JP2015063504A - Alcohol oxidation method - Google Patents

Alcohol oxidation method Download PDF

Info

Publication number
JP2015063504A
JP2015063504A JP2014079617A JP2014079617A JP2015063504A JP 2015063504 A JP2015063504 A JP 2015063504A JP 2014079617 A JP2014079617 A JP 2014079617A JP 2014079617 A JP2014079617 A JP 2014079617A JP 2015063504 A JP2015063504 A JP 2015063504A
Authority
JP
Japan
Prior art keywords
oxidizing
alcohol
sodium hypochlorite
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014079617A
Other languages
Japanese (ja)
Other versions
JP6176177B2 (en
Inventor
倫英 岡田
Michihide Okada
倫英 岡田
智丈 浅輪
Tomotake Asawa
智丈 浅輪
杉山 幸宏
Yukihiro Sugiyama
幸宏 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2014079617A priority Critical patent/JP6176177B2/en
Publication of JP2015063504A publication Critical patent/JP2015063504A/en
Application granted granted Critical
Publication of JP6176177B2 publication Critical patent/JP6176177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/86Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/403Saturated compounds containing a keto group being part of a ring of a six-membered ring
    • C07C49/407Menthones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize the oxidation reaction from alcohols to carbonyl compounds, which is one of important elementary reactions in organic synthesis, and to provide an alcohol oxidation method for productively, safely and conveniently obtaining target substances with a good yield and selectivity.SOLUTION: An alcohol oxidation method comprises oxidizing an alcohol represented by the general formula (1) in the figure (where Rrepresents an alkyl group, aryl group or aralkyl group, and Rrepresents an alkyl group, aryl group, aralkyl group or hydrogen atom, or Rand Rmay be linked with each other to form a cyclic structure) to produce a carbonyl compound derived from the alcohol, and uses sodium hypochlorite pentahydrate as an oxidizing agent in the presence or absence of a catalyst.

Description

本発明は、アルコール類の酸化方法に係り、特に酸化剤として次亜塩素酸ソーダ5水和物を使用し、アルコール類を酸化して前記アルコール類から誘導されるアルデヒド類、カルボン酸類、及びケトン類等のカルボニル化合物を製造するアルコール類の酸化方法に関する。   The present invention relates to a method for oxidizing alcohols, in particular, sodium hypochlorite pentahydrate as an oxidizing agent, and aldehydes, carboxylic acids, and ketones derived from the alcohols by oxidizing the alcohols. The present invention relates to a method for oxidizing alcohols for producing carbonyl compounds such as catechols.

アルコール類を酸化してアルデヒド類、カルボン酸類あるいはケトン類等のカルボニル化合物を製造する方法は古くから数多く報告されているが、使用する酸化剤や触媒あるいはこれらの廃棄物が有害であったり、爆発性であったり、また、酸化反応に低温条件が必要である等、使用する酸化剤に由来する様々な制約があることから、多くの分野において、安全で簡便に収率良く、また、選択率良く目的物のカルボニル化合物を製造することができるアルコール類の酸化方法の開発が望まれていた。   Many methods for producing carbonyl compounds such as aldehydes, carboxylic acids or ketones by oxidizing alcohols have been reported for a long time, but the oxidizing agents and catalysts used or their wastes are harmful or explosive. And there are various restrictions derived from the oxidizing agent used, such as the necessity of low temperature conditions for the oxidation reaction. It has been desired to develop an oxidation method of alcohols that can produce a target carbonyl compound.

このような要請を満たす方法の一つとして、次亜塩素酸ソーダを酸化剤として使用するアルコール類の酸化方法が提案されており、いくつかの研究事例が報告されている。
例えば、非特許文献1においては、酸化剤として次亜塩素酸ソーダ水溶液(pH12〜13)を使用すると共に、触媒としてTEMPO(2,2,6,6-テトラメチル-1-ピペリジニールオキシ;2,2,6,6-tetramethyl-1-piperidinyloxy)を使用し、また、反応系をpH8〜9に調整するために緩衝剤としてNaHCO3を使用し、更に、必要により助触媒としてKBrを使用し、0℃付近の反応温度で第1級及び第2級アルコール類をそれぞれ対応するアルデヒド類やケトン類に酸化することが報告されている。この非特許文献1においては、その比較実験で、pH調整無しにpH12〜13で反応を行った場合では極端に目的とする生成物の収率が低下することが分かっており、また、TEMPO、KBrの共存下における次亜塩素酸ソーダ水溶液の安定性試験データによれば、室温下では次亜塩素酸ソーダが速やかに分解することが報告されている。
As one method for satisfying such a demand, an oxidation method for alcohols using sodium hypochlorite as an oxidizing agent has been proposed, and several research cases have been reported.
For example, in Non-Patent Document 1, sodium hypochlorite aqueous solution (pH 12 to 13) is used as an oxidizing agent, and TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy; 2,2,6,6-tetramethyl-1-piperidinyloxy), NaHCO 3 as a buffer to adjust the reaction system to pH 8-9, and KBr as a promoter if necessary. However, it has been reported that primary and secondary alcohols are oxidized to the corresponding aldehydes and ketones, respectively, at a reaction temperature of about 0 ° C. In this non-patent document 1, it has been found in the comparative experiment that when the reaction is carried out at pH 12 to 13 without pH adjustment, the yield of the intended product is extremely reduced, and TEMPO, According to the stability test data of sodium hypochlorite aqueous solution in the presence of KBr, it is reported that sodium hypochlorite decomposes rapidly at room temperature.

更に、上記の酸化剤としての次亜塩素酸ソーダ水溶液にTEMPOに代表されるニトロキシルラジカル化合物を触媒として併用するアルコール類の酸化方法については、その酸化反応において、反応速度、基質の選択性、反応温度、廃液処理、環境調和性等において更なる改善を図る目的で、触媒として使用するニトロキシルラジカル化合物の化学構造を工夫したAZADO(2-アザアダマンタンN-オキシル;2-azaadamantane N-oxyl)系の触媒を使用すること(非特許文献2、特許文献1及び2参照)や、リン酸緩衝溶液によりpH約4.0〜8.0に維持して次亜塩素酸ナトリウムと共に亜塩素酸ナトリウム溶液を用いる方法(特許文献3参照)や助触媒としてKBrに変えてNa247やZrO(アセテート)2等のオキシ金属イオンやその塩を用いる方法(特許文献4参照)等のTEMPOを用いる触媒システムを工夫することも提案がされている。 Furthermore, regarding the oxidation method of alcohols using a sodium chlorite aqueous solution as an oxidizing agent in combination with a nitroxyl radical compound typified by TEMPO as a catalyst, in the oxidation reaction, reaction rate, substrate selectivity, AZADO (2-azaadamantane N-oxyl) which devised the chemical structure of the nitroxyl radical compound used as a catalyst for the purpose of further improving the reaction temperature, waste liquid treatment, environmental harmony, etc. System catalyst (see Non-Patent Document 2, Patent Documents 1 and 2), and maintained at a pH of about 4.0 to 8.0 with a phosphate buffer solution and sodium hypochlorite together with sodium chlorite a method using a solution use an oxy metal ions or their salts such as (Patent Document 3 reference) instead of the KBr as or cocatalyst Na 2 B 4 O 7 or ZrO (acetate) 2 That method has been also proposed to devise a catalyst system using TEMPO in (see Patent Document 4), and the like.

特許第04,809,229号公報Japanese Patent No. 04,809,229 特許第04,803,074号公報Japanese Patent No. 04,803,074 特表2002-511,440号公報Special Table 2002-511,440 特表2006-517,584号公報Special Table 2006-517,584

P. L. Anelli, et al., J. Org. Chem. 1987, 52, 2559-2562P. L. Anelli, et al., J. Org. Chem. 1987, 52, 2559-2562 Y. Iwabuchi et al., J. Am. Chem. Soc., 2006, 128, 8412-8413Y. Iwabuchi et al., J. Am. Chem. Soc., 2006, 128, 8412-8413

しかしながら、酸化剤として使用する次亜塩素酸ソーダは通常約12質量%の水溶液(pH12〜13)として流通しており、この次亜塩素酸ソーダ水溶液それ自体が大量の水を有するものであり、しかも、ニトロキシルラジカル化合物を触媒とするアルコール類の酸化反応においては、pH12〜13の次亜塩素酸ナトリウム水溶液をそのまま使用すると高い収率が得られないので、反応系のpH調整のためにNaHCO3等の緩衝剤の使用が不可欠であって、この緩衝剤の使用のために更に大量の水を使用することが必要になり、結果として反応系には極めて大量の水が存在することになる。 However, sodium hypochlorite used as an oxidizing agent is normally distributed as an aqueous solution of about 12% by mass (pH 12 to 13), and this sodium hypochlorite aqueous solution itself has a large amount of water. In addition, in the oxidation reaction of alcohols using a nitroxyl radical compound as a catalyst, if a sodium hypochlorite aqueous solution having a pH of 12 to 13 is used as it is, a high yield cannot be obtained. Therefore, NaHCO 3 is used to adjust the pH of the reaction system. The use of a buffer such as 3 is indispensable, and it is necessary to use a larger amount of water for the use of this buffer. As a result, a very large amount of water is present in the reaction system. .

例えば、非特許文献2の実験項〔8413頁References (9)参照〕においては、200mgの3-フェニルプロパノールを酸化する場合、溶媒としてジクロロメタン3.9mL、pH調整用のNaHCO3水溶液2mL、及び酸化剤の次亜塩素酸ナトリウム水溶液(8質量%濃度)とNaHCO3水溶液の混合物3.3mLを使用しており、200mgの基質(アルコール類)に対して有機溶媒と水溶液の合計で9.2mLもの溶液を使用することになり、単純に計算すると、基質1kgを酸化する際には反応系に水溶液だけでも26.5L、有機溶媒も含めると46Lもの溶液が必要になり、反応系がかなりの希薄条件にならざるを得ない。 For example, in the experimental section of Non-Patent Document 2 (see References (9) on page 8413), when 200 mg of 3-phenylpropanol is oxidized, 3.9 mL of dichloromethane as a solvent, 2 mL of NaHCO 3 aqueous solution for pH adjustment, and oxidation 3.3 mL of a mixture of sodium hypochlorite aqueous solution (concentration of 8% by mass) and NaHCO 3 aqueous solution is used, and a total of 9.2 mL of organic solvent and aqueous solution for 200 mg of substrate (alcohols) If the solution is used and calculated simply, when oxidizing 1 kg of the substrate, the reaction system requires only 26.5 L of an aqueous solution and 46 L if an organic solvent is included, and the reaction system is considerably dilute. It must be a condition.

このように反応系が極端な希薄条件下であることは、実験室レベルでのアルコール類の酸化反応には問題がないが、大量生産を必要とする工業的レベルでのアルコール類の酸化反応においては、反応器に仕込めるアルコール類(基質)の量に限度があり、必然的に1つの反応器を用いて1回の酸化反応で製造し得るカルボニル化合物の生産量に限界が生じ、極端に生産効率が低下し、また、大量の廃液が発生してその処理にも多大な費用がかかり、生産コストが高くなって実用性に乏しいという問題がある。また、pH調整をしない次亜塩素酸ソーダ水溶液単独での酸化反応は相間移動触媒を併用しても低収率である場合が多々あり、工業生産には不向きである。   The fact that the reaction system is in an extremely lean condition has no problem in the oxidation reaction of alcohols at the laboratory level, but in the oxidation reaction of alcohols at the industrial level that requires mass production. However, there is a limit to the amount of alcohol (substrate) that can be charged into the reactor, which inevitably limits the production of carbonyl compounds that can be produced in a single oxidation reaction using one reactor. There is a problem in that the production efficiency is reduced, and a large amount of waste liquid is generated and the treatment thereof is very expensive, resulting in a high production cost and poor practicality. In addition, the oxidation reaction of sodium hypochlorite aqueous solution alone without adjusting pH is often unsatisfactory for industrial production even when a phase transfer catalyst is used in combination.

そこで、本発明者らは、アルコール類の酸化反応において、反応効率や環境調和性を低下させることなく、反応系における酸化剤に対する基質の比率(以下、「酸化剤に対する基質比率」という。)を高め、生産効率や廃液処理の問題を解消することができる方法について鋭意検討を重ねた結果、次亜塩素酸ソーダ5水和物(NaOCl・5H2O)が一般に有効塩素濃度約42質量%及び水酸化ナトリウム濃度0.1質量%以下の高純度結晶であることに着目し、これを酸化剤として使用することにより、反応系のpHを調整する必要が無くなり、結果として反応系の水分量を可及的に低減することができ、ニトロキシルラジカル化合物を触媒とする従来のアルコール類の酸化方法に比べて圧倒的に高い酸化剤に対する基質比率で酸化反応を行うことができることを見出すと共に、前記次亜塩素酸ソーダ5水和物(NaOCl・5H2O)を酸化剤として使用するに際していわゆる触媒量ほどの酸を一緒に添加して使用した場合においては、酸化反応の反応時間を大きく短縮できることをも見出して、本発明を完成した。 Therefore, the present inventors have determined the ratio of the substrate to the oxidizing agent in the reaction system (hereinafter referred to as “substrate ratio to the oxidizing agent”) in the oxidation reaction of alcohols without reducing the reaction efficiency and environmental harmony. As a result of intensive studies on methods that can improve and eliminate production efficiency and wastewater treatment problems, sodium hypochlorite pentahydrate (NaOCl · 5H 2 O) generally has an effective chlorine concentration of about 42% by mass and Paying attention to the fact that it is a high-purity crystal having a sodium hydroxide concentration of 0.1% by mass or less, it is not necessary to adjust the pH of the reaction system by using this as an oxidizing agent, and as a result, the water content of the reaction system is reduced. It can be reduced as much as possible, and the oxidation reaction can be carried out at a substrate ratio with respect to the oxidizing agent that is overwhelmingly higher than that of the conventional method of oxidizing alcohols using a nitroxyl radical compound as a catalyst. In addition, when using the sodium hypochlorite pentahydrate (NaOCl · 5H 2 O) as an oxidizing agent, an oxidation reaction occurs when a so-called catalytic amount of acid is added together. It was also found that the reaction time can be greatly shortened, and the present invention was completed.

従って、本発明の目的は、アルコール類の酸化反応において、酸化剤に対する基質比率を高めて生産効率を高めることができる新しいアルコール類の酸化方法を提供することにある。   Accordingly, an object of the present invention is to provide a new method for oxidizing alcohols which can increase the production efficiency by increasing the substrate ratio to the oxidizing agent in the oxidation reaction of alcohols.

すなわち、本発明は、下記一般式(1)

Figure 2015063504
(式中、R1はアルキル基、アリール基又はアラルキル基、R2はアルキル基、アリール基、アラルキル基又は水素原子を示す。なお、RとRとは互いに結合して環構造を形成してもよい。)で表されるアルコール類を酸化して下記一般式(2)
Figure 2015063504
(式中、R1はアルキル基、アリール基又はアラルキル基、R2はアルキル基、アリール基、アラルキル基、水素原子又は水酸基を示す。なお、RとRとは互いに結合して環構造を形成してもよい。)で表されるカルボニル化合物を製造するアルコール類の酸化方法であり、酸化剤として次亜塩素酸ソーダ5水和物を使用することを特徴とするアルコール類の酸化方法である。 That is, the present invention provides the following general formula (1)
Figure 2015063504
(In the formula, R 1 represents an alkyl group, an aryl group or an aralkyl group, R 2 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom. R 1 and R 2 are bonded to each other to form a ring structure. The alcohol represented by the following general formula (2)
Figure 2015063504
(In the formula, R 1 represents an alkyl group, an aryl group or an aralkyl group, R 2 represents an alkyl group, an aryl group, an aralkyl group, a hydrogen atom or a hydroxyl group. In addition, R 1 and R 2 are bonded to each other to form a ring structure. The method for oxidizing alcohols, wherein sodium hypochlorite pentahydrate is used as an oxidizing agent, is a method for oxidizing a carbonyl compound represented by formula (1): It is.

本発明のアルコール類の酸化方法において、基質としてのアルコール類としては、上記一般式(1)で表されるアルコール類であり、反応系における酸化剤としての次亜塩素酸ソーダ5水和物の使用が特にTEMPOやAZADO等の触媒の使用を必須としないので、これら触媒として使用するニトロキシルラジカル化合物(ニトロキシルラジカル触媒)に対する立体障害の問題がなく、比較的立体障害の大きな第2級アルコール類であってもよい。なお、上記一般式(1)で表されるアルコール類のアリール基及びアラルキル基においては、芳香環が反応に不活性な置換基(環構造を含む)をいくつ有していてもよい。反応に不活性な置換基としては、ハロゲン原子、鎖状又は環状アルキル基、アルコキシ基、アルキレンジオキシ基、置換又は無置換アリール基等が挙げられる。   In the method for oxidizing alcohols of the present invention, the alcohol as a substrate is an alcohol represented by the above general formula (1), and sodium hypochlorite pentahydrate as an oxidizing agent in the reaction system. Since the use of a catalyst such as TEMPO or AZADO is not essential, there is no problem of steric hindrance to the nitroxyl radical compound (nitroxyl radical catalyst) used as these catalysts, and a secondary alcohol having a relatively large steric hindrance It may be a kind. In the aryl group and aralkyl group of the alcohol represented by the general formula (1), the aromatic ring may have any number of substituents (including a ring structure) inactive to the reaction. Examples of the substituent inert to the reaction include a halogen atom, a chain or cyclic alkyl group, an alkoxy group, an alkylenedioxy group, a substituted or unsubstituted aryl group, and the like.

また、本発明の酸化方法において、酸化剤として使用する次亜塩素酸ソーダ5水和物(NaOCl・5H2O)については、一般に市販されているものでよく、特に制限されるものではないが、有効塩素濃度が39質量%以上、好ましくは約42質量%であって、水酸化ナトリウム濃度(NaOH濃度)が0.2質量%以下、好ましくは0.1質量%以下の高純度の結晶であるのがよい。有効塩素濃度が39質量%より低くなると保存中にその水分により液状化し次亜塩素酸ソーダの分解が進む虞があり、また、NaOH濃度が0.2質量%より高くなるとpH調整のための緩衝剤の使用が必要になり、反応混合物全体に対する基質の割合(以下、「反応系の基質割合」という。)が低下する虞がある。また、酸化剤に後述の酸触媒を添加して使用する場合においては、その酸触媒の添加量が増えてしまう虞がある。このような次亜塩素酸ソーダ5水和物(NaOCl・5H2O)は、例えば特許第04,211,130号公報に記載の方法により製造することができる。 Further, in the oxidation method of the present invention, sodium hypochlorite pentahydrate (NaOCl · 5H 2 O) used as an oxidizing agent may be a commercially available one, and is not particularly limited. High purity crystals having an effective chlorine concentration of 39% by mass or more, preferably about 42% by mass and a sodium hydroxide concentration (NaOH concentration) of 0.2% by mass or less, preferably 0.1% by mass or less. There should be. If the effective chlorine concentration is lower than 39% by mass, it may be liquefied by moisture during storage and decomposition of sodium hypochlorite may proceed, and if the NaOH concentration is higher than 0.2% by mass, a buffer for adjusting the pH. It is necessary to use an agent, and the ratio of the substrate to the entire reaction mixture (hereinafter referred to as “the substrate ratio of the reaction system”) may be reduced. In addition, when an acid catalyst, which will be described later, is added to the oxidant and used, the amount of the acid catalyst added may increase. Such sodium hypochlorite pentahydrate (NaOCl · 5H 2 O) can be produced, for example, by the method described in Japanese Patent No. 04,211,130.

本発明において、アルコール類の酸化反応の反応系で次亜塩素酸ソーダ5水和物を酸化剤として使用する場合、次亜塩素酸ソーダ5水和物は、水に溶解して使用することができるが、反応速度や反応系の基質割合を考慮し、通常、有効塩素濃度12質量%以上の水溶液又は粉末状の結晶として、好ましくは有効塩素濃度20質量%以上の水溶液又は粉末状の結晶として、より好ましくは有効塩素濃度30質量%以上の水溶液又は粉末状の結晶として使用される。酸化剤として使用する次亜塩素酸ソーダ5水和物は、通常そのNaOH濃度が0.1質量%以下なので、高濃度で、更には結晶のまま使用することができる。例えば、有効塩素濃度約12質量%の次亜塩素酸ソーダ水溶液に比べて、有効塩素濃度約42質量%の次亜塩素酸ソーダ5水和物は約3.5倍高濃度であるため、酸化剤に対する基質比率も約3.5倍向上できるほか、高濃度のため反応速度も向上するという利点がある。有効塩素濃度が12質量%より低い次亜塩素酸ソーダ5水和物水溶液の使用は、pH調整のための緩衝剤の使用に伴う水の使用が必要ない分だけ、従来のニトロキシルラジカル触媒を使用する酸化反応に比べて、反応系の基質割合を高くすることができるが、有効塩素濃度が低い分だけ酸化剤に対する基質比率が低くなって好ましくない。   In the present invention, when sodium hypochlorite pentahydrate is used as an oxidizing agent in the reaction system for the oxidation reaction of alcohols, sodium hypochlorite pentahydrate may be used after being dissolved in water. However, considering the reaction rate and the substrate ratio of the reaction system, it is usually an aqueous solution or powdery crystal having an effective chlorine concentration of 12% by mass or more, preferably an aqueous solution or powdery crystal having an effective chlorine concentration of 20% by mass or more. More preferably, it is used as an aqueous solution or powdery crystal having an effective chlorine concentration of 30% by mass or more. Since sodium hypochlorite pentahydrate used as an oxidizing agent usually has a NaOH concentration of 0.1% by mass or less, it can be used at a high concentration and further in the form of crystals. For example, compared with a sodium hypochlorite aqueous solution having an effective chlorine concentration of about 12% by mass, sodium hypochlorite pentahydrate having an effective chlorine concentration of about 42% by mass is about 3.5 times higher in concentration. The ratio of the substrate to the agent can be improved by about 3.5 times, and the reaction rate is improved due to the high concentration. The use of an aqueous solution of sodium hypochlorite pentahydrate having an effective chlorine concentration of less than 12% by mass reduces the use of a conventional nitroxyl radical catalyst to the extent that it does not require the use of water associated with the use of a buffer for pH adjustment. Although the substrate ratio of the reaction system can be increased as compared with the oxidation reaction to be used, the substrate ratio relative to the oxidizing agent is not preferable because the effective chlorine concentration is low.

更に、本発明の酸化方法においては、酸化剤として次亜塩素酸ソーダ5水和物を使用する際に、特にニトロキシルラジカル触媒及び/又は相間移動触媒を併用することなく酸化反応を行うことができるが、必要により、ニトロキシルラジカル触媒及び/又は相間移動触媒を併用してもよく、また、ニトロキシルラジカル触媒と、相間移動触媒及び/又は酸触媒とを併用してもよく、本発明の酸化方法を適用するアルコール類の種類によってはこれらニトロキシルラジカル触媒及び/又は相間移動触媒を併用したり、ニトロキシルラジカル触媒と、相間移動触媒及び/又は酸触媒とを併用することにより、反応時間を短縮し、また、反応収率を向上させることができる。   Furthermore, in the oxidation method of the present invention, when sodium hypochlorite pentahydrate is used as the oxidizing agent, the oxidation reaction can be performed without using a nitroxyl radical catalyst and / or a phase transfer catalyst. However, if necessary, a nitroxyl radical catalyst and / or a phase transfer catalyst may be used in combination, or a nitroxyl radical catalyst may be used in combination with a phase transfer catalyst and / or an acid catalyst. Depending on the type of alcohol to which the oxidation method is applied, the reaction time can be increased by using these nitroxyl radical catalysts and / or phase transfer catalysts in combination, or using nitroxyl radical catalysts in combination with phase transfer catalysts and / or acid catalysts. And the reaction yield can be improved.

このような目的で使用されるニトロキシルラジカル触媒としては、従来より知られている種々のニトロキシルラジカル化合物を挙げることができ、例えば、2,2,6,6-テトラメチル-1-ピペリジニールオキシ(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジニールオキシ、4-メトキシ-2,2,6,6-テトラメチル-1-ピペリジニールオキシ等のTEMPO系触媒、2-アザアダマンタン-N-オキシル化合物(AZADO)系触媒、及びアザビシクロ[3,3,1]ノナン-N-オキシル化合物等を例示することができ、これらはその1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。このニトロキシルラジカル触媒を併用する場合の使用量は、いわゆる触媒量の使用量でよく、アルコール類に対して通常0.00001当量以上0.1当量以下、好ましくは0.001当量以上0.01以下の範囲で使用される。   Examples of the nitroxyl radical catalyst used for such purpose include various conventionally known nitroxyl radical compounds, such as 2,2,6,6-tetramethyl-1-piperidin. Neiloxy (TEMPO), 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy, 4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxy, etc. TEMPO-based catalyst, 2-azaadamantane-N-oxyl compound (AZADO) -based catalyst, azabicyclo [3,3,1] nonane-N-oxyl compound, and the like. It can be used alone or as a mixture of two or more. The amount used when this nitroxyl radical catalyst is used in combination may be a so-called catalytic amount, and is usually from 0.00001 equivalent to 0.1 equivalent, preferably from 0.001 equivalent to 0.01 equivalent to the alcohol. Used in the following ranges.

また、前記相間移動触媒としては、従来から知られている種々の相間移動触媒を挙げることができ、例えば、第4級アンモニウム塩、第4級ホスホニウム塩、ポリエチレングリコール類、クラウンエーテル類、アルキル硫酸塩、及びアルキルスルホン酸塩、両性界面活性剤等を例示することができ、代表的には、硫酸水素テトラブチルアンモニウム、臭化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、アリコート336、硫酸水素トリオクチルメチルアンモニウム、18-クラウン-6、塩化テトラブチルホスホニウム、ドデシル硫酸ナトリウム、ラウリルジメチルアミノ酢酸ベタイン等であるが、これらはその1種のみを単独で使用できるほか、2種以上の混合物として使用することもできる。この相間移動触媒を併用する場合の使用量は、いわゆる触媒量の使用量でよく、アルコール類に対して通常0.001当量以上0.1当量以下、好ましくは0.01当量以上0.05当量以下の範囲で使用される。   Examples of the phase transfer catalyst include various conventionally known phase transfer catalysts, such as quaternary ammonium salts, quaternary phosphonium salts, polyethylene glycols, crown ethers, alkyl sulfates. Examples thereof include salts, alkyl sulfonates, and amphoteric surfactants. Typically, tetrabutylammonium hydrogen sulfate, tetrabutylammonium bromide, tetrabutylammonium chloride, aliquot 336, trioctylmethyl hydrogensulfate Ammonium, 18-crown-6, tetrabutylphosphonium chloride, sodium dodecyl sulfate, betaine lauryldimethylaminoacetate, etc. These can be used alone or as a mixture of two or more. it can. The amount used in the case of using this phase transfer catalyst together may be a so-called catalyst amount, and is usually 0.001 equivalent or more and 0.1 equivalent or less, preferably 0.01 equivalent or more and 0.05 equivalent, relative to the alcohol. Used in the following ranges.

前記酸触媒としては、水溶液が酸性を示すブレンステッド酸であれば特に制限されるものではなく、例えば、塩酸、硫酸、硝酸、リン酸、炭酸等の無機酸や、酢酸、プロピオン酸、スルホン酸等の有機酸や、これらの塩を例示することができる。酸触媒の使用量については、pHを強酸性にする程の多量であると、酸化剤として使用する次亜塩素酸ソーダ5水和物(NaOCl・5H2O)由来の次亜塩素酸が分解して塩素ガスが発生し、系外に漏れ出る恐れがあるため、当該酸化剤に含まれるごく微量のNaOHを中和できる量であればよい。より詳しくは、いわゆる触媒量程の使用量でよく、次亜塩素酸ソーダ5水和物に対して0.001当量以上0.1当量以下、好ましくは0.01当量以上0.05当量以下の範囲で使用される。なお、この酸触媒はその1種のみを単独で使用できるほか、2種以上を混合して使用することもできる。 The acid catalyst is not particularly limited as long as the aqueous solution is acidic Bronsted acid, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and carbonic acid, acetic acid, propionic acid, and sulfonic acid. Examples thereof include organic acids such as these and salts thereof. As for the amount of acid catalyst used, so much as to make the pH strongly acidic, hypochlorous acid derived from sodium hypochlorite pentahydrate (NaOCl · 5H 2 O) used as an oxidizing agent is decomposed. Since chlorine gas is generated and may leak out of the system, the amount may be an amount that can neutralize a very small amount of NaOH contained in the oxidizing agent. More specifically, the amount used may be as much as a so-called catalyst amount, and 0.001 equivalents or more and 0.1 equivalents or less, preferably 0.01 equivalents or more and 0.05 equivalents or less with respect to sodium hypochlorite pentahydrate. Used in. In addition, this acid catalyst can use only 1 type alone, and also can mix and use 2 or more types.

本発明の酸化方法において、酸化反応は基質としてのアルコール類を溶解する有機溶剤を使用する溶媒中で実施することができるほか、有機溶剤を使用しない無溶媒で実施することもできる。溶媒中で実施する場合の有機溶剤としては、溶剤自体が酸化剤の次亜塩素酸ソーダ5水和物に酸化されないものである必要があり、例えばジクロロメタン、クロロホルム、エチレンジクロリド等のハロゲン系溶媒や、例えば酢酸エチル、酢酸ブチル等のエステル系溶媒や、例えばニトロベンゼン、ベンゾトリフルオリド、4-クロロベンゾトリフルオリド等の電子不足型の芳香族系溶媒等を例示でき、好適にはハロゲン系溶媒やエステル系溶媒である。有機溶剤を使用する溶媒中で本発明の酸化方法を実施する場合には、この有機溶剤と酸化剤として使用する次亜塩素酸5水和物の水溶液又は結晶(固体)とが不均一系の反応になるため、上記の相間移動触媒を併用することが好ましい。   In the oxidation method of the present invention, the oxidation reaction can be carried out in a solvent using an organic solvent that dissolves alcohols as a substrate, or can be carried out without a solvent without using an organic solvent. As an organic solvent in the case of carrying out in a solvent, it is necessary that the solvent itself is not oxidized to the oxidizing agent sodium hypochlorite pentahydrate. For example, halogen solvents such as dichloromethane, chloroform, ethylene dichloride, Examples include ester solvents such as ethyl acetate and butyl acetate, and electron-deficient aromatic solvents such as nitrobenzene, benzotrifluoride, 4-chlorobenzotrifluoride, and the like, preferably halogen solvents and esters. It is a system solvent. When the oxidation method of the present invention is carried out in a solvent using an organic solvent, the organic solvent and an aqueous solution or crystal (solid) of hypochlorous acid pentahydrate used as an oxidizing agent are heterogeneous. Since it becomes a reaction, it is preferable to use the phase transfer catalyst in combination.

本発明の酸化反応は、通常、0℃以上50℃以下の反応温度で撹拌下に行われ、好ましくは0℃以上室温(30℃程度)以下の反応温度で撹拌下に行われる。反応温度を室温以上にすることは、次亜塩素酸ソーダの分解反応と酸化反応との競争反応になり、次亜塩素酸ソーダの分解が起こって必要な次亜塩素酸ソーダ5水和物の使用量が増大するので好ましくなく、また、反応温度を反応系が固化しない程度の低温(0℃未満)まで下げることは、特別に設備的な対応が必要になるほか、反応速度の低下を招く等、かえって利点が少ない。   The oxidation reaction of the present invention is usually performed with stirring at a reaction temperature of 0 ° C. or higher and 50 ° C. or lower, and preferably with stirring at a reaction temperature of 0 ° C. or higher and room temperature (about 30 ° C.) or lower. Increasing the reaction temperature to room temperature or higher results in a competitive reaction between the decomposition reaction of sodium hypochlorite and the oxidation reaction, and the decomposition of sodium hypochlorite occurs, resulting in the required sodium hypochlorite pentahydrate. It is not preferable because the amount used is increased, and lowering the reaction temperature to a low temperature (less than 0 ° C.) that does not cause the reaction system to solidify requires special equipment and causes a decrease in the reaction rate. On the contrary, there are few advantages.

本発明の酸化方法においては、酸化反応の際に反応系のpH調整を行う必要が無く、従ってpH調整を行うための緩衝剤の使用やそのための水の使用を省略することができ、それだけ反応系の基質割合を高めることができて実質的な生産効率が向上する。   In the oxidation method of the present invention, it is not necessary to adjust the pH of the reaction system during the oxidation reaction, and therefore the use of a buffer for adjusting the pH and the use of water for that purpose can be omitted, and the reaction is performed accordingly. The substrate ratio of the system can be increased, and the substantial production efficiency is improved.

本発明のアルコール類の酸化方法によれば、アルコール類の酸化反応において、酸化剤に対する基質比率を高めるほか、緩衝液によるpH調整をしないことによる反応系の基質割合を高めて生産効率を高めることができる。また、酸化剤を使用するに際していわゆる触媒量ほどの酸を一緒に添加して使用した場合には、酸化反応の反応時間を大きく短縮することができる。   According to the method for oxidizing alcohols of the present invention, in the oxidation reaction of alcohols, in addition to increasing the substrate ratio to the oxidant, the production efficiency is increased by increasing the substrate ratio of the reaction system by not adjusting the pH with a buffer solution. Can do. In addition, when using an oxidizing agent together with a so-called catalytic amount of acid, the oxidation reaction time can be greatly shortened.

以下、実施例及び比較例に基づいて、本発明のアルコール類の酸化方法の好適な実施の形態を具体的に説明する。なお、実施例に用いた次亜塩素酸ソーダ5水和物を水に溶解させた水溶液にすると有効塩素濃度10〜30%の範囲でpH10〜11程度になる。   Hereinafter, based on an Example and a comparative example, suitable embodiment of the oxidation method of alcohol of this invention is described concretely. It should be noted that when an aqueous solution in which sodium hypochlorite pentahydrate used in the examples is dissolved in water, the pH becomes about 10 to 11 within an effective chlorine concentration range of 10 to 30%.

〔実施例1〕
アルコール類として(-)-メントール1.56g(10.0mmol)を使用し、相間移動触媒として硫酸水素テトラブチルアンモニウム0.170g(0.50mmol)を使用し、また、ニトロキシルラジカル触媒としてTEMPO0.0157g(0.10mmol)を使用し、これらをジクロロメタン30mLに溶解して反応容器内に仕込んだ。その後、室温下(25℃)で撹拌しながら酸化剤として有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の粉末状結晶3.30g(20.1mmol、基質に対して2.0当量)を一度にして添加し、酸化剤添加終了後から撹拌下に2時間反応させた。反応系の温度は約30分かけて10℃程度上昇し、反応開始時から2時間後終了時には30℃になった。
[Example 1]
1.56 g (10.0 mmol) of (-)-menthol was used as the alcohol, 0.170 g (0.50 mmol) of tetrabutylammonium hydrogen sulfate was used as the phase transfer catalyst, and 0.0157 g of TEMPO as the nitroxyl radical catalyst ( These were dissolved in 30 mL of dichloromethane and charged into the reaction vessel. Thereafter, 3.30 g (20.1 mmol, 2.0 equivalents relative to the substrate) of powdered crystals of sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass as an oxidant was stirred at room temperature (25 ° C.). It was added once, and after the addition of the oxidizing agent was completed, the reaction was allowed to proceed for 2 hours with stirring. The temperature of the reaction system rose about 10 ° C. over about 30 minutes, and reached 30 ° C. after 2 hours from the start of the reaction.

この(-)-メントールの酸化反応において、酸化剤添加時の反応開始時から2時間後に反応系から反応液をサンプリングし、4-クロロベンゾトリフルオリドを内部標準物質として用い、反応液をガスクロマトグラフィー(GC)で内標分析した結果、(-)-メントンが87%の収率で生成したのを確認した。
結果等を表1にまとめて示す。
In this (-)-menthol oxidation reaction, the reaction solution was sampled from the reaction system 2 hours after the start of the reaction when the oxidizing agent was added, and 4-chlorobenzotrifluoride was used as an internal standard substance, and the reaction solution was gas chromatographed. As a result of the internal standard analysis by the graphic (GC), it was confirmed that (-)-menton was produced in a yield of 87%.
The results are summarized in Table 1.

〔実施例2〕
実施例1で使用した次亜塩素酸ソーダ5水和物の粉末状結晶の添加量を2.64g(16.0mmol、基質に対して1.6当量)とし、また、ジクロロメタンの添加量を10mLとし、さらに、反応温度を15℃とした以外は、実施例1と同様にして酸化反応を行った。実施例1と同様にしてGCにより内標分析した結果、(-)-メントンが96%の収率で生成していた。
結果等を表1にまとめて示す。
[Example 2]
The amount of sodium hypochlorite pentahydrate powder crystals used in Example 1 was 2.64 g (16.0 mmol, 1.6 equivalents relative to the substrate), and the amount of dichloromethane added was 10 mL. The oxidation reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 15 ° C. As a result of the internal standard analysis by GC in the same manner as in Example 1, (-)-menton was produced in a yield of 96%.
The results are summarized in Table 1.

〔実施例3〕
ニトロキシルラジカル触媒を添加せずに、実施例1で使用した次亜塩素酸ソーダ5水和物の粉末状結晶の添加量を1.98g(12.0mmol、基質に対して1.2当量)とし、また、反応温度を5℃・反応時間を24時間とした以外は、実施例1と同様にして酸化反応を行った。酸化剤添加時の反応開始時から24時間後に反応系から反応液をサンプリングし、その他は実施例1と同様にしてGCにより内標分析した結果、(-)-メントンが98%の収率で生成していた。
結果等を表1にまとめて示す。
Example 3
Without adding the nitroxyl radical catalyst, the amount of powdered crystals of sodium hypochlorite pentahydrate used in Example 1 was 1.98 g (12.0 mmol, 1.2 equivalents relative to the substrate), and The oxidation reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 5 ° C. and the reaction time was 24 hours. The reaction solution was sampled from the reaction system 24 hours after the start of the reaction when the oxidizing agent was added, and the others were analyzed by GC in the same manner as in Example 1. As a result, (-)-menton was obtained in a yield of 98%. It was generated.
The results are summarized in Table 1.

〔比較例1〕
次亜塩素酸ソーダ5水和物に代えて、酸化剤として一般の市販品であるpH12.6及び有効塩素濃度11.5質量%の次亜塩素酸ナトリウム水溶液7.40g(12.0mmol、基質に対して1.2当量)を使用した以外は、上記の実施例3と同様にして、酸化反応を行った。実施例3と同様にしてGCにより内標分析した結果、(-)-メントンが2%の収率で生成していた。
結果等を表1にまとめて示す。
[Comparative Example 1]
Instead of sodium hypochlorite pentahydrate, 7.40 g (12.0 mmol, 12.0 mmol, as a substrate) of an aqueous sodium hypochlorite solution having a pH of 12.6 and an effective chlorine concentration of 11.5% by mass, which is a general commercial product, as an oxidizing agent The oxidation reaction was carried out in the same manner as in Example 3 except that 1.2 equivalents) was used. As a result of the internal standard analysis by GC in the same manner as in Example 3, (-)-menton was produced in a yield of 2%.
The results are summarized in Table 1.

Figure 2015063504
Figure 2015063504

〔実施例4〕
2,6-ジメチル-4-ヘプタノール1.44g(10.0mmol)、硫酸水素テトラブチルアンモニウム0.170g(0.50mmol)及びTEMPO0.0156g(0.10mmol)を使用し、これらをジクロロメタン30mLに溶解し、また、有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の粉末状結晶4.94g(30.0mml、基質に対して3.0当量)を使用した以外は、上記実施例1と同様にして酸化反応を行った。反応温度は約45分かけて10℃程度上昇し、反応開始時から2時間後終了時には30℃になった。
反応液を実施例1と同様にして内標分析した結果、2,6-ジメチル-4-ヘプタノンが73%の収率で生成したのを確認した。
結果等を表2にまとめて示す。
Example 4
1.44 g (10.0 mmol) 2,6-dimethyl-4-heptanol, 0.170 g (0.50 mmol) tetrabutylammonium hydrogen sulfate and 0.0156 g (0.10 mmol) TEMPO were dissolved in 30 mL dichloromethane, Oxidation was carried out in the same manner as in Example 1 except that 4.94 g (30.0 mml, 3.0 equivalents with respect to the substrate) of powdered sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass was used. Reaction was performed. The reaction temperature rose about 10 ° C. over about 45 minutes and reached 30 ° C. after 2 hours from the start of the reaction.
The reaction solution was subjected to internal standard analysis in the same manner as in Example 1. As a result, it was confirmed that 2,6-dimethyl-4-heptanone was produced in a yield of 73%.
The results are summarized in Table 2.

〔実施例5〕
実施例4で使用した次亜塩素酸ソーダ5水和物の粉末状結晶の添加量を2.96g(18.0mmol、基質に対して1.8当量)とし、また、ジクロロメタンの添加量を10mLとし、さらに、反応温度を15℃・反応時間6時間とした以外は、実施例4と同様にして酸化反応を行った。実施例1と同様にしてGCにより内標分析した結果、2,6-ジメチル-4-ヘプタノンが88%の収率で生成していた。
結果等を表2にまとめて示す。
Example 5
The amount of sodium hypochlorite pentahydrate powder crystals used in Example 4 was 2.96 g (18.0 mmol, 1.8 equivalents relative to the substrate), and the amount of dichloromethane added was 10 mL. The oxidation reaction was carried out in the same manner as in Example 4 except that the reaction temperature was 15 ° C. and the reaction time was 6 hours. As a result of internal standard analysis by GC in the same manner as in Example 1, 2,6-dimethyl-4-heptanone was produced in a yield of 88%.
The results are summarized in Table 2.

〔実施例6〕
実施例4で使用したTEMPOに代えて、1-メチル-2-アザアダマンタン-N-オキシル(通称1-Me-AZADO)0.0162g(0.10mmol)を使用し、実施例4で使用した次亜塩素酸ソーダ5水和物の粉末状結晶2.31g(14.0mml、基質に対して1.4当量)を使用し、反応時間を30分とした以外は、実施例4と同様にして酸化反応を行った。酸化剤添加時の反応開始時から30分後に、実施例1と同様にしてGCにより内標分析した結果、2,6-ジメチル-4-ヘプタノンが95%の収率で生成していた。
結果等を表2にまとめて示す。
Example 6
Instead of TEMPO used in Example 4, 0.0162 g (0.10 mmol) of 1-methyl-2-azaadamantane-N-oxyl (common name: 1-Me-AZADO) was used, and hypoxia used in Example 4 was used. The oxidation reaction was carried out in the same manner as in Example 4 except that 2.31 g (14.0 mml, 1.4 equivalents to the substrate) of powdered sodium chlorate pentahydrate was used and the reaction time was 30 minutes. It was. After 30 minutes from the start of the reaction when the oxidizing agent was added, the internal standard analysis was performed by GC in the same manner as in Example 1. As a result, 2,6-dimethyl-4-heptanone was produced in a yield of 95%.
The results are summarized in Table 2.

Figure 2015063504
Figure 2015063504

〔実施例7〕
2-オクタノール1.30g(10.0mmol)、硫酸水素テトラブチルアンモニウム0.170g(0.50mmol)、及びTEMPO0.021g(0.13mmol)をジクロロメタン10mLに溶解して反応容器内に仕込み、反応容器内の液温を5℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の粉末状結晶2.00g(12.2mmol、基質に対して1.22当量)を一度に添加し、反応容器内の液温を5℃に保ったまま15分後にGC分析すると原料アルコールは完全になくなっていた。酸化剤添加時の反応開始時から通算30分で反応終了とした。
Example 7
Dissolve 1.30 g (10.0 mmol) of 2-octanol, 0.170 g (0.50 mmol) of tetrabutylammonium hydrogen sulfate, and 0.021 g (0.13 mmol) of TEMPO in 10 mL of dichloromethane, and charge the solution in the reaction vessel. After cooling the temperature to 5 ° C, 2.00 g (12.2 mmol, 1.22 equivalents to the substrate) of powdery crystals of sodium hypochlorite pentahydrate with an effective chlorine concentration of 42% by mass was added at once with stirring. However, when the GC analysis was performed after 15 minutes while keeping the liquid temperature in the reaction vessel at 5 ° C., the raw material alcohol was completely lost. The reaction was completed in 30 minutes from the start of the reaction when the oxidizing agent was added.

反応終了後、得られた反応混合物中に亜硫酸ナトリウム水溶液20mLを加えた後、有機相を分液した。水相をジクロロメタン30mLで抽出、有機相を合わせて30mLの水で洗い、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去し、1.27gの残渣を得た。このようにして得られた残渣0.42gをクーゲルロールで蒸留(45torr、オーブン温度120〜130℃)し、0.40gの2-オクタノンを得た。単離精製後の収率は95%であった。
結果等を表3にまとめて示す。
After completion of the reaction, 20 mL of an aqueous sodium sulfite solution was added to the resulting reaction mixture, and then the organic phase was separated. The aqueous phase was extracted with 30 mL of dichloromethane, and the combined organic phases were washed with 30 mL of water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain 1.27 g of residue. 0.42 g of the residue thus obtained was distilled with a Kugelrohr (45 torr, oven temperature 120 to 130 ° C.) to obtain 0.40 g of 2-octanone. The yield after isolation and purification was 95%.
The results are summarized in Table 3.

〔実施例8〜16、21〜24〕
アルコール類として2-オクタノール1.30g(10.0mmol)を使用し、酸化剤として次亜塩素酸ソーダ5水和物1.97g(12.0mmol)を使用し、ニトロキシルラジカル触媒としてTEMPO0.0156g(0.10mmol)を使用し、また、相間移動触媒として0.5mmolの硫酸水素テトラブチルアンモニウム(TBAS)又は臭化テトラブチルアンモニウム(TBAB)を使用し、更に、表3に示す有機溶剤30mLを使用し、表3に示すような酸化剤の使用状態及び有効塩素濃度、ニトロキシルラジカル触媒及び相間移動触媒使用の有無、反応温度(室温:20〜30℃)、並びに反応時間の条件下で、実施例7と同様にして撹拌下に酸化反応を行い、実施例1と同様にしてGCにより内標分析を行い、酸化反応の生成物である2-オクタノンの収率を求めた。
結果等を表3にまとめて示す。
[Examples 8 to 16, 21 to 24]
As the alcohol, 1.30 g (10.0 mmol) of 2-octanol was used, 1.97 g (12.0 mmol) of sodium hypochlorite pentahydrate was used as the oxidizing agent, and 0.0156 g (0.10 of TEMPO as the nitroxyl radical catalyst). and 0.5 mmol of tetrabutylammonium hydrogen sulfate (TBAS) or tetrabutylammonium bromide (TBAB) as a phase transfer catalyst, and further using 30 mL of an organic solvent shown in Table 3, Example 7 under the conditions of use of oxidant and effective chlorine concentration, presence / absence of use of nitroxyl radical catalyst and phase transfer catalyst, reaction temperature (room temperature: 20-30 ° C.), and reaction time as shown in Table 3. In the same manner as in Example 1, the oxidation reaction was carried out with stirring, and in the same manner as in Example 1, internal standard analysis was performed by GC to determine the yield of 2-octanone, which is the product of the oxidation reaction.
The results are summarized in Table 3.

〔実施例17〜20〕
アルコール類として2-オクタノール1.30g(10.0mmol)を使用し、酸化剤として有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の粉末状結晶1.97g(12.0mmol、基質に対して1.2当量)を使用し、ニトロキシルラジカル触媒としてTEMPO0.0156g(0.10mmol)を使用し、また、相間移動触媒として0.5mmolの塩化テトラブチルアンモニウム(TBAC)を使用し、更に、酸触媒として硫酸水素ナトリウム1水和物(NaHSO4・H2O)を0.690g(0.50mmol、基質に対して0.05当量、酸化剤に対して0.042当量)を水0.2mLと共に使用し、表3に示す有機溶剤30mLを使用し、表3に示すようなニトロキシルラジカル触媒及び相間移動触媒使用の有無、反応温度、並びに反応時間の条件下で、実施例8と同様にして撹拌下に酸化反応を行い、実施例1と同様にしてGCにより内標分析を行い、酸化反応の生成物である2-オクタノンの収率を求めた。
結果等を表3にまとめて示す。
[Examples 17 to 20]
2-octanol 1.30 g (10.0 mmol) is used as the alcohol, and 1.97 g (12.0 mmol, based on the substrate) of powdered crystals of sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass as the oxidant. 1.2 eq.), 0.0156 g (0.10 mmol) of TEMPO as the nitroxyl radical catalyst, 0.5 mmol of tetrabutylammonium chloride (TBAC) as the phase transfer catalyst, and further as the acid catalyst Sodium hydrogen sulfate monohydrate (NaHSO 4 .H 2 O) 0.690 g (0.50 mmol, 0.05 equivalent to the substrate, 0.042 equivalent to the oxidant) was used with 0.2 mL of water, as shown in Table 3. Using 30 mL of an organic solvent, an oxidation reaction was carried out with stirring in the same manner as in Example 8 under the conditions of the presence or absence of a nitroxyl radical catalyst and a phase transfer catalyst as shown in Table 3, the reaction temperature, and the reaction time. As in Example 1 Performs internal standard analysis by GC Te to determine the yield of 2-octanone is the product of the oxidation reaction.
The results are summarized in Table 3.

〔比較例2〕
次亜塩素酸ソーダ5水和物に代えて、酸化剤として一般の市販品であるpH13.1及び有効塩素濃度12.9質量%の次亜塩素酸ナトリウム水溶液6.59g(12.0mmol)を使用した以外は、上記の実施例8と同様にして、反応温度5℃でpH調整を行わずに酸化反応を行った。実施例1と同様にしてGCにより内標分析を行い、2-オクタノンの収率を調べた。
結果等を表3にまとめて示す。
[Comparative Example 2]
Instead of sodium hypochlorite pentahydrate, 6.59 g (12.0 mmol) of an aqueous sodium hypochlorite solution having a pH of 13.1 and an effective chlorine concentration of 12.9% by mass is used as an oxidizing agent. Except that, the oxidation reaction was carried out at the reaction temperature of 5 ° C. without adjusting the pH in the same manner as in Example 8. The internal standard analysis was performed by GC in the same manner as in Example 1 to examine the yield of 2-octanone.
The results are summarized in Table 3.

〔比較例3〕
次亜塩素酸ソーダ5水和物に代えて、酸化剤として一般の市販品であるpH13.1及び有効塩素濃度12.6質量%の次亜塩素酸ナトリウム水溶液6.73g(12.0mmol)を使用し、TEMPOを添加しなかったこと以外は、上記の実施例8と同様にして、反応温度5℃でpH調整を行わずに酸化反応を行った。実施例1と同様にしてGCにより内標分析を行い、2-オクタノンの収率を調べた。
結果等を表3にまとめて示す。
[Comparative Example 3]
Instead of sodium hypochlorite pentahydrate, 6.73 g (12.0 mmol) of a sodium hypochlorite aqueous solution having a pH of 13.1 and an effective chlorine concentration of 12.6% by mass, which is a commercially available product, is used as an oxidizing agent. Then, the oxidation reaction was performed without adjusting the pH at the reaction temperature of 5 ° C. in the same manner as in Example 8 except that TEMPO was not added. The internal standard analysis was performed by GC in the same manner as in Example 1 to examine the yield of 2-octanone.
The results are summarized in Table 3.

Figure 2015063504
Figure 2015063504

〔実施例25〕
2-オクタノール13.0g(100mmol)、硫酸水素テトラブチルアンモニウム1.70g(5.00mmol)及びTEMPO0.156g(1.00mmol)の混合液を反応容器内に仕込み、有機溶媒に溶解させることなく、反応容器内の液温を5℃まで冷却した後、撹拌下に液温を5〜10℃に維持しながら、有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶を水に溶解させて得られた有効塩素濃度25.3質量%の水溶液33.7g(120mmol、基質に対して1.2当量)を前記混合液中に1時間40分かけて滴下した。滴下終了後20分後(滴下開始から2時間後)に、上記実施例1と同様にしてGCにより内標分析を行ったところ、2-オクタノンが96%の収率で生成していた。
Example 25
A mixed solution of 13.0 g (100 mmol) of 2-octanol, 1.70 g (5.00 mmol) of tetrabutylammonium hydrogen sulfate and 0.156 g (1.00 mmol) of TEMPO was charged into the reaction vessel, and dissolved in an organic solvent. After cooling the liquid temperature to 5 ° C., the sodium hypochlorite pentahydrate crystal having an effective chlorine concentration of 42 mass% was dissolved in water while maintaining the liquid temperature at 5 to 10 ° C. with stirring. 33.7 g (120 mmol, 1.2 equivalents relative to the substrate) of an aqueous solution having an effective chlorine concentration of 25.3 mass% obtained in the above manner was added dropwise over 1 hour and 40 minutes. Twenty minutes after the completion of dropping (two hours after the start of dropping), an internal standard analysis was performed by GC in the same manner as in Example 1. As a result, 2-octanone was produced in a yield of 96%.

〔実施例26〕
実施例8で使用したTEMPOに代えて、ニトロキシルラジカル触媒として1-Me-AZADO0.0163g(0.10mmol)を使用したこと以外は、実施例8と同様にして酸化反応を行った。酸化反応の開始から1時間後に実施例1と同様にしてGCにより内標分析を行ったところ、2-オクタノンが99%を超える収率で生成していた。
Example 26
The oxidation reaction was performed in the same manner as in Example 8, except that 0.0163 g (0.10 mmol) of 1-Me-AZADO was used as the nitroxyl radical catalyst instead of TEMPO used in Example 8. One hour after the start of the oxidation reaction, an internal standard analysis was performed by GC in the same manner as in Example 1. As a result, 2-octanone was produced in a yield exceeding 99%.

〔実施例27〕
1-オクタノール1.31g(10.1mmol)、硫酸水素テトラブチルアンモニウム0.170g(0.50mmol)及びTEMPO0.0156g(0.10mmol)をジクロロメタン30mLに溶解して反応容器内に仕込み、反応容器内の液温を5℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.81g(11.0mmol、基質に対して1.1当量)を加え、その後そのまま液温を5℃に保って撹拌下に酸化反応を行った。酸化反応の開始から1時間後に、実施例1と同様にしてGCにより内標分析を行ったところ、1-オクタナールが91%の収率で生成していた。
Example 27
1.31 g (10.1 mmol) of 1-octanol, 0.170 g (0.50 mmol) of tetrabutylammonium hydrogen sulfate and 0.0156 g (0.10 mmol) of TEMPO were dissolved in 30 mL of dichloromethane and charged into the reaction vessel. After cooling to 5 ° C., 1.81 g (11.0 mmol, 1.1 equivalents to the substrate) of sodium hypochlorite pentahydrate with an effective chlorine concentration of 42% by mass was added with stirring, and the liquid temperature was then changed. Was kept at 5 ° C. and the oxidation reaction was carried out with stirring. One hour after the start of the oxidation reaction, the internal standard analysis was performed by GC in the same manner as in Example 1. As a result, 1-octanal was produced in a yield of 91%.

〔実施例28〕
ベンジルアルコール1.10g(10.1mmol)、臭化テトラブチルアンモニウム0.161g(0.50mmol)、TEMPO0.0160g(0.10mmol)及びm-ジクロロベンゼン(GC内標物質)1.22gをジクロロメタン30mLに溶解して反応容器内に仕込み、反応容器内の液温を5℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.99g(12.1mmol、基質に対して1.2当量)を加え、その後氷浴を取り除いて室温まで上昇させて撹拌下に酸化反応を行った。酸化反応の開始から1時間後に、実施例1と同様にしてGCで内標分析したところ、93%の収率でベンズアルデヒドが生成しているのを確認した。
Example 28
1.10 g (10.1 mmol) of benzyl alcohol, 0.161 g (0.50 mmol) of tetrabutylammonium bromide, 0.0160 g (0.10 mmol) of TEMPO and 1.22 g of m-dichlorobenzene (GC internal standard substance) were dissolved in 30 mL of dichloromethane. Into the reaction vessel, the liquid temperature in the reaction vessel was cooled to 5 ° C., and then 1.99 g (12.1 mmol, substrate of sodium hypochlorite pentahydrate crystal having an effective chlorine concentration of 42% by mass with stirring. 1.2 equivalents) was added, and then the ice bath was removed, the temperature was raised to room temperature, and the oxidation reaction was carried out with stirring. One hour after the start of the oxidation reaction, an internal standard was analyzed by GC in the same manner as in Example 1. As a result, it was confirmed that benzaldehyde was produced in a yield of 93%.

〔実施例29〕
3-オクタノール1.31g(10.1mmol)、硫酸水素テトラブチルアンモニウム0.169g(0.50mmol)、TEMPO0.0154g(0.10mmol)及び4-クロロベンゾトリフルオリド(GC内標物質)1.55gをジクロロメタン30mLに溶解して反応容器内に仕込み、反応容器内の液温を5℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.98g(12.0mmol、基質に対して1.19当量)を加え、その後氷浴を取り除いて室温まで上昇させて撹拌下に酸化反応を行った。酸化反応の開始から1時間後に、実施例1と同様にしてGCで内標分析したところ、96%の収率で3-オクタノンが生成しているのを確認した。
Example 29
30 ml of dichloromethane containing 1.31 g (10.1 mmol) of 3-octanol, 0.169 g (0.50 mmol) of tetrabutylammonium hydrogen sulfate, 0.0154 g (0.10 mmol) of TEMPO and 1.55 g of 4-chlorobenzotrifluoride (GC internal standard substance) After being dissolved in the reaction vessel and cooled in the reaction vessel to a temperature of 5 ° C., 1.98 g (12.0 g (12.0 g) of sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass with stirring. mmol, 1.19 equivalents to the substrate) was added, and then the ice bath was removed, the temperature was raised to room temperature, and the oxidation reaction was carried out with stirring. One hour after the start of the oxidation reaction, an internal standard analysis was performed by GC in the same manner as in Example 1. As a result, it was confirmed that 3-octanone was produced in a yield of 96%.

〔実施例30〕
3-オクタノール1.31g(10.1mmol)、硫酸水素テトラブチルアンモニウム0.170g(0.50mmol)、TEMPO0.0155g(0.10mmol)をジクロロメタン30mLに溶解して反応容器内に仕込み、反応容器内の液温を5℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.98g(12.0mmol、基質に対して1.19当量)を加え、その後そのまま液温を5℃に保って撹拌下に酸化反応を行った。酸化反応の開始から1時間後に、実施例1と同様にしてGCで内標分析したところ、3-オクタノンが97%の収率で生成していた。
Example 30
1.31 g (10.1 mmol) of 3-octanol, 0.170 g (0.50 mmol) of tetrabutylammonium hydrogen sulfate and 0.0155 g (0.10 mmol) of TEMPO were dissolved in 30 mL of dichloromethane and charged into the reaction vessel. After cooling to 5 ° C., 1.98 g (12.0 mmol, 1.19 equivalents relative to the substrate) of sodium hypochlorite pentahydrate crystals having an effective chlorine concentration of 42 mass% was added with stirring, and the liquid temperature was kept as it was. Was kept at 5 ° C. and the oxidation reaction was carried out with stirring. One hour after the start of the oxidation reaction, an internal standard analysis was performed by GC in the same manner as in Example 1. As a result, 3-octanone was produced in a yield of 97%.

〔実施例31〕
3-オクタノール1.30g(10.0mmol)、硫酸水素テトラブチルアンモニウム0.160g(0.50mmol)、TEMPO0.020g(0.13mmol)をジクロロメタン10mLに溶解して反応容器内に仕込み、反応容器内に水0.2mLを加え、液温を8℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶2.0g(12.2mmol、基質に対して1.22当量)を加え、その後、15℃にて40分間撹拌下に酸化反応をさせた。
Example 31
3-Octanol 1.30 g (10.0 mmol), tetrabutylammonium hydrogen sulfate 0.160 g (0.50 mmol), TEMPO 0.020 g (0.13 mmol) were dissolved in 10 mL of dichloromethane and charged into the reaction vessel. 2 mL was added, the liquid temperature was cooled to 8 ° C., and 2.0 g (12.2 mmol, 1.22 equivalents to the substrate) of sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass with stirring. Then, oxidation reaction was carried out with stirring at 15 ° C. for 40 minutes.

反応終了後、得られた反応混合物中に亜硫酸ナトリウム水溶液20mLを加えた後、有機相を分液し、この有機相をもう一度水洗し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去し、1.30gの残渣を得た。このようにして得られた残渣0.40gをクーゲルロールで蒸留(65torr、オーブン温度130〜140℃)し、0.38gの無色透明液体を得た。得られた無色透明液体をGCMSで分析したところ、純度99.71%の3-オクタノンと0.29%の3-オクタノールが含まれていた。単離された3-オクタノンの収率は96%であった。   After completion of the reaction, 20 mL of an aqueous sodium sulfite solution was added to the resulting reaction mixture, and then the organic phase was separated. This organic phase was washed with water again and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. 1.30 g of residue was obtained. 0.40 g of the residue thus obtained was distilled with a Kugelrohr (65 torr, oven temperature 130 to 140 ° C.) to obtain 0.38 g of a colorless transparent liquid. When the obtained colorless transparent liquid was analyzed by GCMS, it contained 99.71% pure 3-octanone and 0.29% 3-octanol. The yield of isolated 3-octanone was 96%.

〔実施例32〕
1-ドデカノール0.56g(3.0mmol)、硫酸水素テトラブチルアンモニウム0.051g(0.15mmol)、TEMPO0.005g(0.03mmol)をジクロロメタン30mLに溶解して反応容器内に仕込み、反応容器内の液温を0℃まで冷却した後、有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.2g(7.3mmol、基質に対して2.4当量)を加え、撹拌下に酸化反応を行った。酸化反応の開始から10分後に室温に戻し、1時間後に更に有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.2g(7.3mmol、基質に対して2.4当量)を加えた。この操作を3時間に亘って3回繰り返した後、更に室温で9時間撹拌下に反応させた。反応終了後、反応混合物中に水20mLを加え、有機相を分液し、得られた有機相を無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して0.7267gの残渣を得た。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、0.56gのドデシル酸を得た。単離されたドデシル酸の収率は93%であった。
[Example 32]
1-Dodecanol 0.56 g (3.0 mmol), tetrabutylammonium hydrogen sulfate 0.051 g (0.15 mmol), TEMPO 0.005 g (0.03 mmol) were dissolved in 30 mL of dichloromethane and charged into the reaction vessel. After cooling to 0 ° C., 1.2 g (7.3 mmol, 2.4 equivalents with respect to the substrate) of sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass was added, and the oxidation reaction was carried out with stirring. It was. After 10 minutes from the start of the oxidation reaction, the temperature was returned to room temperature, and after 1 hour, 1.2 g (7.3 mmol, 2.4 equivalents relative to the substrate) of sodium hypochlorite pentahydrate crystals having an effective chlorine concentration of 42% by mass were added. It was. This operation was repeated 3 times over 3 hours, and the reaction was further continued at room temperature for 9 hours with stirring. After completion of the reaction, 20 mL of water was added to the reaction mixture, the organic phase was separated, and the obtained organic phase was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain 0.7267 g of a residue. The obtained residue was purified by silica gel column chromatography to obtain 0.56 g of dodecyl acid. The yield of isolated dodecyl acid was 93%.

〔実施例33〕
ピペロニルアルコール(3,4-メチレンジオキシベンジルアルコール)1.52g(10.0mmol)、硫酸水素テトラブチルアンモニウム0.170g(0.50mmol)、TEMPO0.0155g(0.10mmol)をジクロロメタン10mLに溶解して反応容器内に仕込み、反応容器内の液温を15℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.98g(12.0mmol、基質に対して1.2当量)を加え、撹拌下に酸化反応を行った。酸化反応の開始から0.5時間後に、実施例1と同様にしてGCで内標分析したところ、83%の収率でヘリオトロピン(3,4-メチレンジオキシベンズアルデヒド)が生成しているのを確認した。
Example 33
Piperonyl alcohol (3,4-methylenedioxybenzyl alcohol) 1.52 g (10.0 mmol), tetrabutylammonium hydrogen sulfate 0.170 g (0.50 mmol), TEMPO 0.0155 g (0.10 mmol) were dissolved in 10 mL of dichloromethane. After charging in the reaction vessel and cooling the liquid temperature in the reaction vessel to 15 ° C., 1.98 g (12.0 mmol, 12.0 mmol of crystals of sodium hypochlorite pentahydrate having an effective chlorine concentration of 42% by mass with stirring was added. 1.2 equivalents) was added, and the oxidation reaction was carried out with stirring. After 0.5 hours from the start of the oxidation reaction, internal standard analysis was performed by GC in the same manner as in Example 1. As a result, heliotropin (3,4-methylenedioxybenzaldehyde) was produced in a yield of 83%. It was confirmed.

〔実施例34〕
4-クロロベンジルアルコール1.43g(10.0mmol)、硫酸水素テトラブチルアンモニウム0.169g(0.50mmol)、TEMPO0.0159g(0.10mmol)をジクロロメタン30mLに溶解して反応容器内に仕込み、反応容器内の液温を5℃まで冷却した後、撹拌しながら有効塩素濃度42質量%の次亜塩素酸ソーダ5水和物の結晶1.82g(11.1mmol、基質に対して1.1当量)を加え、撹拌下に酸化反応を行った。酸化反応の開始から0.5時間後に、実施例1と同様にしてGCで内標分析したところ、97%の収率で4-クロロベンズアルデヒドが生成しているのを確認した。
Example 34
4-Chlorobenzyl alcohol (1.43 g, 10.0 mmol), tetrabutylammonium hydrogensulfate (0.169 g, 0.50 mmol), and TEMPO (0.0159 g, 0.10 mmol) were dissolved in 30 mL of dichloromethane and charged into the reaction vessel. After cooling the liquid temperature to 5 ° C, 1.82 g (11.1 mmol, 1.1 equivalents to the substrate) of sodium hypochlorite pentahydrate crystals with an effective chlorine concentration of 42% by mass was added with stirring, and the mixture was stirred. The oxidation reaction was performed. 0.5 hours after the start of the oxidation reaction, an internal standard analysis was performed by GC in the same manner as in Example 1. As a result, it was confirmed that 4-chlorobenzaldehyde was produced in a yield of 97%.

〔比較例4〕
実施例26の1-Me-AZADOを触媒とした酸化反応において、次亜塩素酸ソーダ5水和物の結晶に代えて、pH13.1及び有効塩素濃度12.6質量%の一般の次亜塩素酸ソーダ水溶液6.78g(12.0mmol)を使用した以外は、実施例26と同様にして、反応温度5℃でpH調整を行わずに酸化反応を行った。実施例1と同様にしてGCにより内標分析を行った結果、2-オクタノンの生成は1時間で14%であった。
[Comparative Example 4]
In the oxidation reaction catalyzed by 1-Me-AZADO in Example 26, instead of crystals of sodium hypochlorite pentahydrate, general hypochlorous acid having a pH of 13.1 and an effective chlorine concentration of 12.6% by mass was used. An oxidation reaction was performed without adjusting the pH at a reaction temperature of 5 ° C. in the same manner as in Example 26, except that 6.78 g (12.0 mmol) of an aqueous sodium acid solution was used. As a result of internal standard analysis by GC in the same manner as in Example 1, the production of 2-octanone was 14% in 1 hour.

Claims (10)

下記一般式(1)
Figure 2015063504
(式中、R1はアルキル基、アリール基又はアラルキル基、R2はアルキル基、アリール基、アラルキル基又は水素原子を示す。なお、RとRとは互いに結合して環構造を形成してもよい。)で表されるアルコール類を酸化して下記一般式(2)
Figure 2015063504
(式中、R1はアルキル基、アリール基又はアラルキル基、R2はアルキル基、アリール基、アラルキル基、水素原子又は水酸基を示す。なお、RとRとは互いに結合して環構造を形成してもよい。)で表されるカルボニル化合物を製造するアルコール類の酸化方法であり、酸化剤として次亜塩素酸ソーダ5水和物を使用することを特徴とするアルコール類の酸化方法。
The following general formula (1)
Figure 2015063504
(In the formula, R 1 represents an alkyl group, an aryl group or an aralkyl group, R 2 represents an alkyl group, an aryl group, an aralkyl group or a hydrogen atom. R 1 and R 2 are bonded to each other to form a ring structure. The alcohol represented by the following general formula (2)
Figure 2015063504
(In the formula, R 1 represents an alkyl group, an aryl group or an aralkyl group, R 2 represents an alkyl group, an aryl group, an aralkyl group, a hydrogen atom or a hydroxyl group. In addition, R 1 and R 2 are bonded to each other to form a ring structure. The method for oxidizing alcohols, wherein sodium hypochlorite pentahydrate is used as an oxidizing agent, is a method for oxidizing a carbonyl compound represented by formula (1): .
前記酸化剤の次亜塩素酸ソーダ5水和物は、有効塩素濃度12質量%以上の水溶液又は結晶として使用する請求項1に記載のアルコール類の酸化方法。   The method for oxidizing alcohols according to claim 1, wherein the sodium hypochlorite pentahydrate as the oxidizing agent is used as an aqueous solution or crystal having an effective chlorine concentration of 12% by mass or more. 前記酸化剤の次亜塩素酸ソーダ5水和物は、有効塩素濃度20質量%以上の水溶液又は結晶として使用する請求項2に記載のアルコール類の酸化方法。   The method for oxidizing alcohols according to claim 2, wherein the sodium hypochlorite pentahydrate as the oxidizing agent is used as an aqueous solution or crystal having an effective chlorine concentration of 20% by mass or more. 前記次亜塩素酸ソーダ5水和物からなる酸化剤は、ニトロキシルラジカル触媒及び/又は相間移動触媒と共に使用される請求項1〜3のいずれかに記載のアルコール類の酸化方法。   The method for oxidizing alcohols according to any one of claims 1 to 3, wherein the oxidizing agent comprising sodium hypochlorite pentahydrate is used together with a nitroxyl radical catalyst and / or a phase transfer catalyst. 前記次亜塩素酸ソーダ5水和物からなる酸化剤は、ニトロキシルラジカル触媒と、相間移動触媒及び/又は酸触媒と共に使用される請求項1〜3のいずれかに記載のアルコール類の酸化方法。   The method for oxidizing alcohols according to any one of claims 1 to 3, wherein the oxidizing agent comprising sodium hypochlorite pentahydrate is used together with a nitroxyl radical catalyst, a phase transfer catalyst and / or an acid catalyst. . 前記ニトロキシルラジカル触媒が、2,2,6,6-テトラメチル-1-ピペリジニールオキシ(TEMPO)系触媒、2-アザアダマンタン-N-オキシル化合物(AZADO)系触媒、及びアザビシクロ[3,3,1]ノナン-N-オキシル化合物から選ばれた1種又は2種以上の混合物である請求項4又は5に記載のアルコール類の酸化方法。   The nitroxyl radical catalyst is a 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) catalyst, a 2-azaadamantane-N-oxyl compound (AZADO) catalyst, and an azabicyclo [3, The method for oxidizing alcohols according to claim 4 or 5, which is one or a mixture of two or more selected from 3,1,] nonane-N-oxyl compounds. 前記相間移動触媒が、第4級アンモニウム塩、第4級ホスホニウム塩、ポリエチレングリコール類、クラウンエーテル類、アルキル硫酸塩、及びアルキルスルホン酸塩、両性界面活性剤等から選ばれた1種又は2種以上の混合物である請求項4〜6のいずれかに記載のアルコール類の酸化方法。   The phase transfer catalyst is one or two selected from quaternary ammonium salts, quaternary phosphonium salts, polyethylene glycols, crown ethers, alkyl sulfates, alkyl sulfonates, amphoteric surfactants, and the like. The method for oxidizing alcohols according to any one of claims 4 to 6, which is a mixture of the above. 前記アルコール類の酸化は、アルコール類を溶解すると共に前記酸化剤により酸化されない有機溶媒の存在下に行う請求項1〜7のいずれかに記載のアルコール類の酸化方法。   The method for oxidizing an alcohol according to any one of claims 1 to 7, wherein the alcohol is oxidized in the presence of an organic solvent that dissolves the alcohol and is not oxidized by the oxidizing agent. 前記アルコール類の酸化は、有機溶剤を使用しない無溶媒下に行う請求項1〜7のいずれかに記載のアルコール類の酸化方法。   The method for oxidizing an alcohol according to claim 1, wherein the oxidation of the alcohol is performed in the absence of a solvent without using an organic solvent. 前記アルコール類の酸化は、pH調整無しに行う請求項1〜9のいずれかに記載のアルコール類の酸化方法。   The method for oxidizing an alcohol according to any one of claims 1 to 9, wherein the oxidation of the alcohol is performed without adjusting the pH.
JP2014079617A 2013-09-02 2014-04-08 Method for oxidizing alcohols Active JP6176177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079617A JP6176177B2 (en) 2013-09-02 2014-04-08 Method for oxidizing alcohols

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013180853 2013-09-02
JP2013180853 2013-09-02
JP2014079617A JP6176177B2 (en) 2013-09-02 2014-04-08 Method for oxidizing alcohols

Publications (2)

Publication Number Publication Date
JP2015063504A true JP2015063504A (en) 2015-04-09
JP6176177B2 JP6176177B2 (en) 2017-08-09

Family

ID=52831725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079617A Active JP6176177B2 (en) 2013-09-02 2014-04-08 Method for oxidizing alcohols

Country Status (3)

Country Link
JP (1) JP6176177B2 (en)
KR (1) KR20150026729A (en)
TW (1) TWI596086B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002680A (en) * 2016-07-07 2018-01-11 国立大学法人千葉大学 Method for producing carbonyl compound
CN112592265A (en) * 2020-12-21 2021-04-02 安达兰泽科技有限公司 Preparation method of 3, 3-dimethyl-2-oxobutyric acid and sodium salt thereof
WO2023190598A1 (en) * 2022-03-31 2023-10-05 アース製薬株式会社 Composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716305A (en) * 2022-05-18 2022-07-08 江苏豪森药业集团有限公司 Preparation method of alkyl formaldehyde structural compound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622604A (en) * 1979-08-02 1981-03-03 Nitto Kikai Kk Manufacture of sodium hypochlorite pentahydrate
US5194238A (en) * 1991-03-26 1993-03-16 Olin Corporation Process for the production of highly pure concentrated slurries of sodium hypochlorite
JP2000290003A (en) * 1999-04-01 2000-10-17 Nippon Light Metal Co Ltd Production of sodium hypochlorite 5-hydrate
JP2002265409A (en) * 2001-03-12 2002-09-18 Nippon Soda Co Ltd Method for manufacturing carbonium compound
JP2003267907A (en) * 2002-03-14 2003-09-25 Sumika Fine Chemicals Co Ltd Method for producing ketone
WO2004067484A2 (en) * 2003-01-30 2004-08-12 The Nutrasweet Company Bromine free tempo based catalyst system for oxidation of primary and secondary alcohols using naoci as an oxidant.
JP2005213149A (en) * 2004-01-27 2005-08-11 Central Glass Co Ltd Method for producing trifluoromethyl-substituted acetophenone
WO2012008228A1 (en) * 2010-07-16 2012-01-19 第一三共株式会社 Method for oxidizing alcohols

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622604A (en) * 1979-08-02 1981-03-03 Nitto Kikai Kk Manufacture of sodium hypochlorite pentahydrate
US5194238A (en) * 1991-03-26 1993-03-16 Olin Corporation Process for the production of highly pure concentrated slurries of sodium hypochlorite
JP2000290003A (en) * 1999-04-01 2000-10-17 Nippon Light Metal Co Ltd Production of sodium hypochlorite 5-hydrate
JP2002265409A (en) * 2001-03-12 2002-09-18 Nippon Soda Co Ltd Method for manufacturing carbonium compound
JP2003267907A (en) * 2002-03-14 2003-09-25 Sumika Fine Chemicals Co Ltd Method for producing ketone
WO2004067484A2 (en) * 2003-01-30 2004-08-12 The Nutrasweet Company Bromine free tempo based catalyst system for oxidation of primary and secondary alcohols using naoci as an oxidant.
JP2005213149A (en) * 2004-01-27 2005-08-11 Central Glass Co Ltd Method for producing trifluoromethyl-substituted acetophenone
WO2012008228A1 (en) * 2010-07-16 2012-01-19 第一三共株式会社 Method for oxidizing alcohols
US20130172543A1 (en) * 2010-07-16 2013-07-04 Tohoku University Method for oxidizing alcohols

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 128, JPN6016050157, 2006, pages 8412 - 8413, ISSN: 0003478402 *
反応と合成の進歩シンポジウム講演要旨集, vol. 39, JPN6016050160, 15 October 2013 (2013-10-15), pages 76, ISSN: 0003478403 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002680A (en) * 2016-07-07 2018-01-11 国立大学法人千葉大学 Method for producing carbonyl compound
CN112592265A (en) * 2020-12-21 2021-04-02 安达兰泽科技有限公司 Preparation method of 3, 3-dimethyl-2-oxobutyric acid and sodium salt thereof
CN112592265B (en) * 2020-12-21 2023-09-01 安达兰泽科技有限公司 Preparation method of 3, 3-dimethyl-2-oxo-butyric acid and sodium salt thereof
WO2023190598A1 (en) * 2022-03-31 2023-10-05 アース製薬株式会社 Composition

Also Published As

Publication number Publication date
JP6176177B2 (en) 2017-08-09
TWI596086B (en) 2017-08-21
TW201509894A (en) 2015-03-16
KR20150026729A (en) 2015-03-11

Similar Documents

Publication Publication Date Title
Xiao et al. Copper-catalyzed late-stage benzylic C (sp3)–H trifluoromethylation
JP6176177B2 (en) Method for oxidizing alcohols
Konik et al. Two-step conversion of carboxylic esters into distally fluorinated ketones via ring cleavage of cyclopropanol intermediates: application of sulfinate salts as fluoroalkylating reagents
Shi et al. Novel and convenient acetoxyselenenylation of alkenes catalyzed by potassium iodide
RU2016103145A (en) METHOD FOR PRODUCING 2, 3, 5-TRIMETHYLBENZOCHINONE USING OXIDATION OF 2, 3, 6-TRIMETHYLPHENOL
JP2016517846A (en) Method for synthesizing acetophenone
Zolfigol et al. H5IO6/KI: A new combination reagent for iodination of aromatic amines, and trimethylsilylation of alcohols and phenols through in situ generation of iodine under mild conditions
JP6149667B2 (en) Method for producing sulfonyl chloride compounds
JP5504898B2 (en) Method for producing difluorocyclopropane compound
CN104086488A (en) Synthetic method of 2,4,6-tri-substituted pyrimidine compounds
JP2018076289A (en) Method for producing halogenated benzene derivative
JP5188475B2 (en) Process for producing 2- (3-nitrobenzylidene) isopropyl acetoacetate
JP6235932B2 (en) Method for producing 2-cyanophenylboronic acid derivative
JP2014208604A (en) Method for manufacturing an aromatic acyl compound
JP2014195753A (en) Treatment method of alkaline aqueous solution of monomethyl sulfate
JP2018197218A (en) Manufacturing method of aromatic compound by dehydrogenation reaction of compound having cycloalkadiene or cycloalkene structure using heterogeneous palladium catalyst
JP2012144508A (en) Method of producing triphenylenes
JP2001328984A (en) Method for producing mevalolactone
JP6764158B2 (en) Method for producing carbonyl compound
WO2023080193A1 (en) Method for producing indole compound
JP2014189486A (en) Oxidizer consisting of hydrogen peroxide and carboxylate ester compound and method of producing benzoquinone compound
JP2006036739A (en) Production method for phenol compound
Rao et al. Synthesis of aryl β-ketoesters by opening of aryl epoxides with ethyl diazoacetate catalyzed by BF 3 OEt 2
JP2017008006A (en) Practical manufacturing method of 3,3-difluoro-1-chloro-2-propanone
WO2020091633A1 (en) Novel method for producing (s)-2-(2-(4-hydroxyphenyl)acetamido)-3-phenylpropanoic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20161013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6176177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350