JP2015063729A - 440 MPa CLASS HIGH STRENGTH ALLOYED HOT-DIP GALVANIZED STEEL SHEET EXCELLENT IN DEEP DRAWABILITY AND PRODUCTION METHOD THEREOF - Google Patents
440 MPa CLASS HIGH STRENGTH ALLOYED HOT-DIP GALVANIZED STEEL SHEET EXCELLENT IN DEEP DRAWABILITY AND PRODUCTION METHOD THEREOF Download PDFInfo
- Publication number
- JP2015063729A JP2015063729A JP2013198226A JP2013198226A JP2015063729A JP 2015063729 A JP2015063729 A JP 2015063729A JP 2013198226 A JP2013198226 A JP 2013198226A JP 2013198226 A JP2013198226 A JP 2013198226A JP 2015063729 A JP2015063729 A JP 2015063729A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- value
- less
- dip galvanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車部品などに用いられる深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板及びその製造方法に関するものである。 The present invention relates to a 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability used for automobile parts and the like, and a method for producing the same.
近年、環境問題への対応のため炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が望まれている。また、衝突安全性向上に対する要求はますます高くなっている。自動車の軽量化や衝突安全性向上のためには鋼材の高強度化が有効な手段である。自動車部品のうち厳しいプレス成形性が要求されるパネル部品には加工性の良好な軟質鋼板が使用されてきたが、近年では特許文献1〜3などに記載されているように深絞り性に優れた平均r値rm〔rm=(rL+2×r45+rC)/4…(式1)〕(ただし、式1において、rL、r45、rCはそれぞれ圧延方向に平行、45°、垂直な方向の鋼板のr値である。以下、式2においても同様。)の高い高強度冷延鋼板が開発されてきている。パネル部品の中でもサイドフレームアウターのような形状の部品には平均r値が高いことに加えてr値の面内異方性(Δr値)〔Δr値=(rL+rC)/2−r45…(式2)〕が小さいことも要求される。これはサイドフレームアウターの各部位においてドアが収まる部位の四隅部分には45°方向のr値が高いことが要求され、ドアのヒンジ取付け部では圧延方向のr値が高いことが要求されるためである。このような部品に適用可能な鋼板として、特許文献4には平均r値とr値の面内異方性に優れた深絞り用高強度冷延鋼板及びその製造方法が記載されている。 In recent years, in order to cope with environmental problems, it is desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. In addition, there is an increasing demand for improved collision safety. Increasing the strength of steel is an effective means for reducing the weight of automobiles and improving collision safety. Among automotive parts, panel parts that require severe press formability have been used soft steel sheets with good workability, but in recent years they have excellent deep drawability as described in Patent Documents 1-3. The average r value r m [r m = (r L + 2 × r 45 + r C ) / 4 (Expression 1)] (where r L , r 45 and r C are parallel to the rolling direction, A high-strength cold-rolled steel sheet having a high value of 45 °, which is the r value of the steel sheet in the vertical direction (hereinafter, the same applies to Formula 2). Among the panel parts, a part having a shape such as an outer side frame has a high average r value and an in-plane anisotropy (Δr value) [Δr value = (r L + r C ) / 2−r. 45 (Equation 2)] is also required to be small. This is because the r value in the 45 ° direction is required to be high at the four corners of the part where the door fits in each part of the outer side frame, and the r value in the rolling direction is required to be high at the hinge mounting portion of the door. It is. As a steel sheet applicable to such a component, Patent Document 4 describes a high-strength cold-rolled steel sheet for deep drawing excellent in average r value and in-plane anisotropy of r value, and a method for producing the same.
また、自動車用高強度鋼板は適用される部品によっては耐食性が必要とされ、そのような場合には溶融亜鉛めっき鋼板が適用されている。また、溶融亜鉛めっきを行った後に合金化処理をした(合金化)溶融亜鉛めっき鋼板も適用されている。 Further, high strength steel sheets for automobiles require corrosion resistance depending on the applied parts, and in such cases, hot dip galvanized steel sheets are applied. In addition, a hot-dip galvanized steel sheet that has been subjected to alloying treatment after being hot-dip galvanized (alloyed) is also applied.
溶融亜鉛めっき鋼板は、通常、ゼンジマー法で製造されるが、焼鈍設備とめっき設備が連続化されており、高深絞り性高強度鋼板においては、強度確保のためにSiが添加されるが、Si含有量が高いとSiが鋼板表面に濃縮し酸化するため、溶融亜鉛めっき時に不めっきが発生し易いという問題があった。 Hot-dip galvanized steel sheets are usually manufactured by the Sendzimer method, but annealing equipment and plating equipment are continuous. In high-stretchability high-strength steel sheets, Si is added to ensure strength. If the content is high, Si concentrates on the surface of the steel sheet and oxidizes, so that there is a problem that non-plating is likely to occur during hot dip galvanization.
一方、特許文献5及び6において、Si添加高強度鋼板につき、Niプレめっき後、430〜500℃まで急速加熱し、亜鉛めっき後に470〜550℃に加熱して合金化処理を行うという合金化溶融亜鉛めっき高強度鋼板の製造方法が記載されている。合金化処理時の保持時間が短い場合には最高到達温度が620℃程度でも適用可能と考えられる。この方法の場合、原板としてすでに材質を造り込んでいる冷延−焼鈍プロセスで製造した冷延鋼板を使用することが可能であり、最高到達温度が620℃程度であることから、原板の加工性をあまり損なわずに合金化溶融亜鉛めっき鋼板を製造することができると考えられる。また、Niプレめっきなどの処理により、Si含有量が高くても不めっきが生じにくい。 On the other hand, in Patent Documents 5 and 6, for Si-added high-strength steel sheet, after Ni pre-plating, it is rapidly heated to 430 to 500 ° C., and after galvanization, it is heated to 470 to 550 ° C. for alloying and melting. A method for producing a galvanized high strength steel sheet is described. If the holding time during the alloying process is short, it can be applied even when the maximum temperature is about 620 ° C. In the case of this method, it is possible to use a cold-rolled steel plate manufactured by a cold-rolling-annealing process in which the material has already been made as the original plate, and the maximum reachable temperature is about 620 ° C. It is considered that an alloyed hot-dip galvanized steel sheet can be produced without much damage. In addition, non-plating is less likely to occur even when the Si content is high due to treatment such as Ni pre-plating.
しかしながら、特許文献4に記載されている深絞り用高強度冷延鋼板に特許文献5及び6に記載されている方法で合金化溶融亜鉛めっき鋼板を製造すると合金化処理した硬いめっき層の拘束により板幅方向の変形が抑制されるためにめっき前の冷延鋼板に比べて平均r値とr値の面内異方性が劣化するという問題があった。 However, when an alloyed hot-dip galvanized steel sheet is produced by the method described in Patent Documents 5 and 6 on the deep drawing high-strength cold-rolled steel sheet described in Patent Document 4, the hard plating layer subjected to the alloying treatment is restrained. Since deformation in the plate width direction is suppressed, there is a problem that the in-plane anisotropy of the average r value and the r value is deteriorated as compared with the cold-rolled steel plate before plating.
従って、これらの技術を使って平均r値とr値の面内異方性に優れた深絞り用高強度合金化溶融亜鉛めっき鋼板を得ることは困難である。 Therefore, it is difficult to obtain a high-strength galvannealed steel sheet for deep drawing excellent in average r value and in-plane anisotropy of r value using these techniques.
本発明は、上述したような問題点を解決しようとするものであって、自動車部品などに用いられる深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板及びその製造方法を提供することである。 The present invention is intended to solve the above-described problems, and provides a 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability used for automobile parts and the like, and a method for producing the same. It is.
本発明者らは、特許文献4に記載された平均r値とr値の面内異方性に優れた深絞り用高強度冷延鋼板の技術と特許文献5及び6に記載されたNiプレめっき法による溶融亜鉛めっき鋼板を製造する技術をベースとし、実験室で溶解、熱延、冷延、焼鈍、Niプレめっき、溶融亜鉛めっき及び合金化処理を行い、所要の強度、延性、平均r値、Δr値、めっき性を得るための方法を種々検討した。その結果、成分を特定したうえで、熱間圧延の仕上げ温度を800〜860℃とし、仕上げ圧延後0.1秒以内に冷却を開始し、800℃以上860℃以下の温度から700℃以上760℃以下の温度まで200℃/秒以上の速度で冷却し、巻き取り温度を650〜760℃として熱間圧延を行うことで、熱延板の集合組織を制御し、冷間圧延・焼鈍・溶融亜鉛めっき及び合金化処理後の鋼板において平均r値及びr値の面内異方性を大幅に向上させることができ、深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板を製造することができることを見出した。本発明の要旨は、以下のとおりである。 The inventors of the present invention have disclosed a technique of a high-strength cold-rolled steel sheet for deep drawing excellent in average r value and in-plane anisotropy of the r value described in Patent Document 4 and Ni pre-process described in Patent Documents 5 and 6. Based on the technology of manufacturing hot-dip galvanized steel sheet by plating method, melting, hot rolling, cold rolling, annealing, Ni pre-plating, hot-dip galvanizing and alloying treatment are performed in the laboratory, and the required strength, ductility, average r Various methods for obtaining the value, Δr value, and plating property were studied. As a result, after specifying the components, the hot rolling finish temperature is set to 800 to 860 ° C., cooling is started within 0.1 seconds after the finish rolling, and the temperature is from 800 ° C. to 860 ° C. to 700 ° C. to 760 ° C. Cooling at a rate of 200 ° C / second or more to a temperature of ℃ or less, and performing hot rolling at a coiling temperature of 650 to 760 ° C, controlling the texture of the hot rolled sheet, cold rolling, annealing, melting In the steel sheet after galvanizing and alloying treatment, the average r value and the in-plane anisotropy of the r value can be greatly improved, and a 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability is manufactured. I found that I can do it. The gist of the present invention is as follows.
(1)質量%で、
C:0.0040%未満、
Si:0.7%以下、
Mn:1.0〜2.5%、
P:0.05〜0.15%、
S:0.025%以下、
Al:0.005〜0.20%、
N:0.010%以下、
Ti:0.005〜0.020%、
Nb:0.005〜0.030%、
B:0.0002〜0.0030%、
を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に、Feを7〜15質量%含有する溶融亜鉛めっき層を有し、鋼板の板厚の1/4部における圧延面に平行な(222)面と(200)面のX線ランダム強度比(ランダムサンプルの回折強度との比)P(222)とP(200)がP(222)/P(200)≧17を満足し、平均r値≧1.7で、−0.3≦Δr値≦0.3であることを特徴とする、深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板。
(2)質量%で、
C:0.0040%未満、
Si:0.7%以下、
Mn:1.0〜2.5%、
P:0.05〜0.15%、
S:0.025%以下、
Al:0.005〜0.20%、
N:0.010%以下、
Ti:0.005〜0.020%、
Nb:0.005〜0.030%、
B:0.0002〜0.0030%、
を含有し、残部がFe及び不可避的不純物からなる鋳片を熱間圧延し、更に、酸洗、冷間圧延及び焼鈍を施した後、Niプレめっきを行い、その後、溶融亜鉛めっき後、合金化処理を行い、鋼板の表面に、Feを7〜15質量%含有する溶融亜鉛めっき層を有する合金化溶融亜鉛めっき鋼板を製造するに際し、熱間圧延の仕上げ温度を800〜860℃とし、仕上げ圧延後0.5秒以内に冷却を開始し、800℃以上860℃以下の温度から700℃以上760℃以下の温度まで200℃/秒以上の速度で冷却し、巻き取り温度を650〜760℃として熱間圧延を行う、鋼板の板厚の1/4部における圧延面に平行な(222)面と(200)面のX線ランダム強度比(ランダムサンプルの回折強度との比)P(222)とP(200)がP(222)/P(200)≧17を満足し、平均r値≧1.7で、−0.3≦Δr値≦0.3である、深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板の製造方法。
(1) In mass%,
C: less than 0.0040%,
Si: 0.7% or less,
Mn: 1.0 to 2.5%
P: 0.05 to 0.15%,
S: 0.025% or less,
Al: 0.005 to 0.20%,
N: 0.010% or less,
Ti: 0.005-0.020%,
Nb: 0.005 to 0.030%,
B: 0.0002 to 0.0030%,
And the balance of the steel sheet consisting of Fe and inevitable impurities on the surface of the steel sheet, and a hot-dip galvanized layer containing 7 to 15% by mass of Fe. X-ray random intensity ratio of (222) plane and (200) plane (ratio of diffraction intensity of random sample) P (222) and P (200) satisfy P (222) / P (200) ≧ 17, An average r value ≧ 1.7 and −0.3 ≦ Δr value ≦ 0.3, a 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability.
(2) In mass%,
C: less than 0.0040%,
Si: 0.7% or less,
Mn: 1.0 to 2.5%
P: 0.05 to 0.15%,
S: 0.025% or less,
Al: 0.005 to 0.20%,
N: 0.010% or less,
Ti: 0.005-0.020%,
Nb: 0.005 to 0.030%,
B: 0.0002 to 0.0030%,
A hot-rolled slab containing Fe and the inevitable impurities, and after pickling, cold rolling and annealing, Ni pre-plating, and then hot dip galvanizing, alloy When the alloyed hot-dip galvanized steel sheet having a hot-dip galvanized layer containing 7 to 15% by mass of Fe is formed on the surface of the steel sheet, the hot rolling finish temperature is set to 800 to 860 ° C. Cooling is started within 0.5 seconds after rolling, and cooling is performed at a speed of 200 ° C./second or more from a temperature of 800 ° C. or more to 860 ° C. or less to a temperature of 700 ° C. or more to 760 ° C. The X-ray random intensity ratio between the (222) plane and the (200) plane parallel to the rolled surface at a quarter of the plate thickness of the steel sheet (ratio with the diffraction intensity of the random sample) P (222 ) And P (200) (222) / P (200) ≧ 17, average r value ≧ 1.7, −0.3 ≦ Δr value ≦ 0.3, excellent deep drawability 440 MPa class high strength alloying and melting Manufacturing method of galvanized steel sheet.
本発明によれば、深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板を得ることができ、産業上の貢献が極めて顕著である。 According to the present invention, a 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability can be obtained, and the industrial contribution is extremely remarkable.
まず、本発明における深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板の成分限定理由について説明する。なお、以下、組成における質量%は単に%と記す。 First, the reasons for limiting the components of the 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.
C:Cは深絞り性を低下させる元素であり、低減させることが望ましい。0.0040%以上ではTiCやNbC等の析出物が多量に析出し、Δr値が劣化するのみならず、焼鈍時の粒成長性も阻害し、平均r値も低下するため、Cの含有量を0.0040%未満とした。 C: C is an element that reduces the deep drawability, and is desirably reduced. If it is 0.0040% or more, a large amount of precipitates such as TiC and NbC are precipitated, not only the Δr value is deteriorated, but also the grain growth property during annealing is inhibited, and the average r value is also lowered. Was less than 0.0040%.
Si:Siは固溶強化により鋼板の強度を増大させるのに有用な元素である。0.7%を超える過剰の添加は熱間圧延で生じるスケールの剥離性や化成処理性を劣化させ、また、フラッシュバット溶接性を劣化させるため、Si含有量は0.7%以下とした。 Si: Si is an element useful for increasing the strength of a steel sheet by solid solution strengthening. The excessive addition exceeding 0.7% deteriorates the peelability and chemical conversion property of the scale generated by hot rolling, and also deteriorates the flash butt weldability. Therefore, the Si content is set to 0.7% or less.
Mn:Mnは固溶強化により鋼板の強度を増大させるのに有用な元素である。また、Ar3変態点を低下させる元素で、その効果を活用し、熱間圧延の仕上げ温度(FT)を低下させることで、熱延板の粒径を微細でかつファインなフェライト粒にするための不可欠な元素である。1.0%未満ではそれらの効果が発現されず、2.5%を超える過剰の添加は靭性を劣化させる。従って、Mn含有量は1.0〜2.5%とした。 Mn: Mn is an element useful for increasing the strength of a steel sheet by solid solution strengthening. Also, it is an element that lowers the Ar 3 transformation point, and its effect is utilized to reduce the hot rolling finishing temperature (FT), thereby making the hot rolled sheet grain size fine and fine ferrite grains. Is an indispensable element. If it is less than 1.0%, those effects are not exhibited, and an excessive addition exceeding 2.5% deteriorates toughness. Therefore, the Mn content is set to 1.0 to 2.5%.
P:Pは固溶強化により鋼板の強度を増大させるのに有用な元素である。0.05%未満では440MPa級の強度を得ることが困難であり、0.15%を超えると粒界に偏析して粒界強度を低下させ、靱性を劣化させる。従って、P含有量は0.05〜0.15%とした。 P: P is an element useful for increasing the strength of a steel sheet by solid solution strengthening. If it is less than 0.05%, it is difficult to obtain a strength of 440 MPa class, and if it exceeds 0.15%, it segregates at the grain boundary, lowers the grain boundary strength, and deteriorates toughness. Therefore, the P content is set to 0.05 to 0.15%.
S:Sは、熱間加工性及び靭性を劣化させる不純物元素であり、低減させることが望ましい。Sの含有量の上限は、現状の精錬技術と製造コストを考慮し、0.025%に制限した。 S: S is an impurity element that degrades hot workability and toughness, and is desirably reduced. The upper limit of the S content is limited to 0.025% in consideration of the current refining technology and manufacturing costs.
Al:Alは脱酸剤として、またAlNを形成し結晶粒粗大化を抑制する効果がある。また、Siと同様にフェライト安定化元素であり、Siの代替として使用することもできる。0.005%未満ではそれらの効果が発現されず、0.20%を超えて過剰添加すると靭性が劣化するため、Alの含有量を0.005〜0.20%とした。 Al: Al is effective as a deoxidizer and suppresses grain coarsening by forming AlN. Moreover, it is a ferrite stabilizing element like Si, and can be used as a substitute for Si. If it is less than 0.005%, those effects are not exhibited, and if it is added over 0.20%, the toughness deteriorates, so the Al content was made 0.005 to 0.20%.
N:Nは窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.010%を超えて添加すると靭性が劣化するため、N含有量の上限は0.010%とした。 N: N has the effect of forming nitrides and suppressing crystal grain coarsening, but if added over 0.010%, the toughness deteriorates, so the upper limit of the N content was 0.010%.
Ti:Tiは微細な炭窒化物を形成する元素であり、結晶粒の粗大化の抑制に有効であり、また、TiNやTiCを析出することで固溶Nや固溶Cを低減してr値を向上させるのに有効である。0.005%未満ではそれらの効果が発現されず、0.020%を超えて過剰に添加するとTiPを析出しr値を低下させたり、TiNが粗大化し靭性が劣化することがある。したがって、Tiの含有量を0.005〜0.020%とした。 Ti: Ti is an element that forms fine carbonitrides and is effective in suppressing the coarsening of crystal grains. Also, TiN and TiC are precipitated to reduce solid solution N and solid solution C, thereby reducing r It is effective to improve the value. If it is less than 0.005%, those effects are not manifested, and if it is added in excess of 0.020%, TiP may be precipitated and the r value may be lowered, or TiN may be coarsened to deteriorate toughness. Therefore, the content of Ti is set to 0.005 to 0.020%.
Nb:Nbは微細な炭窒化物を形成する元素であり、結晶粒の粗大化の抑制に有効であり、また、Tiで固定されずに残った固溶CをNbCとして析出させることで固溶Cを低減してr値を向上させるのに有効である。0.005%未満ではそれらの効果が発現されず、0.030%を超えて過剰に添加すると析出物が粗大化し、靭性が劣化することがある。したがって、Nbの含有量を0.005〜0.030%とした。 Nb: Nb is an element that forms fine carbonitrides, and is effective in suppressing the coarsening of crystal grains. In addition, solid solution C that remains without being fixed by Ti is precipitated as NbC. It is effective for reducing C and improving the r value. If it is less than 0.005%, those effects are not expressed, and if it exceeds 0.030% and added excessively, the precipitates may become coarse and the toughness may deteriorate. Therefore, the Nb content is set to 0.005 to 0.030%.
B:Bは粒界に偏析し、P及びSの粒界偏析を抑制する元素であり、二次加工脆性の改善に有効な元素である。0.0002%未満ではその効果が発現されず、0.0030%を超えて過剰に添加すると、粒界に粗大な析出物を生じて、熱間加工性や靭性を損なうことがある。したがって、Bの含有量を0.0002〜0.0030%とした。 B: B is an element that segregates at the grain boundary and suppresses the grain boundary segregation of P and S, and is an element effective for improving secondary work brittleness. If the content is less than 0.0002%, the effect is not exhibited. If the content exceeds 0.0030%, a coarse precipitate is formed at the grain boundary, which may impair hot workability and toughness. Therefore, the content of B is set to 0.0002 to 0.0030%.
次に、本発明の鋼板の集合組織について説明する。
本発明の合金化溶融亜鉛めっき鋼板は、鋼板の板厚の1/4部における圧延面に平行な(222)面のX線ランダム強度比P(222)と、鋼板の板厚の1/4部における圧延面に平行な(200)面のX線ランダム強度比P(200)との比[P(222)/P(200)]がP(222)/P(200)≧17を満足することが必要である。ここで、X線ランダム強度比は、ランダムサンプルの回折強度との比である。P(222)/P(200)≧17を満足することで合金化溶融亜鉛めっき鋼板において1.7以上の平均r値と−0.3≦Δr値≦0.3を得ることができる。
Next, the texture of the steel sheet of the present invention will be described.
The alloyed hot-dip galvanized steel sheet of the present invention has an X-ray random strength ratio P (222) of (222) plane parallel to the rolling surface at 1/4 part of the steel sheet thickness and 1/4 of the steel sheet thickness. The ratio [P (222) / P (200)] with the X-ray random intensity ratio P (200) of the (200) plane parallel to the rolling surface in the part satisfies P (222) / P (200) ≧ 17 It is necessary. Here, the X-ray random intensity ratio is a ratio with the diffraction intensity of a random sample. By satisfying P (222) / P (200) ≧ 17, an average r value of 1.7 or more and −0.3 ≦ Δr value ≦ 0.3 can be obtained in the galvannealed steel sheet.
X線ランダム強度比は、適切なX線管球を用いたディフラクトメーター法等を用いて圧延面に平行な(222)面と(200)面のX線回折強度の測定を行い、ランダムサンプルの回折強度との比較により測定するものとする。X線回折による測定が困難な場合は、EBSD(Electron Back Scattering Diffraction Pattern)法を用いて、ピクセルの測定間隔が平均粒径の1/5以下で、結晶粒が5000個以上測定できる領域で測定し、極点図またはODF(Orientation Distribution Function)の分布からランダム強度比を測定してもよい。 The X-ray random intensity ratio is determined by measuring the X-ray diffraction intensity of the (222) plane and (200) plane parallel to the rolling surface using a diffractometer method using an appropriate X-ray tube, etc. It shall be measured by comparison with the diffraction intensity. When measurement by X-ray diffraction is difficult, use an EBSD (Electron Back Scattering Diffraction Pattern) method to measure in an area where the measurement interval of pixels is 1/5 or less of the average grain size and 5000 or more crystal grains can be measured. In addition, the random intensity ratio may be measured from a pole figure or an ODF (Orientation Distribution Function) distribution.
次に、本発明の鋼板の特性について説明する。
平均r値については自動車用鋼板として必要な特性を考慮して、1.7以上であることが必要である。1.7未満であればサイドフレームアウターなどの自動車部品への適用が困難である。なお、平均r値は上記式1により求める。
Next, the characteristics of the steel plate of the present invention will be described.
The average r value needs to be 1.7 or more in consideration of the characteristics required for an automobile steel plate. If it is less than 1.7, it is difficult to apply to automobile parts such as outer side frames. The average r value is obtained by the above equation 1.
Δr値については自動車用鋼板として必要な特性を考慮して、−0.3≦Δr値≦0.3であることが必要である。Δr<−0.3またはΔr>0.3であればサイドフレームアウターなどの自動車部品への適用が困難である。なお、Δr値は上記式2により求める。 Regarding the Δr value, it is necessary to satisfy −0.3 ≦ Δr value ≦ 0.3 in consideration of characteristics necessary for an automobile steel plate. If Δr <−0.3 or Δr> 0.3, it is difficult to apply to automobile parts such as outer side frames. The Δr value is obtained by the above equation 2.
次に製造条件の限定理由について述べる。
本発明においては、上記の成分からなる鋼を常法で溶製し、鋳造する。得られた鋳片を熱間圧延する。更に、酸洗、冷間圧延及び焼鈍を施した後、Niプレめっきを行い、その後、溶融亜鉛めっき及び合金化処理を行う。
Next, the reasons for limiting the manufacturing conditions will be described.
In the present invention, the steel composed of the above components is melted and cast by a conventional method. The obtained slab is hot-rolled. Further, after pickling, cold rolling and annealing, Ni pre-plating is performed, and then hot dip galvanizing and alloying treatment are performed.
熱間圧延においては、仕上げ温度を800〜860℃とし、仕上げ圧延後0.5秒以内に冷却を開始し、800℃以上860℃以下の温度から700℃以上760℃以下の温度まで200℃/秒以上の速度で冷却し、巻き取り温度を650〜760℃とする。 In hot rolling, the finishing temperature is set to 800 to 860 ° C., cooling is started within 0.5 seconds after finishing rolling, and the temperature is increased from 800 ° C. to 860 ° C. to 700 ° C. to 760 ° C. to 200 ° C. / Cool at a rate of at least 2 seconds and set the winding temperature to 650-760 ° C.
本発明の鋼板の板厚の1/4部における圧延面に平行な(222)面と(200)面のX線ランダム強度比(ランダムサンプルの回折強度との比)P(222)とP(200)がP(222)/P(200)≧17を満足し、平均r値≧1.7で、−0.3≦Δr値≦0.3を有する、深絞り性に優れた440MPa級高強度溶融亜鉛めっき鋼板を製造するうえで、上記の条件を満たすことは必要不可欠である。 The X-ray random intensity ratio between the (222) plane parallel to the rolling surface and the (200) plane (ratio with the diffraction intensity of the random sample) P (222) and P (1) 200) satisfies P (222) / P (200) ≧ 17, has an average r value ≧ 1.7, and −0.3 ≦ Δr value ≦ 0.3, and has a high 440 MPa class excellent in deep drawability It is indispensable to satisfy the above conditions when manufacturing a high strength hot dip galvanized steel sheet.
仕上げ温度を800〜860℃とすることで熱延板の組織が微細でかつファインなフェライト粒となり、平均r値の向上とr値の面内異方性の低減を両立させることができるが、溶融亜鉛めっき及び合金化処理後の劣化代を考慮すれば十分ではない。仕上げ温度が800℃未満または860℃超であれば熱延板の組織が粗大になったり歪が大きくなったりして、微細でかつファインなフェライト組織は得られない。 By setting the finishing temperature to 800 to 860 ° C., the structure of the hot-rolled sheet becomes fine and fine ferrite grains, and it is possible to achieve both improvement of the average r value and reduction of the in-plane anisotropy of the r value. Considering the allowance for deterioration after hot dip galvanizing and alloying treatment is not sufficient. If the finishing temperature is less than 800 ° C. or more than 860 ° C., the structure of the hot-rolled sheet becomes coarse or distortion increases, and a fine and fine ferrite structure cannot be obtained.
仕上げ圧延後0.5秒以内に冷却を開始し、800℃以上860℃以下の温度から700℃以上760℃以下の温度まで200℃/秒以上の速度で冷却することで熱延板の組織をより細粒化することができ、また、冷間圧延及び焼鈍後の鋼板の平均r値向上およびr値の異方性低減に有効な{112}<110>及び{332}<113>方位を主方位とする熱延板集合組織とすることができる。これにより、冷間圧延及び焼鈍後の冷延鋼板の集合組織をP(222)/P(200)≧17を満足し、平均r値は高く、かつ、r値の面内異方性は小さい優れた集合組織とすることができる。この冷延鋼板の集合組織は亜鉛めっき及び合金化処理を行っても変化せず、合金化処理後の平均r値とr値の面内異方性の劣化代を考慮しても、合金化溶融亜鉛めっき鋼板の集合組織をP(222)/P(200)≧17を満足し、かつ、平均r値≧1.7で、−0.30≦Δr値≦0.30を満たし、平均r値は高く、かつ、r値の面内異方性は小さい優れた集合組織とすることができる。 Cooling is started within 0.5 seconds after finish rolling, and the structure of the hot-rolled sheet is cooled by cooling at a rate of 200 ° C./second or higher from a temperature of 800 ° C. to 860 ° C. to a temperature of 700 ° C. to 760 ° C. Further, the {112} <110> and {332} <113> orientations effective for improving the average r value of the steel sheet after cold rolling and annealing and reducing the anisotropy of the r value can be obtained. It can be set as a hot-rolled sheet texture having a main orientation. Thereby, the texture of the cold-rolled steel sheet after cold rolling and annealing satisfies P (222) / P (200) ≧ 17, the average r value is high, and the in-plane anisotropy of the r value is small. An excellent texture can be obtained. The texture of this cold-rolled steel sheet does not change even when galvanizing and alloying treatment is performed, and even if the average r value after alloying treatment and the in-plane anisotropy deterioration allowance are taken into account The texture of the hot-dip galvanized steel sheet satisfies P (222) / P (200) ≧ 17, satisfies the average r value ≧ 1.7, satisfies −0.30 ≦ Δr value ≦ 0.30, and has an average r An excellent texture can be obtained in which the value is high and the in-plane anisotropy of the r value is small.
仕上げ圧延後の冷却開始までの時間が0.5秒を超えたり、冷却開始および冷却後の温度が上記範囲を逸脱したり、冷却速度が200℃/秒未満である場合には上記の効果は得られない。 When the time until the start of cooling after finish rolling exceeds 0.5 seconds, the temperature after the start of cooling and after cooling deviates from the above range, or the cooling rate is less than 200 ° C./second, the above effect is I can't get it.
巻き取り温度を650〜760℃とすることで、TiやNbの炭窒化物の析出を促進し、固溶Cや固溶Nを低減することで、r値を向上させることができる。巻き取り温度が650℃未満または760℃超であればこの効果は得られない。 By setting the coiling temperature to 650 to 760 ° C., the precipitation of Ti and Nb carbonitrides is promoted, and the r value can be improved by reducing the solid solution C and the solid solution N. If the winding temperature is less than 650 ° C. or more than 760 ° C., this effect cannot be obtained.
なお、熱間圧延時の鋳片の加熱温度は上記の仕上げ温度を確保できる範囲で、低い温度にするほうがより良好な平均r値を得られるので望ましい。 In addition, since the heating temperature of the slab at the time of hot rolling is the range which can ensure said finishing temperature, it is desirable from the lower temperature to obtain a better average r value.
冷間圧延の圧延率は、75〜83%と高めたほうが、平均r値やΔr値をより優れたものにできるので好ましいが、通常用いられる冷延条件であれば本発明の鋼板が得られるので、特に限定する必要はない。 The rolling ratio of cold rolling is preferably 75 to 83% because the average r value and Δr value can be made more excellent, but the steel sheet of the present invention can be obtained under the normally used cold rolling conditions. Therefore, there is no particular limitation.
焼鈍条件は再結晶が完了すればよく、特に限定する必要はない。なお、より優れた平均r値の鋼板を得るには焼鈍温度を800℃以上とすることが望ましい。また、連続焼鈍での炉内通板時の「板絞り」というトラブル発生を防ぐには焼鈍温度を830℃以下とすることが望ましい。 The annealing condition is not particularly limited as long as the recrystallization is completed. In order to obtain a steel sheet having an excellent average r value, it is desirable that the annealing temperature is 800 ° C. or higher. Further, in order to prevent the trouble of “plate drawing” at the time of passing through the furnace in continuous annealing, it is desirable to set the annealing temperature to 830 ° C. or less.
焼鈍時に生成したスケールを除去するために焼鈍後に酸洗を行ってもよい。また、焼鈍後に形状矯正及び降伏点伸びの消失のために調質圧延を行ってもよい。 In order to remove the scale generated during annealing, pickling may be performed after annealing. Further, after annealing, temper rolling may be performed for shape correction and loss of yield point elongation.
伸び率が0.6%未満ではその効果が十分でなく、伸び率が2%を超えると伸びが劣化する。従って、調質圧延を行う場合は伸び率を0.6〜2%とすることが望ましい。 If the elongation is less than 0.6%, the effect is not sufficient, and if the elongation exceeds 2%, the elongation deteriorates. Therefore, when performing temper rolling, it is desirable that the elongation is 0.6 to 2%.
焼鈍した後、Niをプレめっきする必要がある。Niプレめっきの方法は電気めっき、浸漬めっき、スプレーめっきのいずれでもよく、めっき量は0.2〜2g/m2程度が望ましい。 After annealing, Ni needs to be pre-plated. The Ni pre-plating method may be any of electroplating, immersion plating and spray plating, and the plating amount is preferably about 0.2 to 2 g / m 2 .
Niをプレめっきした後、20℃/秒以上の加熱速度で430〜480℃まで加熱後、亜鉛めっき浴中で亜鉛めっきを行い、470〜620℃で10〜40秒の合金化処理を行う。加熱速度が20℃/秒未満では、合金化促進効果が得られなくなる。加熱温度が430℃未満ではめっき時に不めっきを生じやすく、480℃を超えるとめっき密着性が劣化する。合金化処理が470℃未満では合金化が不十分であり、620℃を超えると延性が劣化する。合金化時間については、合金化温度とのバランスで決まるが、10〜40秒の範囲が適当である。10秒未満では合金化が進みにくく、40秒を超えると延性が劣化する。なお、上記の亜鉛めっき条件及び合金化条件は一例であり、めっき層中にFeが7〜15%含まれる亜鉛めっき層が得られる条件であればよい。 After pre-plating Ni, after heating to 430-480 degreeC with the heating rate of 20 degrees C / second or more, galvanization is performed in a zinc plating bath, and the alloying process for 10-40 seconds is performed at 470-620 degreeC. When the heating rate is less than 20 ° C./second, the effect of promoting alloying cannot be obtained. If the heating temperature is less than 430 ° C., non-plating is likely to occur during plating, and if it exceeds 480 ° C., plating adhesion deteriorates. If the alloying treatment is less than 470 ° C, alloying is insufficient, and if it exceeds 620 ° C, the ductility deteriorates. The alloying time is determined by the balance with the alloying temperature, but a range of 10 to 40 seconds is appropriate. If it is less than 10 seconds, alloying is difficult to proceed, and if it exceeds 40 seconds, ductility deteriorates. In addition, said zinc plating conditions and alloying conditions are examples, What is necessary is just the conditions which can obtain the zinc plating layer in which 7-15% of Fe is contained in a plating layer.
亜鉛めっき及び合金化処理の後は、最終的な形状矯正及び降伏点伸びの消失のために調質圧延を行ってもよい。伸び率が0.6%未満ではその効果が十分でなく、伸び率が1%を超えると伸びが劣化する。従って、調質圧延を行う場合は伸び率を0.6〜1%とすることが望ましい。 After galvanizing and alloying treatment, temper rolling may be performed for final shape correction and loss of yield point elongation. If the elongation is less than 0.6%, the effect is not sufficient, and if the elongation exceeds 1%, the elongation deteriorates. Therefore, when performing temper rolling, it is desirable that the elongation is 0.6 to 1%.
次にめっき層について説明する。
スポット溶接性や塗装性を向上させるために本発明では溶融亜鉛めっきを行った後に合金化処理を行う。具体的には溶融亜鉛めっき浴に浸漬した後、合金化処理を施すことで、めっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。合金化処理後のめっき層中のFe量が7質量%未満ではスポット溶接性が不十分となる。一方、Fe量が15質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。したがって、合金化処理後のめっき層中Fe量の範囲は7%以上、15%以下とする。なお、溶融亜鉛めっき層はFe以外にNiプレめっきに由来するNi、溶融亜鉛めっき浴中に含まれているZn、Al及び不可避的不純物を含有している。
Next, the plating layer will be described.
In order to improve spot weldability and paintability, in the present invention, alloying is performed after hot dip galvanizing. Specifically, after immersion in a hot dip galvanizing bath, an alloying treatment is performed so that Fe is taken into the plating layer and a high strength hot dip galvanized steel sheet excellent in paintability and spot weldability can be obtained. . If the Fe content in the plated layer after the alloying treatment is less than 7% by mass, the spot weldability is insufficient. On the other hand, if the amount of Fe exceeds 15% by mass, the adhesion of the plating layer itself is impaired, and the plating layer is broken and dropped during processing and adheres to the mold, thereby causing defects during molding. Therefore, the range of Fe content in the plated layer after alloying is 7% or more and 15% or less. In addition to the Fe, the hot dip galvanized layer contains Ni derived from Ni pre-plating, Zn, Al, and unavoidable impurities contained in the hot dip galvanizing bath.
めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2以上であることが望ましい。本発明の溶融亜鉛めっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。 The plating adhesion amount is not particularly limited, but is preferably 5 g / m 2 or more in terms of one-side adhesion amount from the viewpoint of corrosion resistance. For the purpose of improving the paintability and weldability on the hot dip galvanized steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.
以下、実施例により本発明の効果をさらに具体的に説明する。
表1に示す組成の鋼を鋳造し、表2に示す条件で熱間圧延、冷間圧延、焼鈍を行った後、めっき量0.5g/m2のNiプレめっきを行い、20℃/秒の加熱速度で460℃まで加熱後、亜鉛めっき浴中で亜鉛めっきを行い、表2に示す条件で合金化加熱処理を行い、調質圧延を1.0%の伸び率で行った。冷間圧延率は80%、板厚は0.65mmとした。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
After casting steel having the composition shown in Table 1 and performing hot rolling, cold rolling and annealing under the conditions shown in Table 2, Ni pre-plating with a plating amount of 0.5 g / m 2 was performed, and 20 ° C./second. After heating to 460 ° C. at the heating rate, galvanizing was performed in a galvanizing bath, alloying heat treatment was performed under the conditions shown in Table 2, and temper rolling was performed at an elongation rate of 1.0%. The cold rolling rate was 80% and the plate thickness was 0.65 mm.
得られた合金化溶融亜鉛めっき鋼板の機械的特性、平均r値、Δr値、めっき外観、合金化度、めっき密着性を評価した。機械的特性は引張試験を、JIS Z 2241に準拠して行って評価した。引張試験の応力−歪曲線より、降伏応力(YP)、引張強度(TS)、全伸び(EL)を求めた。平均r値及びΔrは、塑性ひずみ比試験をJIS Z 2254に準拠して行って評価した。なお、平均r値及びΔr値の測定は冷間圧延及び焼鈍後の冷延鋼板についても行った。めっき外観は目視観察により不めっきの有無を判定した。合金化Fe%とは、めっき層中のFeの質量%を示している。合金化処理を行った合金化溶融亜鉛めっき鋼板では、7〜15%が合金化がうまく進んだことを示している。めっき密着性は、25mmカップ絞り試験を行い、テープテストによる黒化度を測定し、黒化度30%未満を合格とした。表3では合格品を○とし、不合格品を×とした。 The mechanical properties, average r value, Δr value, plating appearance, degree of alloying, and plating adhesion of the obtained galvannealed steel sheet were evaluated. The mechanical properties were evaluated by conducting a tensile test according to JIS Z 2241. Yield stress (YP), tensile strength (TS), and total elongation (EL) were determined from the stress-strain curve of the tensile test. The average r value and Δr were evaluated by conducting a plastic strain ratio test according to JIS Z 2254. The average r value and Δr value were also measured for cold-rolled steel sheets after cold rolling and annealing. The appearance of plating was determined by visual observation for the presence or absence of non-plating. The alloying Fe% indicates the mass% of Fe in the plating layer. In the alloyed hot-dip galvanized steel sheet subjected to the alloying treatment, 7 to 15% indicate that the alloying has proceeded well. For plating adhesion, a 25 mm cup squeeze test was conducted, the degree of blackening by a tape test was measured, and a degree of blackening of less than 30% was accepted. In Table 3, the acceptable product was marked with ◯, and the rejected product was marked with ×.
得られた合金化溶融亜鉛めっき鋼板の集合組織は、ディフラクトメーター法により板厚の1/4部において圧延面に平行な(222)面と(200)面のX線ランダム強度比(ランダムサンプルの回折強度との比)P(222)およびP(200)を測定し、P(222)/P(200)の値を算出して評価した。なお、冷延・焼鈍後の冷延鋼板の集合組織についても同様に評価した。 The texture of the obtained alloyed hot-dip galvanized steel sheet was determined by using a diffractometer method to obtain an X-ray random intensity ratio (random sample) between the (222) plane and the (200) plane parallel to the rolled surface at 1/4 part of the plate thickness. Of the diffraction intensity) P (222) and P (200) were measured, and the value of P (222) / P (200) was calculated and evaluated. The texture of the cold rolled steel sheet after cold rolling and annealing was also evaluated in the same manner.
表3にP(222)/P(200)、降伏応力、引張強度、全伸び、平均r値、Δr値、めっき外観(不めっき有無)、合金化Fe%、めっき密着性の評価結果を示す。評価項目については不合格の場合に下線を付けた。No.1〜7は本発明例であり、いずれの特性も合格となり、目標とする特性の鋼板が得られている。一方、成分または製造方法が本発明の範囲外であるのNo.8〜15は、いずれかの特性が不合格となっている。 Table 3 shows the evaluation results of P (222) / P (200), yield stress, tensile strength, total elongation, average r value, Δr value, plating appearance (non-plating presence / absence), alloyed Fe%, and plating adhesion. . Evaluation items are underlined if they are rejected. No. 1-7 is an example of this invention, and all the characteristics pass and the steel plate of the target characteristic is obtained. On the other hand, the components or production methods are outside the scope of the present invention. As for 8-15, either characteristic has failed.
本発明例No.1、No.7と比較例No.14、No.15は成分及び焼鈍条件、亜鉛めっき条件は同じであるが、熱延条件のみ異なっている例である。No.14、No.15では冷延鋼板の平均r値とΔr値は良好な特性が得られているが、溶融亜鉛めっき及び合金化処理による劣化により合金化溶融亜鉛めっき鋼板の平均r値とΔr値は冷延鋼板より大幅に低くなっており、目標特性には未達となっている。一方、No.1、No.7では冷延鋼板の平均r値とΔr値は格段に良好な特性が得られており、合金化溶融亜鉛めっき鋼板の平均r値とΔr値は冷延鋼板より低くなっているものの、目標特性を達成していることがわかる。 Invention Example No. 1, no. 7 and Comparative Example No. 14, no. 15 is an example in which the components, the annealing conditions, and the galvanizing conditions are the same, but only the hot rolling conditions are different. No. 14, no. No. 15, the average r value and Δr value of the cold-rolled steel sheet have good characteristics, but the average r value and Δr value of the alloyed hot-dip galvanized steel sheet are deteriorated by hot dip galvanizing and alloying treatment. It is much lower and the target characteristics have not been achieved. On the other hand, no. 1, no. In No. 7, the average r value and Δr value of the cold-rolled steel sheet are much better. The average r value and Δr value of the galvannealed steel sheet are lower than those of the cold-rolled steel sheet. It can be seen that
Claims (2)
C:0.0040%未満、
Si:0.7%以下、
Mn:1.0〜2.5%、
P:0.05〜0.15%、
S:0.025%以下、
Al:0.005〜0.20%、
N:0.010%以下、
Ti:0.005〜0.020%、
Nb:0.005〜0.030%、
B:0.0002〜0.0030%、
を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に、Feを7〜15質量%含有する溶融亜鉛めっき層を有し、鋼板の板厚の1/4部における圧延面に平行な(222)面と(200)面のX線ランダム強度比(ランダムサンプルの回折強度との比)P(222)とP(200)がP(222)/P(200)≧17を満足し、平均r値≧1.7で、−0.3≦Δr値≦0.3であることを特徴とする、深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板。 % By mass
C: less than 0.0040%,
Si: 0.7% or less,
Mn: 1.0 to 2.5%
P: 0.05 to 0.15%,
S: 0.025% or less,
Al: 0.005 to 0.20%,
N: 0.010% or less,
Ti: 0.005-0.020%,
Nb: 0.005 to 0.030%,
B: 0.0002 to 0.0030%,
And the balance of the steel sheet consisting of Fe and inevitable impurities on the surface of the steel sheet, and a hot-dip galvanized layer containing 7 to 15% by mass of Fe. X-ray random intensity ratio of (222) plane and (200) plane (ratio of diffraction intensity of random sample) P (222) and P (200) satisfy P (222) / P (200) ≧ 17, An average r value ≧ 1.7 and −0.3 ≦ Δr value ≦ 0.3, a 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability.
C:0.0040%未満、
Si:0.7%以下、
Mn:1.0〜2.5%、
P:0.05〜0.15%、
S:0.025%以下、
Al:0.005〜0.20%、
N:0.010%以下、
Ti:0.005〜0.020%、
Nb:0.005〜0.030%、
B:0.0002〜0.0030%、
を含有し、残部がFe及び不可避的不純物からなる鋳片を熱間圧延し、更に、酸洗、冷間圧延及び焼鈍を施した後、Niプレめっきを行い、その後、溶融亜鉛めっき後、合金化処理を行い、鋼板の表面に、Feを7〜15質量%含有する溶融亜鉛めっき層を有する合金化溶融亜鉛めっき鋼板を製造するに際し、熱間圧延の仕上げ温度を800〜860℃とし、仕上げ圧延後0.5秒以内に冷却を開始し、800℃以上860℃以下の温度から700℃以上760℃以下の温度まで200℃/秒以上の速度で冷却し、巻き取り温度を650〜760℃として熱間圧延を行う、鋼板の板厚の1/4部における圧延面に平行な(222)面と(200)面のX線ランダム強度比(ランダムサンプルの回折強度との比)P(222)とP(200)がP(222)/P(200)≧17を満足し、平均r値≧1.7で、−0.3≦Δr値≦0.3である、深絞り性に優れた440MPa級高強度合金化溶融亜鉛めっき鋼板の製造方法。 % By mass
C: less than 0.0040%,
Si: 0.7% or less,
Mn: 1.0 to 2.5%
P: 0.05 to 0.15%,
S: 0.025% or less,
Al: 0.005 to 0.20%,
N: 0.010% or less,
Ti: 0.005-0.020%,
Nb: 0.005 to 0.030%,
B: 0.0002 to 0.0030%,
A hot-rolled slab containing Fe and the inevitable impurities, and after pickling, cold rolling and annealing, Ni pre-plating, and then hot dip galvanizing, alloy When the alloyed hot-dip galvanized steel sheet having a hot-dip galvanized layer containing 7 to 15% by mass of Fe is formed on the surface of the steel sheet, the hot rolling finish temperature is set to 800 to 860 ° C. Cooling is started within 0.5 seconds after rolling, and cooling is performed at a speed of 200 ° C./second or higher from a temperature of 800 ° C. or higher to 860 ° C. or lower to a temperature of 700 ° C. or higher to 760 ° C. or lower. The X-ray random intensity ratio between the (222) plane and the (200) plane parallel to the rolled surface at a quarter of the plate thickness of the steel sheet (ratio with the diffraction intensity of the random sample) P (222 ) And P (200) (222) / P (200) ≧ 17, average r value ≧ 1.7, −0.3 ≦ Δr value ≦ 0.3, excellent deep drawability 440 MPa class high strength alloying and melting Manufacturing method of galvanized steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013198226A JP6225604B2 (en) | 2013-09-25 | 2013-09-25 | 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013198226A JP6225604B2 (en) | 2013-09-25 | 2013-09-25 | 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015063729A true JP2015063729A (en) | 2015-04-09 |
JP6225604B2 JP6225604B2 (en) | 2017-11-08 |
Family
ID=52831860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013198226A Active JP6225604B2 (en) | 2013-09-25 | 2013-09-25 | 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6225604B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105970105A (en) * | 2016-06-08 | 2016-09-28 | 攀钢集团攀枝花钢铁研究院有限公司 | Hot-dip aluminum-zinc plate/strip used for highly deep drawing and preparation method thereof |
CN106119715A (en) * | 2016-09-05 | 2016-11-16 | 攀钢集团攀枝花钢铁研究院有限公司 | Think gauge X60 pipe line steel and production method thereof |
WO2017033901A1 (en) * | 2015-08-24 | 2017-03-02 | 新日鐵住金株式会社 | Alloying molten zinc-plated steel sheet and manufacturing method therefor |
CN108480417A (en) * | 2018-02-01 | 2018-09-04 | 日照宝华新材料有限公司 | Continuous producing line, which is plated, based on thin slab continuous casting and rolling hot radical raw material and acid produces method of the 600g zinc layers without zinc flower hot-galvanized plate |
WO2019167933A1 (en) | 2018-02-28 | 2019-09-06 | Jfeスチール株式会社 | Cold-rolled steel sheet and method for manufacturing same |
JP2019527775A (en) * | 2016-08-12 | 2019-10-03 | ポスコPosco | High strength thin steel sheet with excellent formability and method for producing the same |
WO2023140239A1 (en) * | 2022-01-21 | 2023-07-27 | 日本製鉄株式会社 | Cold-rolled steel sheet and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413816A (en) * | 1990-05-07 | 1992-01-17 | Sumitomo Metal Ind Ltd | Production of galvanized steel sheet having high moldability |
JP2005015882A (en) * | 2003-06-27 | 2005-01-20 | Nippon Steel Corp | High-strength cold rolled steel sheet for deep drawing and method for manufacturing the same |
-
2013
- 2013-09-25 JP JP2013198226A patent/JP6225604B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413816A (en) * | 1990-05-07 | 1992-01-17 | Sumitomo Metal Ind Ltd | Production of galvanized steel sheet having high moldability |
JP2005015882A (en) * | 2003-06-27 | 2005-01-20 | Nippon Steel Corp | High-strength cold rolled steel sheet for deep drawing and method for manufacturing the same |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10815553B2 (en) | 2015-08-24 | 2020-10-27 | Nippon Steel Corporation | Galvannealed steel sheet and production method thereof |
CN107923017A (en) * | 2015-08-24 | 2018-04-17 | 新日铁住金株式会社 | Alloyed hot-dip galvanized steel plate and its manufacture method |
EP3342893A4 (en) * | 2015-08-24 | 2019-01-16 | Nippon Steel & Sumitomo Metal Corporation | Alloying molten zinc-plated steel sheet and manufacturing method therefor |
TWI609976B (en) * | 2015-08-24 | 2018-01-01 | Nippon Steel & Sumitomo Metal Corp | Alloyed hot-dip galvanized steel sheet and manufacturing method thereof |
WO2017033901A1 (en) * | 2015-08-24 | 2017-03-02 | 新日鐵住金株式会社 | Alloying molten zinc-plated steel sheet and manufacturing method therefor |
JPWO2017033901A1 (en) * | 2015-08-24 | 2018-06-07 | 新日鐵住金株式会社 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
KR102058601B1 (en) * | 2015-08-24 | 2019-12-23 | 닛폰세이테츠 가부시키가이샤 | Alloyed hot dip galvanized steel sheet and its manufacturing method |
CN105970105A (en) * | 2016-06-08 | 2016-09-28 | 攀钢集团攀枝花钢铁研究院有限公司 | Hot-dip aluminum-zinc plate/strip used for highly deep drawing and preparation method thereof |
JP2019527775A (en) * | 2016-08-12 | 2019-10-03 | ポスコPosco | High strength thin steel sheet with excellent formability and method for producing the same |
US11421294B2 (en) | 2016-08-12 | 2022-08-23 | Posco | High strength steel sheet having excellent formability and manufacturing method thereof |
CN106119715A (en) * | 2016-09-05 | 2016-11-16 | 攀钢集团攀枝花钢铁研究院有限公司 | Think gauge X60 pipe line steel and production method thereof |
CN108480417A (en) * | 2018-02-01 | 2018-09-04 | 日照宝华新材料有限公司 | Continuous producing line, which is plated, based on thin slab continuous casting and rolling hot radical raw material and acid produces method of the 600g zinc layers without zinc flower hot-galvanized plate |
CN108480417B (en) * | 2018-02-01 | 2021-04-13 | 日照宝华新材料有限公司 | Method for producing 600g zinc layer non-spangle hot galvanized plate based on thin slab continuous casting and rolling hot base raw material and acid plating continuous production line |
WO2019167933A1 (en) | 2018-02-28 | 2019-09-06 | Jfeスチール株式会社 | Cold-rolled steel sheet and method for manufacturing same |
KR20200112929A (en) | 2018-02-28 | 2020-10-05 | 제이에프이 스틸 가부시키가이샤 | Cold rolled steel sheet and its manufacturing method |
US11345974B2 (en) | 2018-02-28 | 2022-05-31 | Jfe Steel Corporation | Cold rolled steel sheet and method for manufacturing the same |
WO2023140239A1 (en) * | 2022-01-21 | 2023-07-27 | 日本製鉄株式会社 | Cold-rolled steel sheet and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6225604B2 (en) | 2017-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4635525B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
JP6225604B2 (en) | 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same | |
JP6402830B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JPWO2013118679A1 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP6202234B1 (en) | Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate | |
CN107429355B (en) | High-strength steel sheet and method for producing same | |
TW200532032A (en) | High strength cold rolled steel sheet and method for manufacturing the same | |
KR101439613B1 (en) | The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same | |
JP6168144B2 (en) | Galvanized steel sheet and manufacturing method thereof | |
JP4687260B2 (en) | Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties | |
JP2013185240A (en) | High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them | |
CN107923014B (en) | High-strength steel sheet and method for producing same | |
JP2013076139A (en) | High-strength hot-dip galvanized steel sheet superior in plating adhesion and formability, and method for manufacturing the same | |
JP5655363B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5397263B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
WO2016194342A1 (en) | High strength steel sheet and method for producing same | |
JP2018003114A (en) | High strength steel sheet and manufacturing method therefor | |
WO2021020439A1 (en) | High-strength steel sheet, high-strength member, and methods respectively for producing these products | |
JP6354299B2 (en) | 440 MPa class high strength alloyed hot dip galvanized steel sheet excellent in secondary work brittleness resistance and method for producing the same | |
JP4506380B2 (en) | Manufacturing method of high-strength steel sheet | |
US20240026511A1 (en) | High-strength galvannealed steel sheet having excellent powdering resistance and manufacturing method therefor | |
JP5953694B2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method | |
JP3716439B2 (en) | Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics | |
JP4301013B2 (en) | Cold-rolled steel sheet with excellent dent resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170925 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6225604 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |