WO2023080193A1 - Method for producing indole compound - Google Patents

Method for producing indole compound Download PDF

Info

Publication number
WO2023080193A1
WO2023080193A1 PCT/JP2022/041133 JP2022041133W WO2023080193A1 WO 2023080193 A1 WO2023080193 A1 WO 2023080193A1 JP 2022041133 W JP2022041133 W JP 2022041133W WO 2023080193 A1 WO2023080193 A1 WO 2023080193A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
production method
solvent
toluene
Prior art date
Application number
PCT/JP2022/041133
Other languages
French (fr)
Japanese (ja)
Inventor
大希 山口
佑司 小澤
紘久 齋藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023080193A1 publication Critical patent/WO2023080193A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to a method for producing an indole compound.
  • Indole compounds are useful as various fine chemical intermediates, including bioactive substances such as pharmaceuticals and agricultural chemicals.
  • Various methods, such as those disclosed in Patent Documents 1 to 8, are known as methods for producing the indole compound.
  • the yield may be low in the reaction in water and a polar solvent or in the presence of a basic compound.
  • An object of one aspect of the present invention is to provide a method for producing an indole compound in which the target product is obtained in high yield in the indole cyclization reaction using sodium dithionite.
  • a method for producing an indole compound according to one aspect of the present invention provides a compound represented by the following formula (1) under heating in the absence of a solvent or in an organic solvent, an acidic compound and An indole compound represented by the following formula (2) is produced by reacting with sodium dithionite.
  • R 1 represents methyl, methoxy, or ethoxy
  • R 2 represents a halogen atom
  • n represents an integer of 1, 2, 3 or 4.
  • a method for producing an indole compound provides a compound represented by the following formula (1), in the absence of a solvent or in an organic solvent, under heating, to an acidic
  • R 1 represents methyl, methoxy, or ethoxy
  • R 2 represents a halogen atom
  • n is 1, 2, 3; or represents an integer of 4.
  • the target indole compound can be obtained in high yield in the indole cyclization reaction using sodium dithionite.
  • a compound represented by the following formula (1) (hereinafter also referred to as “compound (1)”) is used as a starting material, and the compound represented by the following formula (2) is It is a method for producing an indole compound (hereinafter also referred to as “compound (2)").
  • R 1 represents methyl, methoxy, or ethoxy
  • R 2 represents a halogen atom
  • n is 1, 2, 3; or represents an integer of 4.
  • the following compound (2) is produced using the following compound (1) as a starting material, and the following formula (3) is produced using compound (2) as a starting material. ) (hereinafter also referred to as “compound (3)”).
  • R 1 represents methyl, methoxy, or ethoxy
  • R 2 represents a halogen atom
  • n is 1, 2, 3; or represents an integer of 4.
  • the first production method in the embodiment of the present invention is to produce compound (2) by reacting compound (1) with an acidic compound and sodium dithionite under heating in the absence of a solvent or in an organic solvent. It is a method for producing an indole compound.
  • Compound (1) has a keto-enol tautomer represented by formula (1′) or formula (1′′). The structures of formulas (1′) and (1′′) are shown below. Compound (1) is observed as a mixture of keto-enol tautomers in conventional 1 H-NMR and the like. As used herein, compound (1) also represents one or both of these isomers unless otherwise specified.
  • R 1 represents methyl, methoxy, or ethoxy
  • R 2 represents a halogen atom
  • n represents an integer of 1, 2, 3 or 4.
  • a halogen atom may be fluorine, chlorine, bromine or iodine, and when n is 2 or more, the halogen atoms of R 2 may be the same or different.
  • Compound (1) is preferably a compound represented by the following formula (1A) (hereinafter also referred to as “compound (1A)”).
  • compound (1A) is preferably a compound represented by the following formula (2A) (hereinafter referred to as "compound ( 2A)”).
  • R1 represents methyl, methoxy, or ethoxy
  • R2 represents a halogen atom.
  • a halogen atom is preferably a fluorine atom, a chlorine atom or a bromine atom.
  • acids can be used as the acidic compound.
  • acids include mineral acids, aliphatic carboxylic acids and organic sulfonic acids.
  • mineral acids include sulfuric acid, nitric acid, phosphoric acid and hydrochloric acid.
  • aliphatic carboxylic acids include formic acid, acetic acid, trifluoroacetic acid and propionic acid.
  • organic sulfonic acids include methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and toluenesulfonic acid.
  • the acidic compound is preferably acetic acid or propionic acid from the viewpoint of increasing the yield of compound (2).
  • the amount of the acidic compound used in the first production method can be determined as appropriate within the range in which compound (2) is produced in the first production method.
  • the amount of the acidic compound used in the first production method may be 0.01 to 50 molar equivalents relative to compound (1), and from the viewpoint of increasing the yield of compound (2), 0.1 to 30 molar equivalents. It is preferably a molar equivalent, more preferably 5 to 25 molar equivalents, even more preferably 7.5 to 21 molar equivalents, and even more preferably 9 to 15 molar equivalents.
  • Sodium dithionite acts as a reducing agent in the first production method.
  • the amount of sodium dithionite to be used in the first production method can be appropriately determined within the range in which compound (2) is produced in the first production method.
  • the amount of sodium dithionite used in the first production method may be 1 to 10 molar equivalents relative to compound (1), and from the viewpoint of increasing the yield of compound (2), 2 to 10 molar equivalents. , more preferably 2 to 5 molar equivalents, even more preferably 2 to 3 molar equivalents.
  • components other than the components described above may be further added to the reaction system within the range that compound (2) is produced.
  • One or more other components may be used as long as the compound (2) is produced and the effects of the other components are obtained.
  • the reaction in the first production method may be carried out in an organic solvent.
  • the organic solvent preferably has a boiling point at which the reaction temperature in the first production method can be achieved from the viewpoint of sufficiently advancing the reaction in the first production method.
  • organic solvents include aromatic hydrocarbon solvents and dimethylsulfoxide.
  • the aromatic hydrocarbon solvent is the solvent in the synthesis reaction in the first production method.
  • One or more aromatic hydrocarbon solvents may be used.
  • aromatic hydrocarbon solvents include benzene, toluene, ortho-xylene, meta-xylene, para-xylene, ethylbenzene, chlorobenzene, ortho-dichlorobenzene, meta-dichlorobenzene, para-dichlorobenzene, nitrobenzene and tetrahydronaphthalene.
  • the aromatic hydrocarbon solvent is preferably toluene, ortho-xylene or chlorobenzene from the viewpoint of increasing the yield of compound (2), and more preferably toluene.
  • the amount of the organic solvent used in the first production method may be determined as appropriate within the range in which compound (2) is produced.
  • the amount of the organic solvent used in the first production method may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, relative to 1 part by mass of compound (1). It is more preferably 7 parts by mass, more preferably 3 to 7 equivalents.
  • a base may be used together with an acidic compound.
  • One or more bases may be used. Examples of such bases include sodium formate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide and potassium hydroxide.
  • Combined use of the base can act favorably for reduction of compound (1).
  • the amount of the base used in the first production method may be 0.01 to 5 molar equivalents relative to compound (1), preferably 0.1 to 2 molar equivalents, and 0.2 to 1 Molar equivalents are more preferred.
  • the reaction temperature in the first production method can be appropriately determined within the range in which the compound (2) is produced under heating in the first production method. If the reaction temperature is too high, the components in the reaction mixture in the first production method may thermally decompose. From the viewpoint of reaction time and yield, the reaction temperature in the first production method is preferably 50° C. or higher, more preferably 70° C. or higher, and even more preferably 80° C. or higher. In addition, the reaction temperature in the first production method is preferably 150° C. or lower, more preferably 130° C. or lower, even more preferably 110° C. or lower, from the viewpoint of suppressing thermal decomposition. °C or less is even more preferable. In addition, the upper limit and the lower limit of the preferable reaction temperature can be combined arbitrarily.
  • the reaction in the first production method may contain additional conditions as long as compound (2) is produced in the first production method.
  • the reaction in the first production method is preferably carried out in an inert gas atmosphere from the viewpoint of suppressing the production of unintended by-products such as oxides.
  • the inert gas may be any gas that does not substantially exhibit activity with respect to the reagents and products in the reaction of the first production method.
  • examples of inert gases include nitrogen gas and noble gases. From the viewpoint of lower cost, the inert gas is preferably nitrogen gas.
  • the end point of the reaction in the first production method can be determined by a conventional method, such as analysis of the reaction solution.
  • the reaction mixture obtained in the first production method can be isolated by a conventional method.
  • a solution of the target compound (2) can be obtained by extracting the reaction mixture with an aromatic hydrocarbon such as toluene.
  • the second production method in the embodiment of the present invention is to produce compound (2) by reacting compound (1) with an acidic compound and sodium dithionite under heating in the absence of solvent or in an organic solvent. and a second step of producing compound (3) from compound (2).
  • R 1 represents methyl, methoxy, or ethoxy
  • R 2 represents a halogen atom
  • n is 1, 2, 3; or represents an integer of 4.
  • the first step is substantially the same as the first manufacturing method in the embodiment of the present invention described above.
  • the product of the first step may be isolated or subjected to the second step in the form of a solution to the extent that the second step, which is the next step, can be performed.
  • the second step is a step of deacetylating or deesterifying compound (2).
  • the second step includes heating compound (2) in the presence of water and an acidic or basic compound.
  • the amount of water to be used in the second step can be appropriately determined within the scope of performing the deacetylation or deesterification reaction of compound (2).
  • the amount of water used in the second step may be 1 to 50 parts by mass per 1 part by mass of compound (2).
  • the acidic compound in the second step is the same as the acidic compound in the first production method described above.
  • the acidic compound in the second step may be the same as or different from the acidic compound in the first production method.
  • the amount of the acidic compound to be used in the second step may be appropriately determined in consideration of the valence of the acid within the range where the deacetylation or deesterification reaction of compound (2) is achieved.
  • the amount of the acidic compound used may be 0.1 to 10 molar equivalents relative to compound (2) as the starting material in the second step. It is preferably ⁇ 5.5 molar equivalents, more preferably 3 to 5 molar equivalents.
  • bases can be used as the basic compound in the second step.
  • One or more bases may be used.
  • bases include lithium hydroxide, sodium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, lithium hydride, sodium hydride, potassium hydride, sodium methoxy sodium ethoxide, sodium isopropoxide and potassium-tert-butoxide.
  • the basic compound is preferably sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate from the viewpoint of operability and economic efficiency of the reaction.
  • the amount of the basic compound to be used in the second production method may be appropriately determined in consideration of the valence of the base within the range where the deacetylation or deesterification reaction of compound (2) is achieved.
  • the amount of the basic compound used in the second step is sodium hydroxide, it may be 0.1 to 10 molar equivalents relative to compound (2) as the starting material in the second step, It is preferably 3 to 9 molar equivalents, more preferably 3 to 7 molar equivalents.
  • the second step is performed by heating the reaction mixture. If the reaction temperature is too high, the components in the reaction mixture may thermally decompose. From the viewpoint of reaction time and yield, the reaction temperature in the second step is preferably 50 to 150°C.
  • the reaction temperature in the second step is preferably high from the viewpoint of sufficiently advancing the deacetylation or deesterification reaction, and preferably low from the viewpoint of suppressing the accompanying decomposition reaction.
  • the reaction temperature in the second step is preferably 90° C. or higher, more preferably 100° C. or higher, and even more preferably 110° C. or higher.
  • the reaction temperature is preferably 150° C. or lower, more preferably 140° C. or lower.
  • the upper and lower limits of the preferred reaction temperature can be combined arbitrarily.
  • an aromatic hydrocarbon as a solvent in the second step.
  • the aromatic hydrocarbon in the second step is the same as the aromatic hydrocarbon in the first production method described above.
  • the aromatic hydrocarbon in the second step may be the same as or different from the aromatic hydrocarbon in the first production method.
  • the aromatic hydrocarbon in the second step is preferably toluene.
  • the second step may include additional conditions to the extent that compound (3) is produced by the deacetylation or deesterification reaction of compound (2).
  • the second step may be performed in an inert gas atmosphere.
  • the endpoint of the reaction in the second step can also be determined by conventional methods, and compound (3) is extracted from the reaction mixture of the second step by conventional methods, for example extraction with an aromatic hydrocarbon such as toluene. can be isolated.
  • the second step can be carried out by a two-step reaction process as shown in the reaction scheme below.
  • R 1 is methoxy or ethoxy.
  • the second step is the hydrolysis reaction of the alkoxy of compound (2) and the decarboxylation of the compound represented by the above formula (4) (hereinafter also referred to as “compound (4)”) produced thereby. It can also be realized by a carbonic acid reaction.
  • hydrolysis reaction For the hydrolysis reaction, it is possible to employ known conditions that enable hydrolysis reaction at methoxy or ethoxy of R 1 .
  • the hydrolysis reaction can be carried out by heating in the presence of an acidic or basic compound in a solvent containing a polar solvent and water.
  • One or more polar solvents may be used, examples of which include lower alcohols.
  • Lower alcohols may be, for example, alcohols having up to 4 carbon atoms, examples of which include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol is included.
  • the solvent for the hydrolysis reaction may further contain an aromatic hydrocarbon from the viewpoint of stabilizing the reaction temperature.
  • the aromatic hydrocarbon in the dehydrolysis reaction is the same as the aromatic hydrocarbon mentioned above.
  • the aromatic hydrocarbon is preferably toluene from the viewpoint of stabilizing the reaction temperature.
  • the amount of each of the above components used in the hydrolysis reaction can be appropriately determined within the range in which the hydrolysis reaction can be achieved.
  • the acidic compound or basic compound is monovalent, it may be 0.1 to 10 molar equivalents, and 1 to 5 molar equivalents, relative to compound (2), which is the starting material for the hydrolysis reaction. is preferred.
  • the amount of water used in the solvent may be 1 to 50 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2).
  • the amount of the polar solvent used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2).
  • the amount of the aromatic hydrocarbon used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2).
  • the heating temperature in the hydrolysis reaction is preferably 50 to 150° C., more preferably 60 to 140° C., from the viewpoint of advancing the hydrolysis reaction and from the viewpoint of suppressing the decomposition of the components in the reaction mixture. is more preferred.
  • the heating temperature can be appropriately set for the same reason as the reaction temperature in the second step described above.
  • reaction product of the hydrolysis reaction (compound (4) above) can be isolated by neutralization of the reaction mixture, or can exist as a salt in the aqueous layer.
  • the compound (4) may be isolated or dissolved in the aqueous layer as a salt.
  • Decarboxylation reaction For the decarboxylation reaction, it is possible to adopt known conditions that can eliminate the carboxy of compound (4).
  • the decarboxylation reaction can be carried out by heating in the presence of an acidic or basic compound in a solvent comprising a polar solvent and water.
  • the polar solvent in the decarboxylation reaction is the same as the polar solvent in the hydrolysis reaction, and may be the same as or different from the polar solvent in the hydrolysis reaction. Further, the solvent for the decarboxylation reaction may further contain an aromatic hydrocarbon from the viewpoint of stabilizing the reaction temperature, as in the hydrolysis reaction, and the aromatic hydrocarbon is preferably toluene.
  • the amount of each of the above components used in the decarboxylation reaction can be appropriately determined within the range in which the decarboxylation reaction can be realized.
  • the acidic compound or basic compound is monovalent, it may be 0.1 to 10 molar equivalents relative to the above compound (4), which is the starting material for decarboxylation, and 0.5 to 7 molar equivalents. Molar equivalents are preferred.
  • the amount of water used in the solvent may be 1 to 50 parts by mass, preferably 3 to 10 parts by mass, per 1 part by mass of compound (2).
  • the amount of the polar solvent used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 5 parts by mass, per 1 part by mass of compound (2).
  • the amount of the aromatic hydrocarbon used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2).
  • reaction temperature in the decarboxylation reaction is preferably 50 to 150° C., more preferably 60 to 140° C., from the viewpoints of progressing the decarboxylation reaction and suppressing decomposition of components in the reaction mixture. is more preferred.
  • the reaction temperature in the decarboxylation reaction can be appropriately set for the same reason as the reaction temperature in the second step described above.
  • Compound (3) is produced by the decarboxylation reaction.
  • Compound (3) can be isolated from the reaction mixture by extraction with an aromatic hydrocarbon.
  • Both the hydrolysis reaction and the decarboxylation reaction use an acidic compound or a basic compound, and either the acidic compound or the basic compound may be used as long as the desired reaction proceeds.
  • a basic compound is preferably employed in the hydrolysis reaction, and an acidic compound is preferably employed in the decarboxylation reaction.
  • compound (1) as a starting material is reacted in the presence of sodium dithionite and an acidic compound in the absence of a solvent or in an organic solvent to give the desired 2-methyl-1H- An indole-3-carbonyl compound (compound (2)) is obtained in high yield.
  • compound (2) 2-methyl-1H- An indole-3-carbonyl compound
  • the first and second manufacturing methods described above do not require components containing heavy metals, so waste liquids and waste can be easily treated.
  • the above-mentioned first production method and second production method can be carried out at normal pressure, special equipment such as high pressure equipment is not required, and special operation for its operation is required. do not have.
  • the target compound (2) or compound (3) is produced by using ordinary equipment in the production of organic compounds in a usual manner. It can be produced in high yield.
  • the first production method and the second production method described above suppress the production of by-products and produce the target compound (2) or compound (3) with a high conversion rate and high purity. can be done.
  • compound (3) can be obtained from compound (1) in high yield by further applying a conventional deacetylation or deesterification technique.
  • the compound (2) to the compound (4 ) can give compound (3).
  • the compound (4) is converted into a solid by utilizing the difference in solubility between the raw material (compound (2)) and the product (compound (4)). Isolatable.
  • compound (4) can separate into the aqueous phase as a salt. Therefore, such a second step is advantageous from the viewpoint of facilitating separation of compound (2) and compound (4) and facilitating purification of compound (4).
  • the first production method in the embodiment of the present invention is to react compound (1) with an acidic compound and sodium dithionite under heating in the absence of solvent or in an organic solvent.
  • compound (2) is produced.
  • the second production method in the embodiment of the present invention comprises reacting compound (1) with an acidic compound and sodium dithionite under heating in the absence of a solvent or in an organic solvent to obtain compound (2). and a second step of producing compound (3) from compound (2).
  • the second step then includes heating compound (2) in the presence of water and an acidic or basic compound.
  • the target indole compound can be obtained in high yield in the indole cyclization reaction using sodium dithionite.
  • the acidic compound may be acetic acid or propionic acid. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the acidic compound may be acetic acid. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the organic solvent may be one or more selected from the group consisting of aromatic hydrocarbon solvents and dimethylsulfoxide. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the organic solvent may be an aromatic hydrocarbon solvent. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the aromatic hydrocarbon solvent may be toluene, ortho-xylene or chlorobenzene. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the first production method may be carried out in one or more organic solvents selected from the group consisting of toluene, ortho-xylene, chlorobenzene and dimethylsulfoxide. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the first production method may use toluene or ortho-xylene as a solvent. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the first production method may use toluene as a solvent. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
  • the reaction temperature may be 50-150°C. This configuration is much more effective from the viewpoint of suppressing thermal decomposition during the reaction and from the viewpoint of the balance between reaction time and yield.
  • the first production method in the embodiment of the present invention is to produce compound (2) by reacting compound (1) with an acidic compound and sodium dithionite in an aromatic hydrocarbon solvent under heating. It may be something to do.
  • compound (1) may be the compound represented by formula (1A) above
  • compound (2) may be the compound represented by formula (2A) above.
  • R 2 of compound (1A) and compound (2A) may be a fluorine atom, a chlorine atom or a bromine atom.
  • R 2 of compound (1A) may be a fluorine atom
  • R 2 of compound (2A) may be a fluorine atom
  • the first production method in the embodiment of the present invention comprises reacting compound (1A) with acetic acid and sodium dithionite at 80 to 100° C. in the absence of solvent or in an organic solvent to obtain compound (2A ), wherein the organic solvent may be toluene, ortho-xylene, chlorobenzene or dimethylsulfoxide.
  • the first production method in the embodiment of the present invention is to produce compound (2A) by reacting compound (1A) with acetic acid and sodium dithionite in an organic solvent at 80 to 100°C. wherein the organic solvent may be toluene, ortho-xylene, chlorobenzene or dimethylsulfoxide.
  • the first production method in the embodiment of the present invention is to produce compound (2A) by reacting compound (1A) with acetic acid and sodium dithionite in toluene at 80 to 100°C. can be anything.
  • the present invention can promote the development and popularization of pharmaceuticals and agricultural chemicals. In this way, the present invention is expected to contribute to achieving the Sustainable Development Goals (SDGs) for securing healthy life and solving food problems.
  • SDGs Sustainable Development Goals
  • HPLC high-performance liquid chromatography
  • Example 1 Production of 1-(6-fluoro-2-methyl-1H-indol-3-yl)ethanone (hereinafter referred to as compound (2-1)) 3-(4-fluoro-2-nitrophenyl)-4- 0.50 g of hydroxy-3-penten-2-one (hereinafter referred to as compound (1-1)), 1.88 g of acetic acid, 1.09 g of sodium dithionite and 2.50 g of toluene (solvent) were placed in a reactor. In addition, the mixture was stirred at 100° C. for 22 hours under a nitrogen atmosphere. According to HPLC analysis during the reaction, the relative area percentages of compound (2-1) were 78.6% (4 hours) and 80.9% (22 hours).
  • the relative area percentages in Examples and Comparative Examples are the area percentages of the above compounds with respect to the peak area of HPLC analysis in which the peak of the solvent (toluene in this example) is removed from the entire peak of HPLC analysis.
  • the time in parenthesis after that indicates the reaction time when the sample was obtained.
  • the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-1).
  • the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-1).
  • As a result of quantitative analysis of this toluene solution it was confirmed to contain 0.29 g of compound (2-1) (yield 72.0%).
  • Example 2 Production of methyl 6-fluoro-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-2)) 2-(4-fluoro-2-nitrophenyl)-3-hydroxy-2 -Methyl butenoate (hereinafter referred to as compound (1-2)) 0.50 g, acetic acid 1.77 g, sodium dithionite 1.02 g and toluene (solvent) 2.50 g were added to a reaction vessel and and 100° C. for 22 hours. According to HPLC analysis during the reaction, the relative area percentages of compound (2-2) were 78.7% (4 hours) and 93.7% (22 hours).
  • Example 3 Production of ethyl 6-fluoro-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-3)) 2-(4-fluoro-2-nitrophenyl)-3-hydroxy-2 -Ethyl butenoate (hereinafter referred to as compound (1-3)) 0.50 g, acetic acid 1.67 g, sodium dithionite 0.97 g and toluene (solvent) 2.50 g were added to a reaction vessel and and 100° C. for 22 hours. According to HPLC analysis during the reaction, the relative area percentages of compound (2-3) were 78.6% (4 hours) and 93.0% (22 hours).
  • Example 4 Production of compound (2-2) Except for changing acetic acid to 2.18 g of propionic acid, the reaction was carried out under the same conditions as in the method described in Example 2 above to obtain a toluene solution containing compound (2-2). rice field. According to HPLC analysis during the reaction, the relative area percentages of compound (2-2) were 61.7% (4 hours) and 89.9% (22 hours). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.31 g of compound (2-2) (yield 75.2%).
  • Example 5 Production of compound (2-1) Except for changing the solvent from toluene to ortho-xylene, the reaction was carried out under the same conditions as described in Example 1 above to obtain an ortho-xylene solution containing compound (2-1). .
  • Example 6 Production of compound (2-2) Except for changing the solvent from toluene to ortho-xylene, the reaction was carried out under the same conditions as described in Example 2 above to obtain an ortho-xylene solution containing compound (2-2). .
  • the relative area percentage of compound (2-2) was 91.4% by HPLC analysis after a reaction time of 22 hours.
  • As a result of quantitative analysis of this ortho-xylene solution it was confirmed to contain 0.35 g of compound (2-2) (yield 85.8%).
  • Example 7 Production of Compound (2-3) An ortho-xylene solution containing compound (2-3) was obtained by carrying out the reaction under the same conditions as in the method described in Example 3 above, except that the solvent was changed from toluene to ortho-xylene. .
  • the relative area percentage of compound (2-3) was 91.1% (22 hours) by HPLC analysis at a reaction time of 22 hours.
  • As a result of quantitative analysis of this ortho-xylene solution it was confirmed to contain 0.35 g of compound (2-3) (yield 85.7%).
  • Example 8 Preparation of 6-fluoro-2-methyl-1H-indole (hereinafter referred to as compound (3-1))
  • Compound (2-2) 0.50 g, sodium hydroxide 0.43 g, water 7.50 g and toluene 1 0.50 g was added to the reaction vessel and stirred for 26 hours under heating and reflux. After completion of the reaction, the reaction mixture was cooled to 40° C. and extracted with 1.7 mL of toluene. After washing the resulting organic layer with 1.5 mL of water, a toluene solution containing compound (3-1) was obtained. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.36 g of compound (3-1) (yield 98.8%).
  • Example 9 Production of compound (3-1) 0.50 g of compound (2-1), 2.57 g of a 50% by mass sulfuric acid aqueous solution, and 2.50 g of toluene were added, and the mixture was stirred under reflux with heating for 9 hours. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 3.5 mL of water, and extracted with 1.2 mL of toluene. After washing the resulting organic layer with 1.5 mL of water, a toluene solution containing compound (3-1) was obtained. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.36 g of compound (3-1) (yield 91.8%).
  • Example 10 and Example 11 Production of Compound (3-1) A reaction was carried out under the same conditions as the method described in Example 9 above, except that the type of raw material, the amount of the 50% by mass sulfuric acid aqueous solution used, and the reaction time were changed. The amount of each reagent used, reaction time and yield are listed in Table 1 below.
  • Example 12 Production of compound (3-1) 0.87 g of sodium hydroxide, 12.50 g of water, and the reaction was carried out under the same conditions as described in Example 8 above, except that the reaction time was changed to 23 hours. A toluene solution containing -1) was obtained. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.35 g of compound (3-1) (yield 97.8%).
  • Example 13 Production of compound (3-1) 2.00 g of compound (2-2), 6.01 g of methanol, 2.90 g of 40% by mass sodium hydroxide aqueous solution and 4.27 g of water are added to a reaction vessel, and heated under reflux. Stirred for 16 hours. After completion of the reaction, the reaction mixture was cooled to 30° C., diluted with 13.8 mL of toluene, and extracted with 6.0 mL of water. After washing the obtained aqueous layer with 13.8 mL of toluene, 6.0 mL of water was added. The reaction mixture was cooled to 10° C., 3.52 g of 35 mass % hydrochloric acid was added dropwise, and stirred for 0.5 hours.
  • Example 14 Production of compound (3-1) 1.00 g of compound (2-2), 3.02 g of toluene, 3.02 g of methanol, 2.42 g of 40% by mass sodium hydroxide aqueous solution and 1.55 g of water were added to a reaction vessel and heated. Stirred under reflux for 22 hours. The reaction solution was cooled to room temperature and the organic layer and aqueous layer were separated. After washing the resulting aqueous layer with 3.4 mL of toluene, 3.00 g of water, 4.63 g of 35% by mass hydrochloric acid and 4.63 g of toluene were added to the washed aqueous layer and stirred at 60° C. for 4 hours.
  • Example 16 Preparation of 1-(6-chloro-2-methyl-1H-indol-3-yl)ethanone (hereinafter referred to as compound (2-4)) 3-(4-chloro-2-nitrophenyl)-4- 0.50 g of hydroxy-3-penten-2-one (hereinafter referred to as compound (1-4)), 1.78 g of acetic acid, 1.04 g of sodium dithionite and 2.50 g of toluene (solvent) were placed in a reactor. In addition, the mixture was stirred at 100° C. for 22 hours under a nitrogen atmosphere.
  • reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a suspension containing compound (2-4). This suspension was filtered to obtain a solid and a filtrate. As a result of quantitative analysis of each, it was confirmed that 0.34 g of compound (2-4) was included in total. As a result of quantitative analysis of the aqueous layer, it was confirmed to contain 0.02 g of compound (2-4) (yield 87.1%).
  • Example 17 Production of compound (2-4) A suspension containing compound (2-4) was obtained by carrying out the reaction under the same conditions as in Example 16 except that the solvent was changed from toluene to chlorobenzene. This suspension was filtered to obtain a solid and a filtrate. As a result of quantitative analysis of each, it was confirmed that 0.29 g of compound (2-4) was included in total. As a result of quantitative analysis of the aqueous layer, it was confirmed to contain 0.05 g of compound (2-4) (yield 83.1%).
  • Example 18 Production of methyl 6-bromo-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-5)) 2-(4-bromo-2-nitrophenyl)-3-hydroxy-2 -Methyl butenoate (hereinafter referred to as compound (1-5)) 0.50 g, acetic acid 1.42 g, sodium dithionite 0.84 g and toluene (solvent) 2.50 g were added to a reaction vessel and and 100° C. for 22 hours.
  • compound (2-5) 2-(4-bromo-2-nitrophenyl)-3-hydroxy-2 -Methyl butenoate
  • Example 19 Production of compound (2-5) A toluene solution containing compound (2-5) was obtained by carrying out the reaction under the same conditions as in Example 18, except that the amount of toluene was changed to 1.50 g. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.38 g of compound (2-5) (yield 88.9%).
  • Example 20 Preparation of ethyl 6-chloro-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-6)) 2-(4-chloro-2-nitrophenyl)-3-hydroxy-2 -Ethyl butenoate (hereinafter referred to as compound (1-6)) 0.50 g, propionic acid 1.95 g, sodium dithionite 0.94 g and toluene (solvent) 2.50 g were added to a reaction vessel and a nitrogen atmosphere was added. The mixture was stirred at 100° C. for 22 hours.
  • compound (2-6) 2-(4-chloro-2-nitrophenyl)-3-hydroxy-2 -Ethyl butenoate
  • solvent solvent
  • Example 21 Production of compound (2-6) 0.50 g of compound (1-6), 1.59 g of acetic acid, 0.94 g of sodium dithionite and 2.50 g of toluene (solvent) were added to a reactor and heated to 100°C under a nitrogen atmosphere. and stirred for 44 hours. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a suspension containing compound (2-6). This suspension was filtered to obtain a solid and a filtrate. As a result of quantitative analysis of each, it was confirmed that 0.34 g of compound (2-6) was contained in total. As a result of quantitative analysis of the aqueous layer, it was confirmed to contain 0.02 g of compound (2-6) (yield 85.8%).
  • Example 22 Production of compound (2-3) A toluene solution containing compound (2-3) was obtained by carrying out the reaction under the same conditions as in Example 3 except that the solvent was changed from toluene to 2.50 g of dimethylsulfoxide. . As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.30 g of compound (2-3) (yield 72.2%).
  • Example 23 and Example 24 Production of Compound (2-2) A reaction was carried out under the same conditions as in the method described in Example 2, except that the reaction temperature was changed. Reaction temperatures and yields are listed in Table 2 below.
  • Example 25 Production of compound (2-3) A toluene solution containing compound (2-3) was obtained by carrying out the reaction under the same conditions as in Example 3, except that the reaction temperature was changed to 80°C. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.29 g of compound (2-3) (yield 71.1%).
  • Example 26 Production of compound (2-2) 0.70 g of compound (1-2), 2.47 g of acetic acid, 1.43 g of sodium dithionite and 4.90 g of toluene (solvent) were added to a reactor and heated to 100°C under a nitrogen atmosphere. and stirred for 22 hours. The relative area percentage of compound (2-2) during the reaction was 91.7% (21 hours) by HPLC qualitative analysis. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 7.0 mL of water, and extracted with 8.0 mL of toluene to obtain a toluene solution containing compound (2-2). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.50 g of compound (2-2) (yield 89.0%).
  • Example 27 and 28 Production of Compound (2-2) A reaction was carried out under the same conditions as in the method described in Example 26, except that the amount of sodium dithionite used was changed. According to HPLC qualitative analysis, the relative area percentage of compound (2-2) during the reaction of Example 27 was 90.3% (21 hours), and that of Example 28 was 90.3% (21 hours). The amounts and yields of each reagent used are shown in Table 3 below.
  • Example 29 and Example 30 Production of Compound (2-2) A reaction was carried out under the same conditions as in the method described in Example 26, except that the amount of acetic acid used was changed.
  • the relative area percentages of compound (2-2) during the reaction of Example 29 by HPLC qualitative analysis were 79.0% (21 hours), 87.2% (42 hours), and 92.7% ( 20 hours).
  • the amount of each reagent used, reaction time and yield are listed in Table 4 below.
  • Example 31 and 32 Production of compound (2-2) A toluene solution containing compound (2-2) was obtained by carrying out the reaction under the same conditions as in Example 2, except that the amount of toluene used as a solvent and the reaction time were changed. rice field. The relative area percentage of compound (2-2) during the reaction of Example 31 by HPLC qualitative analysis was 77.8% (4 hours), 92.0% (13 hours), and 79.1% in Example 32. (4 hours) and 92.1% (16 hours). The amount of each reagent used, reaction time and yield are listed in Table 5 below.
  • Example 33 and 34 Production of compound (2-2) A toluene solution containing compound (2-2) was obtained by carrying out the reaction under the same conditions as in Example 31, except that the amount of acetic acid used and the reaction time were changed. According to HPLC qualitative analysis, the relative area percentages of compound (2-2) during the reaction of Example 33 were 66.2% (4 hours) and 90.5% (26 hours), and in Example 34, 70.5%. 2% (4 hours) and 92.5% (23 hours). The amount of each reagent used, reaction time and yield are listed in Table 6 below.
  • Example 35 Production of compound (2-2) The reaction was carried out under the same conditions as in Example 32, except that the amount of sodium dithionite used was changed to 0.79 g and the reaction time was changed to 22 hours to obtain compound (2-2). A toluene solution containing The relative area percentages of compound (2-2) during the reaction by HPLC qualitative analysis were 74.8% (4 hours) and 82.7% (22 hours). As a result of quantitative analysis of the toluene solution, it was confirmed to contain 0.29 g of compound (2-2) (yield 73.0%).
  • the sum of relative area percentages of compound (3-1) and FNPA was 40.5%.
  • the present invention can be used for efficient production of pharmaceuticals and agricultural chemicals, and is expected to contribute to further development and spread of pharmaceuticals and agricultural chemicals.

Abstract

Provided is a method for producing an indole compound, by which a desired product can be obtained at high yield in an indole cyclization reaction using sodium dithionite. A compound represented by formula (1) is reacted with an acidic compound and sodium dithionite under heating in a solvent-free system or in an organic solvent to thereby produce an indole compound represented by formula (2). In formula (1) and formula (2), R1 represents methyl, methoxy, or ethoxy, R2 represents a halogen atom, and n represents an integer of 1, 2, 3, or 4.

Description

インドール化合物の製造方法Method for producing indole compound
 本発明は、インドール化合物の製造方法に関する。 The present invention relates to a method for producing an indole compound.
 インドール化合物は、医農薬等の生理活性物質をはじめとする種々のファインケミカル中間体として有用である。当該インドール化合物の製造方法には、例えば、特許文献1乃至8のような種々の方法が知られている。 Indole compounds are useful as various fine chemical intermediates, including bioactive substances such as pharmaceuticals and agricultural chemicals. Various methods, such as those disclosed in Patent Documents 1 to 8, are known as methods for producing the indole compound.
国際公開第2003/082860号WO2003/082860 国際公開第2005/000812号WO2005/000812 国際公開第2006/057354号WO2006/057354 国際公開第2007/092751号WO2007/092751 国際公開第2010/108651号WO2010/108651 国際公開第2005/049559号WO2005/049559 国際公開第2008/053221号WO2008/053221 中国特許出願公開第110590739号明細書Chinese Patent Application Publication No. 110590739
 しかしながら、上述のような従来技術は、種々の問題を含んでいる。たとえば、鉄、鉄錯体、あるいはパラジウムカーボンなどの重金属を用いる製造方法では、廃液および廃棄物の処理が問題とされている。また、一酸化炭素を使用して高圧下で行う製造方法では、高圧設備の運転などの製造上の問題を含んでいる。 However, the conventional techniques as described above have various problems. For example, in production methods using heavy metals such as iron, iron complexes, or palladium carbon, disposal of waste liquids and wastes is a problem. In addition, the manufacturing method using carbon monoxide under high pressure involves manufacturing problems such as the operation of high-pressure equipment.
 また、亜ジチオン酸ナトリウムを用いる製造方法は、目的化合物によっては、水および極性溶媒中の反応、あるいは、塩基性化合物の存在下での反応において、収率が低くなることがある。 In addition, in the production method using sodium dithionite, depending on the target compound, the yield may be low in the reaction in water and a polar solvent or in the presence of a basic compound.
 本発明の一態様は、亜ジチオン酸ナトリウムを用いるインドール環化反応において、高収率で目的物が得られるインドール化合物の製造方法を提供することを課題とする。 An object of one aspect of the present invention is to provide a method for producing an indole compound in which the target product is obtained in high yield in the indole cyclization reaction using sodium dithionite.
 上記の課題を解決するために、本発明の一態様に係るインドール化合物の製造方法は、下記式(1)で表される化合物を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、下記式(2)で表されるインドール化合物を製造する。式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す。 In order to solve the above problems, a method for producing an indole compound according to one aspect of the present invention provides a compound represented by the following formula (1) under heating in the absence of a solvent or in an organic solvent, an acidic compound and An indole compound represented by the following formula (2) is produced by reacting with sodium dithionite. In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy, R 2 represents a halogen atom, and n represents an integer of 1, 2, 3 or 4.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、上記の課題を解決するために、本発明の一態様に係るインドール化合物の製造方法は、下記式(1)で表される化合物を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、下記式(2)で表される化合物を製造する第一の工程と、前記式(2)で表される化合物から下記式(3)で表されるインドール化合物を製造する第二の工程と、を含み、前記第二の工程は、前記式(2)で表される化合物を水および酸性化合物または塩基性化合物の存在下で加熱する工程を含む。式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、式(1)から式(3)中、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す。 Further, in order to solve the above problems, a method for producing an indole compound according to one aspect of the present invention provides a compound represented by the following formula (1), in the absence of a solvent or in an organic solvent, under heating, to an acidic A first step of producing a compound represented by the following formula (2) by reacting with a compound and sodium dithionite, and a reaction represented by the following formula (3) from the compound represented by the above formula (2) and a second step of producing an indole compound, wherein the second step includes a step of heating the compound represented by the formula (2) in the presence of water and an acidic or basic compound . In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy; in formulas (1) to (3), R 2 represents a halogen atom; n is 1, 2, 3; or represents an integer of 4.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の一態様によれば、亜ジチオン酸ナトリウムを用いるインドール環化反応において、目的とするインドール化合物を高収率で得ることができる。 According to one aspect of the present invention, the target indole compound can be obtained in high yield in the indole cyclization reaction using sodium dithionite.
 本発明の実施形態に係るインドール化合物の第一の製造方法は、下記式(1)で表される化合物(以下、「化合物(1)」とも言う)を出発原料として下記式(2)で表されるインドール化合物(以下、「化合物(2)」とも言う)を製造する方法である。 In the first method for producing an indole compound according to an embodiment of the present invention, a compound represented by the following formula (1) (hereinafter also referred to as “compound (1)”) is used as a starting material, and the compound represented by the following formula (2) is It is a method for producing an indole compound (hereinafter also referred to as "compound (2)").
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、式(1)および式(2)中、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す。 In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy; in formulas (1) and (2), R 2 represents a halogen atom; n is 1, 2, 3; or represents an integer of 4.
 また、本発明の実施形態に係るインドール化合物の第二の製造方法は、下記化合物(1)を出発原料として下記化合物(2)を製造し、さらに化合物(2)を出発原料として下記式(3)で表されるインドール化合物(以下、「化合物(3)」とも言う)を製造する方法である。 In the second method for producing an indole compound according to an embodiment of the present invention, the following compound (2) is produced using the following compound (1) as a starting material, and the following formula (3) is produced using compound (2) as a starting material. ) (hereinafter also referred to as “compound (3)”).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、式(1)から式(3)中、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す。 In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy; in formulas (1) to (3), R 2 represents a halogen atom; n is 1, 2, 3; or represents an integer of 4.
 以下、上記の第一の製造方法および第二の製造方法をより詳しく説明する。 The above first and second manufacturing methods will be described in more detail below.
 〔第一の製造方法〕
 本発明の実施形態における第一の製造方法は、化合物(1)を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、化合物(2)を製造する、インドール化合物の製造方法である。
[First manufacturing method]
The first production method in the embodiment of the present invention is to produce compound (2) by reacting compound (1) with an acidic compound and sodium dithionite under heating in the absence of a solvent or in an organic solvent. It is a method for producing an indole compound.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 [化合物(1)]
 化合物(1)には、式(1’)または式(1’’)で表されるケト-エノール互変異性体が存在する。以下に、式(1’)および式(1’’)の構造を示す。化合物(1)は、通常のH-NMRなどではケト-エノール互変異性体が混在した形で観察される。本明細書では、化合物(1)は、特に断らない限り、これらの異性体の一方または両方も表す。
[Compound (1)]
Compound (1) has a keto-enol tautomer represented by formula (1′) or formula (1″). The structures of formulas (1′) and (1″) are shown below. Compound (1) is observed as a mixture of keto-enol tautomers in conventional 1 H-NMR and the like. As used herein, compound (1) also represents one or both of these isomers unless otherwise specified.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す。 In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy, R 2 represents a halogen atom, and n represents an integer of 1, 2, 3 or 4.
 ハロゲン原子は、フッ素、塩素、臭素およびヨウ素のいずれでもよく、nが2以上である場合、Rのハロゲン原子は、同一であってもよいし、異なっていてもよい。 A halogen atom may be fluorine, chlorine, bromine or iodine, and when n is 2 or more, the halogen atoms of R 2 may be the same or different.
 化合物(1)は、好ましくは下記式(1A)で表される化合物(以下、「化合物(1A)」とも言う)である。第一の製造方法において、化合物(2)の構造は化合物(1)の構造に対応することから、化合物(2)は、好ましくは下記式(2A)で表される化合物(以下、「化合物(2A)」とも言う)である。なお、下記式(1A)および式(2A)中、Rは、メチル、メトキシ、またはエトキシを表し、Rはハロゲン原子を表している。ハロゲン原子は、好ましくはフッ素原子、塩素原子または臭素原子である。 Compound (1) is preferably a compound represented by the following formula (1A) (hereinafter also referred to as "compound (1A)"). In the first production method, since the structure of compound (2) corresponds to the structure of compound (1), compound (2) is preferably a compound represented by the following formula (2A) (hereinafter referred to as "compound ( 2A)”). In formulas (1A) and (2A) below, R1 represents methyl, methoxy, or ethoxy, and R2 represents a halogen atom. A halogen atom is preferably a fluorine atom, a chlorine atom or a bromine atom.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 [酸性化合物]
 酸性化合物には、種々の酸を用いることが可能である。酸は、一種でもそれ以上でもよい。酸の例には、鉱酸、脂肪族カルボン酸および有機スルホン酸が含まれる。鉱酸の例には、硫酸、硝酸、リン酸および塩酸が含まれる。脂肪族カルボン酸の例には、ギ酸、酢酸、トリフルオロ酢酸およびプロピオン酸が含まれる。有機スルホン酸の例には、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸およびトルエンスルホン酸が含まれる。中でも、酸性化合物は酢酸またはプロピオン酸であることが、化合物(2)の収率を高める観点から好ましい。
[Acidic compound]
Various acids can be used as the acidic compound. One or more acids may be used. Examples of acids include mineral acids, aliphatic carboxylic acids and organic sulfonic acids. Examples of mineral acids include sulfuric acid, nitric acid, phosphoric acid and hydrochloric acid. Examples of aliphatic carboxylic acids include formic acid, acetic acid, trifluoroacetic acid and propionic acid. Examples of organic sulfonic acids include methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and toluenesulfonic acid. Among them, the acidic compound is preferably acetic acid or propionic acid from the viewpoint of increasing the yield of compound (2).
 第一の製造方法における酸性化合物の使用量は、第一の製造方法において化合物(2)が生成する範囲において適宜に決めることが可能である。たとえば、第一の製造方法における酸性化合物の使用量は、化合物(1)に対して0.01~50モル当量であってよく、化合物(2)の収率を高める観点から0.1~30モル当量であることが好ましく、5~25モル当量であることがより好ましく、7.5~21モル当量であることがさらに好ましく、9~15モル当量であることがより一層好ましい。 The amount of the acidic compound used in the first production method can be determined as appropriate within the range in which compound (2) is produced in the first production method. For example, the amount of the acidic compound used in the first production method may be 0.01 to 50 molar equivalents relative to compound (1), and from the viewpoint of increasing the yield of compound (2), 0.1 to 30 molar equivalents. It is preferably a molar equivalent, more preferably 5 to 25 molar equivalents, even more preferably 7.5 to 21 molar equivalents, and even more preferably 9 to 15 molar equivalents.
 [亜ジチオン酸ナトリウム]
 亜ジチオン酸ナトリウムは、第一の製造方法において還元剤として作用する。第一の製造方法における亜ジチオン酸ナトリウムの使用量は、第一の製造方法において化合物(2)が生成する範囲において適宜に決めることが可能である。たとえば、第一の製造方法における亜ジチオン酸ナトリウムの使用量は、化合物(1)に対して1~10モル当量であってよく、化合物(2)の収率を高める観点から2~10モル当量であることが好ましく、2~5モル当量であることがより好ましく、2~3モル当量であることがさらに好ましい。
[Sodium dithionite]
Sodium dithionite acts as a reducing agent in the first production method. The amount of sodium dithionite to be used in the first production method can be appropriately determined within the range in which compound (2) is produced in the first production method. For example, the amount of sodium dithionite used in the first production method may be 1 to 10 molar equivalents relative to compound (1), and from the viewpoint of increasing the yield of compound (2), 2 to 10 molar equivalents. , more preferably 2 to 5 molar equivalents, even more preferably 2 to 3 molar equivalents.
 [その他の成分]
 第一の製造方法では、化合物(2)が生成する範囲において、前述した成分以外の他の成分を反応系にさらに添加してもよい。他の成分は、一種でもそれ以上でもよく、化合物(2)が生成し、かつ他の成分による効果が得られる範囲において使用され得る。
[Other ingredients]
In the first production method, components other than the components described above may be further added to the reaction system within the range that compound (2) is produced. One or more other components may be used as long as the compound (2) is produced and the effects of the other components are obtained.
 第一の製造方法における反応は、有機溶媒中で行われてもよい。有機溶媒は、第一の製造方法における反応温度を実現可能な程度の沸点を有することが第一の製造方法における反応を十分に進行させる観点から好ましい。有機溶媒の例には、芳香族炭化水素溶媒およびジメチルスルホキシドが含まれる。 The reaction in the first production method may be carried out in an organic solvent. The organic solvent preferably has a boiling point at which the reaction temperature in the first production method can be achieved from the viewpoint of sufficiently advancing the reaction in the first production method. Examples of organic solvents include aromatic hydrocarbon solvents and dimethylsulfoxide.
 芳香族炭化水素溶媒は、第一の製造方法での合成反応における溶媒である。芳香族炭化水素溶媒は、一種でもそれ以上でもよい。第一の製造方法において、芳香族炭化水素を溶媒として用いることにより、高い収率で目的とする化合物(2)を製造することが可能となる。芳香族炭化水素溶媒の例には、ベンゼン、トルエン、オルトキシレン、メタキシレン、パラキシレン、エチルベンゼン、クロロベンゼン、オルトジクロロベンゼン、メタジクロロベンゼン、パラジクロロベンゼン、ニトロベンゼンおよびテトラヒドロナフタリンが含まれる。中でも、芳香族炭化水素溶媒は、トルエン、オルトキシレンまたはクロロベンゼンであることが、化合物(2)の収率を高める観点から好ましく、トルエンがより好ましい。 The aromatic hydrocarbon solvent is the solvent in the synthesis reaction in the first production method. One or more aromatic hydrocarbon solvents may be used. By using an aromatic hydrocarbon as a solvent in the first production method, it becomes possible to produce the target compound (2) in a high yield. Examples of aromatic hydrocarbon solvents include benzene, toluene, ortho-xylene, meta-xylene, para-xylene, ethylbenzene, chlorobenzene, ortho-dichlorobenzene, meta-dichlorobenzene, para-dichlorobenzene, nitrobenzene and tetrahydronaphthalene. Among them, the aromatic hydrocarbon solvent is preferably toluene, ortho-xylene or chlorobenzene from the viewpoint of increasing the yield of compound (2), and more preferably toluene.
 第一の製造方法における有機溶媒の使用量は、化合物(2)が生成する範囲において適宜に決めてよい。たとえば、第一の製造方法における有機溶媒の使用量は、化合物(1)1質量部に対して0.1~20質量部であってよく、1~10質量部であることが好ましく、1~7質量部であることがより好ましく、3~7当量であることがさらに好ましい。 The amount of the organic solvent used in the first production method may be determined as appropriate within the range in which compound (2) is produced. For example, the amount of the organic solvent used in the first production method may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, relative to 1 part by mass of compound (1). It is more preferably 7 parts by mass, more preferably 3 to 7 equivalents.
 たとえば、第一の製造方法では、塩基を酸性化合物と併用してもよい。当該塩基は、一種でもそれ以上でもよい。当該塩基の例には、ギ酸ナトリウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、水酸化ナトリウムおよび水酸化カリウムが含まれる。当該塩基の併用は、化合物(1)の還元に好適に作用し得る。第一の製造方法における当該塩基の使用量は、化合物(1)に対して0.01~5モル当量であってよく、0.1~2モル当量であることが好ましく、0.2~1モル当量であることがより好ましい。 For example, in the first production method, a base may be used together with an acidic compound. One or more bases may be used. Examples of such bases include sodium formate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide and potassium hydroxide. Combined use of the base can act favorably for reduction of compound (1). The amount of the base used in the first production method may be 0.01 to 5 molar equivalents relative to compound (1), preferably 0.1 to 2 molar equivalents, and 0.2 to 1 Molar equivalents are more preferred.
 [反応温度]
 第一の製造方法における反応温度は、加熱下にて、第一の製造方法において化合物(2)が生成する範囲において適宜に決めることが可能である。当該反応温度が高すぎると、第一の製造方法における反応混合物中の成分が熱分解することがある。反応時間および収率の観点から、第一の製造方法における反応温度は、50℃以上であることが好ましく、70℃以上であることがより好ましく、80℃以上であることがさらに好ましい。また、第一の製造方法における反応温度は、熱分解を抑制する観点から、150℃以下であることが好ましく、130℃以下であることがより好ましく、110℃以下であることがさらに好ましく、100℃以下であることがより一層好ましい。なお、好ましい反応温度の上限と下限は任意に組み合わせることができる。
[Reaction temperature]
The reaction temperature in the first production method can be appropriately determined within the range in which the compound (2) is produced under heating in the first production method. If the reaction temperature is too high, the components in the reaction mixture in the first production method may thermally decompose. From the viewpoint of reaction time and yield, the reaction temperature in the first production method is preferably 50° C. or higher, more preferably 70° C. or higher, and even more preferably 80° C. or higher. In addition, the reaction temperature in the first production method is preferably 150° C. or lower, more preferably 130° C. or lower, even more preferably 110° C. or lower, from the viewpoint of suppressing thermal decomposition. °C or less is even more preferable. In addition, the upper limit and the lower limit of the preferable reaction temperature can be combined arbitrarily.
 [その他の条件]
 第一の製造方法における反応は、第一の製造方法において化合物(2)が生成する範囲において、さらなる条件を含んでいてもよい。たとえば、第一の製造方法における反応は、不活性ガスの雰囲気で行うことが、酸化物などの意図せぬ副生物の生成を抑制する観点から好ましい。不活性ガスは、第一の製造方法の反応における試薬および生成物に対して活性を実質的に示さないガスであればよい。不活性ガスの例には、窒素ガスおよび希ガスが含まれる。より安価である観点から、不活性ガスは窒素ガスであることが好ましい。
[Other conditions]
The reaction in the first production method may contain additional conditions as long as compound (2) is produced in the first production method. For example, the reaction in the first production method is preferably carried out in an inert gas atmosphere from the viewpoint of suppressing the production of unintended by-products such as oxides. The inert gas may be any gas that does not substantially exhibit activity with respect to the reagents and products in the reaction of the first production method. Examples of inert gases include nitrogen gas and noble gases. From the viewpoint of lower cost, the inert gas is preferably nitrogen gas.
 第一の製造方法における反応の終点は、常法、例えば反応液の分析、によって決定することが可能である。 The end point of the reaction in the first production method can be determined by a conventional method, such as analysis of the reaction solution.
 第一の製造方法で得られる反応混合物は、常法によって単離され得る。たとえば、反応混合物をトルエンなどの芳香族炭化水素によって抽出することにより、目的とする化合物(2)の溶液を得ることができる。 The reaction mixture obtained in the first production method can be isolated by a conventional method. For example, a solution of the target compound (2) can be obtained by extracting the reaction mixture with an aromatic hydrocarbon such as toluene.
 〔第二の製造方法〕
 本発明の実施形態における第二の製造方法は、化合物(1)を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、化合物(2)を製造する第一の工程と、化合物(2)から化合物(3)を製造する第二の工程と、を含む。
[Second manufacturing method]
The second production method in the embodiment of the present invention is to produce compound (2) by reacting compound (1) with an acidic compound and sodium dithionite under heating in the absence of solvent or in an organic solvent. and a second step of producing compound (3) from compound (2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、式(1)から式(3)中、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す。 In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy; in formulas (1) to (3), R 2 represents a halogen atom; n is 1, 2, 3; or represents an integer of 4.
 [第一の工程]
 第一の工程は、前述した本発明の実施形態における第一の製造方法と実質的に同じである。第二の製造方法において、第一の工程の生成物は、単離されてもよいし、次工程である第二の工程が実施可能な範囲において、溶液の状態で第二の工程に供されてもよい。
[First step]
The first step is substantially the same as the first manufacturing method in the embodiment of the present invention described above. In the second production method, the product of the first step may be isolated or subjected to the second step in the form of a solution to the extent that the second step, which is the next step, can be performed. may
 [第二の工程]
 第二の工程は、化合物(2)の脱アセチル化または脱エステル化反応を実施する工程である。たとえば、第二の工程は、化合物(2)を水、および酸性化合物または塩基性化合物の存在下で加熱する工程を含む。
[Second step]
The second step is a step of deacetylating or deesterifying compound (2). For example, the second step includes heating compound (2) in the presence of water and an acidic or basic compound.
 <水>
 第二の工程における水の使用量は、化合物(2)の脱アセチル化または脱エステル化反応を実施する範囲において適宜に決めることが可能である。たとえば、第二の工程における水の使用量は、化合物(2)1質量部に対して1~50質量部であってよい。
<Water>
The amount of water to be used in the second step can be appropriately determined within the scope of performing the deacetylation or deesterification reaction of compound (2). For example, the amount of water used in the second step may be 1 to 50 parts by mass per 1 part by mass of compound (2).
 <酸性化合物>
 第二の工程における酸性化合物は、前述した第一の製造方法における酸性化合物と同様である。第二の工程における酸性化合物は、第一の製造方法における酸性化合物と同じであってもよいし、異なっていてもよい。
<Acidic compound>
The acidic compound in the second step is the same as the acidic compound in the first production method described above. The acidic compound in the second step may be the same as or different from the acidic compound in the first production method.
 第二の工程における酸性化合物の使用量は、化合物(2)の脱アセチル化または脱エステル化反応を実現する範囲において、酸の価数を考慮して適宜に決めればよい。たとえば、第二の工程における酸性化合物の使用量は、硫酸であれば、第二の工程の出発原料としての化合物(2)に対して0.1~10モル当量であってよく、0.5~5.5モル当量であることが好ましく、3~5モル当量であることがより好ましい。 The amount of the acidic compound to be used in the second step may be appropriately determined in consideration of the valence of the acid within the range where the deacetylation or deesterification reaction of compound (2) is achieved. For example, if sulfuric acid is used in the second step, the amount of the acidic compound used may be 0.1 to 10 molar equivalents relative to compound (2) as the starting material in the second step. It is preferably ˜5.5 molar equivalents, more preferably 3 to 5 molar equivalents.
 <塩基性化合物>
 第二の工程における塩基性化合物は、種々の塩基を用いることが可能である。塩基は、一種でもそれ以上でもよい。塩基の例には、水酸化リチウム、水酸化ナトリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシドおよびカリウム-tert-ブトキシドが含まれる。中でも、反応の操作性および経済性の観点から、塩基性化合物は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、または炭酸カリウムであることが好ましい。
<Basic compound>
Various bases can be used as the basic compound in the second step. One or more bases may be used. Examples of bases include lithium hydroxide, sodium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, lithium hydride, sodium hydride, potassium hydride, sodium methoxy sodium ethoxide, sodium isopropoxide and potassium-tert-butoxide. Among them, the basic compound is preferably sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate from the viewpoint of operability and economic efficiency of the reaction.
 第二の製造方法における塩基性化合物の使用量は、化合物(2)の脱アセチル化または脱エステル化反応を実現する範囲において、塩基の価数を考慮して適宜に決めればよい。たとえば、第二の工程における塩基性化合物の使用量は、水酸化ナトリウムであれば、第二の工程の出発原料としての化合物(2)に対して0.1~10モル当量であってよく、3~9モル当量であることが好ましく、3~7モル当量であることがより好ましい。 The amount of the basic compound to be used in the second production method may be appropriately determined in consideration of the valence of the base within the range where the deacetylation or deesterification reaction of compound (2) is achieved. For example, if the amount of the basic compound used in the second step is sodium hydroxide, it may be 0.1 to 10 molar equivalents relative to compound (2) as the starting material in the second step, It is preferably 3 to 9 molar equivalents, more preferably 3 to 7 molar equivalents.
 <反応温度>
 第二の工程は、反応混合物の加熱によって行われる。反応温度が高すぎると反応混合物中の成分が熱分解することがある。反応時間および収率の観点から、第二の工程における反応温度は、好ましくは50~150℃である。
<Reaction temperature>
The second step is performed by heating the reaction mixture. If the reaction temperature is too high, the components in the reaction mixture may thermally decompose. From the viewpoint of reaction time and yield, the reaction temperature in the second step is preferably 50 to 150°C.
 より詳しくは、第二の工程における反応温度は、脱アセチル化または脱エステル化反応を十分に進行させる観点からは高いことが好ましく、付随する分解反応を抑制する観点からは低いことが好ましい。このような観点から、第二の工程における反応温度は、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましい。また、当該反応温度は、上記の観点から、150℃以下であることが好ましく、140℃以下であることがより好ましい。なお好ましい反応温度の上限と下限は任意に組み合わせることができる。 More specifically, the reaction temperature in the second step is preferably high from the viewpoint of sufficiently advancing the deacetylation or deesterification reaction, and preferably low from the viewpoint of suppressing the accompanying decomposition reaction. From such a viewpoint, the reaction temperature in the second step is preferably 90° C. or higher, more preferably 100° C. or higher, and even more preferably 110° C. or higher. Moreover, from the above viewpoint, the reaction temperature is preferably 150° C. or lower, more preferably 140° C. or lower. The upper and lower limits of the preferred reaction temperature can be combined arbitrarily.
 加熱およびその温度を安定化する観点から、第二の工程は、溶媒として芳香族炭化水素を用いることが好ましい。第二の工程における芳香族炭化水素は、前述した第一の製造方法における芳香族炭化水素と同様である。第二の工程における芳香族炭化水素は、第一の製造方法における芳香族炭化水素と同じであってもよいし、異なっていてもよい。適切な反応温度を実現する観点から、第二の工程における芳香族炭化水素は、トルエンであることが好ましい。 From the viewpoint of heating and stabilizing the temperature, it is preferable to use an aromatic hydrocarbon as a solvent in the second step. The aromatic hydrocarbon in the second step is the same as the aromatic hydrocarbon in the first production method described above. The aromatic hydrocarbon in the second step may be the same as or different from the aromatic hydrocarbon in the first production method. From the viewpoint of achieving an appropriate reaction temperature, the aromatic hydrocarbon in the second step is preferably toluene.
 <その他の条件>
 第二の工程は、化合物(2)の脱アセチル化または脱エステル化反応によって化合物(3)が生成する範囲において、さらなる条件を含んでいてもよい。たとえば、第二の工程は、不活性ガスの雰囲気で行ってもよい。第二の工程における反応の終点も、常法によって決定することが可能であり、化合物(3)は、第二の工程の反応混合物から常法、例えばトルエンなどの芳香族炭化水素による抽出、によって単離され得る。
<Other conditions>
The second step may include additional conditions to the extent that compound (3) is produced by the deacetylation or deesterification reaction of compound (2). For example, the second step may be performed in an inert gas atmosphere. The endpoint of the reaction in the second step can also be determined by conventional methods, and compound (3) is extracted from the reaction mixture of the second step by conventional methods, for example extraction with an aromatic hydrocarbon such as toluene. can be isolated.
 <二段階反応>
 あるいは、第二の工程は、下記反応式に示されるように、二段階の反応工程によって実施することも可能である。この場合、Rはメトキシまたはエトキシである。
<Two-step reaction>
Alternatively, the second step can be carried out by a two-step reaction process as shown in the reaction scheme below. In this case R 1 is methoxy or ethoxy.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 すなわち、第二の工程は、化合物(2)のアルコキシの加水分解反応と、それにより生成する上記式(4)で表される化合物(以下、「化合物(4)」とも言う)のカルボキシの脱炭酸反応とによっても実現可能である。 That is, the second step is the hydrolysis reaction of the alkoxy of compound (2) and the decarboxylation of the compound represented by the above formula (4) (hereinafter also referred to as “compound (4)”) produced thereby. It can also be realized by a carbonic acid reaction.
 (加水分解反応)
 加水分解反応には、Rのメトキシまたはエトキシにおいて加水分解反応を実現可能な公知の条件を採用することが可能である。たとえば、加水分解反応は、極性溶媒と水とを含む溶媒中で、酸性化合物または塩基性化合物の存在下で加熱することにより実施することが可能である。
(Hydrolysis reaction)
For the hydrolysis reaction, it is possible to employ known conditions that enable hydrolysis reaction at methoxy or ethoxy of R 1 . For example, the hydrolysis reaction can be carried out by heating in the presence of an acidic or basic compound in a solvent containing a polar solvent and water.
 極性溶媒は、一種でもそれ以上でもよく、その例には、低級アルコールが含まれる。低級アルコールは、例えば炭素数が4までのアルコールであってよく、その例には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノールおよび2-メチル-2-プロパノールが含まれる。 One or more polar solvents may be used, examples of which include lower alcohols. Lower alcohols may be, for example, alcohols having up to 4 carbon atoms, examples of which include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol is included.
 加水分解反応の溶媒は、反応温度を安定させる観点から、芳香族炭化水素をさらに含んでいてもよい。脱加水分解反応における芳香族炭化水素は、前述した芳香族炭化水素と同様である。当該芳香族炭化水素は、反応温度の安定化の観点からトルエンであることが好ましい。 The solvent for the hydrolysis reaction may further contain an aromatic hydrocarbon from the viewpoint of stabilizing the reaction temperature. The aromatic hydrocarbon in the dehydrolysis reaction is the same as the aromatic hydrocarbon mentioned above. The aromatic hydrocarbon is preferably toluene from the viewpoint of stabilizing the reaction temperature.
 加水分解反応における上記の各成分の使用量は、加水分解反応が実現可能な範囲において適宜に決めることができる。たとえば、酸性化合物または塩基性化合物は、一価であれば、加水分解反応の出発原料である化合物(2)に対して0.1~10モル当量であってよく、1~5モル当量であることが好ましい。また、溶媒中の水の使用量は、化合物(2)1質量部に対して1~50質量部であってよく、1~10質量部であることが好ましい。また、溶媒中の極性溶媒の使用量は、化合物(2)1質量部に対して0.1~20質量部であってよく、1~10質量部であることが好ましい。さらに、溶媒中の芳香族炭化水素の使用量は、化合物(2)1質量部に対して0.1~20質量部であってよく、1~10質量部であることが好ましい。 The amount of each of the above components used in the hydrolysis reaction can be appropriately determined within the range in which the hydrolysis reaction can be achieved. For example, if the acidic compound or basic compound is monovalent, it may be 0.1 to 10 molar equivalents, and 1 to 5 molar equivalents, relative to compound (2), which is the starting material for the hydrolysis reaction. is preferred. The amount of water used in the solvent may be 1 to 50 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2). The amount of the polar solvent used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2). Furthermore, the amount of the aromatic hydrocarbon used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2).
 また、加水分解反応における加熱温度は、加水分解反応を進行させる観点、および、反応混合物中の成分の分解を抑制する観点から、50~150℃であることが好ましく、60~140℃であることがより好ましい。当該加熱温度は、前述した第二の工程の反応温度と同様の理由で適宜に設定し得る。 Further, the heating temperature in the hydrolysis reaction is preferably 50 to 150° C., more preferably 60 to 140° C., from the viewpoint of advancing the hydrolysis reaction and from the viewpoint of suppressing the decomposition of the components in the reaction mixture. is more preferred. The heating temperature can be appropriately set for the same reason as the reaction temperature in the second step described above.
 加水分解反応の反応生成物(上記の化合物(4))は、反応混合物の中和により単離することが可能であり、あるいは水層中で塩として存在し得る。次工程の脱炭酸反応を行うにあたり、当該化合物(4)は、単離されてもよいし、塩として水層中に溶解していてもよい。 The reaction product of the hydrolysis reaction (compound (4) above) can be isolated by neutralization of the reaction mixture, or can exist as a salt in the aqueous layer. In carrying out the decarboxylation reaction in the next step, the compound (4) may be isolated or dissolved in the aqueous layer as a salt.
 (脱炭酸反応)
 脱炭酸反応には、化合物(4)のカルボキシを脱離させることが可能な公知の条件を採用することが可能である。たとえば、脱炭酸反応は、極性溶媒と水とを含む溶媒中で、酸性化合物または塩基性化合物の存在下で加熱することにより実施することが可能である。
(Decarboxylation reaction)
For the decarboxylation reaction, it is possible to adopt known conditions that can eliminate the carboxy of compound (4). For example, the decarboxylation reaction can be carried out by heating in the presence of an acidic or basic compound in a solvent comprising a polar solvent and water.
 脱炭酸反応における極性溶媒は、加水分解反応の極性溶媒と同様であり、加水分解反応の極性溶媒と同じであってもよいし、異なっていてもよい。また、脱炭酸反応の溶媒も、加水分解反応と同様に、反応温度を安定させる観点から、芳香族炭化水素をさらに含んでいてもよく、当該芳香族炭化水素はトルエンであることが好ましい。 The polar solvent in the decarboxylation reaction is the same as the polar solvent in the hydrolysis reaction, and may be the same as or different from the polar solvent in the hydrolysis reaction. Further, the solvent for the decarboxylation reaction may further contain an aromatic hydrocarbon from the viewpoint of stabilizing the reaction temperature, as in the hydrolysis reaction, and the aromatic hydrocarbon is preferably toluene.
 脱炭酸反応における上記の各成分の使用量は、脱炭酸反応が実現可能な範囲において適宜に決めることができる。たとえば、酸性化合物または塩基性化合物は、一価であれば、脱炭酸反応の出発原料である上記の化合物(4)に対して0.1~10モル当量であってよく、0.5~7モル当量であることが好ましい。また、溶媒中の水の使用量は、化合物(2)1質量部に対して1~50質量部であってよく、3~10質量部であることが好ましい。また、溶媒中の極性溶媒の使用量は、化合物(2)1質量部に対して0.1~20質量部であってよく、1~5質量部であることが好ましい。さらに、溶媒中の芳香族炭化水素の使用量は、化合物(2)1質量部に対して0.1~20質量部であってよく、1~10質量部であることが好ましい。 The amount of each of the above components used in the decarboxylation reaction can be appropriately determined within the range in which the decarboxylation reaction can be realized. For example, if the acidic compound or basic compound is monovalent, it may be 0.1 to 10 molar equivalents relative to the above compound (4), which is the starting material for decarboxylation, and 0.5 to 7 molar equivalents. Molar equivalents are preferred. The amount of water used in the solvent may be 1 to 50 parts by mass, preferably 3 to 10 parts by mass, per 1 part by mass of compound (2). The amount of the polar solvent used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 5 parts by mass, per 1 part by mass of compound (2). Furthermore, the amount of the aromatic hydrocarbon used in the solvent may be 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass, per 1 part by mass of compound (2).
 また、脱炭酸反応における反応温度は、脱炭酸反応を進行させる観点、および、反応混合物中の成分の分解を抑制する観点から、50~150℃であることが好ましく、60~140℃であることがより好ましい。脱炭酸反応における反応温度は、前述した第二の工程の反応温度と同様の理由で適宜に設定し得る。 In addition, the reaction temperature in the decarboxylation reaction is preferably 50 to 150° C., more preferably 60 to 140° C., from the viewpoints of progressing the decarboxylation reaction and suppressing decomposition of components in the reaction mixture. is more preferred. The reaction temperature in the decarboxylation reaction can be appropriately set for the same reason as the reaction temperature in the second step described above.
 脱炭酸反応により、化合物(3)が生成する。化合物(3)は、芳香族炭化水素によって抽出することにより反応混合物から単離され得る。 Compound (3) is produced by the decarboxylation reaction. Compound (3) can be isolated from the reaction mixture by extraction with an aromatic hydrocarbon.
 なお、加水分解反応および脱炭酸反応では、いずれも、酸性化合物または塩基性化合物を用いるが、所望の反応が進行する範囲において、酸性化合物および塩基性化合物のいずれを用いてもよい。加水分解反応では塩基性化合物を採用することが好ましく、脱炭酸反応では酸性化合物を採用することが好ましい。 Both the hydrolysis reaction and the decarboxylation reaction use an acidic compound or a basic compound, and either the acidic compound or the basic compound may be used as long as the desired reaction proceeds. A basic compound is preferably employed in the hydrolysis reaction, and an acidic compound is preferably employed in the decarboxylation reaction.
 〔まとめ〕
 前述の第一の製造方法では、化合物(1)を原料として、無溶媒または有機溶媒中、亜ジチオン酸ナトリウムおよび酸性化合物の存在下にて反応させることで、目的とする2-メチル-1H-インドール-3-カルボニル化合物(化合物(2))が高収率で得られる。このような効果は、化合物(1)の、反応系を酸性化合物によって酸性にすること、によってもたらされると考えらえる。
〔summary〕
In the first production method described above, compound (1) as a starting material is reacted in the presence of sodium dithionite and an acidic compound in the absence of a solvent or in an organic solvent to give the desired 2-methyl-1H- An indole-3-carbonyl compound (compound (2)) is obtained in high yield. Such an effect is thought to be brought about by acidifying the reaction system of compound (1) with an acidic compound.
 前述の第一の製造方法および第二の製造方法では、重金属を含む成分が不要であるため、廃液および廃棄物の処理が容易である。また、前述の第一の製造方法および第二の製造方法は、常圧で実施可能であるため、高圧設備などの特殊な設備を要さず、またその運転のための特殊な運用を要さない。このように、前述の第一の製造方法および第二の製造方法は、有機化合物の製造における通常の設備を通常の用法で用いることによって、目的物である化合物(2)または化合物(3)を高い収率で製造することができる。また、前述の第一の製造方法および第二の製造方法は、副生成物の生成を抑制し、高転化率かつ高純度で目的物である化合物(2)または化合物(3)を製造することができる。 The first and second manufacturing methods described above do not require components containing heavy metals, so waste liquids and waste can be easily treated. In addition, since the above-mentioned first production method and second production method can be carried out at normal pressure, special equipment such as high pressure equipment is not required, and special operation for its operation is required. do not have. Thus, in the above-mentioned first production method and second production method, the target compound (2) or compound (3) is produced by using ordinary equipment in the production of organic compounds in a usual manner. It can be produced in high yield. In addition, the first production method and the second production method described above suppress the production of by-products and produce the target compound (2) or compound (3) with a high conversion rate and high purity. can be done.
 前述の第二の製造方法では、通常の脱アセチル化または脱エステル化技術をさらに適用することにより、化合物(1)から化合物(3)が高収率で得られる。第二の製造方法における第二の工程では、酸性化合物と塩基性化合物との使い分け、および、より好ましくは溶媒として芳香族炭化水素と極性溶媒との使い分け、によって、化合物(2)から化合物(4)を経る二段の工程によって化合物(3)を得ることができる。このような二段の工程を含む第二の工程では、原料(化合物(2))と生成物(化合物(4))との溶解性の相違を利用することによって、化合物(4)を固体として単離可能である。あるいは、油溶性の原料に対して、化合物(4)は塩として水相に分離することが可能である。したがって、このような第二の工程は、化合物(2)と化合物(4)との分離を容易にし、また化合物(4)の精製を容易にする観点から有利である。 In the second production method described above, compound (3) can be obtained from compound (1) in high yield by further applying a conventional deacetylation or deesterification technique. In the second step of the second production method, the compound (2) to the compound (4 ) can give compound (3). In the second step including such a two-step process, the compound (4) is converted into a solid by utilizing the difference in solubility between the raw material (compound (2)) and the product (compound (4)). Isolatable. Alternatively, for oil-soluble feedstocks, compound (4) can separate into the aqueous phase as a salt. Therefore, such a second step is advantageous from the viewpoint of facilitating separation of compound (2) and compound (4) and facilitating purification of compound (4).
 以上の説明から明らかなように、本発明の実施形態における第一の製造方法は、化合物(1)を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、化合物(2)を製造する。 As is clear from the above description, the first production method in the embodiment of the present invention is to react compound (1) with an acidic compound and sodium dithionite under heating in the absence of solvent or in an organic solvent. Thus, compound (2) is produced.
 また、本発明の実施形態における第二の製造方法は、化合物(1)を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、化合物(2)を製造する第一の工程と、化合物(2)から化合物(3)を製造する第二の工程と、を含む。そして、第二の工程は、化合物(2)を水および酸性化合物または塩基性化合物の存在下で加熱する工程を含む。 In addition, the second production method in the embodiment of the present invention comprises reacting compound (1) with an acidic compound and sodium dithionite under heating in the absence of a solvent or in an organic solvent to obtain compound (2). and a second step of producing compound (3) from compound (2). The second step then includes heating compound (2) in the presence of water and an acidic or basic compound.
 本発明のこれらの実施形態によれば、亜ジチオン酸ナトリウムを用いるインドール環化反応において、目的とするインドール化合物を高収率で得ることができる。 According to these embodiments of the present invention, the target indole compound can be obtained in high yield in the indole cyclization reaction using sodium dithionite.
 第一の製造方法において、酸性化合物は酢酸またはプロピオン酸であってもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 In the first production method, the acidic compound may be acetic acid or propionic acid. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法において、酸性化合物は酢酸であってもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 In the first production method, the acidic compound may be acetic acid. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法において、有機溶媒は芳香族炭化水素溶媒およびジメチルスルホキシドからなる群から選ばれる一以上であってもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 In the first production method, the organic solvent may be one or more selected from the group consisting of aromatic hydrocarbon solvents and dimethylsulfoxide. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法において、有機溶媒は芳香族炭化水素溶媒であってもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 In the first production method, the organic solvent may be an aromatic hydrocarbon solvent. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法において、芳香族炭化水素溶媒はトルエン、オルトキシレンまたはクロロベンゼンであってもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 In the first production method, the aromatic hydrocarbon solvent may be toluene, ortho-xylene or chlorobenzene. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法は、トルエン、オルトキシレン、クロロベンゼンおよびジメチルスルホキシドからなる群から選ばれる一以上の有機溶媒中で行われてもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 The first production method may be carried out in one or more organic solvents selected from the group consisting of toluene, ortho-xylene, chlorobenzene and dimethylsulfoxide. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法は、溶媒としてトルエンまたはオルトキシレンを使用してもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 The first production method may use toluene or ortho-xylene as a solvent. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法は、溶媒としてトルエンを使用してもよい。この構成は、化合物(2)の収率を高める観点からより一層効果的である。 The first production method may use toluene as a solvent. This configuration is much more effective from the viewpoint of increasing the yield of compound (2).
 第一の製造方法において、反応温度は50~150℃であってもよい。この構成は、反応中の熱分解を抑制する観点、ならびに、反応時間と収率とのバランスの観点からより一層効果的である。 In the first production method, the reaction temperature may be 50-150°C. This configuration is much more effective from the viewpoint of suppressing thermal decomposition during the reaction and from the viewpoint of the balance between reaction time and yield.
 また本発明の実施形態における第一の製造方法は、化合物(1)を芳香族炭化水素溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、化合物(2)を製造するものであってもよい。 In addition, the first production method in the embodiment of the present invention is to produce compound (2) by reacting compound (1) with an acidic compound and sodium dithionite in an aromatic hydrocarbon solvent under heating. It may be something to do.
 第一の製造方法において、化合物(1)は前述の式(1A)で表される化合物であってよく、化合物(2)は前述の式(2A)で表される化合物であってもよい。 In the first production method, compound (1) may be the compound represented by formula (1A) above, and compound (2) may be the compound represented by formula (2A) above.
 また、第一の製造方法において、化合物(1A)および化合物(2A)のRはフッ素原子、塩素原子または臭素原子であってもよい。 In addition, in the first production method, R 2 of compound (1A) and compound (2A) may be a fluorine atom, a chlorine atom or a bromine atom.
 また第一の製造方法において、化合物(1A)のRはフッ素原子であってよく、化合物(2A)のRはフッ素原子であってもよい。 Further, in the first production method, R 2 of compound (1A) may be a fluorine atom, and R 2 of compound (2A) may be a fluorine atom.
 また、本発明の実施形態における第一の製造方法は、化合物(1A)を、無溶媒または有機溶媒中、80~100℃にて、酢酸および亜ジチオン酸ナトリウムと反応させることで、化合物(2A)を製造するものであってもよく、ここで前記有機溶媒はトルエン、オルトキシレン、クロロベンゼンまたはジメチルスルホキシドであってもよい。 Further, the first production method in the embodiment of the present invention comprises reacting compound (1A) with acetic acid and sodium dithionite at 80 to 100° C. in the absence of solvent or in an organic solvent to obtain compound (2A ), wherein the organic solvent may be toluene, ortho-xylene, chlorobenzene or dimethylsulfoxide.
 また、本発明の実施形態における第一の製造方法は、化合物(1A)を、有機溶媒中、80~100℃にて、酢酸および亜ジチオン酸ナトリウムと反応させることで、化合物(2A)を製造するものであってもよく、ここで前記有機溶媒はトルエン、オルトキシレン、クロロベンゼンまたはジメチルスルホキシドであってもよい。 In addition, the first production method in the embodiment of the present invention is to produce compound (2A) by reacting compound (1A) with acetic acid and sodium dithionite in an organic solvent at 80 to 100°C. wherein the organic solvent may be toluene, ortho-xylene, chlorobenzene or dimethylsulfoxide.
 また、本発明の実施形態における第一の製造方法は、化合物(1A)を、トルエン中、80~100℃にて、酢酸および亜ジチオン酸ナトリウムと反応させることで、化合物(2A)を製造するものであってもよい。 In addition, the first production method in the embodiment of the present invention is to produce compound (2A) by reacting compound (1A) with acetic acid and sodium dithionite in toluene at 80 to 100°C. can be anything.
 このような構成によれば、医農薬の中間体として有用なインドール化合物を高収率で製造することが可能である。したがって、本発明によって医農薬の開発および普及が促進され得る。このように、本発明には、健康的な生活の確保および食糧問題の解決についての持続可能な開発目標(SDGs)の達成への貢献が期待される。 According to such a configuration, it is possible to produce an indole compound useful as an intermediate for pharmaceuticals and agricultural chemicals at a high yield. Therefore, the present invention can promote the development and popularization of pharmaceuticals and agricultural chemicals. In this way, the present invention is expected to contribute to achieving the Sustainable Development Goals (SDGs) for securing healthy life and solving food problems.
 本発明は、上述した各実施形態に限定されず、請求項に示した範囲で種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
 以下に、実施例を挙げて具体的に述べることにより、本発明をさらに詳しく説明するが、本発明はこれらによって限定されない。 The present invention will be described in more detail below by giving specific examples, but the present invention is not limited by these.
 なお、高速液体クロマトグラフィー(以下、HPLCと記載する。)による定性および定量分析の条件を以下に記載する。 The conditions for qualitative and quantitative analysis by high-performance liquid chromatography (hereinafter referred to as HPLC) are described below.
 〔定性分析〕
 カラム:Inertsil ODS-4,250mm,4.6mmφ,5μm(ジーエルサイエンス社製)
 流速:1.0mL/min
 カラム温度:40℃
 UV検出波長:254nm
 溶離液:アセトニトリル/0.1%トリフルオロ酢酸水溶液=50/50(0-10min)-95/5(16-30min)-50/50(30.01-37min)(体積比)
 サンプル溶解液:アセトニトリル
 〔定量分析〕
 HPLCを用いた定量分析には、1,4-ジイソプロピルビフェニルを内部標準物質とした内部標準法を用い、測定は定性分析と同様の測定条件で実施した。
[Qualitative analysis]
Column: Inertsil ODS-4, 250 mm, 4.6 mmφ, 5 μm (manufactured by GL Sciences)
Flow rate: 1.0 mL/min
Column temperature: 40°C
UV detection wavelength: 254 nm
Eluent: acetonitrile/0.1% trifluoroacetic acid aqueous solution = 50/50 (0-10 min) -95/5 (16-30 min) -50/50 (30.01-37 min) (volume ratio)
Sample solution: Acetonitrile [Quantitative analysis]
For quantitative analysis using HPLC, an internal standard method using 1,4-diisopropylbiphenyl as an internal standard substance was used, and measurement was performed under the same measurement conditions as for qualitative analysis.
 〔実施例1〕
 1-(6-フルオロ-2-メチル-1H-インドール-3-イル)エタノン(以下、化合物(2-1)と称する。)の製造
 3-(4-フルオロ-2-ニトロフェニル)-4-ヒドロキシ-3-ペンテン-2-オン(以下、化合物(1-1)と称する。)0.50g、酢酸1.88g、亜ジチオン酸ナトリウム1.09gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。反応途中におけるHPLC分析による化合物(2-1)の相対面積百分率は78.6%(4時間)、80.9%(22時間)であった。なお、実施例および比較例における相対面積百分率は、HPLC分析によるピーク全体から溶媒(本実施例であればトルエン)のピークを削除したHPLC分析のピーク面積に対する上記化合物の面積百分率である。またその後の括弧内の時間は、サンプルを得たときの反応時間を示す。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-1)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-1)を0.29g含むことを確認した(収率72.0%)。
[Example 1]
Production of 1-(6-fluoro-2-methyl-1H-indol-3-yl)ethanone (hereinafter referred to as compound (2-1)) 3-(4-fluoro-2-nitrophenyl)-4- 0.50 g of hydroxy-3-penten-2-one (hereinafter referred to as compound (1-1)), 1.88 g of acetic acid, 1.09 g of sodium dithionite and 2.50 g of toluene (solvent) were placed in a reactor. In addition, the mixture was stirred at 100° C. for 22 hours under a nitrogen atmosphere. According to HPLC analysis during the reaction, the relative area percentages of compound (2-1) were 78.6% (4 hours) and 80.9% (22 hours). The relative area percentages in Examples and Comparative Examples are the area percentages of the above compounds with respect to the peak area of HPLC analysis in which the peak of the solvent (toluene in this example) is removed from the entire peak of HPLC analysis. The time in parenthesis after that indicates the reaction time when the sample was obtained. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-1). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.29 g of compound (2-1) (yield 72.0%).
 〔実施例2〕
 6-フルオロ-2-メチル-1H-インドール-3-カルボン酸メチル(以下、化合物(2-2)と称する。)の製造
 2-(4-フルオロ-2-ニトロフェニル)-3-ヒドロキシ-2-ブテン酸メチル(以下、化合物(1-2)と称する。)0.50g、酢酸1.77g、亜ジチオン酸ナトリウム1.02gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。反応途中におけるHPLC分析による化合物(2-2)の相対面積百分率は、78.7%(4時間)、93.7%(22時間)であった。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-2)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-2)を0.36g含むことを確認した(収率89.0%)。
[Example 2]
Production of methyl 6-fluoro-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-2)) 2-(4-fluoro-2-nitrophenyl)-3-hydroxy-2 -Methyl butenoate (hereinafter referred to as compound (1-2)) 0.50 g, acetic acid 1.77 g, sodium dithionite 1.02 g and toluene (solvent) 2.50 g were added to a reaction vessel and and 100° C. for 22 hours. According to HPLC analysis during the reaction, the relative area percentages of compound (2-2) were 78.7% (4 hours) and 93.7% (22 hours). After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-2). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.36 g of compound (2-2) (yield 89.0%).
 〔実施例3〕
 6-フルオロ-2-メチル-1H-インドール-3-カルボン酸エチル(以下、化合物(2-3)と称する。)の製造
 2-(4-フルオロ-2-ニトロフェニル)-3-ヒドロキシ-2-ブテン酸エチル(以下、化合物(1-3)と称する。)0.50g、酢酸1.67g、亜ジチオン酸ナトリウム0.97gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。反応途中におけるHPLC分析による化合物(2-3)の相対面積百分率は、78.6%(4時間)、93.0%(22時間)であった。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-3)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-3)を0.36g含むことを確認した(収率88.3%)。
[Example 3]
Production of ethyl 6-fluoro-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-3)) 2-(4-fluoro-2-nitrophenyl)-3-hydroxy-2 -Ethyl butenoate (hereinafter referred to as compound (1-3)) 0.50 g, acetic acid 1.67 g, sodium dithionite 0.97 g and toluene (solvent) 2.50 g were added to a reaction vessel and and 100° C. for 22 hours. According to HPLC analysis during the reaction, the relative area percentages of compound (2-3) were 78.6% (4 hours) and 93.0% (22 hours). After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-3). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.36 g of compound (2-3) (yield 88.3%).
 〔実施例4〕
 化合物(2-2)の製造
 酢酸をプロピオン酸2.18gに変更した以外は、上記の実施例2に記載した方法と同じ条件で反応を行い、化合物(2-2)を含むトルエン溶液を得た。反応途中におけるHPLC分析による化合物(2-2)の相対面積百分率は、61.7%(4時間)、89.9%(22時間)であった。このトルエン溶液を定量分析した結果、化合物(2-2)を0.31g含むことを確認した(収率75.2%)。
[Example 4]
Production of compound (2-2) Except for changing acetic acid to 2.18 g of propionic acid, the reaction was carried out under the same conditions as in the method described in Example 2 above to obtain a toluene solution containing compound (2-2). rice field. According to HPLC analysis during the reaction, the relative area percentages of compound (2-2) were 61.7% (4 hours) and 89.9% (22 hours). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.31 g of compound (2-2) (yield 75.2%).
 〔実施例5〕
 化合物(2-1)の製造
 溶媒をトルエンからオルトキシレンに変更した以外は上記の実施例1に記載した方法と同じ条件で反応を行い、化合物(2-1)を含むオルトキシレン溶液を得た。反応時間22時間におけるHPLC分析による化合物(2-1)の相対面積百分率は、85.4%であった。このオルトキシレン溶液を定量分析した結果、化合物(2-1)を0.32g含むことを確認した(収率80.4%)。
[Example 5]
Production of compound (2-1) Except for changing the solvent from toluene to ortho-xylene, the reaction was carried out under the same conditions as described in Example 1 above to obtain an ortho-xylene solution containing compound (2-1). . The relative area percentage of compound (2-1) determined by HPLC analysis after a reaction time of 22 hours was 85.4%. As a result of quantitative analysis of this ortho-xylene solution, it was confirmed to contain 0.32 g of compound (2-1) (yield 80.4%).
 〔実施例6〕
 化合物(2-2)の製造
 溶媒をトルエンからオルトキシレンに変更した以外は上記の実施例2に記載した方法と同じ条件で反応を行い、化合物(2-2)を含むオルトキシレン溶液を得た。反応時間22時間におけるHPLC分析による化合物(2-2)の相対面積百分率は、91.4%であった。このオルトキシレン溶液を定量分析した結果、化合物(2-2)を0.35g含むことを確認した(収率85.8%)。
[Example 6]
Production of compound (2-2) Except for changing the solvent from toluene to ortho-xylene, the reaction was carried out under the same conditions as described in Example 2 above to obtain an ortho-xylene solution containing compound (2-2). . The relative area percentage of compound (2-2) was 91.4% by HPLC analysis after a reaction time of 22 hours. As a result of quantitative analysis of this ortho-xylene solution, it was confirmed to contain 0.35 g of compound (2-2) (yield 85.8%).
 〔実施例7〕
 化合物(2-3)の製造
 溶媒をトルエンからオルトキシレンに変更した以外は上記の実施例3に記載した方法と同じ条件で反応を行い、化合物(2-3)を含むオルトキシレン溶液を得た。反応時間22時間におけるHPLC分析による化合物(2-3)の相対面積百分率は、91.1%(22時間)であった。このオルトキシレン溶液を定量分析した結果、化合物(2-3)を0.35g含むことを確認した(収率85.7%)。
[Example 7]
Production of Compound (2-3) An ortho-xylene solution containing compound (2-3) was obtained by carrying out the reaction under the same conditions as in the method described in Example 3 above, except that the solvent was changed from toluene to ortho-xylene. . The relative area percentage of compound (2-3) was 91.1% (22 hours) by HPLC analysis at a reaction time of 22 hours. As a result of quantitative analysis of this ortho-xylene solution, it was confirmed to contain 0.35 g of compound (2-3) (yield 85.7%).
 〔実施例8〕
 6-フルオロ-2-メチル-1H-インドール(以下、化合物(3-1)と称する。)の製造
 化合物(2-2)0.50g、水酸化ナトリウム0.43g、水7.50gおよびトルエン1.50gを反応容器に加え、加熱還流下にて、26時間撹拌した。反応終了後、反応混合物を40℃まで冷却し、トルエン1.7mLにて抽出した。得られた有機層を水1.5mLで洗浄した後、化合物(3-1)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(3-1)を0.36g含むことを確認した(収率98.8%)。
[Example 8]
Preparation of 6-fluoro-2-methyl-1H-indole (hereinafter referred to as compound (3-1)) Compound (2-2) 0.50 g, sodium hydroxide 0.43 g, water 7.50 g and toluene 1 0.50 g was added to the reaction vessel and stirred for 26 hours under heating and reflux. After completion of the reaction, the reaction mixture was cooled to 40° C. and extracted with 1.7 mL of toluene. After washing the resulting organic layer with 1.5 mL of water, a toluene solution containing compound (3-1) was obtained. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.36 g of compound (3-1) (yield 98.8%).
 〔実施例9〕
 化合物(3-1)の製造
 化合物(2-1)0.50g、50質量%硫酸水溶液2.57g、およびトルエン2.50gを加え、加熱還流下にて9時間撹拌した。反応終了後、反応混合物を70℃まで冷却し、水3.5mLで希釈した後、トルエン1.2mLにて抽出した。得られた有機層を水1.5mLで洗浄した後、化合物(3-1)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(3-1)を0.36g含むことを確認した(収率91.8%)。
[Example 9]
Production of compound (3-1) 0.50 g of compound (2-1), 2.57 g of a 50% by mass sulfuric acid aqueous solution, and 2.50 g of toluene were added, and the mixture was stirred under reflux with heating for 9 hours. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 3.5 mL of water, and extracted with 1.2 mL of toluene. After washing the resulting organic layer with 1.5 mL of water, a toluene solution containing compound (3-1) was obtained. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.36 g of compound (3-1) (yield 91.8%).
 〔実施例10および実施例11〕
 化合物(3-1)の製造
 原料の種類、50質量%硫酸水溶液の使用量および反応時間を変更した以外は、上記の実施例9に記載した方法と同じ条件で反応させた。各々の試薬の使用量、反応時間および収率を下記の第1表に記載する。
[Example 10 and Example 11]
Production of Compound (3-1) A reaction was carried out under the same conditions as the method described in Example 9 above, except that the type of raw material, the amount of the 50% by mass sulfuric acid aqueous solution used, and the reaction time were changed. The amount of each reagent used, reaction time and yield are listed in Table 1 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 〔実施例12〕
 化合物(3-1)の製造
 水酸化ナトリウム0.87g、水12.50gおよび反応時間を23時間に変更した以外は上記の実施例8に記載した方法と同じ条件で反応を行い、化合物(3-1)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(3-1)を0.35g含むことを確認した(収率97.8%)。
[Example 12]
Production of compound (3-1) 0.87 g of sodium hydroxide, 12.50 g of water, and the reaction was carried out under the same conditions as described in Example 8 above, except that the reaction time was changed to 23 hours. A toluene solution containing -1) was obtained. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.35 g of compound (3-1) (yield 97.8%).
 〔実施例13〕
 化合物(3-1)の製造
 化合物(2-2)2.00g、メタノール6.01g、40質量%水酸化ナトリウム水溶液2.90gおよび水4.27gを反応容器に加え、加熱還流下にて、16時間撹拌した。反応終了後、反応混合物を30℃まで冷却し、トルエン13.8mLで希釈した後、水6.0mLにて抽出した。得られた水層をトルエン13.8mLで洗浄した後、水6.0mLを加えた。反応混合物を10℃まで冷却し、35質量%塩酸を3.52g滴下し、0.5時間攪拌した。析出した固体をろ過し、水12.01gで洗浄後、乾燥させることで6-フルオロ-2-メチル-1H-インドール-3-カルボン酸(以下、化合物(4-1)と称する。)を1.57g得た(収率84.3%)。
[Example 13]
Production of compound (3-1) 2.00 g of compound (2-2), 6.01 g of methanol, 2.90 g of 40% by mass sodium hydroxide aqueous solution and 4.27 g of water are added to a reaction vessel, and heated under reflux. Stirred for 16 hours. After completion of the reaction, the reaction mixture was cooled to 30° C., diluted with 13.8 mL of toluene, and extracted with 6.0 mL of water. After washing the obtained aqueous layer with 13.8 mL of toluene, 6.0 mL of water was added. The reaction mixture was cooled to 10° C., 3.52 g of 35 mass % hydrochloric acid was added dropwise, and stirred for 0.5 hours. The precipitated solid was filtered, washed with 12.01 g of water, and dried to give 6-fluoro-2-methyl-1H-indole-3-carboxylic acid (hereinafter referred to as compound (4-1)). .57 g was obtained (84.3% yield).
 化合物(4-1)1.01g、トルエン5.04g、メタノール1.01g、水4.86gおよび35質量%塩酸0.27gを反応容器に加え、60℃で2時間攪拌した。反応液を30℃まで冷却し、有機層と水層を分離した。得られた水層をトルエン5.8mLで抽出した後、有機層を混合することで、化合物(3-1)を含むトルエン溶液10.26gを得た。このトルエン溶液を定量分析した結果、化合物(3-1)を0.77g含むことを確認した(収率98.6%)。 1.01 g of compound (4-1), 5.04 g of toluene, 1.01 g of methanol, 4.86 g of water and 0.27 g of 35% by mass hydrochloric acid were added to a reaction vessel and stirred at 60° C. for 2 hours. The reaction liquid was cooled to 30° C. and the organic layer and aqueous layer were separated. After the resulting aqueous layer was extracted with 5.8 mL of toluene, the organic layer was mixed to obtain 10.26 g of a toluene solution containing compound (3-1). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.77 g of compound (3-1) (yield 98.6%).
 〔実施例14〕
 化合物(3-1)の製造
 化合物(2-2)1.00g、トルエン3.02g、メタノール3.02g、40質量%水酸化ナトリウム水溶液2.42gおよび水1.55gを反応容器に加え、加熱還流下で22時間攪拌した。反応液を室温まで冷却し、有機層と水層を分離した。得られた水層をトルエン3.4mLで洗浄した後、水3.00g、35質量%塩酸4.63gおよびトルエン4.63gを洗浄後の当該水層に加え、60℃で4時間攪拌した。室温に冷却後、有機層と水層を分離した。得られた水層をトルエン5.3mLで抽出した後、有機層と混合することで、化合物(3-1)を含むトルエン溶液9.80gを得た。このトルエン溶液を定量分析した結果、化合物(3-1)を0.54g含むことを確認した(収率80.2%)。
[Example 14]
Production of compound (3-1) 1.00 g of compound (2-2), 3.02 g of toluene, 3.02 g of methanol, 2.42 g of 40% by mass sodium hydroxide aqueous solution and 1.55 g of water were added to a reaction vessel and heated. Stirred under reflux for 22 hours. The reaction solution was cooled to room temperature and the organic layer and aqueous layer were separated. After washing the resulting aqueous layer with 3.4 mL of toluene, 3.00 g of water, 4.63 g of 35% by mass hydrochloric acid and 4.63 g of toluene were added to the washed aqueous layer and stirred at 60° C. for 4 hours. After cooling to room temperature, the organic and aqueous layers were separated. The resulting aqueous layer was extracted with 5.3 mL of toluene and then mixed with the organic layer to obtain 9.80 g of a toluene solution containing compound (3-1). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.54 g of compound (3-1) (yield 80.2%).
 〔実施例15〕
 化合物(2-2)の製造
 化合物(1-2)0.20g、酢酸0.47g、亜ジチオン酸ナトリウム0.41g、トルエン(溶媒)1.00gおよび酢酸ナトリウム0.04gを反応容器に加え、窒素雰囲気下、100℃にて4.5時間撹拌した。反応終了後の溶液を、HPLCを用いて定性分析した。その結果、化合物(2-2)のピーク面積(S2-2と表す。)と化合物(1-2)のピーク面積(S1-2と表す。)の面積比(S2-2/S1-2)は100/0(Rt=10.2分/8.8分、15.0分)であった。また、化合物(2-2)および化合物(1-2)の相対面積百分率の和は65.4%であった。
[Example 15]
Preparation of compound (2-2) 0.20 g of compound (1-2), 0.47 g of acetic acid, 0.41 g of sodium dithionite, 1.00 g of toluene (solvent) and 0.04 g of sodium acetate are added to a reaction vessel, The mixture was stirred at 100° C. for 4.5 hours under nitrogen atmosphere. The solution after completion of the reaction was qualitatively analyzed using HPLC. As a result, the area ratio (S 2-2 / S 1-2 ) was 100/0 (Rt = 10.2 min/8.8 min, 15.0 min). The sum of the relative area percentages of compound (2-2) and compound (1-2) was 65.4%.
 〔実施例16〕
 1-(6-クロロ-2-メチル-1H-インドール-3-イル)エタノン(以下、化合物(2-4)と称する。)の製造
 3-(4-クロロ-2-ニトロフェニル)-4-ヒドロキシ-3-ペンテン-2-オン(以下、化合物(1-4)と称する。)0.50g、酢酸1.78g、亜ジチオン酸ナトリウム1.04gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-4)を含む懸濁液を得た。この懸濁液をろ過し、固体とろ液を得た。それぞれを定量分析した結果、化合物(2-4)を合わせて0.34g含むことを確認した。また水層を定量分析した結果、化合物(2-4)を0.02g含むことを確認した(収率87.1%)。
[Example 16]
Preparation of 1-(6-chloro-2-methyl-1H-indol-3-yl)ethanone (hereinafter referred to as compound (2-4)) 3-(4-chloro-2-nitrophenyl)-4- 0.50 g of hydroxy-3-penten-2-one (hereinafter referred to as compound (1-4)), 1.78 g of acetic acid, 1.04 g of sodium dithionite and 2.50 g of toluene (solvent) were placed in a reactor. In addition, the mixture was stirred at 100° C. for 22 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a suspension containing compound (2-4). This suspension was filtered to obtain a solid and a filtrate. As a result of quantitative analysis of each, it was confirmed that 0.34 g of compound (2-4) was included in total. As a result of quantitative analysis of the aqueous layer, it was confirmed to contain 0.02 g of compound (2-4) (yield 87.1%).
 〔実施例17〕
 化合物(2-4)の製造
 溶媒をトルエンからクロロベンゼンに変更した以外は実施例16に記載した方法と同じ条件で反応を行い、化合物(2-4)を含む懸濁液を得た。この懸濁液をろ過し、固体とろ液を得た。それぞれを定量分析した結果、化合物(2-4)を合わせて0.29g含むことを確認した。また水層を定量分析した結果、化合物(2-4)を0.05g含むことを確認した(収率83.1%)。
[Example 17]
Production of compound (2-4) A suspension containing compound (2-4) was obtained by carrying out the reaction under the same conditions as in Example 16 except that the solvent was changed from toluene to chlorobenzene. This suspension was filtered to obtain a solid and a filtrate. As a result of quantitative analysis of each, it was confirmed that 0.29 g of compound (2-4) was included in total. As a result of quantitative analysis of the aqueous layer, it was confirmed to contain 0.05 g of compound (2-4) (yield 83.1%).
 〔実施例18〕
 6-ブロモ-2-メチル-1H-インドール-3-カルボン酸メチル(以下、化合物(2-5)と称する。)の製造
 2-(4-ブロモ-2-ニトロフェニル)-3-ヒドロキシ-2-ブテン酸メチル(以下、化合物(1-5)と称する。)0.50g、酢酸1.42g、亜ジチオン酸ナトリウム0.84gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-5)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-5)を0.35g含むことを確認した(収率81.4%)。
[Example 18]
Production of methyl 6-bromo-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-5)) 2-(4-bromo-2-nitrophenyl)-3-hydroxy-2 -Methyl butenoate (hereinafter referred to as compound (1-5)) 0.50 g, acetic acid 1.42 g, sodium dithionite 0.84 g and toluene (solvent) 2.50 g were added to a reaction vessel and and 100° C. for 22 hours. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-5). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.35 g of compound (2-5) (yield 81.4%).
 〔実施例19〕
 化合物(2-5)の製造
 トルエンを1.50gに変更した以外は実施例18に記載した方法と同じ条件で反応を行い、化合物(2-5)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-5)を0.38g含むことを確認した(収率88.9%)。
[Example 19]
Production of compound (2-5) A toluene solution containing compound (2-5) was obtained by carrying out the reaction under the same conditions as in Example 18, except that the amount of toluene was changed to 1.50 g. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.38 g of compound (2-5) (yield 88.9%).
 〔実施例20〕
 6-クロロ-2-メチル-1H-インドール-3-カルボン酸エチル(以下、化合物(2-6)と称する。)の製造
 2-(4-クロロ-2-ニトロフェニル)-3-ヒドロキシ-2-ブテン酸エチル(以下、化合物(1-6)と称する。)0.50g、プロピオン酸1.95g、亜ジチオン酸ナトリウム0.94gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-6)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-6)を0.29g含むことを確認した(収率70.1%)。
[Example 20]
Preparation of ethyl 6-chloro-2-methyl-1H-indole-3-carboxylate (hereinafter referred to as compound (2-6)) 2-(4-chloro-2-nitrophenyl)-3-hydroxy-2 -Ethyl butenoate (hereinafter referred to as compound (1-6)) 0.50 g, propionic acid 1.95 g, sodium dithionite 0.94 g and toluene (solvent) 2.50 g were added to a reaction vessel and a nitrogen atmosphere was added. The mixture was stirred at 100° C. for 22 hours. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a toluene solution containing compound (2-6). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.29 g of compound (2-6) (yield 70.1%).
 〔実施例21〕
 化合物(2-6)の製造
 化合物(1-6)0.50g、酢酸1.59g、亜ジチオン酸ナトリウム0.94gおよびトルエン(溶媒)2.50gを反応容器に加え、窒素雰囲気下、100℃にて44時間撹拌した。反応終了後、反応混合物を70℃まで冷却し、水5.0mLで希釈した後、トルエン5.7mLにて抽出することで、化合物(2-6)を含む懸濁液を得た。この懸濁液をろ過し、固体とろ液を得た。それぞれを定量分析した結果、化合物(2-6)を合計で0.34g含むことを確認した。また水層を定量分析した結果、化合物(2-6)を0.02g含むことを確認した(収率85.8%)。
[Example 21]
Production of compound (2-6) 0.50 g of compound (1-6), 1.59 g of acetic acid, 0.94 g of sodium dithionite and 2.50 g of toluene (solvent) were added to a reactor and heated to 100°C under a nitrogen atmosphere. and stirred for 44 hours. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 5.0 mL of water, and extracted with 5.7 mL of toluene to obtain a suspension containing compound (2-6). This suspension was filtered to obtain a solid and a filtrate. As a result of quantitative analysis of each, it was confirmed that 0.34 g of compound (2-6) was contained in total. As a result of quantitative analysis of the aqueous layer, it was confirmed to contain 0.02 g of compound (2-6) (yield 85.8%).
 〔実施例22〕
 化合物(2-3)の製造
 溶媒をトルエンからジメチルスルホキシド2.50gに変更した以外は実施例3に記載した方法と同じ条件で反応を行い、化合物(2-3)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-3)を0.30g含むことを確認した(収率72.2%)。
[Example 22]
Production of compound (2-3) A toluene solution containing compound (2-3) was obtained by carrying out the reaction under the same conditions as in Example 3 except that the solvent was changed from toluene to 2.50 g of dimethylsulfoxide. . As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.30 g of compound (2-3) (yield 72.2%).
 〔実施例23および実施例24〕
 化合物(2-2)の製造
 反応温度を変更した以外は実施例2に記載した方法と同じ条件で反応させた。反応温度および収率を下記の第2表に記載する。
[Example 23 and Example 24]
Production of Compound (2-2) A reaction was carried out under the same conditions as in the method described in Example 2, except that the reaction temperature was changed. Reaction temperatures and yields are listed in Table 2 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 〔実施例25〕
 化合物(2-3)の製造
 反応温度を80℃に変更した以外は実施例3に記載した方法と同じ条件で反応を行い、化合物(2-3)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-3)を0.29g含むことを確認した(収率71.1%)。
[Example 25]
Production of compound (2-3) A toluene solution containing compound (2-3) was obtained by carrying out the reaction under the same conditions as in Example 3, except that the reaction temperature was changed to 80°C. As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.29 g of compound (2-3) (yield 71.1%).
 〔実施例26〕
 化合物(2-2)の製造
 化合物(1-2)0.70g、酢酸2.47g、亜ジチオン酸ナトリウム1.43gおよびトルエン(溶媒)4.90gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。HPLC定性分析による反応途中における化合物(2-2)の相対面積百分率は、91.7%(21時間)であった。反応終了後、反応混合物を70℃まで冷却し、水7.0mLで希釈した後、トルエン8.0mLにて抽出することで、化合物(2-2)を含むトルエン溶液を得た。このトルエン溶液を定量分析した結果、化合物(2-2)を0.50g含むことを確認した(収率89.0%)。
[Example 26]
Production of compound (2-2) 0.70 g of compound (1-2), 2.47 g of acetic acid, 1.43 g of sodium dithionite and 4.90 g of toluene (solvent) were added to a reactor and heated to 100°C under a nitrogen atmosphere. and stirred for 22 hours. The relative area percentage of compound (2-2) during the reaction was 91.7% (21 hours) by HPLC qualitative analysis. After completion of the reaction, the reaction mixture was cooled to 70° C., diluted with 7.0 mL of water, and extracted with 8.0 mL of toluene to obtain a toluene solution containing compound (2-2). As a result of quantitative analysis of this toluene solution, it was confirmed to contain 0.50 g of compound (2-2) (yield 89.0%).
 〔実施例27および実施例28〕
 化合物(2-2)の製造
 亜ジチオン酸ナトリウムの使用量を変更した以外は実施例26に記載した方法と同じ条件で反応させた。HPLC定性分析による実施例27の反応途中における化合物(2-2)の相対面積百分率は、90.3%(21時間)、実施例28では90.3%(21時間)であった。各々の試薬の使用量、収率を下記の第3表に記載する。
[Examples 27 and 28]
Production of Compound (2-2) A reaction was carried out under the same conditions as in the method described in Example 26, except that the amount of sodium dithionite used was changed. According to HPLC qualitative analysis, the relative area percentage of compound (2-2) during the reaction of Example 27 was 90.3% (21 hours), and that of Example 28 was 90.3% (21 hours). The amounts and yields of each reagent used are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 〔実施例29および実施例30〕
 化合物(2-2)の製造
 酢酸の使用量を変更した以外は実施例26に記載した方法と同じ条件で反応させた。HPLC定性分析による実施例29の反応途中における化合物(2-2)の相対面積百分率は、79.0%(21時間)、87.2%(42時間)、実施例30では92.7%(20時間)であった。各々の試薬の使用量、反応時間および収率を下記の第4表に記載する。
[Example 29 and Example 30]
Production of Compound (2-2) A reaction was carried out under the same conditions as in the method described in Example 26, except that the amount of acetic acid used was changed. The relative area percentages of compound (2-2) during the reaction of Example 29 by HPLC qualitative analysis were 79.0% (21 hours), 87.2% (42 hours), and 92.7% ( 20 hours). The amount of each reagent used, reaction time and yield are listed in Table 4 below.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 〔実施例31および実施例32〕
 化合物(2-2)の製造
 溶媒としてのトルエンの使用量、反応時間を変更した以外は実施例2に記載した方法と同じ条件で反応を行い、化合物(2-2)を含むトルエン溶液を得た。HPLC定性分析による実施例31の反応途中におけるによる化合物(2-2)の相対面積百分率は、77.8%(4時間)、92.0%(13時間)、実施例32では79.1%(4時間)、92.1%(16時間)であった。各々の試薬の使用量、反応時間および収率を下記の第5表に記載する。
[Examples 31 and 32]
Production of compound (2-2) A toluene solution containing compound (2-2) was obtained by carrying out the reaction under the same conditions as in Example 2, except that the amount of toluene used as a solvent and the reaction time were changed. rice field. The relative area percentage of compound (2-2) during the reaction of Example 31 by HPLC qualitative analysis was 77.8% (4 hours), 92.0% (13 hours), and 79.1% in Example 32. (4 hours) and 92.1% (16 hours). The amount of each reagent used, reaction time and yield are listed in Table 5 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 〔実施例33および実施例34〕
 化合物(2-2)の製造
 酢酸使用量、反応時間を変更した以外は実施例31に記載した方法と同じ条件で反応を行い、化合物(2-2)を含むトルエン溶液を得た。HPLC定性分析による実施例33の反応途中におけるによる化合物(2-2)の相対面積百分率は、66.2%(4時間)、90.5%(26時間)であり、実施例34では70.2%(4時間)、92.5%(23時間)であった。各々の試薬の使用量、反応時間および収率を下記の第6表に記載する。
[Examples 33 and 34]
Production of compound (2-2) A toluene solution containing compound (2-2) was obtained by carrying out the reaction under the same conditions as in Example 31, except that the amount of acetic acid used and the reaction time were changed. According to HPLC qualitative analysis, the relative area percentages of compound (2-2) during the reaction of Example 33 were 66.2% (4 hours) and 90.5% (26 hours), and in Example 34, 70.5%. 2% (4 hours) and 92.5% (23 hours). The amount of each reagent used, reaction time and yield are listed in Table 6 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 〔実施例35〕
 化合物(2-2)の製造
 亜ジチオン酸ナトリウム使用量を0.79g、反応時間を22時間に変更した以外は実施例32に記載した方法と同じ条件で反応を行い、化合物(2-2)を含むトルエン溶液を得た。HPLC定性分析による反応途中におけるによる化合物(2-2)の相対面積百分率は、74.8%(4時間)、82.7%(22時間)であった。トルエン溶液を定量分析した結果、化合物(2-2)を0.29g含むことを確認した(収率73.0%)。
[Example 35]
Production of compound (2-2) The reaction was carried out under the same conditions as in Example 32, except that the amount of sodium dithionite used was changed to 0.79 g and the reaction time was changed to 22 hours to obtain compound (2-2). A toluene solution containing The relative area percentages of compound (2-2) during the reaction by HPLC qualitative analysis were 74.8% (4 hours) and 82.7% (22 hours). As a result of quantitative analysis of the toluene solution, it was confirmed to contain 0.29 g of compound (2-2) (yield 73.0%).
 〔比較例1〕
 化合物(1-1)0.30gを用い、亜ジチオン酸ナトリウム0.66g、溶媒として水2.62gおよびトルエン3.00gを反応容器に加え、窒素雰囲気下、100℃にて5時間攪拌した。HPLC定性分析による有機相の反応途中の化合物(2-1)の相対面積百分率は、24.2%(5時間)であった。反応終了後の有機層を、HPLCを用いて定性分析した。その結果、化合物(2-1)のピーク面積(S2-1と表す)と化合物(1-1)のピーク面積(S1-1と表す)の面積比(S2-1/S1-1)は25/75(Rt=6.4分/13.8分)であった。また、化合物(2-1)および化合物(1-1)の相対面積百分率の和は98.6%であった。
[Comparative Example 1]
Using 0.30 g of compound (1-1), 0.66 g of sodium dithionite, 2.62 g of water and 3.00 g of toluene as solvents were added to a reaction vessel and stirred at 100° C. for 5 hours under nitrogen atmosphere. According to HPLC qualitative analysis, the relative area percentage of compound (2-1) in the course of reaction in the organic phase was 24.2% (5 hours). The organic layer after completion of the reaction was qualitatively analyzed using HPLC. As a result , the area ratio ( S 2-1 / S 1- 1 ) was 25/75 (Rt=6.4 min/13.8 min). The sum of relative area percentages of compound (2-1) and compound (1-1) was 98.6%.
 〔比較例2〕
 化合物(1-1)に代えて化合物(1-2)を用いる以外は比較例1に記載した方法と同じ条件で反応を行なった。HPLC定性分析による有機相の反応途中の化合物(2-2)の相対面積百分率は、15.9%(5時間)であった。反応終了後の有機層を、HPLCを用いて定性分析した。その結果、面積比(S2-2/S1-2)は20/80(Rt=10.2分/8.8分、15.0分)であった。また、化合物(2-2)および化合物(1-2)の相対面積百分率の和は79.6%であった。
[Comparative Example 2]
A reaction was carried out under the same conditions as the method described in Comparative Example 1 except that compound (1-2) was used instead of compound (1-1). The relative area percentage of compound (2-2) in the course of reaction in the organic phase was 15.9% (5 hours) by HPLC qualitative analysis. The organic layer after completion of the reaction was qualitatively analyzed using HPLC. As a result, the area ratio (S 2-2 /S 1-2 ) was 20/80 (Rt=10.2 min/8.8 min, 15.0 min). The sum of relative area percentages of compound (2-2) and compound (1-2) was 79.6%.
 〔比較例3〕
 3-(4-フルオロ-2-ニトロフェニル)アセトン(以下、「FNPA」とも言う)0.20gを用い、酢酸0.60g、亜ジチオン酸ナトリウム0.53g、トルエン(溶媒)1.00gおよび酢酸ナトリウム0.04gを反応容器に加え、窒素雰囲気下、100℃にて4.5時間攪拌した。反応終了後の溶液を、HPLCを用いて定性分析した。その結果、化合物(3-1)のピーク面積(S3-1と表す。)とFNPAのピーク面積(SFNPAと表す。)の面積比(S3-1/SFNPA)は73/27(Rt=12.6分/7.5分)であった。また、化合物(3-1)およびFNPAの相対面積百分率の和は40.5%であった。
[Comparative Example 3]
Using 0.20 g of 3-(4-fluoro-2-nitrophenyl)acetone (hereinafter also referred to as "FNPA"), 0.60 g of acetic acid, 0.53 g of sodium dithionite, 1.00 g of toluene (solvent) and acetic acid 0.04 g of sodium was added to the reactor and stirred at 100° C. for 4.5 hours under a nitrogen atmosphere. The solution after completion of the reaction was qualitatively analyzed using HPLC. As a result, the area ratio (S 3-1 /S FNPA ) of the peak area of compound (3-1) (represented as S 3-1) and the peak area of FNPA (represented as S FNPA ) was 73/27 ( Rt=12.6 min/7.5 min). The sum of relative area percentages of compound (3-1) and FNPA was 40.5%.
 〔比較例4〕
 化合物(2-2)の製造
 化合物(1-2)0.50g、炭酸カリウム0.54g、亜ジチオン酸ナトリウム2.52gおよび、溶媒として水12.50gを反応容器に加え、窒素雰囲気下、25℃にて5時間撹拌した。HPLC定性分析による反応途中における化合物(2-2)の相対面積百分率は、9.8%(4時間)であった。反応後、ろ過を行い、得られた固体を水5.00gで洗浄した後、アセトニトリルで希釈することで化合物(2-2)を含むアセトニトリル溶液を得た。このアセトニトリル溶液を定量分析した結果、化合物(2-2)を0.03g含むことを確認した(収率7.2%)。
[Comparative Example 4]
Preparation of compound (2-2) 0.50 g of compound (1-2), 0.54 g of potassium carbonate, 2.52 g of sodium dithionite, and 12.50 g of water as a solvent were added to a reaction vessel, and the mixture was heated for 25 minutes under a nitrogen atmosphere. C. for 5 hours. The relative area percentage of compound (2-2) during the reaction was 9.8% (4 hours) by HPLC qualitative analysis. After the reaction, filtration was carried out, and the obtained solid was washed with 5.00 g of water and then diluted with acetonitrile to obtain an acetonitrile solution containing compound (2-2). As a result of quantitative analysis of this acetonitrile solution, it was confirmed to contain 0.03 g of compound (2-2) (yield 7.2%).
 〔比較例5〕
 化合物(2-2)の製造
 化合物(1-2)0.50g、炭酸カリウム4.06g、亜ジチオン酸ナトリウム1.02gおよびトルエン(溶媒)3.50gを反応容器に加え、窒素雰囲気下、100℃にて22時間撹拌した。HPLC定性分析による反応途中における化合物(2-2)の相対面積百分率は、0.0%(4時間)、0.3%(22時間)であった。反応はほとんど進行せず、原料の化合物(1-2)が残っていた。
[Comparative Example 5]
Production of compound (2-2) 0.50 g of compound (1-2), 4.06 g of potassium carbonate, 1.02 g of sodium dithionite and 3.50 g of toluene (solvent) were added to a reaction vessel, and the mixture was heated to 100 g under a nitrogen atmosphere. C. for 22 hours. The relative area percentages of compound (2-2) during the reaction by HPLC qualitative analysis were 0.0% (4 hours) and 0.3% (22 hours). The reaction hardly progressed, and the raw material compound (1-2) remained.
 本発明は、医農薬の効率的な製造に利用することができ、医農薬のさらなる開発および普及へ貢献することが期待される。

 
INDUSTRIAL APPLICABILITY The present invention can be used for efficient production of pharmaceuticals and agricultural chemicals, and is expected to contribute to further development and spread of pharmaceuticals and agricultural chemicals.

Claims (10)

  1.  下記式(1)で表される化合物を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、下記式(2)で表されるインドール化合物を製造する、インドール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す)
    An indole compound represented by the following formula (2) is produced by reacting a compound represented by the following formula (1) with an acidic compound and sodium dithionite under heating in the absence of a solvent or in an organic solvent. A method for producing an indole compound.
    Figure JPOXMLDOC01-appb-C000001
    (In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy, R 2 represents a halogen atom, and n represents an integer of 1, 2, 3, or 4)
  2.  前記酸性化合物が、酢酸またはプロピオン酸である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the acidic compound is acetic acid or propionic acid.
  3.  前記有機溶媒が、芳香族炭化水素溶媒およびジメチルスルホキシドからなる群から選ばれる一以上の有機溶媒である、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the organic solvent is one or more organic solvents selected from the group consisting of aromatic hydrocarbon solvents and dimethylsulfoxide.
  4.  前記有機溶媒が、芳香族炭化水素溶媒である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the organic solvent is an aromatic hydrocarbon solvent.
  5.  前記芳香族炭化水素溶媒が、トルエン、オルトキシレンまたはクロロベンゼンである、請求項3または4に記載の製造方法。 The production method according to claim 3 or 4, wherein the aromatic hydrocarbon solvent is toluene, ortho-xylene or chlorobenzene.
  6.  前記式(1)で表される化合物を、芳香族炭化水素溶媒中で反応させる、請求項1に記載の製造方法。 The production method according to claim 1, wherein the compound represented by formula (1) is reacted in an aromatic hydrocarbon solvent.
  7.  反応温度が、50~150℃である、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the reaction temperature is 50 to 150°C.
  8.  前記式(1)で表される化合物が下記式(1A)で表される化合物であり、前記式(2)で表されるインドール化合物が下記式(2A)で表される化合物である、請求項1~7のいずれか一項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (式(1A)および式(2A)中、Rはメチル、メトキシ、またはエトキシを表し、Rはハロゲン原子を表す)
    The compound represented by the formula (1) is a compound represented by the following formula (1A), and the indole compound represented by the formula (2) is a compound represented by the following formula (2A). Item 8. The production method according to any one of Items 1 to 7.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (1A) and Formula (2A), R 1 represents methyl, methoxy, or ethoxy, and R 2 represents a halogen atom)
  9.  式(1A)および式(2A)中、Rはフッ素原子、塩素原子または臭素原子である、請求項8に記載の製造方法。 The production method according to claim 8, wherein R2 is a fluorine atom, a chlorine atom or a bromine atom in formulas (1A) and (2A).
  10.  下記式(1)で表される化合物を、無溶媒または有機溶媒中、加熱下にて、酸性化合物および亜ジチオン酸ナトリウムと反応させることで、下記式(2)で表される化合物を製造する第一の工程と、
     前記式(2)で表される化合物から下記式(3)で表されるインドール化合物を製造する第二の工程と、を含み、
     前記第二の工程は、前記式(2)で表される化合物を水および酸性化合物または塩基性化合物の存在下で加熱する工程を含む、インドール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     (式(1)および式(2)中、Rは、メチル、メトキシ、またはエトキシを表し、式(1)から式(3)中、Rはハロゲン原子を表し、nは1、2、3または4の整数を表す)
    A compound represented by the following formula (1) is reacted with an acidic compound and sodium dithionite in the absence of a solvent or in an organic solvent under heating to produce a compound represented by the following formula (2). a first step;
    a second step of producing an indole compound represented by the following formula (3) from the compound represented by the formula (2),
    A method for producing an indole compound, wherein the second step includes a step of heating the compound represented by the formula (2) in the presence of water and an acidic compound or a basic compound.
    Figure JPOXMLDOC01-appb-C000003
    (In formulas (1) and (2), R 1 represents methyl, methoxy, or ethoxy; in formulas (1) to (3), R 2 represents a halogen atom; n is 1, 2, represents an integer of 3 or 4)
PCT/JP2022/041133 2021-11-04 2022-11-04 Method for producing indole compound WO2023080193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180346 2021-11-04
JP2021180346 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023080193A1 true WO2023080193A1 (en) 2023-05-11

Family

ID=86241544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041133 WO2023080193A1 (en) 2021-11-04 2022-11-04 Method for producing indole compound

Country Status (1)

Country Link
WO (1) WO2023080193A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506354A (en) * 1993-06-28 1996-07-09 ファイザー・インク. Process for producing 5- [2- (4- (benzisothiazol-3-yl) -piperazin-1-yl) ethyl-6-chloro-1,3-dihydro-indol-2-one and intermediate for the production
JP2005035991A (en) * 2003-06-27 2005-02-10 Nissan Chem Ind Ltd Method for producing indole compound
JP2010508340A (en) * 2006-11-02 2010-03-18 アストラゼネカ アクチボラグ Process for preparing indole-5-oxy-quinazoline derivatives and intermediates
CN108264512A (en) * 2016-12-30 2018-07-10 上海医药集团股份有限公司 Nitrogenous fused heterocyclic compound, preparation method, intermediate, composition and application
JP2018536639A (en) * 2015-10-26 2018-12-13 バイエル・クロップサイエンス・アクチェンゲゼルシャフト Fused bicyclic heterocyclic derivatives as pest control agents
CN110590739A (en) * 2019-09-20 2019-12-20 中国药科大学 Preparation method of erlotinib
JP2020536120A (en) * 2017-09-30 2020-12-10 シャンハイ ハイファ ファーマシューティカル カンパニー,リミティッド Compounds with ERK kinase inhibitory activity and their use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506354A (en) * 1993-06-28 1996-07-09 ファイザー・インク. Process for producing 5- [2- (4- (benzisothiazol-3-yl) -piperazin-1-yl) ethyl-6-chloro-1,3-dihydro-indol-2-one and intermediate for the production
JP2005035991A (en) * 2003-06-27 2005-02-10 Nissan Chem Ind Ltd Method for producing indole compound
JP2010508340A (en) * 2006-11-02 2010-03-18 アストラゼネカ アクチボラグ Process for preparing indole-5-oxy-quinazoline derivatives and intermediates
JP2018536639A (en) * 2015-10-26 2018-12-13 バイエル・クロップサイエンス・アクチェンゲゼルシャフト Fused bicyclic heterocyclic derivatives as pest control agents
CN108264512A (en) * 2016-12-30 2018-07-10 上海医药集团股份有限公司 Nitrogenous fused heterocyclic compound, preparation method, intermediate, composition and application
JP2020536120A (en) * 2017-09-30 2020-12-10 シャンハイ ハイファ ファーマシューティカル カンパニー,リミティッド Compounds with ERK kinase inhibitory activity and their use
CN110590739A (en) * 2019-09-20 2019-12-20 中国药科大学 Preparation method of erlotinib

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEN, A. B.; BHARGAVA, P. M.: "Synthesis of substituted dinitrophenylketones and phenylacetic acids. Part VI", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, INDIAN CHEMICAL SOCIETY, IN, vol. 26, no. 2, 1 January 1949 (1949-01-01), IN , pages 71 - 72, XP009545950, ISSN: 0019-4522 *

Similar Documents

Publication Publication Date Title
CN1232480C (en) Process for the preparation of nitroalkenes
JP7368636B2 (en) Method for synthesizing roxadustat and its intermediates and intermediates thereof
WO2023080193A1 (en) Method for producing indole compound
RU2318797C2 (en) Method for phenol compound nitration
CN112194608B (en) Synthesis method of visible light promoted 3-methyl-3-difluoroethyl-2-oxindole compound
JP2001233870A (en) 3-(1-hydroxypentylidene)-5-nitro-3h-benzofuran-2-one, method for producing the same and use thereof
Adonin et al. Nucleophilic aryloxydefluorination of pentafluorobenzene without noble metal catalysis
CN109836383B (en) Method for preparing 3, 4-dihydroquinoline-2 (1H) -ketone compound
JP4161290B2 (en) Process for producing pyrimidinyl alcohol derivatives and synthetic intermediates thereof
JP2012193124A (en) Method for producing 2,3-dichloropyridine
JP2021195344A (en) Method for producing 5-bromo-2-halogenated benzoic acid
CN107245059B (en) The method that heterogeneous catalytic oxidation prepares benzoxazoles compound
JP2018076289A (en) Method for producing halogenated benzene derivative
JP2021195320A (en) Method for producing 5-bromo-2-halogenated benzoic acid
CN111362795A (en) Preparation method of substituted butyrate derivatives
JP5188475B2 (en) Process for producing 2- (3-nitrobenzylidene) isopropyl acetoacetate
JP5448363B2 (en) Method for producing compound
CN113348163A (en) Methods and compounds
CN108558750B (en) Process for synthesizing 3-nitroquinoline derivative by solvent-free method
CN112441961B (en) Synthetic method of 3-pyrroline-2-ketone compound
CN110872221B (en) Method for synthesizing benzofluorenone compound
CN110872218B (en) Method for synthesizing benzofluorenone compound under catalysis of Cu
CN115260092B (en) Synthesis method of 2-chloronicotinamide and N-substituted derivative thereof
CN111440147B (en) Synthesis method of N- (2-methyl-5-aminophenyl) -4- (3-pyridyl) -2-pyrimidinamine
CN110511147B (en) Method for reducing nitroolefin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890013

Country of ref document: EP

Kind code of ref document: A1