JP6235932B2 - Method for producing 2-cyanophenylboronic acid derivative - Google Patents

Method for producing 2-cyanophenylboronic acid derivative Download PDF

Info

Publication number
JP6235932B2
JP6235932B2 JP2014036064A JP2014036064A JP6235932B2 JP 6235932 B2 JP6235932 B2 JP 6235932B2 JP 2014036064 A JP2014036064 A JP 2014036064A JP 2014036064 A JP2014036064 A JP 2014036064A JP 6235932 B2 JP6235932 B2 JP 6235932B2
Authority
JP
Japan
Prior art keywords
lithium
group
general formula
tetramethylpiperidide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014036064A
Other languages
Japanese (ja)
Other versions
JP2015160823A (en
Inventor
由侑 服部
由侑 服部
俊幸 金子
俊幸 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2014036064A priority Critical patent/JP6235932B2/en
Publication of JP2015160823A publication Critical patent/JP2015160823A/en
Application granted granted Critical
Publication of JP6235932B2 publication Critical patent/JP6235932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、医薬、電子材料の原料となりうる、2−シアノフェニルボロン酸誘導体の製造方法に関する。   The present invention relates to a method for producing a 2-cyanophenylboronic acid derivative that can be a raw material for pharmaceuticals and electronic materials.

2−シアノフェニルボロン酸及びその誘導体は、鈴木カップリング反応に使用される、医薬、液晶などの電子材料の原料として有用である。   2-Cyanophenylboronic acid and its derivatives are useful as raw materials for electronic materials such as pharmaceuticals and liquid crystals used in the Suzuki coupling reaction.

一般的なボロン酸の製造法としては、(1)アリールシランやアリールスタンナン化合物と三臭化ホウ素とのトランスメタル化反応後に加水分解する方法、(2)ハロゲン化アリールやアリールトリフレートとピナコールボランまたはビスピナコールジボレートとを遷移金属触媒を用いてカップリングする方法、(3)ハロゲン化アリールをアリールマグネシウムハロゲン化物やアリールリチウムなどの有機金属化合物に変換した後、トリアルコキシボランと反応させる方法などが知られている。   Common boronic acid production methods include (1) hydrolysis after transmetalation reaction of arylsilane or arylstannane compound and boron tribromide, and (2) aryl halide or aryl triflate and pinacol. A method of coupling borane or bispinacol diborate with a transition metal catalyst, (3) A method of reacting aryl halide with an organometallic compound such as arylmagnesium halide or aryllithium and then reacting with trialkoxyborane Etc. are known.

工業的に製造する方法として(3)の方法が一般に用いられているが、ボロン酸のなかでもニトリル基を含有するボロン酸類は、有機マグネシウム化合物がニトリル基と反応するため、n−ブチルリチウムとハロゲン化ベンゾニトリルとを低温で反応させる方法が一般に用いられている。しかし、2−シアノフェニルボロン酸は、n−ブチルリチウムを用いても低収率でしか得られないことも知られている。   The method of (3) is generally used as an industrial production method. Among boronic acids, boronic acids containing a nitrile group react with n-butyllithium because an organic magnesium compound reacts with a nitrile group. A method of reacting with a halogenated benzonitrile at a low temperature is generally used. However, it is also known that 2-cyanophenylboronic acid can be obtained only in a low yield even when n-butyllithium is used.

特許文献1には、2−ブロモベンゾニトリルをt−ブチルリチウムと反応させ、目的物である2−シアノフェニルボロン酸を収率よく得る方法が記載されている(Preparative Example 1)。特許文献1には別法として、ハロゲン化ベンゾニトリルをピナコールボランやビスピナコールジボランと貴金属触媒を用いてカップリングし、目的の2−シアノフェニルボロン酸のピナコールエステルを得る方法も挙げられる(Preparative Example 2)。   Patent Document 1 describes a method in which 2-bromobenzonitrile is reacted with t-butyllithium to obtain 2-cyanophenylboronic acid as a target product in a high yield (Preparative Example 1). Patent Document 1 also includes a method in which a halogenated benzonitrile is coupled with pinacol borane or bispinacol diborane using a noble metal catalyst to obtain a target pinacol ester of 2-cyanophenylboronic acid (Preparative Example). 2).

非特許文献1には ベンゾニトリルを原料としたリチウム2,2,6,6−テトラメチルピペリジドによるオルトリチオ化反応を経由して、さらにネオペンチルグリコールでエステル化、得られる有機相を乾固することで、2−シアノフェニルボロン酸のネオペンチルグリコールエステルが得られることを報告している。   Non-Patent Document 1 discloses that an organic phase obtained by esterification with neopentyl glycol is further solidified via an ortho-trithiolation reaction with lithium 2,2,6,6-tetramethylpiperidide using benzonitrile as a raw material. It is reported that neopentyl glycol ester of 2-cyanophenylboronic acid can be obtained.

特許文献2では、反応液を酸性水溶液で処理する際に、水相のpHを7未満にすることで、水が存在する系においてもN−ベンゾイル−2,2,6,6−テトラメチルピペリジンへの加水分解が起こらず、1−フェニル−1−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミンが安定に存在し、引き続き有機溶媒による抽出を行うことにより副生成物である1−フェニル−1−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミンを安定かつ選択的に酸性水相へ抽出することにより、高純度で2−シアノフェニルボロン酸を得る方法も報告されている。   In Patent Document 2, when the reaction solution is treated with an acidic aqueous solution, the pH of the aqueous phase is set to less than 7, so that N-benzoyl-2,2,6,6-tetramethylpiperidine is present even in a system in which water is present. To 1-phenyl-1- (2,2,6,6-tetramethylpiperidin-1-yl) methylimine is stably present, followed by extraction with an organic solvent to produce a by-product 1-phenyl-1- (2,2,6,6-tetramethylpiperidin-1-yl) methylimine is stably and selectively extracted into an acidic aqueous phase to obtain 2-cyanophenylboronic acid with high purity. There are also reports on how to obtain

特許文献3では、ベンゾニトリルのオルトリチエーション反応において、ニトリルへの付加反応を抑制する方法としてリチウムマグネシウムジ−2,2,6,6−テトラメチルピペリジドを用いる方法が報告されている。   Patent Document 3 reports a method using lithium magnesium di-2,2,6,6-tetramethylpiperidide as a method for suppressing the addition reaction to nitrile in the orthotritation reaction of benzonitrile.

また非特許文献2では、リチウム2,2,6,6−テトラメチルピペリジドとトリイソブチルアルミニウムを用いて、ニトリル位への付加反応を抑制し、ベンゾニトリルのオルトリチエーション反応を実施する方法が報告されている。   In Non-Patent Document 2, a method for carrying out an ortho-tritation reaction of benzonitrile by suppressing addition reaction to the nitrile position using lithium 2,2,6,6-tetramethylpiperidide and triisobutylaluminum. Has been reported.

欧州特許EP−0675118A明細書European Patent EP-0675118A Specification 日本特許5209183Japanese Patent 5209183 特表 2010−516649Special table 2010-516649

Organic Lett. 3(10), 1435-1437(2001)Organic Lett. 3 (10), 1435-1437 (2001) J.Am.Chem.Soc. 2004, 126, 10526-10527J.Am.Chem.Soc. 2004, 126, 10526-10527

しかしながら、特許文献1に記載の方法では原料の2−ブロモベンゾニトリルおよびt−ブチルリチウムが高価であることや、分離の困難な2−シアノ−3−ブロモフェニルボロン酸等が副生し、純度が向上しないなどの問題があった。特許文献1に記載の別法では、原料のハロゲン化ベンゾニトリルおよびピナコールボラン原料が高価であり、また、カップリングに高価な触媒を必要とするため、工業的な製法としては問題がある。   However, in the method described in Patent Document 1, the raw materials 2-bromobenzonitrile and t-butyllithium are expensive, and 2-cyano-3-bromophenylboronic acid, which is difficult to separate, is produced as a by-product. There were problems such as not improving. In another method described in Patent Document 1, since the raw material halogenated benzonitrile and the pinacolborane raw material are expensive, and an expensive catalyst is required for coupling, there is a problem as an industrial production method.

非特許文献1に記載の方法では、リチウム2,2,6,6−テトラメチルピペリジドがベンゾニトリルのニトリル基に付加反応が進行し、N−ベンゾイル−2,2,6,6−テトラメチルピペリジンが20〜25%程度副生し2−シアノフェニルボロン酸の収率及び純度が低下する問題がある。   In the method described in Non-Patent Document 1, the addition reaction of lithium 2,2,6,6-tetramethylpiperidide proceeds to the nitrile group of benzonitrile, and N-benzoyl-2,2,6,6-tetra There is a problem that methylpiperidine is by-produced by about 20 to 25% and the yield and purity of 2-cyanophenylboronic acid are lowered.

特許文献2に記載の方法も、副反応に起因して収率は57.4%と低いものであった。   The method described in Patent Document 2 also had a low yield of 57.4% due to side reactions.

特許文献3に記載の製法についても、収率が66%と低く満足いくものではなかった。   The production method described in Patent Document 3 was not satisfactory because the yield was as low as 66%.

非特許文献2に記載の造方法では、活性種がトリアルコキシボランと反応がほとんど進行しない。その為、ボロン酸合成に応用できない事を本発明者らは確認している(比較例参照)。また、特許文献3及び非特許文献2に記載の方法は、共に高価な2,2,6,6−テトラメチルピペリジンを過剰量(2当量)使用する必要があるという点でも問題があった。   In the production method described in Non-Patent Document 2, the active species hardly reacts with trialkoxyborane. Therefore, the present inventors have confirmed that it cannot be applied to boronic acid synthesis (see Comparative Example). The methods described in Patent Document 3 and Non-Patent Document 2 also have a problem in that it is necessary to use an excessive amount (2 equivalents) of 2,2,6,6-tetramethylpiperidine that is both expensive.

そこで本発明が解決しようとする課題は、リチウム2,2,6,6−テトラメチルピペリジドを用いる2−シアノフェニルボロン酸誘導体の製造方法において、リチウム2,2,6,6−テトラメチルピペリジドを過剰量使用することなく、かつニトリル基付加の副反応を抑制しつつ、高収率かつ低コストで2−シアノフェニルボロン酸誘導体を製造できる方法を提供することである。
Therefore, the problem to be solved by the present invention is to provide a lithium 2,2,6,6-tetramethyl in a method for producing a 2-cyanophenylboronic acid derivative using lithium 2,2,6,6-tetramethylpiperidide. An object of the present invention is to provide a method capable of producing a 2-cyanophenylboronic acid derivative at a high yield and at a low cost without using an excessive amount of piperidide and suppressing side reactions of nitrile group addition.

本発明者は前述の問題に鑑み鋭意検討を行った。その結果、アルカリ金属及びリチウム2,2,6,6−テトラメチルピペリジドの存在下に、芳香族ニトリル及びトリアルコキシボランを反応させることにより、リチウム2,2,6,6−テトラメチルピペリジドを過剰量使用することなく、かつリチウム2,2,6,6−テトラメチルピペリジドのニトリル基への付加反応を抑制しつつ、高収率で2−シアノフェニルボロン酸及びその誘導体が得られるという本発明を完成するに至った。   The present inventor has intensively studied in view of the above problems. As a result, by reacting an aromatic nitrile and trialkoxyborane in the presence of an alkali metal and lithium 2,2,6,6-tetramethylpiperidide, lithium 2,2,6,6-tetramethylpiperide was reacted. 2-Cyanophenylboronic acid and its derivatives in high yield without using an excessive amount of perizide and suppressing the addition reaction of lithium 2,2,6,6-tetramethylpiperidide to the nitrile group As a result, the present invention has been completed.

すなわち、本発明は以下の記載を要旨とする2−シアノフェニルボロン酸及びその誘導体の製造方法に関するものであり、
(式中、R1、R2、R3及びR4は、各々同一でもよく異なっていてもよい、水素、C1〜C12のアルキル基、C6〜C12のアリール基及びC7〜C12のアラルキル基からなる群から選ばれる炭化水素基、又はハロゲン原子である。)で示される芳香族ニトリルを、アルカリ金属塩及びリチウム2,2,6,6−テトラメチルピペリジドの存在下、トリアルコキシボラン(但し、アルコキシ基は炭素原子1〜6である)と反応させることを含む、一般式(2):
(式中、R1、R2、R3及びR4は、前記と同義である)
で示される2−シアノフェニルボロン酸誘導体の製造法。
That is, the present invention relates to a process for producing 2-cyanophenylboronic acid and derivatives thereof having the following description,
Wherein R 1 , R 2 , R 3 and R 4 may be the same or different from each other from hydrogen, a C1-C12 alkyl group, a C6- C12 aryl group and a C7- C12 aralkyl group. An aromatic nitrile represented by a hydrocarbon group or halogen atom selected from the group consisting of trialkoxyborane (in the presence of an alkali metal salt and lithium 2,2,6,6-tetramethylpiperidide) However, the alkoxy group has 1 to 6 carbon atoms), and the reaction with the general formula (2):
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above)
The manufacturing method of 2-cyanophenyl boronic acid derivative shown by these.

(2)前記リチウム2,2,6,6−テトラメチルピペリジドは、2,2,6,6−テトラメチルピペリジン及びC1〜C6のアルキルリチウムから調製される、(1)に記載の製造法。
(3)前記C1〜C6のアルキルリチウムが、n−ブチルリチウムである、(2)に記載の製造法。
(2) The production according to (1), wherein the lithium 2,2,6,6-tetramethylpiperidide is prepared from 2,2,6,6-tetramethylpiperidine and a C1-C6 alkyllithium. Law.
(3) The production method according to (2), wherein the alkyllithium of C1 to C6 is n-butyllithium.

(4)前記C1〜C6のアルキルリチウムは、2,2,6,6−テトラメチルピペリジンに対して0.8以上1.1モル以下で使用される、(2)又は(3)に記載の製造法。
(5)前記アルカリ金属塩がアルカリ金属のハロゲン化物である、(2)〜(4)のいずれか1項に記載の製造法。
(6)前記アルカリ金属塩はリチウム2,2,6,6−テトラメチルピペリジドに対して0.5当量以上で使用される、(1)〜(5)のいずれか1項に記載の製造法。
(4) The C1-C6 alkyl lithium is used in an amount of 0.8 to 1.1 mol with respect to 2,2,6,6-tetramethylpiperidine, according to (2) or (3) Manufacturing method.
(5) The production method according to any one of (2) to (4), wherein the alkali metal salt is an alkali metal halide.
(6) The alkali metal salt according to any one of (1) to (5), wherein the alkali metal salt is used in an amount of 0.5 equivalent or more with respect to lithium 2,2,6,6-tetramethylpiperidide. Manufacturing method.

(7)(1)〜(6)のいずれか1項に記載の方法を実施して前記一般式(2)で示される2−シアノフェニルボロン酸誘導体を得る工程、及び
前記工程で得られた一般式(2)で示される2−シアノフェニルボロン酸誘導体をC1〜C8のモノアルコール又はジオールと反応させてエステル化する工程を含む、一般式(3):
(式中R、R、R及びRは前記と同義であり、Rは炭素数1〜8のアルキル基であり、互いに結合して環を形成していても良い)
で示される2−シアノフェニルボロン酸エステル誘導体の製造法。
(7) A step of obtaining a 2-cyanophenylboronic acid derivative represented by the general formula (2) by carrying out the method according to any one of (1) to (6), and the step obtained A step of reacting a 2-cyanophenylboronic acid derivative represented by the general formula (2) with a C1-C8 monoalcohol or diol for esterification, the general formula (3):
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above, R 5 is an alkyl group having 1 to 8 carbon atoms, and may be bonded to each other to form a ring)
The manufacturing method of 2-cyanophenyl boronic acid ester derivative shown by these.

(8)ジオールが1,3−プロパンジオールである事を特徴とする(7)に記載の製造法。
(8) The production method according to (7), wherein the diol is 1,3-propanediol.

本発明の方法によれば、2−シアノフェニルボロン酸誘導体を従来製法よりも高収率かつ低コスト得ることができる。
According to the method of the present invention, a 2-cyanophenylboronic acid derivative can be obtained at a higher yield and lower cost than the conventional production method.

<一般式(2)の製造方法>
以下に本発明を詳細に説明する。
一般式(2)で示される2−シアノフェニルボロン酸誘導体の製造方法は、一般式(1)で示される芳香族ニトリルを、アルカリ金属塩及びリチウム2,2,6,6−テトラメチルピペリジドの存在下、トリアルコキシボラン(但し、アルコキシ基は炭素原子1〜6である)と反応させることを含む方法である。本発明の製造方法は、上記反応をアルカリ金属塩及びリチウム2,2,6,6−テトラメチルピペリジドの存在下で行うことが特徴である。
<Production method of general formula (2)>
The present invention is described in detail below.
A method for producing a 2-cyanophenylboronic acid derivative represented by the general formula (2) is obtained by converting an aromatic nitrile represented by the general formula (1) into an alkali metal salt and lithium 2,2,6,6-tetramethylpiperidi. And a trialkoxyborane (wherein the alkoxy group is from 1 to 6 carbon atoms) in the presence of a hydrogen atom. The production method of the present invention is characterized in that the above reaction is carried out in the presence of an alkali metal salt and lithium 2,2,6,6-tetramethylpiperidide.

一般式(1)又は(2)のR1、R2、R3及びR4は、各々同一でもよく異なっていてもよい、水素、C1〜C12のアルキル、C6〜C12のアリール及びC7〜C12のアラルキル基からなる群から選ばれる炭化水素基、又はハロゲン原子である。R1、R2、R3及びR4は、具体的には、例えば、水素原子、メチル基、エチル基、イソプロピル基、シクロアルキル基、アリール基、フッ素、塩素、臭素、ヨウ素等を表す。これらの中で好ましくは、メチル基、エチル基、イソプロピル基などのアルキル基、水素原子が挙げられる。 R 1 , R 2 , R 3 and R 4 in the general formula (1) or (2) may be the same or different from each other, hydrogen, C1 to C12 alkyl, C6 to C12 aryl and C7 to C12. A hydrocarbon group selected from the group consisting of aralkyl groups, or a halogen atom. Specifically, R 1 , R 2 , R 3 and R 4 represent, for example, a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a cycloalkyl group, an aryl group, fluorine, chlorine, bromine, iodine or the like. Of these, alkyl groups such as a methyl group, an ethyl group, and an isopropyl group, and a hydrogen atom are preferable.

一般式(1)で示される具体的な化合物としては、ベンゾニトリル(R、R、R及びRの全てが水素原子である)、1−シアノ−4−メチルベンゼン(R、R及びRが水素原子であり、Rがメチル基である)、及び1−シアノ−4−フルオロベンゼン(R、R及びRが水素原子であり、Rがフッ素原子である)等が挙げられる。これらの化合物は、何れも公知の化合物である。一般式(2)で示される具体的な化合物としては、上記一般式(1)で示される具体的な化合物を原料とする2−シアノフェニルボロン酸(R、R、R及びRの全てが水素原子である)、2−シアノ−5−メチルフェニルボロン酸(R、R及びRが水素原子であり、Rがメチル基である)、及び2−シアノ−5−フルオロフェニルボロン酸(R、R及びRが水素原子であり、Rがフッ素原子である)等が挙げられる。 Specific compounds represented by the general formula (1) include benzonitrile (R 1 , R 2 , R 3 and R 4 are all hydrogen atoms), 1-cyano-4-methylbenzene (R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group), and 1-cyano-4-fluorobenzene (R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a fluorine atom) And the like. These compounds are all known compounds. Specific compounds represented by the general formula (2) include 2-cyanophenylboronic acid (R 1 , R 2 , R 3 and R 4 ) using the specific compound represented by the general formula (1) as a raw material. Are all hydrogen atoms), 2-cyano-5-methylphenylboronic acid (R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group), and 2-cyano-5- And fluorophenylboronic acid (R 1 , R 3 and R 4 are hydrogen atoms, and R 2 is a fluorine atom).

アルカリ金属塩に関しては、具体的には、塩化リチウム、臭化リチウム、フッ化リチウム、ヨウ化リチウム、硝酸リチウム、硫酸リチウム、炭酸リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硝酸ナトリウム、塩化カリウム、臭化カリウム、フッ化カリウム、ヨウ化カリウム、硝酸カリウム、塩化セシウム、臭化セシウム、ヨウ化セシウム等が挙げられるが、好ましくは塩化リチウム、臭化リチウム、塩化カリウム、臭化ナトリウムが挙げられる。   For alkali metal salts, specifically, lithium chloride, lithium bromide, lithium fluoride, lithium iodide, lithium nitrate, lithium sulfate, lithium carbonate, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, Examples thereof include sodium nitrate, potassium chloride, potassium bromide, potassium fluoride, potassium iodide, potassium nitrate, cesium chloride, cesium bromide, cesium iodide, etc., preferably lithium chloride, lithium bromide, potassium chloride, bromide Sodium is mentioned.

リチウム2,2,6,6−テトラメチルピペリジドは、公知の合成法により得られたものを特に限定なく使用できる。例えば、2,2,6,6−テトラメチルピペリジン及びC1〜C6のアルキルリチウムの反応により調製される。2,2,6,6−テトラメチルピペリジンは公知の化合物であり、市販品を入手できる。C1〜C6のアルキルリチウムは、上記反応を容易に実施できるという観点からは、C4のn−ブチルリチウムであることが好ましい。n−ブチルリチウムは、操作の安全性を考慮すると、例えば、ヘキサン等の有機溶媒の溶液として用いることが適当である。n−ブチルリチウム以外のC1〜C6のアルキルリチウムとしては、例えば、s−ブチルリチウム、t−ブチルリチウム、メチルリチウム、エチルリチウム、n−プロピルリチウム、2,2−ジメチルプロピルリチウム、ヘキシルリチウムを挙げることができる。   As lithium 2,2,6,6-tetramethylpiperidide, those obtained by a known synthesis method can be used without particular limitation. For example, it is prepared by reaction of 2,2,6,6-tetramethylpiperidine and C1-C6 alkyllithium. 2,2,6,6-tetramethylpiperidine is a known compound and is commercially available. The C1-C6 alkyllithium is preferably C4 n-butyllithium from the viewpoint that the above reaction can be easily carried out. In consideration of operational safety, n-butyllithium is suitably used, for example, as a solution in an organic solvent such as hexane. Examples of the C1-C6 alkyl lithium other than n-butyl lithium include s-butyl lithium, t-butyl lithium, methyl lithium, ethyl lithium, n-propyl lithium, 2,2-dimethylpropyl lithium, and hexyl lithium. be able to.

上記リチウム2,2,6,6−テトラメチルピペリジド形成においては、前記C1〜C6のアルキルリチウムは、2,2,6,6−テトラメチルピペリジンに対して0.8以上1.1モル以下で使用され、好ましくは2,2,6,6−テトラメチルピペリジンに対して0.8以上1.05モル以下の範囲である。C1〜C6のアルキルリチウムの使用量をこの範囲にすることで、過剰量存在する場合であってもC1〜C6のアルキルリチウムがニトリル基に反応して副生物を生成することを抑制できるという利点がある。   In the lithium 2,2,6,6-tetramethylpiperidide formation, the C1-C6 alkyllithium is 0.8 or more and 1.1 mol relative to 2,2,6,6-tetramethylpiperidine. It is used in the following, preferably in the range of 0.8 to 1.05 mol with respect to 2,2,6,6-tetramethylpiperidine. By making the amount of C1-C6 alkyl lithium used in this range, it is possible to suppress generation of by-products by reacting C1-C6 alkyl lithium with a nitrile group even when an excess amount is present. There is.

リチウム2,2,6,6−テトラメチルピペリジドが、2,2,6,6−テトラメチルピペリジン及びn−ブチルリチウムから調製される場合、2,2,6,6−テトラメチルピペリジンに対して0.8以上1.1モル以下のn−ブチルリチウムを使用することが適当である。2,2,6,6−テトラメチルピペリジンに対してn−ブチルリチウムが過剰な場合にはn−ブチルリチウム自体がニトリル基に反応し副生物が生成する為、好ましくなく、2,2,6,6−テトラメチルピペリジンを僅かに過剰に使用することが好ましい。n−ブチルリチウムの使用量は、0.8以上1.05モル以下とすることがより好ましい。   When lithium 2,2,6,6-tetramethylpiperidide is prepared from 2,2,6,6-tetramethylpiperidine and n-butyllithium, 2,2,6,6-tetramethylpiperidine On the other hand, it is appropriate to use 0.8 to 1.1 mol of n-butyllithium. When n-butyllithium is excessive with respect to 2,2,6,6-tetramethylpiperidine, n-butyllithium itself reacts with the nitrile group to produce a by-product, which is not preferable. Preferably, 6,6-tetramethylpiperidine is used in slight excess. The amount of n-butyllithium used is more preferably 0.8 or more and 1.05 mol or less.

アルカリ金属塩は、リチウム2,2,6,6−テトラメチルピペリジドに対して0.5当量以上で使用できる。好ましくはリチウム2,2,6,6−テトラメチルピペリジドに対して0.8〜1.5当量である。この範囲にすることで、リチウム2,2,6,6−テトラメチルピペリジドのニトリル基への付加反応を顕著に抑制できるという利点がある。   The alkali metal salt can be used at 0.5 equivalent or more with respect to lithium 2,2,6,6-tetramethylpiperidide. Preferably it is 0.8-1.5 equivalent with respect to lithium 2,2,6,6-tetramethylpiperidide. By setting it within this range, there is an advantage that the addition reaction of lithium 2,2,6,6-tetramethylpiperidide to the nitrile group can be remarkably suppressed.

上記リチウム2,2,6,6−テトラメチルピペリジドは、例えば、2,2,6,6−テトラメチルピペリジンを含有する有機溶媒(例えば、THF、 ジエチルエーテル、メチル−t−ブチルエーテル、シクロペンチルメチルエーテル、トルエンなど)などに、C1〜C6のアルキルリチウムを添加することで形成することができる。C1〜C6のアルキルリチウムは、ヘキサン等の有機溶媒の溶液として滴下することが好ましい。さらにC1〜C6のアルキルリチウムの添加は、冷却下で行うことがさらに好ましい。より具体的には、2,2,6,6−テトラメチルピペリジンのTHF溶液にn−ブチルリチウムを添加することによりリチオ化し調製する方法が例示される。調製後のリチウム2,2,6,6−ピペリジドは溶液に完全に溶解している必要は無く、リチウム2,2,6,6−テトラメチルピペリジドの結晶を含むスラリー溶液として反応に使用することもできる。2,2,6,6−テトラメチルピペリジンを含有する有機溶媒にC1〜C6のアルキルリチウムを添加してリチウム2,2,6,6−テトラメチルピペリジドを調製する場合、2,2,6,6−テトラメチルピペリジンを含有する有機溶媒にアルカリ金属塩を共存させることもできる。アルカリ金属塩共存下に調製したリチウム2,2,6,6−テトラメチルピペリジドは、そのまま次のトリアルコキシボランとの反応に供することができる。   The lithium 2,2,6,6-tetramethylpiperidide is, for example, an organic solvent containing 2,2,6,6-tetramethylpiperidine (for example, THF, diethyl ether, methyl-t-butyl ether, cyclopentyl). It can be formed by adding C1-C6 alkyl lithium to methyl ether, toluene, etc.). C1-C6 alkyl lithium is preferably added dropwise as a solution of an organic solvent such as hexane. Further, the addition of the C1-C6 alkyl lithium is more preferably performed under cooling. More specifically, a method of preparing by lithiation by adding n-butyllithium to a THF solution of 2,2,6,6-tetramethylpiperidine is exemplified. The prepared lithium 2,2,6,6-piperidide does not need to be completely dissolved in the solution, but is used in the reaction as a slurry solution containing lithium 2,2,6,6-tetramethylpiperidide crystals. You can also In the case of preparing lithium 2,2,6,6-tetramethylpiperidide by adding C1-C6 alkyllithium to an organic solvent containing 2,2,6,6-tetramethylpiperidine, An alkali metal salt can be allowed to coexist in an organic solvent containing 6,6-tetramethylpiperidine. Lithium 2,2,6,6-tetramethylpiperidide prepared in the presence of an alkali metal salt can be directly subjected to the reaction with the next trialkoxyborane.

トリアルコキシボラン(但し、アルコキシ基は炭素原子1〜6である)としては、ボロン酸合成に一般的に使用される、例えば、トリメトキシボラン、トリエトキシボラン、トリイソプロポキシボランが例示される。特に好ましい例としてトリイソプロポキシボランが例示される。   Examples of the trialkoxyborane (wherein the alkoxy group has 1 to 6 carbon atoms) include, for example, trimethoxyborane, triethoxyborane, and triisopropoxyborane that are generally used in boronic acid synthesis. A particularly preferred example is triisopropoxyborane.

一般式(1)で示される芳香族ニトリルを、アルカリ金属塩及びリチウム2,2,6,6−テトラメチルピペリジド存在下に、トリアルコキシボランと混合して、一般式(2)で示される2−シアノフェニルボロン酸を得る。   An aromatic nitrile represented by the general formula (1) is mixed with trialkoxyborane in the presence of an alkali metal salt and lithium 2,2,6,6-tetramethylpiperidide, and represented by the general formula (2). 2-cyanophenylboronic acid is obtained.

リチウム2,2,6,6−テトラメチルピペリジドは原料の一般式(1)で示される芳香族ニトリルに対して、例えば、0.9〜2モル比の間で使用できる。この範囲にすることで、高価な2,2,6,6−テトラメチルピペリジンの使用量を削減することができるという利点がある。   Lithium 2,2,6,6-tetramethylpiperidide can be used, for example, in a molar ratio of 0.9 to 2 with respect to the aromatic nitrile represented by the general formula (1). By using this range, there is an advantage that the amount of expensive 2,2,6,6-tetramethylpiperidine used can be reduced.

トリアルコキシボランは一般式(1)で示される芳香族ニトリルに対して0.9〜5モル比の間で使用できる。この範囲にすることで、ニトリル化合物からボロン酸への転化率を向上させることができるという利点がある。   The trialkoxyborane can be used at a molar ratio of 0.9 to 5 with respect to the aromatic nitrile represented by the general formula (1). By setting it within this range, there is an advantage that the conversion rate from the nitrile compound to the boronic acid can be improved.

2−シアノフェニルボロン酸誘導体合成の際の基質の添加順序は特に限定されないが、リチウム2,2,6,6−テトラメチルピペリジド及びオルトリチオ体の熱安定性を考慮すると、調製したリチウム2,2,6,6−テトラメチルピペリジド溶液にトリアルコキシボラン及び芳香族ニトリルを順次または同時添加する方法が好ましい。   The order of addition of the substrate in the synthesis of the 2-cyanophenylboronic acid derivative is not particularly limited, but considering the thermal stability of lithium 2,2,6,6-tetramethylpiperidide and orthotrithio, the prepared lithium 2 A method in which trialkoxyborane and an aromatic nitrile are sequentially or simultaneously added to a 2,2,6,6-tetramethylpiperidide solution is preferred.

反応に使用する溶媒は、活性プロトンを有していない溶媒から適宜選択することができる。無溶媒でも反応可能であるほか、トルエン等の芳香族炭化水素類、ジエチルエーテル、t−ブチルメチルエーテル、ジイソプロピルエーテル、THF等のエーテル類が例示される。特に好ましい例としてTHFが挙げられる。   The solvent used for the reaction can be appropriately selected from solvents having no active protons. In addition to the reaction without solvent, examples include aromatic hydrocarbons such as toluene, ethers such as diethyl ether, t-butyl methyl ether, diisopropyl ether, and THF. A particularly preferred example is THF.

反応温度としては、−100℃〜0℃の範囲が例示される。温度が−100℃より低いと反応が遅くなり、また温度が0℃より高いと副生成物(1−フェニル−1−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミン)が多くなる為、好ましくない。特に好ましい温度として−80℃〜−20℃が例示できる。反応時間は、例えば、2〜5時間の範囲である。但し、この範囲に限定される意図ではなく、反応の進行度合等を考慮の上適宜決定できる。   Examples of the reaction temperature include a range of −100 ° C. to 0 ° C. When the temperature is lower than −100 ° C., the reaction is slow, and when the temperature is higher than 0 ° C., a by-product (1-phenyl-1- (2,2,6,6-tetramethylpiperidin-1-yl) methylimine) Is unfavorable because of the increase in A particularly preferred temperature is -80 ° C to -20 ° C. The reaction time is, for example, in the range of 2 to 5 hours. However, it is not intended to be limited to this range, and can be appropriately determined in consideration of the progress of the reaction and the like.

一般式(2)で示される2−シアノフェニルボロン酸(反応生成物)は、そのままあるいは適宜精製した後に次の反応(用途)に使用することができる。例えば、後述するエステル誘導体の製造に用いることができる。   The 2-cyanophenylboronic acid (reaction product) represented by the general formula (2) can be used in the next reaction (use) as it is or after being appropriately purified. For example, it can be used for the production of an ester derivative described later.

<一般式(3)の2−シアノフェニルボロン酸エステル誘導体の製造方法>
本発明は、上記本発明の一般式(2)で示される2−シアノフェニルボロン酸誘導体の製造方法を実施する工程、及びこの工程で得られた一般式(2)で示される2−シアノフェニルボロン酸誘導体をアルコールと反応させてエステル化する工程を含む、一般式(3)で示されるエステル誘導体の製造方法を包含する。
<Method for producing 2-cyanophenylboronic acid ester derivative of general formula (3)>
The present invention includes a step of carrying out the method for producing a 2-cyanophenylboronic acid derivative represented by the general formula (2) of the present invention, and a 2-cyanophenyl represented by the general formula (2) obtained in this step. It includes a method for producing an ester derivative represented by the general formula (3), which comprises a step of esterifying a boronic acid derivative with an alcohol.

一般式(3)におけるRに関しては、炭素原子数1〜8の直鎖又は分岐アルキル基又はアリル基を表す。また、環状でも良く、具体的には、例えば、メチル基、エチル基、イソプロピル基、酸素を含み、環状の1,3−プロパンジオールエステル、ネオペンチルグリコールエステル、カテコールエステル、ピナコールエステル等が挙げられる。 R 5 in the general formula (3) represents a linear or branched alkyl group having 1 to 8 carbon atoms or an allyl group. Further, it may be cyclic, and specifically includes, for example, a methyl group, ethyl group, isopropyl group, oxygen, and cyclic 1,3-propanediol ester, neopentyl glycol ester, catechol ester, pinacol ester and the like. .

上記本発明の一般式(2)で示される2−シアノフェニルボロン酸誘導体の製造方法により得られた2−シアノフェニルボロン酸誘導体は、単離又は単離することなく水に非混和性の有機溶媒(例えば:酢酸エチル、ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、塩化メチレン等)に溶解した状態で、C1〜C8のモノアルコール又はジオールと反応させてエステル化することができる。エステル化反応は、通常のエステル化方法で実施できる。   The 2-cyanophenylboronic acid derivative obtained by the method for producing a 2-cyanophenylboronic acid derivative represented by the general formula (2) of the present invention is an organic compound that is immiscible with water without isolation or isolation. It can be esterified by reacting with a C1-C8 monoalcohol or diol in a state dissolved in a solvent (eg: ethyl acetate, diethyl ether, diisopropyl ether, t-butyl methyl ether, cyclopentyl methyl ether, methylene chloride, etc.). it can. The esterification reaction can be carried out by a usual esterification method.

モノアルコールの例としては、メタノール、エタノール、イソプロパノールを挙げることができ、ジオールの例としては、1,3−プロパンジオール、カテコール、ピナコール等を挙げることができる。モノアルコールを用いれば、一般式(3)におけるRは、これらのエステル体はアルキル基又はアリル基であり、ジオールを用いれば、一般式(3)におけるRは、環状のエステルとなる。一般式(2)で示される2−シアノフェニルボロン酸誘導体に対するモノアルコール又はジオールの使用量は、例えば、0.8〜2.0当量の範囲とすることができ、好ましくは0.9〜1.5当量の範囲とすることができる。 Examples of the monoalcohol include methanol, ethanol, and isopropanol, and examples of the diol include 1,3-propanediol, catechol, pinacol, and the like. When monoalcohol is used, R 5 in general formula (3) is an alkyl group or allyl group, and when diol is used, R 5 in general formula (3) is a cyclic ester. The usage-amount of the monoalcohol or diol with respect to the 2-cyanophenyl boronic acid derivative shown by General formula (2) can be made into the range of 0.8-2.0 equivalent, for example, Preferably it is 0.9-1 .5 equivalent range.

反応温度及び時間には特に制限はないが、例えば、50℃以下の範囲、好ましくは、15〜25℃で1分以上、好ましくは1分〜10時間の範囲、さらに好ましくは10分〜5時間の範囲で実施すことができる。   Although there is no restriction | limiting in particular in reaction temperature and time, For example, the range of 50 degrees C or less, Preferably, it is 1 minute or more at 15-25 degreeC, Preferably it is the range of 1 minute-10 hours, More preferably, it is 10 minutes-5 hours It can be implemented in the range.

以下実施例にて、本発明の効果を示すが、本発明はこの実施例に限定されるものではない。   The effects of the present invention will be described below with reference to examples, but the present invention is not limited to these examples.

<分析条件>
液体クロマトグラフィー分析
試料溶液:2−シアノフェニルボロン酸の濃度が1mg/1ml以下の濃度となるように、サンプルを水/アセトニトリル=40:60(V/V)混合溶液に溶解した。
<Analysis conditions>
Liquid Chromatographic Analysis Sample Solution: The sample was dissolved in a mixed solution of water / acetonitrile = 40: 60 (V / V) so that the concentration of 2-cyanophenylboronic acid was 1 mg / 1 ml or less.

装置:東ソー高圧グラジエントシステム (東ソー株式会社製)
検出器:UV−8020 (東ソー株式会社製)
カラム:YMC−Pack Pro C18 RS(4.6mmφ×150mmL)
温度:40℃
移動相:A液: 水/アセトニトリル/70%過塩素酸(900/100/1 V/V/V)
B液:水/アセトニトリル/70%過塩素酸(100/900/1 V/V/V)
グラジエント法:B液 0分/5%→20分/5%→40分/100%→50分/100%
Equipment: Tosoh High Pressure Gradient System (manufactured by Tosoh Corporation)
Detector: UV-8020 (manufactured by Tosoh Corporation)
Column: YMC-Pack Pro C18 RS (4.6 mmφ × 150 mmL)
Temperature: 40 ° C
Mobile phase: Liquid A: water / acetonitrile / 70% perchloric acid (900/100/1 V / V / V)
Liquid B: water / acetonitrile / 70% perchloric acid (100/900/1 V / V / V)
Gradient method: Liquid B 0 min / 5% → 20 min / 5% → 40 min / 100% → 50 min / 100%

流量:1.0ml/min
検出波長:UV 230nm
注入量:10μl
Flow rate: 1.0 ml / min
Detection wavelength: UV 230nm
Injection volume: 10 μl

定量分析条件
液体クロマトグラフィー分析:分析条件は上記と同等
試料溶液:酸洗浄後の有機相約400mgをアセトニトリル50mlに溶解した。
検量線作成:濃度既知の2−シアノフェニルボロン酸サンプルを用いて濃度高配をつけた検量線を作成(分析4点)
Quantitative analysis conditions Liquid chromatography analysis: analysis conditions are the same as above Sample solution: About 400 mg of the organic phase after acid washing was dissolved in 50 ml of acetonitrile.
Calibration curve creation: Create a calibration curve with high concentration using 2-cyanophenylboronic acid samples with known concentrations (analysis 4 points)

定量方法:試料溶液を分析後、作成した検量線から有機相濃度を算出し、有機相重量から2−シアノフェニルボロン酸の収率を算出する。     Quantification method: After analyzing the sample solution, the organic phase concentration is calculated from the prepared calibration curve, and the yield of 2-cyanophenylboronic acid is calculated from the weight of the organic phase.

実施例1 2−シアノフェニルボロン酸の合成例
窒素置換した 300mlフラスコ中で、2,2,6,6−テトラメチルピペリジン7.88g(55.8mmol)、塩化リチウム2.77g(65.3mmol:2,2,6,6−テトラメチルピペリジンに対して1.17当量)にTHF100mlを加えたのち、−10℃で15%−n−ブチルリチウムヘキサン溶液24.2g(58.2mmol)を滴下してリチウム2,2,6,6−テトラメチルピペリジド溶液を調製した。この液を−50℃に冷却した後、トリイソプロポキシボラン10.93g(58.2mmol)を滴下し、続いてベンゾニトリル4.98g(48.3mmol)を滴下した後、同温度で3時間熟成した。反応液をHPLCで分析したところ、2−シアノフェニルボロン酸の面積%は98.6%、面積%で1.38%の1−フェニル−1−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミンの副生が確認された。この反応液を、3N−HCl38mlに添加し加水分解を行った。 酢酸エチル150mlを加えて攪拌した後、酸相を分離した。有機相を0.2N−HCl 50mlで洗浄を行い、得られた有機相溶液をHPLCを用いて2−シアノフェニルボロン酸の定量を行った結果、2−シアノフェニルボロン酸が収率95.0%得られていることを確認した。また、1−フェニル−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミンが面積%で0.45%含有していた。
Example 1 Synthesis Example of 2-Cyanophenylboronic Acid In a nitrogen-substituted 300 ml flask, 7.88 g (55.8 mmol) of 2,2,6,6-tetramethylpiperidine and 2.77 g (65.3 mmol) of lithium chloride: After adding 100 ml of THF to 1.17 equivalents of 2,2,6,6-tetramethylpiperidine), 24.2 g (58.2 mmol) of 15% -n-butyllithium hexane solution was added dropwise at -10 ° C. Lithium 2,2,6,6-tetramethylpiperidide solution was prepared. After cooling this solution to −50 ° C., 10.93 g (58.2 mmol) of triisopropoxyborane was added dropwise, followed by dropwise addition of 4.98 g (48.3 mmol) of benzonitrile, followed by aging at the same temperature for 3 hours. did. When the reaction solution was analyzed by HPLC, the area% of 2-cyanophenylboronic acid was 98.6%, and the area% was 1.38% 1-phenyl-1- (2,2,6,6-tetramethylpiperidine. By-product of -1-yl) methylimine was confirmed. This reaction solution was added to 38 ml of 3N HCl to conduct hydrolysis. After adding 150 ml of ethyl acetate and stirring, the acid phase was separated. The organic phase was washed with 50 ml of 0.2N HCl, and the resulting organic phase solution was quantified with 2-cyanophenylboronic acid using HPLC. As a result, the yield of 2-cyanophenylboronic acid was 95.0. % Was confirmed. Further, 1-phenyl- (2,2,6,6-tetramethylpiperidin-1-yl) methylimine contained 0.45% by area%.

実施例2〜7(2−シアノフェニルボロン酸の合成)
実施例1において、アルカリ金属塩、アルカリ金属塩の当量を変えたこと以外は実施例1と同様に反応を行った。その結果を表1に示す。また、比較例1についても表1に示す。
Examples 2 to 7 (Synthesis of 2-cyanophenylboronic acid)
In Example 1, the reaction was performed in the same manner as in Example 1 except that the equivalents of alkali metal salt and alkali metal salt were changed. The results are shown in Table 1. Comparative Example 1 is also shown in Table 1.

実施例8 2−シアノフェニルボロン酸エステルの合成
実施例1で得られた有機相に1,3−プロパンジオール3.69g(48.5mmol)を添加し、室温で1時間撹拌した。遊離した水相を分離した後エバポレーターにて溶媒を留去した。残留油状物にトルエン2ml、ヘプタン120mlを加えて、結晶を析出させた。得られた結晶をヘプタン30mlで洗浄後、乾燥を実施し、2−シアノフェニルボロン酸の1,3−プロパンジオールエステル(2−(1,3,2−ジオキサボリナン−2−イル)ベンゾニトリル)7.44g(収率:82.4%)を得た。この結晶には、1−フェニル−1−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミンが0.40%含有していた。
Example 8 Synthesis of 2-cyanophenylboronic acid ester To the organic phase obtained in Example 1, 3.69 g (48.5 mmol) of 1,3-propanediol was added and stirred at room temperature for 1 hour. After the separated aqueous phase was separated, the solvent was distilled off with an evaporator. To the residual oily substance, 2 ml of toluene and 120 ml of heptane were added to precipitate crystals. The obtained crystals were washed with 30 ml of heptane and then dried to obtain 1,3-propanediol ester of 2-cyanophenylboronic acid (2- (1,3,2-dioxaborin-2-yl) benzonitrile) 7 .44 g (yield: 82.4%) was obtained. This crystal contained 0.40% of 1-phenyl-1- (2,2,6,6-tetramethylpiperidin-1-yl) methylimine.

比較例2:リチウム2,2,6,6−テトラメチルピペリジンと及びトリイソブチルアルミニウム(非特許文献2の方法でボロン酸合成を実施)
窒素置換した 300mlフラスコ中で、2,2,6,6−テトラメチルピペリジン7.53g(53.3mmol)、をTHF100mlに溶解したのち、−78℃で15%−n−ブチルリチウムヘキサン溶液20.8g(48.5mmol)を滴下し後、0℃にて30分熟成した。熟成後、−78℃に冷却した後、28%トリイソブチルアルミニウムヘキサン溶液35.6g(50.9mmol)を滴下し、滴下後、0℃にて30分熟成した。熟成後、−78℃に冷却してベンゾニトリル2.5g(24.2mmol)を滴下し、2時間熟成後、トリイソプロポキシボラン17.8g(94.6mmol)を加え、−78℃にて15分、−40℃にて2時間、室温にて40時間熟成したものの、2−シアノフェニルボロン酸の生成は確認されなかった。
Comparative Example 2: Lithium 2,2,6,6-tetramethylpiperidine and triisobutylaluminum (boronic acid synthesis was performed by the method of Non-Patent Document 2)
In a 300 ml flask purged with nitrogen, 7.53 g (53.3 mmol) of 2,2,6,6-tetramethylpiperidine was dissolved in 100 ml of THF, and then 20% of 15% n-butyllithium hexane solution at −78 ° C. After 8 g (48.5 mmol) was added dropwise, the mixture was aged at 0 ° C. for 30 minutes. After aging, the mixture was cooled to −78 ° C., and then 35.6 g (50.9 mmol) of a 28% triisobutylaluminum hexane solution was added dropwise, followed by aging at 0 ° C. for 30 minutes. After aging, the mixture was cooled to −78 ° C. and 2.5 g (24.2 mmol) of benzonitrile was added dropwise. After aging for 2 hours, 17.8 g (94.6 mmol) of triisopropoxyborane was added, Although it was aged at -40 ° C for 2 hours and at room temperature for 40 hours, the formation of 2-cyanophenylboronic acid was not confirmed.

比較例3:リチウムマグネシウムジ−2,2,6,6−テトラメチルピペリジド(特許文献3の方法でボロン酸合成を実施)
窒素置換した200mlフラスコ中に、削状マグネシウム0.77g(31.7mmol)、THF65ml加えた。1,2−ジクロロエタン3.17g(32.0mmol)を滴下し、そして反応物を全てのマグネシウムが消費されるまで、約3時間撹拌した。窒素置換した他の300mlフラスコに2,2,6,6−テトラメチルピペリジン9.04g(64.0mmol)及びTHF(30ml)を入れた。この溶液を−40℃に冷やし、そして15%−n−ブチルリチウムヘキサン溶液27.3g(63.9mmol)を滴下にした。添加後、この反応液を0℃まで暖めて、同じ温度で30分撹拌した。MgCl溶液を0℃にてリチウム−2,2,6,6−テトラメチルピペリジド溶液に滴下して、反応混合物を0℃で30分間撹拌し、それから室温まで暖めてさらに1時間撹拌した。溶液を減圧下除去し、その後、塩類が完全に溶解するまで撹拌しながら、THF100mlを加えた。
Comparative Example 3: Lithium magnesium di-2,2,6,6-tetramethylpiperidide (boronic acid synthesis by the method of Patent Document 3)
In a 200 ml flask purged with nitrogen, 0.77 g (31.7 mmol) of ground magnesium and 65 ml of THF were added. 3.17 g (32.0 mmol) of 1,2-dichloroethane was added dropwise and the reaction was stirred for about 3 hours until all the magnesium was consumed. In another 300 ml flask purged with nitrogen, 9.04 g (64.0 mmol) of 2,2,6,6-tetramethylpiperidine and THF (30 ml) were placed. The solution was cooled to −40 ° C. and 27.3 g (63.9 mmol) of 15% -n-butyllithium hexane solution was added dropwise. After the addition, the reaction was warmed to 0 ° C. and stirred at the same temperature for 30 minutes. The MgCl 2 solution was added dropwise to the lithium-2,2,6,6-tetramethylpiperidide solution at 0 ° C. and the reaction mixture was stirred at 0 ° C. for 30 minutes, then warmed to room temperature and stirred for an additional hour. . The solution was removed under reduced pressure, and then 100 ml of THF was added with stirring until the salts were completely dissolved.

調製したリチウムマグネシウムジ−2,2,6,6−テトラメチルピペリジド−THF溶液を−20℃でベンゾニトリル3.0g(29.1mmol)を滴下し、−20℃にて3時間熟成後、トリメトキシボラン4.54g(43.7mmol)を同じ温度で滴下した。滴下後、−20℃で1時間熟成後、室温にて3時間熟成した。この反応液を3N−HCl50mlに添加し加水分解を行った。酢酸エチル50mlで3回抽出し得られた有機相溶液をHPLCを用いて2−シアノフェニルボロン酸の定量を行った結果、2−シアノフェニルボロン酸が66.0%で得られていることを確認した。また、1−フェニル−(2,2,6,6−テトラメチルピペリジン−1−イル)メチルイミンを0.27%含有していた。
The prepared lithium magnesium di-2,2,6,6-tetramethylpiperidide-THF solution was added dropwise with 3.0 g (29.1 mmol) of benzonitrile at −20 ° C. and aged at −20 ° C. for 3 hours. , 4.54 g (43.7 mmol) of trimethoxyborane was added dropwise at the same temperature. After dropping, the mixture was aged at -20 ° C for 1 hour and then aged at room temperature for 3 hours. This reaction solution was added to 50 ml of 3N HCl to conduct hydrolysis. The organic phase solution obtained by extracting three times with 50 ml of ethyl acetate was subjected to quantification of 2-cyanophenylboronic acid using HPLC. As a result, it was found that 2-cyanophenylboronic acid was obtained at 66.0%. confirmed. Moreover, it contained 0.27% of 1-phenyl- (2,2,6,6-tetramethylpiperidin-1-yl) methylimine.

本発明によりニトリル基含有芳香族ボロン酸が安価に得られるので、医薬、電子材料の原料として有用である。   Since the nitrile group-containing aromatic boronic acid can be obtained at low cost according to the present invention, it is useful as a raw material for pharmaceuticals and electronic materials.

Claims (8)

(式中、R1、R2、R3及びR4は、各々同一でもよく異なっていてもよい、水素、C1〜C12のアルキル基、C6〜C12のアリール基及びC7〜C12のアラルキル基からなる群から選ばれる炭化水素基、又はハロゲン原子である。)で示される芳香族ニトリルを、アルカリ金属塩及びリチウム2,2,6,6−テトラメチルピペリジドの存在下、トリアルコキシボラン(但し、アルコキシ基は炭素原子1〜6である)と反応させることを含む、一般式(2):
(式中、R1、R2、R3及びR4は、前記と同義である)
で示される2−シアノフェニルボロン酸誘導体の製造法。
Wherein R 1 , R 2 , R 3 and R 4 may be the same or different from each other from hydrogen, a C1-C12 alkyl group, a C6- C12 aryl group and a C7- C12 aralkyl group. An aromatic nitrile represented by a hydrocarbon group or halogen atom selected from the group consisting of trialkoxyborane (in the presence of an alkali metal salt and lithium 2,2,6,6-tetramethylpiperidide) However, the alkoxy group has 1 to 6 carbon atoms), and the reaction with the general formula (2):
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above)
The manufacturing method of 2-cyanophenyl boronic acid derivative shown by these.
前記リチウム2,2,6,6−テトラメチルピペリジドは、2,2,6,6−テトラメチルピペリジン及びC1〜C6のアルキルリチウムから調製される、請求項1に記載の製造法。 The process according to claim 1, wherein the lithium 2,2,6,6-tetramethylpiperidide is prepared from 2,2,6,6-tetramethylpiperidine and a C1-C6 alkyllithium. 前記C1〜C6のアルキルリチウムが、n−ブチルリチウムである、請求項2に記載の製造法。 The manufacturing method of Claim 2 whose said C1-C6 alkyl lithium is n-butyllithium. 前記C1〜C6のアルキルリチウムは、2,2,6,6−テトラメチルピペリジンに対して0.8以上1.1モル以下で使用される、請求項2又は3に記載の製造法。 The production method according to claim 2 or 3, wherein the C1-C6 alkyl lithium is used in an amount of 0.8 to 1.1 mol with respect to 2,2,6,6-tetramethylpiperidine. 前記アルカリ金属塩がアルカリ金属のハロゲン化物である、請求項1〜4のいずれか1項に記載の製造法。 The manufacturing method of any one of Claims 1-4 whose said alkali metal salt is a halide of an alkali metal. アルカリ金属塩はリチウム2,2,6,6−テトラメチルピペリジドに対して0.5当量以上で使用される、請求項2〜5のいずれか1項に記載の製造法。 The method according to any one of claims 2 to 5, wherein the alkali metal salt is used in an amount of 0.5 equivalent or more based on lithium 2,2,6,6-tetramethylpiperidide. 請求項1〜6のいずれか1項に記載の方法を実施して前記一般式(2)で示される2−シアノフェニルボロン酸誘導体を得る工程、及び
前記工程で得られた一般式(2)で示される2−シアノフェニルボロン酸誘導体をC1〜C8のモノアルコール又はジオールと反応させてエステル化する工程を含む、一般式(3):
(式中R、R、R及びRは前記と同義であり、Rは炭素数1〜8のアルキル基であり、互いに結合して環を形成していても良い)
で示される2−シアノフェニルボロン酸エステル誘導体の製造法。
The process of obtaining the 2-cyanophenyl boronic acid derivative shown by the said General formula (2) by implementing the method of any one of Claims 1-6, and the general formula (2) obtained at the said process A step of reacting a C1-C8 monoalcohol or diol with a 2-cyanophenylboronic acid derivative represented by the general formula (3):
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above, R 5 is an alkyl group having 1 to 8 carbon atoms, and may be bonded to each other to form a ring)
The manufacturing method of 2-cyanophenyl boronic acid ester derivative shown by these.
ジオールが1,3−プロパンジオールである事を特徴とする請求項7に記載の製造法。   The process according to claim 7, wherein the diol is 1,3-propanediol.
JP2014036064A 2014-02-26 2014-02-26 Method for producing 2-cyanophenylboronic acid derivative Active JP6235932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036064A JP6235932B2 (en) 2014-02-26 2014-02-26 Method for producing 2-cyanophenylboronic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036064A JP6235932B2 (en) 2014-02-26 2014-02-26 Method for producing 2-cyanophenylboronic acid derivative

Publications (2)

Publication Number Publication Date
JP2015160823A JP2015160823A (en) 2015-09-07
JP6235932B2 true JP6235932B2 (en) 2017-11-22

Family

ID=54184168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036064A Active JP6235932B2 (en) 2014-02-26 2014-02-26 Method for producing 2-cyanophenylboronic acid derivative

Country Status (1)

Country Link
JP (1) JP6235932B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964046B (en) * 2019-12-17 2023-05-05 安徽英特美科技有限公司 Synthesis method of 2-nitrobenzoic acid pinacol ester

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002689A (en) * 1988-02-25 1991-03-26 Lithium Corporation Of America Preparation of organometallic amide compositions
JP3902801B2 (en) * 1994-03-29 2007-04-11 エーザイ・アール・アンド・ディー・マネジメント株式会社 Biphenyl derivatives
EP1810974A1 (en) * 2006-01-18 2007-07-25 Ludwig-Maximilians-Universität München Preparation and use of magnesium amides
JP5209183B2 (en) * 2006-04-28 2013-06-12 東ソー・ファインケム株式会社 Method for producing 2-cyanophenylboronic acid or ester thereof with reduced impurities
KR101750042B1 (en) * 2009-02-13 2017-06-22 루드비히-막시밀리안스-우니버지테트 뮌헨 Production and use of zinc amides
ITMI20121390A1 (en) * 2012-08-06 2014-02-07 F I S Fabbrica Italiana Sint P A PROCEDURE FOR THE PREPARATION OF 2-CYANOPHENYLBORONIC ACID AND ITS ESTERS, INTERMEDIATE OF THE PERAMPANEL OR E2040

Also Published As

Publication number Publication date
JP2015160823A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
Zhu et al. Visible-light-mediated direct difluoromethylation of alkynoates: synthesis of 3-difluoromethylated coumarins
He et al. Copper-catalyzed di-and trifluoromethylation of a, b-unsaturated carboxylic acids: a protocol for vinylic fluoroalkylations
Jiang et al. Copper-mediated oxidative difluoromethylenation of aryl boronic acids with α-silyldifluoromethylphosphonates: a new method for aryldifluorophosphonates
Varala et al. Cesium salts in organic synthesis: A Review
CN106008166A (en) Industrialized production method of chiral 2- chloro-1-(2,4-dichlorophenyl) ethanol
CN102633836B (en) Method for synthesizing bis(diphenylphosphino)-alkane
JP6235932B2 (en) Method for producing 2-cyanophenylboronic acid derivative
JP5209183B2 (en) Method for producing 2-cyanophenylboronic acid or ester thereof with reduced impurities
CN104788480A (en) A method of synthesizing aminophenylboronic acid pinacol ester
EP3196183B1 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
JP2008239601A (en) Method for producing lactide compound
EP2522648B1 (en) Process for producing difluorocyclopropane compound
CN104592175A (en) Preparation method of 2,5-dialkoxyl dihydrofuran compound
JP5201620B2 (en) Phosphonium ionic liquid, method for producing biaryl compound and method for using ionic liquid
JP2009155206A (en) Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
Pajkert et al. TiCl4 and Grignard reagent-promoted ring-opening reactions of various epoxides: synthesis of γ-hydroxy-α, α-difluoromethylenephosphonates
JP6894608B2 (en) New Cyclic Urea Derivative-Hydrogen Bromide
CN105102411A (en) Method for producing 1,1,1,5,5,5-hexafluoroacetylacetone
JP2010195745A (en) METHOD FOR PRODUCING gamma-KETOACETAL COMPOUND AND PYRROLE DERIVATIVE
CN104395326A (en) Method for producing borinic acid derivative, and novel borinic acid derivative
Conner Development of Transition-Metal Catalyzed Methods Utilizing Silicon-Containing Compounds and Nitroalkanes
EP3415491B1 (en) Method for producing phenoxyethanol derivative
Fukushi et al. Lewis Acid-Catalyzed Selective Mono-fluorination of Malonates Using Me-NFSI
JP5623103B2 (en) Process for producing N-acyl- (2S) -oxycarbonyl- (5R) -phosphonylpyrrolidine derivatives
JP6302378B2 (en) Process for producing fluorobenzenes by defluorination of hexafluorobenzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171027

R150 Certificate of patent or registration of utility model

Ref document number: 6235932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250