶発振器112の1周期の長さに対応する。
INTがM/Pよりも常に小さいように機能ブロック130及び134が作動することを上記から理解できるであろう。さらに、M/Pは、水晶発振器112の1周期の期間に対応し、したがって、偏差補正信号の蓄積された端数部分から減じられるいずれの量M/Pも、機能ブロック134によって、偏差補正信号K−1の整数部分に、付加的な1単位として直ちに加えることができる。すなわち、偏差補正信号の蓄積された端数部分から量M/Pが減じられるたびに、偏差補正信号の整数部分に1単位が加えられ、値がK−1からKに変わるようにされる。
新しい偏差補正信号の整数部分Kは、1Hz温度補正タイミング信号のすべての周期毎に1回周波数分割手段14の状態を修正するために利用可能である。図示した実施形態によれば、偏差補正信号の整数部分Kは、1Hz温度補正タイミング信号の特定の1周期の間に抑制されるべき水晶発振器112の32.768kHzのパルスの数に対応する。上の項目で説明したように、パルス抑制補正は、パルス注入補正のように、高々30.5ppmの分解能しか提供することができない。上述のように、1ppmほどに良好な分解能を達成するために、本発明は、さらに、はるかに高い分解能で秒レベルの温度補正を実装するように可変遅延138を制御するために、偏差補正信号の端数部分npを使用する。
前の例でのように、可変遅延138は、例えば、RC発振器116によってクロックされ、機能ブロック134によって提供される端数抑制指令信号nINT’を受けるように構成するデジタル計数器とすることができる。nINT’がRC発振器の振動周期と等しい単位で表現されるので、可変遅延138によって、10MHzのRC発振器の周期(10-7秒である)と等しい精度まで温度を補正することが可能になる。
図5は、図4のタイミング信号発生器によって出力として提供されるタイミング信号に対する温度補正の効果を示すタイミング図である。図5を参照して、1番目の線は、理想的な1パルス/秒(1pps)信号を示しており、これは、完全に補正されたタイミング信号発生器によって作ることができる。図示した理想的なパルスの立ち上がりエッジには、i1、i2、i3及びi4とそれぞれラベル付けした。エッジi1とi2の間に位置する両端に矢印付きの矢は、振動周期T(この例では、1秒)を表す。
図5の2番目の線は、温度補正が何らされない状態での図4の機能ブロック114によって伝えられる実際のパルスを示す。2番目の線の補正されていない信号の周波数は、水晶発振器112の周波数を32,768で割った値と等しい。図から明らかなように、補正されていない信号は、理想的な信号から顕著に逸脱している。この偏差は、一般には、部分的には共振器が作られた方法に起因しており、部分的には大気温度の変化に起因している。図5でわかるように、補正されていない信号は、実際に、理想的な信号と比べて速い。実際に、パルス抑制及びパルス遅延の両方が周波数を遅くする影響を与えるので、図4の発振器112における音叉水晶共振器は、過剰に速いように作らなければならない。しかし、温度補正がパルス抑制及びパルス注入の両方を使用する実施形態では、共振器が過剰に速くなければならないというような必要性はないことに留意すべきである。
図5の3番目の線は、粗い温度補正のためにパルス抑制を使用する場合に機能ブロック114によって伝えられる実際のパルスを示す。第3の線に示されるようなパルス抑制による粗い温度補正が知られている。パルス抑制は、周波数を低下させる効果があり、これによって、周波数が理想的な周波数に近くなる。しかし、パルス抑制は、水晶発振器の振動周期(約1/32,768Hz、すなわち、31μs)の倍数によってのみ次のパルスのオンセットを遅延させることができる。したがって、分解能は約30ppmである。
図5の4番目の線は、図4のタイミング信号発生器によって伝えられる温度補正タイミング信号を示す。観察することができるように、この温度補正タイミング信号は、1番目の線の理想的な1pps信号とほとんど完全に同期している。その可変遅延によって、RC発振器の振動周期(約1/107s、すなわち、0.1μs)と等しい分解能で、次のパルスのオンセットを遅延させることができる。したがって、分解能は約0.1ppmである。
説明した温度補正機能付きタイミング信号発生器の利点の1つは、非常に低いエネルギー消費であることができることである。実際に、高周波発振器を除いて、タイミング信号発生器の部品はパワーをほとんど必要としない。したがって、本発明の好ましい実施形態によれば、エネルギーを節約するために、各時間単位の大部分で高周波発振器をシャットダウンして必要時にのみオンにされる。
より具体的には、図4に示す特定の例にこの手法を適用すると、図4の10MHzのRC発振器116のような発振器がオンにされた場合、周波数が安定するために約120μsを必要とすることを観測することができる。発振が安定すると、水晶発振器のP周期の間に、RC発振器のパルスM(T)の数をカウントする動作は、典型的には、約1,000μsの間に行われる。最後に、端数抑制を実装することには、RC発振器のわずかな時間しか必要としない。したがって、RC発振器は、典型的には、毎秒1.1ミリ秒の間作動する。これは約1/900の負荷サイクルに対応する。これと同じ比率で、RC発振器の電力消費を縮小することができる。
最後に、図3の高周波発振器又は図4のRC発振器がその公称周波数から相当に逸脱していても問題ではないということを理解できるであろう。実際に、周波数比M/Pは、規則的に更新される。これは、好ましくは、温度補正タイミング信号の周期ごとに1回更新される。

Claims (11)

  1. 連続的な温度補正時間単位信号パルスを生成するための温度補正機能付きタイミング信号発生器であって、
    前記時間単位は、所定の時間間隔であり、
    前記タイミング信号発生器は、
    基準時間信号を生成するように構成する水晶発振器(12、112)、及び前記基準時間信号を入力として受け、かつ、粗い時間単位信号を出力するように構成するディバイダー回路(14、114)であって、前記基準時間信号及び前記粗い時間単位信号はそれぞれ、前記水晶発振器の温度の関数として実際の周波数が対応する所望の周波数から逸脱している、水晶発振器(12、112)及びディバイダー回路(14、114)と、
    前記水晶発振器の周波数(fXT)よりも大きな周波数(fRC)を有する補間信号を生成するように構成する高周波発振器(16、116)と、
    前記水晶発振器(12、112)と熱的に接触する温度センサーを有し、前記水晶発振器の温度を表すデジタル温度信号を周期的に供給及びリフレッシュするように構成する温度信号発生回路(18、118)と、
    時間単位信号パルスそれぞれに対して、前記デジタル温度信号の関数として、前記ディバイダー回路(14、114)において抑制又は注入されるパルスの整数の数を表す整数部分、及び残るいずれの偏差をも補正するために新しい時間単位信号パルスの出力がさらにどのくらい遅延されるべきかということを表す端数部分を有する偏差補正信号を計算するために、較正データを用いて構成する有限状態マシン(24、124)と、
    前記新しい偏差補正信号それぞれの整数部分を受けるように構成し、各時間単位信号パルスに対して、前記ディバイダー回路(14; 114)における前記基準時間信号のパルスをいくつか注入又は抑制する粗い補正回路(34、126)であって、前記基準時間信号のパルスの数は、前記偏差補正信号の整数部分に依存する、粗い補正回路(34、126)と、
    前記水晶発振器(12、112)の周波数に対する前記高周波発振器(16、116)の周波数の比(M/P)を表すデジタル周波数比信号を定期的に提供しリフレッシュするように構成し、さらに、各時間単位信号パルスに対応する偏差補正信号の端数部分(n)を前記補間信号の周期の対応する数(np)へと変換するように構成する周波数変換回路(24、40;118、124)と、
    各時間単位信号パルスに対して、前記補間信号の周期の数(np)の新しい1つを受け、かつ、前記補間信号の周期の数(np)の新しい1つを前の端数抑制指令信号(nINT)に加えることによって、新しい端数抑制指令信号(nINT’)を反復して計算するように構成する端数蓄積回路(30;130、134)と、及び
    前記新しい端数抑制指令信号(nINT’)をそれぞれ受け、かつ、前記補間信号の対応する数の周期の継続時間の分次の時間単位信号パルスの出力を遅延させるように構成する可変遅延回路(38、138)と
    を有することを特徴とする温度補正機能付きタイミング信号発生器。
  2. 前記新しい端数抑制指令信号(nINT’)の値が前記水晶発振器(M/P)の1周期以上である場合、前記新しい端数抑制指令信号の値から前記水晶発振器(M/P)の1周期が減じられ、前記偏差補正信号の前記整数部分(K)に1単位が加えられる
    ことを特徴とする請求項1に記載の温度補正機能付きタイミング信号発生器。
  3. 前記高周波発振器(16、116)は、前記温度補正時間単位信号パルスの周波数よりも少なくとも106倍大きな周波数(fRC)を有する
    ことを特徴とする請求項1又は2に記載の温度補正機能付きタイミング信号発生器。
  4. 前記水晶発振器は、32,768Hzの音叉水晶共振器を有する
    ことを特徴とする請求項1、2及び3のいずれかに記載の温度補正機能付きタイミング信号発生器。
  5. 前記温度補正時間単位信号パルスの周波数は1Hzである
    ことを特徴とする請求項1〜4のいずれかに記載の温度補正機能付きタイミング信号発生器。
  6. 前記高周波発振器(16、116)は、チップ上で集積されて、少なくとも1MHzの周波数(fRC)を有するRC発振器である
    ことを特徴とする請求項1〜5のいずれかに記載の温度補正機能付きタイミング信号発生器。
  7. 前記高周波発振器(16、116)は、少なくとも10MHzの周波数を有する
    ことを特徴とする請求項6の温度補正機能付きタイミング信号発生器。
  8. 基準時間信号の周波数(fXT)が対応する所望の周波数より高い場合、前記偏差補正信号の整数部分(K)は、周波数偏移のモジュラス以下の最大の整数であり、ディバイダー回路において抑制されるパルスの整数の数に対応し、前記偏差補正信号の端数部分(n)は、前記周波数偏移の端数部分のモジュラスと等しい
    ことを特徴とする請求項1〜7のいずれに記載の温度補正機能付きタイミング信号発生器。
  9. 前記基準時間信号の周波数が対応する所望の周波数よりも低い場合、前記偏差補正信号の整数部分(K)は、前記周波数偏移のモジュラス以上の最も小さな整数と等しく、前記ディバイダー回路に注入されるパルスの整数の数に対応し、前記偏差補正信号の端数部分(n)は、前記周波数偏移の端数部分のモジュラスに1を減じた値である
    ことを特徴とする請求項1〜8のいずれかに記載の温度補正機能付きタイミング信号発生器。
  10. 前記高周波発振器は、時間単位ごとに1回断続的に動作するように構成し、
    前記可変遅延回路は、発振器が開始し、安定させるのに十分な時間を与えられた後、前記発振器が再び止められる前に、時間単位ごとに1回、次の時間単位信号パルスのオンセットの遅延を調整するために、前記高周波発振器を使用するように構成される
    ことを特徴とする請求項1〜9のいずれかに記載の温度補正機能付きタイミング信号発生器。
  11. 前記周波数変換回路(24、40;118、124)は、前記発振器が開始し、安定するために十分な時間を与えられ、前記発振器が再び止められる前に、第1の時間間隔の外で、時間単位ごとに1回発生する周期的な第2の時間間隔の間に前記デジタル周波数比信号をリフレッシュする
    ことを特徴とする請求項10に記載の温度補正機能付きタイミング信号発生器。
JP2014193367A 2013-09-30 2014-09-24 温度補正機能付きタイミング信号発生器 Active JP5931151B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13186717.8A EP2854293B1 (en) 2013-09-30 2013-09-30 Temperature compensated timing signal generator
EP13186717.8 2013-09-30

Publications (2)

Publication Number Publication Date
JP2015068829A true JP2015068829A (ja) 2015-04-13
JP5931151B2 JP5931151B2 (ja) 2016-06-08

Family

ID=49253209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193367A Active JP5931151B2 (ja) 2013-09-30 2014-09-24 温度補正機能付きタイミング信号発生器

Country Status (5)

Country Link
EP (1) EP2854293B1 (ja)
JP (1) JP5931151B2 (ja)
CN (1) CN104518759B (ja)
HK (1) HK1205598A1 (ja)
TW (1) TWI522756B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728598B2 (ja) * 2015-08-28 2020-07-22 セイコーエプソン株式会社 発振回路、電子機器及び移動体
CN112236942B (zh) * 2018-07-18 2023-12-05 深圳市汇顶科技股份有限公司 NB-IoT设备的睡眠定时器的数字石英温度和漂移补偿的方法和装置
CN110769546B (zh) * 2019-10-22 2022-07-19 厦门通士达照明有限公司 多变温度环境下定时led灯具的温度补偿方法及系统
CN112229469A (zh) * 2020-10-20 2021-01-15 苏州工业园区清源华衍水务有限公司 远传阀控水表
CN114200815B (zh) * 2021-11-15 2023-03-24 秦佳电气有限公司 一种提高普通定时器计时精度的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116406A (ja) * 1984-11-09 1986-06-03 Seiko Epson Corp 温度補償付電子時計
JPH06342088A (ja) * 1993-04-07 1994-12-13 Seiko Epson Corp 計時方式、半導体装置、計時装置
US5644271A (en) * 1996-03-05 1997-07-01 Mehta Tech, Inc. Temperature compensated clock
JP2004516740A (ja) * 2000-12-21 2004-06-03 テレフオンアクチーボラゲツト エル エム エリクソン 較正のための振動回路と方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH554015A (ja) 1971-10-15 1974-09-13
JPS5071362A (ja) 1973-10-24 1975-06-13
US5798667A (en) * 1994-05-16 1998-08-25 At&T Global Information Solutions Company Method and apparatus for regulation of power dissipation
US7436227B2 (en) * 2003-05-02 2008-10-14 Silicon Laboratories Inc. Dual loop architecture useful for a programmable clock source and clock multiplier applications
CN100581056C (zh) * 2006-11-10 2010-01-13 天时电子股份有限公司 不受温度变化及供应电压变化影响的稳定振荡器
JP2009053069A (ja) * 2007-08-28 2009-03-12 Sanyo Electric Co Ltd 温度検出回路
CN101753115B (zh) * 2008-10-09 2012-07-04 盛群半导体股份有限公司 具有温度补偿的电路及方法
US8035454B2 (en) * 2009-03-09 2011-10-11 Micro Crystal Ag Oscillator device comprising a thermally-controlled piezoelectric resonator
CN101582687A (zh) * 2009-07-07 2009-11-18 松翰科技股份有限公司 温度补偿电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116406A (ja) * 1984-11-09 1986-06-03 Seiko Epson Corp 温度補償付電子時計
JPH06342088A (ja) * 1993-04-07 1994-12-13 Seiko Epson Corp 計時方式、半導体装置、計時装置
US5644271A (en) * 1996-03-05 1997-07-01 Mehta Tech, Inc. Temperature compensated clock
JP2004516740A (ja) * 2000-12-21 2004-06-03 テレフオンアクチーボラゲツト エル エム エリクソン 較正のための振動回路と方法

Also Published As

Publication number Publication date
JP5931151B2 (ja) 2016-06-08
CN104518759A (zh) 2015-04-15
EP2854293B1 (en) 2016-03-30
CN104518759B (zh) 2017-04-12
TWI522756B (zh) 2016-02-21
EP2854293A1 (en) 2015-04-01
HK1205598A1 (en) 2015-12-18
TW201527910A (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
JP5931151B2 (ja) 温度補正機能付きタイミング信号発生器
JP5931152B2 (ja) 温度補正機能付きタイミング信号発生器
JP5952836B2 (ja) 温度検出装置、および、温度検出装置を備える集積回路
US8901983B1 (en) Temperature compensated timing signal generator
US20120218048A1 (en) Oscillation device
TWI628917B (zh) 主時脈高精度振盪器
JP6045961B2 (ja) 水晶発振器及び発振装置
JP2014092841A (ja) 半導体装置、クロック補正方法
TWI533594B (zh) 振盪裝置
JP2014068316A5 (ja)
US9100023B2 (en) Piece-crystal oscillator and oscillation device
WO2015151870A1 (ja) 発振装置
US8896359B1 (en) Temperature compensated timing signal generator
JP2013167597A (ja) リアルタイムクロック
US7679466B1 (en) Counter-based resonator frequency compensation
WO2016027741A1 (ja) 発振装置及び発振装置の製造方法
JP4353868B2 (ja) 水晶発振装置
JP2011182099A (ja) 基準信号発生装置及び方法
JP7117119B2 (ja) 発振装置
JPH0352590B2 (ja)
Bagala et al. Enhanced clock based on the Chip Scale Atomic Clock and Dual-Mode Crystal Oscillator
JP5831002B2 (ja) 発振器および電子機器
JP2018011163A (ja) 発振器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5931151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250