JP2015062273A - 無線通信モジュール、無線通信システム、及び通信方法 - Google Patents

無線通信モジュール、無線通信システム、及び通信方法 Download PDF

Info

Publication number
JP2015062273A
JP2015062273A JP2014135768A JP2014135768A JP2015062273A JP 2015062273 A JP2015062273 A JP 2015062273A JP 2014135768 A JP2014135768 A JP 2014135768A JP 2014135768 A JP2014135768 A JP 2014135768A JP 2015062273 A JP2015062273 A JP 2015062273A
Authority
JP
Japan
Prior art keywords
space
conductive wall
conductive
antenna
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014135768A
Other languages
English (en)
Inventor
芦田 裕
Yutaka Ashida
裕 芦田
洋二 大橋
Yoji Ohashi
洋二 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014135768A priority Critical patent/JP2015062273A/ja
Priority to US14/462,455 priority patent/US9727762B2/en
Publication of JP2015062273A publication Critical patent/JP2015062273A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10158Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field
    • G06K7/10168Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field the powering being adversely affected by environmental influences, e.g. unwanted energy loss in the interrogation signal due to metallic or capacitive objects in the proximity of the interrogation device or in the proximity of the interrogated record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10158Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field
    • G06K7/10178Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field including auxiliary means for focusing, repeating or boosting the electromagnetic interrogation field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)
  • Near-Field Transmission Systems (AREA)
  • Computer Security & Cryptography (AREA)

Abstract

【課題】導電壁で囲まれた閉空間における通信性能を改善した無線通信モジュールを提供する。
【解決手段】無線通信モジュールは、閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、アンテナを介して閉空間内に存在するRFIDタグを読み取るタグリーダと、第1導電壁と、対向する第2導電壁との間に配設される、薄膜状又は板状の反射部とを含み、閉空間は、反射部によって、第1導電壁側の第1空間と、第2導電壁側の第2空間とに分けられており、タグリーダから出力され、アンテナから放射される電波が反射部によって反射されて第1空間を伝播する第1反射波と、アンテナから放射される電波が反射部を透過して第2空間を伝搬して第2導電壁によって反射され、反射部を透過して第1空間を伝播する第2反射波とが相殺されるように、第1導電壁と第2導電壁との間における反射部の位置が決定される。
【選択図】図1

Description

実施の形態は、無線通信モジュール、無線通信システム、及び通信方法等に関連する。
1つ以上の管理対象を管理する技術の一例として、バーコードを利用するバーコードシステムがある。管理対象は物品、商品、書類その他の任意の対象であってよい。バーコードシステムは、管理対象の各々に付随するバーコードをバーコードリーダで読み取り、バーコードが表現する情報を取得する。しかしながら、バーコードシステムの場合、バーコードを1つずつ読み取る必要があり、一度にたくさんの管理対象を一括して管理又は処理することは容易でない。
RFID(Radio Frequency IDentification)タグを利用するRFIDタグシステムは、理論上、そのような懸念に対処できる。RFIDタグは、RFIC(Radio Frequency Integrated Circuit)タグ又は無線タグ等とも称す。RFIDタグシステムでは、RFIDタグリーダが電波を送信し、その電波を受信したRFIDタグが自身のメモリに保存されている情報を送信する。RFIDタグリーダは、多数のRFIDタグから送信された情報を取得し、多数のRFIDタグを一括管理することができる(非特許文献1、2)。
王鵬 他4名、「2.45GHz帯パッシブRFIDタグの背後に金属が存在する場合のデッドスポットに関する解析」、電子情報通信学会論文誌、電子情報通信学会2010、Vol.J93-B、No.11、pp.1531-1540 Taguchi Mitsuo, et al.,"Analysis of Dead Zone of RFID System", 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, 558.8, pp.4759-4762, July 2006
しかしながら、従来のRFIDタグシステムは、使用される環境によっては、多数の管理対象を必ずしも一括して管理することができないという問題を有する。例えば、書類、書類が入った封筒、又は書類フォルダ(以下、書類等と称す)にRFIDタグが付されており、その書類等が、金属のような導電壁11により閉空間が形成されている書類棚に収納されていたとする。この場合、書類棚の一端に設けられたRFIDタグリーダのアンテナから電波が送信されると、書類棚の導電壁11による反射に起因して定在波が生じ、定在波の節の場所で電波強度が局所的に低下する。局所的に電波強度が弱い場所は、デッドスポット(dead spot)又はデッドゾーン(dead zone)と称され、デッドスポットに存在する書類等に付されたRFIDタグは、適切な強度の電波を受信しないので、RFIDタグリーダに応答できない。その結果、RFIDタグリーダは、書類棚にある全てのRFIDタグに保存されている情報を適切に取得できず、局所的な通信不良に起因して、書類棚に収納されている書類等を一括して管理することができなくなってしまう。
そこで、導電壁で囲まれた閉空間における通信性能を改善した無線通信モジュールを提供することを目的とする。
実施の形態による無線通信モジュールは、閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、前記アンテナに接続され、前記アンテナを介して前記閉空間内に存在するRFIDタグを読み取るタグリーダと、前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射率rの反射部とを含み、前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定される。
導電壁により形成された閉空間に配置されたアンテナと1つ以上のタグとの間で電波が送受信される通信システムにおいて、通信性能を改善することである。
実施の形態1で使用される無線通信システムを示す図。 無線通信システムの誘電体104の付近を詳細に示す図。 管内波長λgと導波管の縦又は横の長さWとの関係を915MHz及び955MHzのそれぞれの場合について示す図。 誘電体104が存在しなかった場合に定在波が生じる様子を説明するための図。 定在波の様々な位相の波形を模式的に示す図。 定在波の様々な位相の波形を重ね合わせて表示したシミュレーション結果を示す図。 第1反射波Er1を計算するためのモデルを示す図。 第2反射波Er2を計算するためのモデルを示す図。 第1空間V1において第1反射波Er1と第2反射波Er2とが相殺され、第2空間V2において定在波が生じている様子を示す図。 x=0及びz=0に関し、進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 x=110及びz=0に関し、進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 x=0及びz=110に関し、進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 無線通信モジュール101にRFIDタグ50を配置した無線通信システムを示す図。 誘電体104(アクリル水槽)を閉空間内に配置しなかった場合におけるRFIDタグの読取率[個/秒]に関する実験結果を示す図。 誘電体104(アクリル水槽)を閉空間内に配置した場合におけるRFIDタグの読取率[個/秒]に関する実験結果を示す図。 図14及び図15に示す実験結果を、RFIDタグの3種類の位置の各々について示す図。 誘電体104(アクリル水槽)を閉空間内に配置しなかった場合におけるRFIDタグの読取率[個/秒]の実験結果を示す図。 誘電体104(アクリル水槽)を閉空間内に配置した場合におけるRFIDタグの読取率[個/秒]の実験結果を示す図。 液体材料の比誘電率εr及び誘電損失tanδを示す図。 固体材料の比誘電率εr及び誘電損失tanδを示す図。 第1空間V1の中で第1、第2反射波Er1,Er2が適切に相殺される条件を満たす誘電体104の厚さDs及び比誘電率εrの関係を示す図。 反射波Er1,Er2が適切に相殺される条件を満たす比誘電率εr及び誘電体104の厚さDsとλd/2の比較図。 比誘電率εrが81である誘電体104が使用された場合における誘電体104の厚さDs[mm]、反射波の大きさEr[V/m]及び反射係数S(=Er/Ei)の相互関係を示す図。 誘電損失tanδが0.08である誘電体104が使用された場合に生じる進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 誘電損失tanδが0.1である誘電体104が使用された場合に生じる進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 誘電損失tanδが0.16である誘電体104が使用された場合に生じる進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 Ls=λg×2/2の位置に誘電体104を設けた無線通信システムにおける進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 Ls=λg×3/2の位置に誘電体104を設けた無線通信システムにおける進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 第2空間V2を狭くする変形例を説明するための図。 第2空間V2を誘電体材料で充填することで、第2空間V2の体積を小さくした様子を示す図。 1種類の誘電体で第2空間V2を充填した無線通信システムにおける進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す図。 無線通信システムにおける通信方法のフローチャートを示す図。 実施の形態2の無線通信システム200を示す。 図33の一部を拡大して示す図である。 図33の一部を拡大して示す図である。 反射率r01に対する、合成反射波Er20と反射係数Sの計算結果を示す図である。 導電率(比抵抗)σ、密度、抵抗率ρ、表皮深さδsの比較表を示す図である。 膜厚Dtの試算結果を示す図である。 テフロン(登録商標)製の基板204AにZnO_AL(2w%)の導電薄膜204を形成した反射板を含む無線通信モジュールの一部分を示す図である。 電解分布を示す図である。 位置Ls2と厚さDtを調整した場合の反射係数Sの特性を示す図である。 実施の形態2の変形例による電解分布のシミュレーション結果を示す図である。 電解分布を示す図である。 位置Ls2と厚さDtを調整した場合の反射係数Sの特性を示す図である。
添付図面を参照しながら以下の観点から実施形態を説明する。図中、同様な要素には同じ参照番号又は参照符号が付されている。
<実施の形態1>
実施の形態1を以下の順に説明する。
A. 定在波の低減
A1. 構成
A2. 反射波の相殺
A2.1 第1反射波Er1
A2.2 第2反射波Er2
A3. 効果
A4. 応用例
A5. パラメータ値
B. 誘電体の位置に関する変形例
C. 第2空間を縮小する変形例
D. 通信方法
これらの項目の区分けは開示される実施の形態に本質的ではなく、2つ以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
<A. 定在波の低減>
<<A1. 構成>>
図1は、実施の形態1の無線通信システム100を示す。無線通信システム100は、無線通信モジュール101と、無線通信モジュール101が規定する閉空間10Aに配置されたRFIDタグ50とを有する。無線通信システム100は、導電構造体10に取り付けられる。なお、無線通信システム100は、導電構造体10を含んでもよい。説明の便宜上、図1では、全体を無線通信システム100として示す。
導電構造体10は、閉空間10Aを形成する6つの導電壁11を有する。6つの導電壁11には、第1導電壁11M1と第2導電壁11M2とが含まれる。図1に示す例では、閉空間10Aは、xz面内で四角形(矩形)の断面を有する。導電構造体10は、上下左右前後の6つの面を規定する6枚の導電壁11により、y軸方向に管状に伸びる導波管を形成している。図1に示す導電構造体10が形成している導波管又は閉空間は、x軸方向にWx、z軸方向にWz、及びy軸方向に(Ys+Ls)の長さを有する。閉空間10Aは6枚の導電壁11で囲まれている。図1に示す例では導波管は矩形の断面を有しているが、実施の形態1では、矩形の断面に限定されず、導波管は円形断面等のような他の断面形状を有していてもよい。また、閉空間10Aを形成する導電壁11の数は、6つに限られるものではない。導電構造体10は、例えば、金属製で蓋付きの棚、金属製の収納容器、又は、導電壁11で覆われた倉庫または部屋等でも良い。また、導電壁11はメッシュ構造であってもよい。
無線通信モジュール101は、RFIDタグリーダ102、アンテナ103、及び誘電体104を有する。
RFIDタグリーダ102は、RFIDタグ50から取得した情報を分析し、RFIDタグ50が付されている管理対象を管理する。管理対象は物品、商品、書類その他の任意の対象であってよい。RFIDタグリーダ102は、アンテナ103に接続されており、アンテナ103を通じてRFIDタグ50との間で電波を送受信する。図1に示す例では、RFIDタグリーダ102は、導波管を形成する導電壁11の1つに接して設けられているが、例えば導電壁11から隔てられた他の場所に設けられてもよい。
アンテナ103は、導波管の一端にある第1導電壁11M1に設けられている。アンテナ103は、所定の周波数の電波を送信及び受信する任意のアンテナとすることが可能である。アンテナは、一例として、ダイポールアンテナ、スロットアンテナ、パッチアンテナ、マイクロストリップアンテナ等である。所定の周波数は、RFIDタグと通信するための何らかの通信プロトコルで決定されている任意の値とすることが可能である。アンテナ103が送受信する電波の周波数は、一例として、13.56MHz、900MHz帯及び2.45GHz等である。特に、後述のシミュレーション結果では915MHzの電波が想定されている。アンテナ103が送受信する電波は、垂直偏波、水平偏波又は円偏波であってもよい。垂直偏波は電界がz軸方向に沿っている直線偏波である。水平偏波は電界がx軸方向に沿っている直線偏波である。円偏波は電界の方向が時間と共に回転する電波である。アンテナ103から送信される電波は、RFIDタグ50に入射するので、「入射波」と称してもよいし、或いはy軸プラス方向に進行するので「進行波」と称してもよい。
RFIDタグ50は、図1では不図示の管理対象に付随し、管理対象に関する情報(例えば、識別情報等)を保存し、RFIDタグリーダ102から所定の電波を受信したことに応答して、保存している情報を電波で送信する。従って、RFIDタグ50は、電波を送信するための電力がRFIDタグリーダ102から供給されるパッシブ型のタグである。一例として、RFIDタグ50は、所定の期間にわたってプリアンブル信号を受信した後に所定のコマンド信号を受信すると、図1には不図示のメモリから読み取った情報を、応答信号として送信する。図示の簡明化のため、図1にはRFIDタグ50は1つしか描かれていないが、実際には多数のRFIDタグ50が閉空間10A内に存在してよい。
誘電体104は、閉空間10Aを第1空間V1と第2空間V2に分割する。誘電体104は、x軸方向に約Wx及びz軸方向に約Wzの長さを有し、y軸方向にDsの厚さを有する。誘電体104は、誘電体製の板状部材の一例である。実際には、導波管を形成する導電壁11の厚さ等を考慮する必要があるので、誘電体104のy軸に垂直な面(xz面)における断面は、x軸方向にWxより若干短い長さ及びz軸方向にWzより若干短い長さを有する。誘電体104は、導波管の一端にある第1導電壁11M1に設けられたアンテナ103と、導波管の他端にある第2導電壁11M2との間に配置されている。説明の便宜上、アンテナ103と誘電体104との間の空間が「第1空間V1」であり、誘電体104と第2導電壁11M2との間の空間が「第2空間V2」であるとする。図1に示す例の場合、第1空間V1はy軸方向にYsの長さを有し、第2空間V2はy軸方向に(Ls-Ds)の長さを有する。なお、以下では、説明の便宜上、誘電体104の位置は、第2導電壁11M2を基準位置として、第2導電壁11M2から誘電体104の第1空間V1側の面までの距離で表し、誘電体104の位置Lsと称す。
図2は図1のうち誘電体104の付近を詳細に示す。図1及び図2に示すように、アンテナ103から送信された電波の一部は、誘電体104で反射され、第1空間V1を伝播する第1反射波Er1となる。誘電体104は、反射部の一例である。アンテナ103から送信された電波の別の部分は、第2空間V2を経て第2導電壁11M2で反射した後、第1空間V1を伝播する第2反射波Er2となる。第1反射波Er1と第2反射波Er2との間の位相差は、誘電体104の位置Ls及び厚さDsに依存する。そこで、第1空間V1の中で第1反射波Er1と第2反射波Er2との合成波が0になるように、又は、十分に小さくなるように、誘電体104の位置Ls及び厚さDsが決定される。言い換えれば、第1空間V1の中で第1反射波Er1と第2反射波Er2とが相殺されるように、誘電体104の位置Ls及び厚さDsが決定される。具体的には「A2. 反射波の相殺」の欄において説明するが、誘電体104はy軸方向において第2導電壁11M2から距離Lsの位置(第1導電壁11M1から長さYsの位置)に設けられる。距離Lsは、λg×n/2により表現され、nは自然数である。典型的にはn=1であるが、nが2以上である場合については、「B. 誘電体の位置に関する変形例」において説明する。λgは、導波管の内部を伝播する電波の管内波長(guide wave length)であり、真空中を伝播する電波の波長λとの間には次式が成立する。
λg=λ/cosθ
cosθ=[1-(λ/2W)2]1/2
ただし、アンテナ103から送信される電波が水平偏波の場合は、W=Wzである。一方、垂直偏波の場合はW=Wxである。Ls≒λg×n/2という条件は、長さLsを有する第2空間V2の中で定在波(波長は、2Ls/n)が生じるための条件を表す。ただし、誘電体104及び第2導電壁11M2の2箇所が節となる定在波を第2空間V2において形成できればよいので、距離Lsは、λg×n/2から若干ずれていてもよく、実質的にλg×n/2であればよい。一例として、距離Lsは、λg×n/2のプラスマイナス5%の範囲内にあればよい。
誘電体104の厚さDsはλd×β/2により表現され、βは1より小さな定数であり、一例として0.85〜0.95の範囲内の値をとる。λdは、誘電体104の中を伝播する電波の波長であり、λd=λ/√εrにより表現される。λは、真空中を伝播する電波の波長であり、εrは、誘電体104の比誘電率である。
図3は、管内波長λgと導波管の縦又は横の長さWとの関係を、電波の周波数が915MHz及び955MHzの場合についてそれぞれ示している。図3に示すシミュレーション結果においては、W=Wx=Wyであることが仮定されている。図3に示されているように、915MHz及び955MHzの何れの周波数についても、導波管の断面の面積(W2)が広くなるにつれて、管内波長(管内波長の半分λg/2)は減少していることが分かる。従って、導波管の断面の面積が広くなるにつれて、第2空間V2(誘電体104と第2導電壁11M2との間の空間)は狭くなり、第1空間V1(第1導電壁11M1と誘電体104との間の空間)は広くなる。
<<A2. 反射波の相殺>>
図1に示すアンテナ103から送信された電波は、y軸方向に進行するので「進行波」と称してもよいし、RFIDタグに入射するので「入射波」と称してもよい。進行波(又は入射波)のうち一部は、誘電体104により反射され、一部は第2導電壁11M2により反射される。実施の形態1により設けられる誘電体104を説明するために、先ず、そのような誘電体104が存在しなかった場合を考察する。
図4は、図1に示すような誘電体104が存在しなかった場合を示す。この場合、アンテナ103から送信された後にy軸のプラス方向に伝播する入射波(進行波)と、第2導電壁11M2により反射してy軸のマイナス方向に伝播する反射波とが同程度に大きな振幅で存在する。入射波と反射波は異なる方向に同じ速度で進むので、y軸上に節及び腹を有する定在波が形成される。すなわち、y軸上に沿ってλg/2毎に定在波の節ノード(node)が生じ、節と節の間に腹(antinode)が生じる。
図5は、そのような定在波のうち4種類の位相に関する波形を模式的に示す。すなわち、図5における4つの波形は、時間経過と共に、ST1→ST2→ST3→ST4のように順に変化し、その後、ST4→ST3→ST2→ST1のように逆の順に変化する。λg/2毎に節(node)が生じ、隣接する節の間に腹(antinode)が生じている。節の位置では電波強度が常にゼロであり、腹の位置では電波強度が最も大きく変化する。
図6は、定在波の様々な位相の波形を重ね合わせて表示したシミュレーション結果を示す。シミュレーションは、HFSS(high frequency structure simulator)電磁解析ツールを用いて行われた。図6に示す例では、図4に示すような導波管において、アンテナ103から水平偏波(電界成分がx軸方向に沿っている直線偏波)が送信された場合の電界の大きさ|Ex|(ScalarX_Vector_E)がy座標と共に示されている。電波の周波数は915MHzである。第1導電壁11M1が原点(y=0)にあり、第2導電壁11M2が(y=880mm)の位置にある。λg/2毎に生じる節の付近にRFIDタグが配置された場合、そのRFIDタグは、アンテナ103からの電波を十分に強く受信できず、RFIDタグリーダ102に応答することができない。
これに対して、実施の形態1では、図1に示すようにy軸上の所定の場所に誘電体104が配置されている。実施の形態1では、図2に示すように、アンテナ103から送信された入射波Eiのうち、一部は誘電体104により反射され第1空間V1を伝播する第1反射波Er1となり、一部は第2空間V2に透過して第2導電壁11M2により反射された後に第1空間V1の側に透過する第2反射波Er2となる。従って、反射波Erは第1反射波Er1及び第2反射波Er2の合計である。
Er=Er1+Er2
なお、厳密には、管内波長λgを決定する角度θに応じて変化する成分Eicosθを考察する必要があるが、説明の簡明化を図るためθを省略している点に留意を要する。
<<<A2.1 第1反射波Er1>>>
第1反射波Er1は、誘電体104により反射された電波であるが、より正確に言えば、アンテナ103から送信された入射波Eiが誘電体104の表面A1により反射された反射波と、表面A1を透過し、誘電体104の中で1回以上反射した後に、表面A1を透過して第1空間V1に戻った反射波との合成波である。
図7は、第1反射波Er1を計算するための簡易モデルを示す。便宜上、第1空間V1は「領域0」と称し、誘電体104の中の領域は「領域1」と称し、第2空間V2は「領域2」と称している。以下の説明において、領域0から領域1へ向かう電波が反射/透過する場合の反射率/透過率はそれぞれr01/t01により表現される。領域1から領域2へ向かう電波が反射/透過する場合の反射率/透過率はそれぞれr12/t12により表現される。逆に、領域1から領域0へ向かう電波が反射/透過する場合の反射率/透過率はそれぞれr10/t10により表現される。領域2から領域1へ向かう電波が反射/透過する場合の反射率/透過率はそれぞれr21/t21により表現される。なお、第2空間V2における第2導電壁11M2による反射は完全反射であり、反射率r2bはr2b=-1である。
図7に示されているように、先ず、入射波Eiが誘電体104の表面A1において反射することで、1番目の反射成分Er1 (1)が得られる。
Er1 (1)=r01Ei
n番目の反射成分はEr1 (n)により表現される。入射波Eiが表面A1を透過し、裏面A2で反射した後に、表面A1を透過した2番目の反射成分Er1 (2)は、
Er1 (2)=t01r12t10Eicos[2φ1]
となる。位相φ1は電波が誘電体104の表面A1から裏面A2へ(又はその逆方向へ)進行した場合の位相の変化量を表し、φ1=2πDs/λdである。1番目の反射成分Er1 (1)(又は入射波Ei)と2番目の反射成分Er1 (2)との間の位相差は、2φ1(1往復分)であるので、cos[2φ1]が乗算されている。なお、位相の変化量を余弦関数で表現することは必須ではなく、位相変化量は複素数exp(j2φ1)により表現されてもよい。入射波Eiが表面A1を透過した後、裏面A2における2回の反射、及び表面A1における1回の反射の後に、表面A1を透過した3番目の反射成分Er1 (3)は、
Er1 (3)=t01r12 2r10t10Eicos[4φ1]
となる。入射波Eiが表面A1を透過した後、裏面A2における3回の反射、及び表面A1における2回の反射の後に、表面A1を透過した4番目の反射成分Er1 (4)は、
Er1 (4)=t01r12 3r10 2t10Eicos[6φ1]
となる。以下同様な考察を行うことで、n番目の反射成分Er1 (n)を求めることができる。
Er1 (n)=t01r12 (n-1)r10 (n-2)t10Eicos[2(n-1)φ1]
ただし、この数式ではn≧2である。n=1については、Er1 (1)=r01Eiである。実際にはnは無限に大きくなるが、実用上は適切なnの最大値nMAXを決定し、1番目ないしnMAX番目の反射成分を合計することで、第1反射波Er1を見積もることができる。従って、第1反射波Er1は次のように表現できる。
Er1=Er1 (1)+Er1 (2)+...+ Er1 (nMAX)
<<<A2.2 第2反射波Er2>>>
第2反射波Er2は、入射波Eiが領域1から領域2(第2空間V2)の側に透過し、第2導電壁11M2で反射した後に、再び領域0へ透過した電波である。先ず、領域0で生じた入射波Eiが誘電体104の表面A1を透過し、反射せずに裏面A2を透過した1番目の透過成分Et (1)は、
Et (1)=t01t12Eicos[φ1]
となる。Et (s)は、領域2に透過してきた透過波Etのうちs番目の透過成分を表す。位相φ1は電波が誘電体104の表面A1から裏面A2へ(又はその逆方向へ)進行した場合の位相の変化量を表し、φ1=2πDs/λdである。入射波Eiと1番目の透過成分Et (1)との間の位相差は、φ1(片道分)であるので、cos[φ1]が乗算されている。なお、位相の変化量を余弦関数で表現することは必須ではなく、位相変化量は複素数exp(j2φ1)により表現されてもよい。
入射波Eiが表面A1を透過し、裏面A2における1回の反射、及び表面A1における1回の反射の後に、裏面A2を透過した2番目の透過成分Et (2)は、
Et (2)=t01r12r10t12Eicos[3φ1]
となる。入射波Eiが表面A1を透過し、裏面A2における2回の反射、及び表面A1における2回の反射の後に、裏面A2を透過した3番目の透過成分Et (3)は、
Et (3)=t01r12 2r10 2t12Eicos[5φ1]
となる。以下同様な考察を行うことで、s番目の透過成分Et (s)を求めることができる。
Et (s)=t01r12 (s-1)r10 (s-1)t12Eicos[2(s-1)φ1]
ただし、s≧1である。実際にはsは無限に大きくなるが、実用上は適切なsの最大値sMAXを決定し、1番目ないしsMAX番目の透過成分を考慮することで、領域2の側に透過してきた透過波Etを見積もることができる。
図8に示すように、領域2の側に透過してきたs番目(s≧1)の透過成分Et (s)は、誘電体104の裏面A2及び第2導電壁11M2により多重反射した後に、領域1を透過して領域0(第1空間V1)に入る。
領域2の側に透過してきたs番目の透過成分Et (s)が、第2導電壁11M2において反射し、裏面A2に至る1番目の反射成分EM1 (s)は、
EM1 (s)=r2bEt (s)cos[2φ2]
となる。EMm (s)は、領域2に透過してきたs番目の透過成分Et (s)が、領域2(第2空間V2)の中でm回反射して生じた成分を表す。位相φ2は電波が、領域2(裏面A2から第2導電壁11M2まで又はその逆)を進行した場合の位相の変化量を表し、φ2=2π(Ls-Ds)/λgである。s番目の透過成分Et (s)と1番目の反射成分EM1 (s)との間の位相差は、φ2(1往復分)であるので、cos[φ2]が乗算されている。なお、位相の変化量を余弦関数で表現することは必須ではなく、位相変化量は複素数exp(j2φ1)により表現されてもよい。
s番目の透過成分Et (s)が、第2導電壁11M2における2回の反射、及び裏面A2における1回の反射の後に、裏面A2に至る2番目の反射成分EM2 (s)は、
EM2 (s)=r2b 2r21Et (s)cos[4φ2]
となるs番目の透過成分Et (s)が、第2導電壁11M2における3回の反射、及び裏面A2における2回の反射の後に、裏面A2に至る3番目の反射成分EM3 (s)は、
EM3 (s)=r2b 3r21 2Et (s)cos[6φ2]
となる。以下同様な考察を行うことで、m番目の反射成分EMm (s)を求めることができる。
EMm (s)=r2b mr21 (m-1)Et (s)cos[2mφ2]
ただし、m≧1である。実際にはmは無限に大きくなるが、実用上は適切なmの最大値mMAXを決定することで、s番目の透過成分Et (s)の多重反射の影響を見積もることができる。
領域0(第1空間V1)で生じた入射波Eiが領域1を経由して領域2(第2空間V2)の側に透過した透過波は、Et (s)(s=1,2,...,sMAX)、すなわち{Et (1),Et (2),...,Et (sMAX)}の透過成分を有する。これらの透過成分の各々が領域2(第2空間V2)においてm回多重反射した後に、領域1を透過することで、第2反射成分Er2が得られる。
Er2=t21t10(EMm (1)+EMm (2)+...+ EMm (sMAX))cos[φ1]
上述したように、領域0(第1空間V1)において、第1反射波Er1と第2反射波Er2とが相殺される又は十分に小さくなるように、距離Ls及び厚さDsを設定する必要がある。
上記の図7及び図8の簡易モデルに基づく第1反射波Er1及び第2反射波Er2とその合成である反射波Erと関係式をまとめると次のようになる。
Er=Er1+Er2 (0になるべき合成波の大きさ)
Er1=Er1 (1)+Er1 (2)+...+ Er1 (nMAX)
Er2=t21t10(EMm (1)+EMm (2)+...+ EMm (sMAX))cos[φ1]
EMm (s)=r2b mr21 (m-1)Et (s)cos[2mφ2]
φ1=2πDs/λd
φ2=2π(Ls-Ds)/λg
一例として、以下の数値例に基づいて、第1反射波Er1及び第2反射波Er2を計算し、反射波Er、反射係数Sを求めた。
Ds=16mm、Ls=(λg/2)=197mm、
λd=λ/√εr=43.5mm、f=c/λ=915MHz、Ei=40V/m、
φ1=132.2度、φ2=166.2度、nMAX=40、sMAX=5、m=40、
r01=-0.8、t01=0.2、
r12=0.8、t12=1.8、
r10=0.8、t10=1.8、
r21=-0.8、t21=0.2、
r2b=-1
これらの数値例の場合、
Er1=-37.53 [V/m]、
Er2=38.3 [V/m]、
Er=Er1+Er2=0.77 [V/m]
となり、第1反射波Er1及び第2反射波Er2の合成電界Erは、僅か0.77[V/m]という極めて小さな値となった。この条件では、第1反射波Er1と第2反射波Er2が互いに逆位相となり、誘電体104で合成電界Erが相殺・吸収されていることに起因している(≪A5.パラメータ値≫(比誘電率εr)、図23参照)。尚、この場合の反射係数Sは、S=Er/Ei=0.019(=1.9%)という極めて低い値となった。
正確な電界分布、効果は、簡易モデル試算では困難であるため、下記のようにHFSSシミュレーションにより解析をした。
<<A3. 効果>>
第1空間V1において、第1反射波Er1と第2反射波Er2とが相殺される場合、図9に示すように、第1空間V1において0でない大きさを有する電波は、アンテナ103から放射された進行波又は入射波のみである。第1空間V1において、定在波は生じない。
図9に示す例では、アンテナ103から送信された進行波の様々な位相のうち、TR1、TR2、TR3の3つの波形が模式的に示されている。進行波は、時間経過と共に、TR1→TR2→TR3のように順に変化する。進行波が誘電体104に達すると、反射波が生じるが、この反射波は相殺されるので、第1空間V1では定在波は生じない。
第2空間V2においては、進行波又は入射波が誘電体104を透過した透過波と、その透過波が第2導電壁11M2により反射した反射波とが存在するので、定在波が生じる。図9に示す例では、透過波の様々な位相のうち、ST1、ST2、ST3、ST4の4つの波形が模式的に示されている。定在波は、時間経過と共に、ST1→ST2→ST3→ST4のように順に変化し、その後はST4→ST3→ST2→ST1のように逆の順に変化する。第2空間V2はy軸に沿ってLs=λg/2(厳密には、Ls-Ds)の長さを有するので、第2空間V2に生じる定在波の節又はノードは、誘電体104及び第2導電壁11M2の2箇所にしか生じない。Lsが管内波長のほぼ半分に選択されているからである。
従って、第1空間V1及び第2空間V2の何れの場所にRFIDタグが存在したとしても、RFIDタグは適切な強度の電波を受信し、RFIDタグリーダに適切に応答することができる。
以上より、実施の形態の無線通信システム100及び無線通信モジュール101によれば、誘電体104を第2導電壁11M2からLs=λg/2の位置に配置することにより、導電壁11で囲まれた閉空間10Aにおける通信性能を改善することができる。Ls=λg/2は、Ls=λg×n/2におけるnが1の場合の値である。
なお、上述したように、距離Lsは、λg×n/2から若干ずれていてもよく、実質的にλg×n/2であればよい。一例として、距離Lsは、λg×n/2のプラスマイナス5%の範囲内にあればよい。
以下、図10、図11、図12により実際のシミュレーション結果を示す。シミュレーションでは図1に示すような無線通信システム100において、以下のようなパラメータの値が使用された。
導波管のx軸方向の幅Wx=300mm、
導波管のz軸方向の幅Wz=300mm、
導波管のy軸方向に沿う全長(Ys+Ls)=880mm、
誘電体104の厚さDs=16mm、
誘電体104のx軸方向の幅=300mm、
誘電体104のz軸方向の幅=300mm、
誘電体104の比誘電率εr=81、
誘電体104の誘電損失tanδ=0.08、
誘電体104の位置Ls=197mm≒λg/2
電波の周波数f=915MHz
図10は進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す。図10に示す例では、図1に示すアンテナ103から垂直偏波(電界成分がz軸方向に沿っている直線偏波)が送信された場合におけるy軸上(x=0及びz=0)での電界の大きさ|Ez|(ScalarZ_Vector_E)が示されている。電波の周波数は915MHzである。第1導電壁11M1が導波管の一端である原点(y=0)にあり、第2導電壁11M2が導波管の他端(y=880mm)の位置にある。誘電体104は、y=880-197=683mmの位置にあり、表面A1及び裏面A2に対応する2つの破線が描かれている。図10に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じているが、節は誘電体104と第2導電壁11M2の2箇所にしか生じていない。従って、第1空間V1及び第2空間V2の何れの場所においても、RFIDタグは、十分に高い強度の電波を受信できる。
図11も図10と同様に、進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示すが、x=110mm及びz=0mmの位置における電界の大きさ|Ez|(ScalarZ_Vector_E)がy軸上の座標と共に示されている。図11に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じているが、節は誘電体104と第2導電壁11M2の2箇所にしか生じていない。しかしながら、図11に示す例では、電界の大きさが図10に示す場合と比べて小さくなっている。
これは、導波管内の電波が垂直偏波の場合には、水平(X軸)方向の電界強度は、中心から左右の導波管の境界(x=-150,150mm)に近づくにつれて低下し、導波管の境界の導電壁11(x=-150,150mm)で電界強度は0になる為であり、図11に示す例では、図10に示す例の場合(x=0mm)よりも、導波管の境界(x=150mm)に近い場所の電界の大きさが測定されているからである。因みに、導波管内の電波が水平偏波の場合には、垂直(Z軸)方向の電界強度が中心から上下の導波管の境界に近づくにつれて低下し、導波管の境界の導電壁11で電界強度は0になる。
図12も図10と同様に、進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示すが、x=0mm及びz=110mmの位置における電界の大きさ|Ez|(ScalarZ_Vector_E)がy軸上の座標と共に示されている。図12に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じているが、節は誘電体104と第2導電壁11M2の2箇所にしか生じていない。図11に示す例とは異なり、図12に示す例では、電界の大きさが図10に示す例に匹敵するほど大きくなっている。図12に示す例においても、図10に示す例の場合(x=0mm)よりも、導波管の境界(z=150mm)に近い場所の電界の大きさが測定されている。導波管内の電波が垂直偏波の場合には、垂直(Z軸)方向の電界強度は一定となる為であり、この位置であっても十分に強い電界が生じているのである。因みに、導波管内の電波が水平偏波の場合には、水平(X軸)方向の電界強度は一定となる。
<<A4. 応用例>>
第1空間V1及び第2空間V2にRFIDタグを実際に配置し、アンテナから電波を送信することで、RFIDタグから情報を読み取る実証実験を行った。図13は、そのような無線通信システム100Aを示す。概して図1に示す無線通信システム100と同様であるが、図13に示す無線通信システム100Aでは、RFIDタグ50がそれぞれに付された44個の封筒60−1〜60−44が閉空間内に設けられている。封筒には書類が入っており、多数の書類を管理することが意図されている。無線通信システム100Aは、x軸方向に300mm、z軸方向に300mm及びy軸方向に880mmの寸法の導波管を形成している。
44個の封筒の各々は、z軸に沿って(垂直に)配置され、y軸方向に44個の封筒が並べられている。RFIDタグ50は、79mm×11mmの大きさを有し、封筒の下から150mmの高さ(z=150mm)に設けられている。RFIDタグ50のx軸方向の場所は、x=150mm(S=150mm)、x=230mm(S=70mm)又はx=280mm(S=20mm)であり、それぞれの場合について実験が行われた。Sはx=300mmの場所にある導電壁11(境界)からの距離を表す。RFIDタグ50は、-10dBm(最小動作電力)以上の電力に応答することができる。
誘電体104は水で満たされた厚さ2mmのアクリル水槽で形成されている。アクリル水槽内部の寸法は、x軸方向に290mm、z軸方向に290mm、y軸方向にDs=16mmである。このアクリル水槽は、第2導電壁11M2から198mm(y=682〜702mm)に設置した。従って、アクリル樹脂の厚さが2mmであるので、水は第2導電壁11M2からLs=196mmの距離だけ隔たった位置(y=684〜700mm)に設置されていることとなる。尚、アクリルの比誘電率は、水に対して十分小さいεr=2.7〜4.5であるため、アクリルによる影響は少なく、水で満たされたアクリル水槽は、比誘電率εr=81、Ds=16mmの誘電体104と見なされる。
アンテナ103は送信電力が14〜30.3dBmであるダイポールアンテナであり、2.14dBiのアンテナ利得を有する。
図14は、閉空間10A内に誘電体104(アクリル水槽)を配置しなかった場合における実験結果を示し、アンテナ103からの垂直偏波(電界がz軸方向に沿っている直線偏波)の電力を変えながら、y軸上の様々な位置におけるRFIDタグの読取率[個/秒]が測定された。電波の周波数は915MHzである。読取率は、1秒当たり何個のRFIDタグを読み取ることができたかを示す。y=100mmの場所は、1番目の封筒60−1に付されたRFIDタグ50に対応し、y=800cmの場所は44番目の封筒60−44に付されたRFIDタグ50に対応する。
RFIDタグリーダのアンテナ103から送信された電力が、24.3dBmであった場合、17番目、18番目、29番目、30番目の封筒60−17、60−18、60−29、60−30にそれぞれ付されたRFIDタグについての読取率が、他の場所よりも低下している。y軸上の場所によって(封筒を置く場所によって)RFIDタグの読取率が異なるので、封筒及び書類を適切に管理する観点からは好ましくない。
RFIDタグリーダのアンテナ103から送信された電力が、更に高い22.4dBmであった場合、読取率はかなり向上しているが、それでも17番目及び29番目の封筒60−17及び60−29にそれぞれ付されたRFIDタグについての読取率が、他の場所よりも低下している。この場合も、y軸上の場所によって(封筒を置く場所によって)RFIDタグの読取率が異なるので、封筒及び書類を適切に管理する観点からは好ましくない。
RFIDタグリーダのアンテナ103から送信された電力が、更に高い24.3dBmであった場合、y軸上の何れの場所においても同じ読取率が実現されている。従って、アクリル水槽が設けられていない場合、書類を適切に管理するには、RFIDタグリーダは24.3dBm以上の強度の電波を送信する必要がある。
図15は、図1及び図13に示すように閉空間10A内に誘電体104(アクリル水槽)を配置した場合における実験結果を示し、アンテナ103からの垂直偏波の電力を変えながら、y軸上の様々な位置におけるRFIDタグの読取率[個/秒]が測定された。電波の周波数は915MHzである。
RFIDタグリーダのアンテナ103から送信された電力が、18.7dBmであった場合、17番目、30番目、31番目の封筒60−17、60−30、60−31にそれぞれ付されたRFIDタグについての読取率が、他の場所よりも低下している。y軸上の場所によって(封筒を置く場所によって)RFIDタグの読取率が異なるので、封筒及び書類を適切に管理する観点からは好ましくない。
RFIDタグリーダのアンテナ103から送信された電力が、更に高い19.6dBmであった場合、y軸上の何れの場所においても同じ読取率が実現されている。RFIDタグリーダのアンテナ103から送信された電力が、更に高い20.5dBmであった場合も、y軸上の何れの場所においても同じ読取率が実現されている。従って、アクリル水槽を設けた場合、書類を適切に管理するには、RFIDタグリーダは19.6dBm以上の強度の電波を送信すればよい。
図16は、図14及び図15に関する実験結果を、RFIDタグの3種類の位置の各々について比較している。Hはz軸方向の座標あり、RFIDタグ50が設けられている場所の高さを示す。Sはx=300mmの場所に設けられている導電壁11からRFIDタグ50がどれだけ隔たっているかを示す。先ず、RFIDタグ50の位置(H/S)が(150mm/20mm)であった場合(x=280mm)において、誘電体104を設けなかった場合、書類を適切に管理することはできない。これに対して、誘電体104を設けた場合、26.5dBm以上強く電波を送信すれば、書類を適切に管理することができる。
RFIDタグ50の位置(H/S)が(150mm/70mm)であった場合(x=230mm)において、誘電体104を設けなかった場合、書類を適切に管理するには24.3dBm以上強く電波を送信する必要がある。これに対して、誘電体104を設けた場合、19.6dBm以上強く電波を送信すれば、書類を適切に管理することができる。この場合、4.7dBmもの電力(ΔPmin)を節約できる。
RFIDタグ50の位置(H/S)が(150mm/150mm)であった場合(x=150mm)において、誘電体104を設けなかった場合、書類を適切に管理するには22.4dBm以上強く電波を送信する必要がある。これに対して、誘電体104を設けた場合、19.6dBm以上強く電波を送信すれば、書類を適切に管理することができる。この場合、2.8dBmの電力(ΔPmin)を節約できる。
図17及び図18は、図14及び図15と同様な実験結果を示すが、図17及び図18に示す例では電波が水平偏波(電界がx軸方向に沿っている直線偏波)である点が異なる。
図17は、誘電体104(アクリル水槽)を閉空間内に配置しなかった場合における実験結果を示し、アンテナ103からの水平偏波の電力を変えながら、y軸上の様々な位置におけるRFIDタグの読取率[個/秒]が測定された。
アンテナ103から送信された電力が、18.7dBmであった場合、17番目、18番目、19番目、28番目、29番目、30番目の封筒60−17、60−18、60−19、60−28、60−29、60−30にそれぞれ付されたRFIDタグについての読取率が、他の場所よりも低下している。y軸上の場所によって(封筒を置く場所によって)RFIDタグの読取率が異なるので、封筒及び書類を適切に管理する観点からは好ましくない。
アンテナ103から送信された電力が、更に高い22.4dBmであった場合、読取率はかなり向上しているが、それでも29番目及び30番目の封筒60−29及び60−30にそれぞれ付されたRFIDタグについての読取率が、他の場所よりも低下している。この場合も、y軸上の場所によって(封筒を置く場所によって)RFIDタグの読取率が異なるので、封筒及び書類を適切に管理する観点からは好ましくない。
アンテナ103から送信された電力が、更に高い24.3dBmであった場合、y軸上の何れの場所においても同じ読取率が実現されている。従って、アクリル水槽が設けられていない場合、書類を適切に管理するには、RFIDタグリーダは24.3dBm以上の強度の電波を送信する必要がある。
図18は、誘電体104(アクリル水槽)を閉空間内に配置した場合における実験結果を示し、アンテナ103からの水平偏波の電力を変えながら、y軸上の様々な位置におけるRFIDタグの読取率[個/秒]が測定された。
RFIDタグリーダのアンテナ103から送信された電力が、16.3dBmであった場合、17番目、18番目、19番目、20番目、27番目、28番目、29番目の封筒60−17、60−18、60−19、60−20、60−27、60−28、60−29にそれぞれ付されたRFIDタグについての読取率が、他の場所よりも低下している。y軸上の場所によって(封筒を置く場所によって)RFIDタグの読取率が異なるので、封筒及び書類を適切に管理する観点からは好ましくない。
RFIDタグリーダのアンテナ103から送信された電力が、更に高い18.7dBmであった場合、y軸上の何れの場所においても同じ読取率が実現されている。RFIDタグリーダのアンテナ103から送信された電力が、更に高い20.5dBmであった場合も、y軸上の何れの場所においても同じ読取率が実現されている。従って、アクリル水槽が設けられていない場合、書類を適切に管理するには、RFIDタグリーダは18.7dBm以上の強度の電波を送信すればよい。
図17に示す例及び図18に示す例から、閉空間10A内に誘電体104を設けると、RFIDタグリーダから送信する電波の送信電力を、24.3-18.7=5.6dBmも節約できることが分かる。このように実施の形態1によれば、閉空間10A内に誘電体104を設けることで、誘電体104を設けない場合よりも低い電力で書類を管理できる。
<<A5. パラメータ値>>
(比誘電率εr
誘電体104は用途に応じて当該技術分野で既知の適切な如何なる材料を用いて形成されてもよい。図19、図20は、様々な比誘電率を示す材料を例示的に示している。図19は液体材料の一例として、エチレングリコール濃度(EG濃度)に応じて異なる比誘電率εr及び誘電損失tanδ(1GHzの周波数に対する値)を示す。図20は固体材料の例を示す。
(厚さDs及び比誘電率εrの関係)
図21は、図1に示す無線通信システム100において、第2導電壁11M2からLs=λg/2の位置に誘電体104を配置した場合において、第1空間V1の中で第1、第2反射波Er1,Er2が適切に相殺される条件を満たす誘電体104の厚さDs及び比誘電率εrをHFSSシミュレーションより求めた結果を示している。
図21に示されているように、誘電体104の比誘電率εrが小さかった場合、誘電体104の厚さDsは厚くなければならず、誘電体104の比誘電率εrが大きかった場合、誘電体104の厚さDsは薄くてよい。誘電体104の厚さDsの厚さが厚いと、その分だけRFIDタグを配置する領域が狭くなるので、RFIDタグを配置できる領域を大きくする等の観点からは、誘電体104の比誘電率εrは大きいことが好ましい。一方、比誘電率が高い材料は高価である場合が多いので、実用上の観点を加味すると、比誘電率εrは約40以上であることが好ましい。
なお、図21には、λd/2の値もプロットされている。誘電体104の内部で定在波が生じるには、理論上、誘電体104の厚さが誘電体104内部での波長λdの半分(厳密には、反整数倍)になっている必要があるからである。実際にDsの値としてプロットされている点と、λd/2の値としてプロットされている点とを比較すると、反射波を適切に相殺するためのDsの値は概ねλd/2であるが、より正確には、λd/2の値よりも若干小さくしなければならないことが分かる。すなわち、Ds=(λd/2)βである(0<β<1)。
(βの最適化)
図22は、図21のHFSSシミュレーションより求めた、反射波Er1,Er2が相殺される条件を満たす比誘電率εr及び誘電体104の厚さDsとλd/2の値を比較し、Ds=(λd/2)βとなるβを計算した結果である。0.85≦β≦0.95であった。
図23は、比誘電率εrが81である誘電体104が使用された場合における誘電体104の厚さDs[mm]、反射波の大きさEr[V/m]、及び反射係数S(=Er/Ei)の相互関係を図7、8の簡易モデル計算により求めた結果を示している。図23に示されているように、厚さDsが14mmから19mmの範囲内にある場合に、反射波の大きさErは-12ないし+19[V/m]の大きさを有し、かつ反射係数は-0.3ないし+0.5の値を示す。そして、厚さDsが16mm程度である場合に、反射波の大きさEr及び反射係数は0に最も近づいている。このεr=81及びDs=16mmの組み合わせは、図21における点Qに対応する。この場合、誘電体104内を進行する電波の波長λd/2は18.2mmであるので、厚さDs=0.88λdとも表現できる。尚、誘電体104により反射した反射波と、第2導電壁11M2で反射した反射波との位相差2(φ1+φ2)=3.31πであり、逆位相に近い状態である為、互いの電界は相殺されることが簡易モデル計算からわかった。
図21、図22、図23に示す結果を総合すると、Ds=λd×β/2と表現した場合に、0<β<1であり、更に好ましくは、0.85≦β≦0.95であることが分かる。
(誘電損失tanδ)
誘電体104の誘電損失又は誘電正接tanδが大きいと、電波の電力損失や、位相のずれが生じやすくなる。従って、誘電損失tanδは小さいことが好ましく、理想的には0である。
図24は、図1に示すような無線通信システム100において、誘電損失tanδが0.08である誘電体104が使用された場合に生じる進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す。図24に示す例では、図1に示すアンテナ103から水平偏波(電界成分がx軸方向に沿っている直線偏波)が送信された場合におけるy軸上(x=0及びz=0)での電界の大きさ|Ex|(ScalarX_Vector_E)が示されている。電波の周波数は915MHzである。第1導電壁11M1が導波管の一端である原点(y=0)にあり、第2導電壁11M2が導波管の他端(y=880mm)の位置にある。誘電体104は、Ls=197mmの位置にあり、表面A1及び裏面A2に対応する2つの破線が描かれている。図24に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じているが、節は誘電体104と第2導電壁11M2の2箇所にしか生じていない。従って、第1空間V1及び第2空間V2の何れの場所においても、RFIDタグは、十分に高い強度の電波を受信できる。
図25は、図24と同様なシミュレーション結果を示すが、誘電体104の誘電損失tanδが0.1である点が異なる。図25に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じているが、節は誘電体104と第2導電壁11M2の2箇所にしか生じていない。しかしながら、誘電損失tanδが図24に示す場合よりも大きいことに起因して、第1空間V1において、電波の強度が周期的に低くなっている箇所が生じている。電波の強度が場所によって異なると、電波の強度が弱い場所でRFIDタグは応答しにくくなるが、図25に示す程度の強度劣化であれば、第1空間V1及び第2空間V2の何れの場所においても、RFIDタグは、十分に高い強度の電波を受信できる。
図26は、図24と同様なシミュレーション結果を示すが、誘電体104の誘電損失tanδが0.16である点が異なる。図26に示されているように、誘電損失tanδが図24及び図25に示す場合よりも大きいことに起因して、第1空間V1において、電波の強度が周期的に更に低くなっている箇所が生じている。電波の強度が場所によって異なることに起因して、電波の強度が弱い場所でRFIDタグは応答しにくくなる。これ程大きく強度が劣化すると、受信感度が高いRFIDタグは、RFIDタグリーダに依然として適切に応答できるかもしれないが、受信感度が高くないRFIDタグは、RFIDタグリーダに応答できないことが懸念される。図24、図25及び図26に示す結果を総合すると、誘電損失tanδは0以上0.2以下の範囲内にあることが好ましく、更には、0以上0.1以下の範囲内にあることが好ましい。
<B. 誘電体の位置に関する変形例>
図9ないし図18等を参照しながら説明した例においては、図1に示すような無線通信システム100において、誘電体104は第2導電壁11M2から距離Lsの距離を隔てて設けられ、距離LsはLs≒λg/2であった。誘電体104により反射した反射波と、第2導電壁11M2で反射した反射波との位相差2(φ1+φ2) ≒ 3π は逆位相となとなっている。この位相差が逆位相となる条件は、他にもあり、3π, 5π,7π.. = 2(n-1) πとしても良い。即ち、実施の形態1はLs≒λg/2に限定されず、Ls≒ λg(1/2), λg(2/2), λg(3/2) … = λg×n/2とすることが可能である。
図27は、Ls=λg×2/2(n=2の場合)の位置に誘電体104を設けた無線通信システムにおける進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す。図27に示す例では、図1に示すアンテナ103から垂直偏波(電界成分がz軸方向に沿っている直線偏波)が送信された場合におけるy軸上(x=0及びz=0)での電界の大きさ|Ez|(ScalarZ_Vector_E)が示されている。電波の周波数は915MHzである。第1導電壁11M1が導波管の一端である原点(y=0)にあり、第2導電壁11M2が導波管の他端(y=880mm)の位置にある。誘電体104は、y=880-(196×2)=488mmの位置にあり(Ls=196×2=392mm)、表面A1及び裏面A2に対応する2つの破線が描かれている。
図27に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じており、誘電体104と第2導電壁11M2の2箇所だけでなく、それらの中央にも節が生じている。節同士の間隔はλg/2=196mmである。第1空間V1では任意の場所でRFIDタグは十分に高い強度の電波を受信できる。しかしながら、第2空間V2では中央付近に定在波の節が1つ生じているので、この付近に設けられたRFIDタグは十分に高い強度の電波を受信できない。したがって、第2空間にRFIDタグを配置する場合には、電界が極端に低下する定在波の節を避けた配置をしなければならず、利用範囲の制限、利便性が低下する。従って、RFIDタグを設置領域としては、第1空間V1が好ましい。
図28は、Ls=λg×3/2(n=3の場合)の位置に誘電体104を設けた無線通信システムにおける進行波の様々な位相を重ね合わせて表示したシミュレーション結果を示す。図28に示す例でも、図1に示すアンテナ103から垂直偏波(電界成分がz軸方向に沿っている直線偏波)が送信された場合におけるy軸上(x=0及びz=0)での電界の大きさ|Ez|(ScalarZ_Vector_E)が示されている。電波の周波数は915MHzである。第1導電壁11M1が導波管の一端である原点(y=0)にあり、第2導電壁11M2が導波管の他端(y=880mm)の位置にある。誘電体104は、y=880-(196×3)=292mmの位置にあり(Ls=196×3=588mm)、表面A1及び裏面A2に対応する2つの破線が描かれている。
図28に示されているように、アンテナ103から誘電体104までの第1空間V1では、進行波のみが存在し、定在波は生じていない。誘電体104から第2導電壁11M2までの第2空間では、定在波が生じており、誘電体104と第2導電壁11M2との2箇所だけでなく、それらの間の2箇所にも節が生じている。節同士の間隔はλg/2=196mmである。第1空間V1では任意の場所でRFIDタグは十分に高い強度の電波を受信できる。しかしながら、第2空間V2では中央付近に定在波の節が2つ生じているので、この付近に設けられたRFIDタグは十分に高い強度の電波を受信できない。したがって、第2空間にRFIDタグを配置する場合には、電界が極端に低下する定在波の節を避けた配置をしなければならず、利用範囲の制限、利便性が低下する。従って、RFIDタグを設置領域としては、第1空間V1が好ましい。
図10に示す例(Ls=λg/2)、図27に示す例(Ls=λg×2/2)、及び図28に示す例(Ls=λg×3/2)から分かるように、誘電体104の距離Lsが(λg/2)の2倍以上である場合(n≧2の場合)には、第2空間V2には定在波の節が生じるので、RFIDタグは、第1空間V1に設置して使用することが望ましい。
以上より、誘電体104を第2導電壁11M2からLs=λg×n/2の位置に配置することにより、導電壁11で囲まれた閉空間10Aにおける通信性能を改善することができる。
なお、誘電体104の位置は、Ls(=λg×n/2)から若干ずれていてもよく、実質的にλg×n/2であればよい。一例として、距離Lsは、λg×n/2のプラスマイナス5%の範囲内にあればよい。
<C. 第2空間を縮小する変形例>
実施の形態1は管状の導波管の途中に誘電体104を設け、第1空間V1と第2空間V2とを形成する。第1空間V1はRFIDタグを配置する領域として常に利用可能である。第2空間は、RFIDタグを配置する領域として利用されてもよいし或いは利用されなくてもよい。第2空間V2を、RFIDタグを配置する領域として利用しない場合、第2空間V2の体積が大きいと、スペースが無駄になってしまう。従って、第2空間V2を、RFIDタグを配置する領域として利用しない場合、第2空間V2の体積は小さい方が好ましい。
図29は、第2空間V2を狭くする変形例を説明するための図を示す。図29は、図2と同様に、誘電体104付近の様子を示す。第1空間V1は空気で満たされているので、第1空間の誘電率は真空の誘電率ε0にほぼ等しい(比誘電率は1)。誘電体104は比誘電率がεrの材料で形成されている。第2空間V2も空気で満たされているので、第2空間の誘電率は真空の誘電率ε0にほぼ等しい(比誘電率は1)。
図30は、第2空間V2を誘電体材料で充填することで、第2空間V2の体積を小さくした様子を示す。図30に示されているように、厚さがDs1であり比誘電率がεr1である第1誘電体104−1と第2導電壁11M2との間に、厚さがDs2であり比誘電率がεr2である第2誘電体104−2が設けられている。第1誘電体104−1は図29における誘電体104と同じであり、εr1rである。第1誘電体104−1は、誘電体製の板状部材の一例である。第2誘電体104−2の比誘電率εr2は第1誘電体104−1の比誘電率εr1と同じであっても異なっていてもよい。図30に示す例では、第2空間V2は、比誘電率がεr2である第2誘電体104−2により占められている。第2誘電体104−2は、誘電体の一例である。
第2空間V2で生じている管内波長λgの定在波を誘電体104−2に押し込めることとなるので、その厚さDs2はλg/(2√εr2)程度必要である(誘電体104−1との相互関係にも左右される)。このように第2空間V2を誘電体材料で充填することで、第2空間V2の体積を小さくすることが可能となる。
図31は、図30に示すように1つの誘電体で第2空間V2を充填した無線通信システムにおける進行波の様々な位相を重ね合わせて表示したHFSSシミュレーション結果を示す。図31に示す例では、図1に示すアンテナ103から垂直偏波(電界成分がz軸方向に沿っている直線偏波)が送信された場合におけるy軸上(x=0及びz=0)での電界の大きさ|Ez|(ScalarZ_Vector_E)が示されている。電波の周波数は915MHzである。第1導電壁11M1が導波管の一端である原点(y=0)にあり、第2導電壁11M2が導波管の他端(y=880mm)の位置にある。
第1誘電体104−1は、y=849.2mmないし865.2mmの16mmの厚さにわたって存在する。第1誘電体104−1は、図1を参照しながら説明したように水に相当する誘電体であり、第1誘電体104−1の比誘電率εr1は81であり、誘電損失tanδは0.08とした。第2誘電体104−2は、y=865.2mmないし880mmの14.8mmの厚さにわたって存在する。第2誘電体104−2は、例えばチタン酸ストロンチウム(SrTiO3)により形成され、比誘電率εr2は300であり、誘電損失tanδは0.005である。
図31に示されているように、アンテナ103から第1誘電体104−1までの第1空間V1では、進行波のみが存在し、定在波は生じていない。従って、第1空間V1の何れの場所においても、RFIDタグは、十分に高い強度の電波を受信できる。第1誘電体104−1から第2導電壁11M2までの第2空間V2は第2誘電体104−2で占められているので、RFIDタグを配置することはできない。第2空間V2では定在波が生じている。第2空間V2は14.8mmという極めて薄い空間しか占めていない点に留意を要する。
<D. 通信方法>
図32は、無線通信システムにおける通信方法のフローチャートを示す。フローはステップ331から始まる。ステップ331において、図1に示すような無線通信システムが用意される。無線通信システムに含まれている無線通信モジュール101は、閉空間10Aをなす管状の導波管を形成し、一端の導電壁11に、RFIDタグリーダ102のアンテナ103を配置し、アンテナ103と他端の導電壁11との間に誘電体104を配置することで、第1空間V1及び第2空間V2を形成している。
ステップ332において、無線通信モジュール101が形成する閉空間10Aの中に、1つ以上緒RFIDタグ50を配置する。一例として、図13に示すような管理対象である書類の封筒60−1〜60−44が、閉空間10A内に並べられる。
ステップ333において、アンテナ103から電波が送信される。この電波は、一例として、プリアンブル信号及びコマンド信号を含む。アンテナ103から送信された電波は誘電体104及び第2導電壁11M2により反射される。誘電体104により反射して第1空間V1を伝播する第1反射波Er1と、第2導電壁11M2で反射して第1空間V1を伝播する第2反射波Er2とは、第1空間V1において互いに相殺される。その結果、第1空間V1、又は第1及び第2空間V1,V2に配置されたRFIDタグは、アンテナ103から送信された進行波のみを受信することになる。
ステップ334において、アンテナ103から送信された電波(進行波)を適切な強度で受信したRFIDタグは、自身のメモリに保存している情報を取得し、その情報を含む送信信号を生成し、送信信号を電波で送信する。
ステップ335において、RFIDタグリーダ102は、1つ以上のRFIDタグから受信した情報を分析し、RFIDタグが付随している管理対象を管理する。そして、フローはステップ336に進み、終了する。
なお、以上の実施の形態1では、RFIDタグリーダ102がRFIDタグ50を読み取る形態について説明した。しかしながら、実施の形態1の無線通信システム100は、例えば、Zigbee(登録商標)又はWifi等の電波をアンテナ103から放射し、子機を読み取るような環境に適用されてもよい。
<実施の形態2>
<<E1.構成>>
図33は、実施の形態2の無線通信システム200を示す。図34は、図33の一部を拡大して示す図である。無線通信システム200は、導電構造体10に配設される無線通信モジュール201と、導電構造体10が規定する閉空間10Aに配置されるRFIDタグ50とを有する。無線通信システム200は、導電構造体10に配設される。なお、無線通信システム200は、導電構造体10を含んでもよい。説明の便宜上、図33では、全体を無線通信システム200として示す。
無線通信モジュール201は、RFIDタグリーダ102、アンテナ103、導電薄膜204を含む。無線通信モジュール201は、実施の形態1の無線通信モジュール101の誘電体104を導電薄膜204に置き換えたものである。導電薄膜204を配置する場所は、誘電体104を配置する場所とは異なる。
その他の構成は、実施の形態1における各構成と同様であるため、同様の構成要素には同一符号を付し、その説明を省略する。
導電薄膜204は、閉空間10Aを第1空間V1と第2空間V2に分割する。導電薄膜204には、電磁波の一部を透過しかつ一部を反射する条件の薄膜を用いる。導電薄膜204は、反射部の一例である。導電薄膜204は、例えば、グラファイト薄膜、アルミニウムを添加した酸化亜鉛薄膜、ボロンを添加した酸化亜鉛薄膜、ガリウムを添加した酸化亜鉛薄膜等を用いることができる。導電薄膜204の厚さは、例えば、0.1mm以下である。
導電薄膜204は、x軸方向に約Wx及びz軸方向に約Wzの長さを有し、y軸方向にDtの厚さを有する。実際には、導波管を形成する導電壁11の厚さ等を考慮する必要があるので、導電薄膜204のy軸に垂直な面(xz面)における断面形状はx軸方向にWxより若干短い長さ及びz軸方向にWzより若干短い長さを有する。
導電薄膜204は、導波管の一端にある第1導電壁11M1に設けられたアンテナ103と、導波管の他端にある第2導電壁11M2との間に配置されている。説明の便宜上、アンテナ103と導電薄膜204との間の空間が「第1空間V1」であり、導電薄膜204と第2導電壁11M2との間の空間が「第2空間V2」であるとする。図33に示す例の場合、導電薄膜204が0.1mm以下となる場合が多いので、第1空間V1はy軸方向にYs2の長さを有し、第2空間V2はy軸方向にLs2(≒Ls2-Dt)の長さを有する。図33及び図34では省略しているが、実際には導電薄膜204は基板等の表面に形成される。機械的強度を持たせるためである。基板としては、誘電率の低い材料製のものが好ましい。
なお、以下では、説明の便宜上、導電薄膜204の位置は、第2導電壁11M2を基準位置として、第2導電壁11M2から導電薄膜204の第1空間V1側の面までの距離で表し、導電薄膜204の位置Ls2と称す。
アンテナ103から送信された電波の一部は、導電薄膜204で反射し、第1空間V1を伝播する第1反射波Er21となる。透過した電波の一部は、第2空間V2を経て第2導電壁11M2で反射した後、第1空間V1を伝播する第2反射波Er2となる。
第1反射波Er21と第2反射波Er22との位相差は導電薄膜204の位置Ls2に依存する。導電薄膜204を第1反射波Er21と第2反射波Er22の合成波(合成反射波)の振幅がゼロになるように、又は、振幅が十分に小さくなるように、導電薄膜204の位置Ls2を設定することで、第1空間V1の内部における定在波を低減することができる。
具体的には「E2.反射波の相殺」の欄において説明するが、導電薄膜204は、y軸方向において第2導電壁11M2から距離Ls2の位置に設けられる。 距離Ls2=λg×(2n-1)/4により表現され、nは自然数(n>=1)である。
典型的なn=1の場合、すなわちLs2=λg/4の場合の反射波の次のように反射波が相殺される。
導電薄膜204を透過して第2空間V2に入った電波は、導電壁11M2に達するまでに位相が90°変化し、かつ導電壁11M2で反射されて位相が180°反転するので、この時点で位相が270°変化している。導電壁11M2から導電薄膜204に到達するまでにさらに90°位相が変化するので、第1空間V1から導電薄膜204を透過した第2反射波Er22は、導電壁11M2で反射されて導電薄膜204に到達するまでに、位相が360°変化している。
一方、第1反射波Er21は、導電薄膜204で反射される際に、位相が180°変化する。すなわち、第1反射波Er21は、導電薄膜204で反射される際に、位相が反転する。このため、第1反射波Er21と第2反射波Er22は逆位相となり、導電薄膜204の第1空間V1側の表面で電界が相殺される。すなわち、第1反射波Er21と第2反射波Er22は、導電薄膜204の第1空間V1側の表面で相殺される。
尚、nが2 以上である場合については、「E5.導電薄膜204の位置に関する変形例」において説明する。
<<E2.反射波の相殺>>
実施の形態2では、図33に示すようにy軸上の所定の場所に導電薄膜204が配置されている。アンテナ103から入射波Eiが送信される。図34において、入射波Eiのうちの一部は、導電薄膜204によって反射され、第1空間V1を伝播する第1反射波Er21となる。また、入射波Eiのうちの一部は、導電薄膜204を透過して第2空間V2に入り、第2導電壁11M2によって反射され、再び導電薄膜204を透過して第1空間V1に入る。このように第2導電壁11M2によって反射され、導電薄膜204を透過して第1空間V1に戻る反射波を第2反射波Er22と称す。
従って、導電薄膜204の第1空間V1側の表面における合成反射波Er20は、第1反射波Er21と第2反射波Er22の合計で表される。
Er20=Er21+Er22
なお、厳密には、管内波長λgを決定する角度θに応じて変化する成分Eicosθを考察する必要があるが、説明の簡明化を図るためθを省略している点に留意を要する。
ここで、図35に示す単純なモデルを使って合成反射波Er20を計算して、定在波が最少となる条件について検討する。図35は、図33の一部を拡大して示す図である。
アンテナ103から送信された入射波Eiは、導電薄膜204で一部が反射され、一部が透過されるものとする。また、導電薄膜204の反射率をr01、導電薄膜204を第1空間V1から第2空間V2の方向に透過する際の透過率t01(= 1 + r01 )とする。導電壁11M2での反射は完全反射とし、その反射率rbはrb = -1 とした。また、反射率r01は-1<r01<0を満たす負の値である。また、導電薄膜204を第2空間V2から第1空間V1の方向に透過する際の透過率t10は、透過率t01に等しい。
導電薄膜204で反射される反射波Er21は、式(1)で表される。
Er21 = r01Ei (1)
導電薄膜204を透過した電波は、第2導電壁11M2によって反射された後に再び導電薄膜204を透過して第1空間V1に戻り、第2反射波Er22になる。Ls2=λg/4による位相差φ1は、φ1=2π(Ls2/λg)=π/2で表される。このため、距離Ls2を往復移動した第2反射波Er22の第1反射波Er21に対する位相差は、2φ1=πとなる。
第2導電壁11M2での反射も考慮した位相変化Bは、B=rb*cos(2φ1)=1となる。このため、第2反射波Er22は次式(2)で表される。
Er22= Bt01t10 Ei = t01^2 Ei (2)
式(1),(2)から、合成反射波Er20は、次式(3)で表される。
Er20 = (r01 + t01^2)Ei (3)
式(3)により、導電薄膜204の反射率r01を調整して、合成反射波Er20、反射係数Sを計算した。
図36は、反射率r01に対する、合成反射波Er20と反射係数Sの計算結果を示す図である。
図36に示すように、反射率r01=-0.38の場合に、反射係数Sが最も小さくなることがわかった。なお、計算条件は、導電構造体10による導波管の断面の寸法Wx、Wyが、Wx=Wy=300mm、入射波Eiの周波数f=915MHz、Ei=40V/m、Ls2=98 mm である。このLs2の長さは、λg/4に略等しい。
簡易モデル計算で導電薄膜204の反射率条件が絞り込めたが、正確な電界分布、効果の推定は困難である。詳細解析については、"E4.実施例" において説明する。
<<E3.導電薄膜>>
上述の結果より、反射率r01=0.38程度の導電薄膜204が必要である。HFSS電磁解析ツールを用いて材料の反射率を検討した。図37は、導電率(比抵抗)σ、密度、抵抗率ρ、表皮深さδsの比較表を示す図である。なお、表皮深さδsは、915MHzにおける値である。
図37の比較表に基づき、Graphiteの薄膜と、アルミニウムを添加した酸化亜鉛(ZnO-AL(2wt%)の薄膜について反射率を試算することとした。なお、酸化亜鉛(ZnO-AL(2wt%)の導電率(比抵抗)は、JJAP_vol.24_No10_1985_L781-L784に記載された値を用いた。酸化亜鉛は、透明電極用に開発された材料である。
なお、酸化亜鉛(ZnO-AL(2wt%)以外にも、ボロンを添加したZnO-B、又は、ガリウムを添加した酸化亜鉛ZnO-Gaを用いてもよい。
GraphiteとZnO-ALの表皮深さδs(=√(2/(ωσμ))は62.9μm/2293umであるので、これよりも薄い薄膜であれば電磁波を透過及び反射できることが推測される。そこで、導電率の異なる導電薄膜の反射率の膜厚依存性をHFSS電磁解析ツールで試算した。図38は、膜厚Dtの試算結果を示す図であり、(A)は、導電率及び反射率とともに示す図であり、(B)、(C)は、GraphiteとZnO-ALの膜厚に対する反射率(Reflectance)の特性を示す図である。GraphiteとZnO-ALにおいては、表皮深さδsよりも膜厚Dtが薄い場合に、反射率rを0.3〜0.45に調整できることがわかった。
<<E4.実施例>>
図39は、テフロン製の基板204AにZnO_AL(2w%)の導電薄膜204を形成した反射板を含む無線通信モジュールの一部分を示す図である。この無線通信モジュールは、図33に示す無線通信モジュール201に、基板204Aを追加した構成を有する。
ここでは、上述の説明で有用性が確認されたZrO_ALを導電薄膜204として用いる形態について説明する。テフロン製の基板にZnO_AL(2w%)の薄膜を形成した反射板を作製し、システムを構築した。
なお、ZnO_AL(2w%)の薄膜の膜厚は40μmであり、テフロン製の基板204Aの比誘電率(er)は2.08、tanδは0.001である。テフロン製の基板204Aは、実施の形態1で誘電体104として用いた水等に比べると、比誘電率が無視できるほど小さいため、テフロン製の基板204Aを用いることの影響は無視できる。また、テフロン製の基板204Aの代わりに、フェノール、エポキシ、ポリイミド等の樹脂基板を用いてもよい。
HFSS電磁解析ツールを用いて、詳細に電界分布を検討した。図40は、電解分布を示す図である。なお、入射波Eiは915MHzの水平偏波であり、ZnO_AL(2w%)の膜厚は40μm、反射率は0.34、導電率は53S/m、比誘電率er=1、Ls2=96mmである。テフロン製の基板204Aの厚さは4mmである。
図40(A)は、閉空間10Aの中心軸(X=0/Z=0)上の電界分布を示す図である。図40(A)に示すように、第1空間V1、第2の空間V2の進行波に近い電界分布になった。電界の最大値Emaxが42V/m、電界の最小値Eminが40V/mである。また、このときの反射係数はS=0.02と良好である。
図40(B)、(C)は、中心から(X=0/Z=11cm),(X=11cm/Z=0)の電界分布であり、単体誘電体を用いた場合と同様な分布となった。
また、導電薄膜204の位置Ls2と厚さDtを調整した場合の反射係数Sを試算した。
図41は、位置Ls2と厚さDtを調整した場合の反射係数Sの特性を示す図である。
導電薄膜204の位置Ls2は、80mm〜108mmまで変化させた。入射波Eiの周波数が915MHzである場合に、管内波長λgの1/4の長さは約98mmである。
また、導電薄膜204の厚さDtは、20μm〜80μmの範囲で変化させた。この範囲は、反射率rが0.27〜0.40になる範囲である。
なお、その他の条件は、図40に示す電解分布を求める際の条件と同様である。また、反射係数Sが0.15以下であれば、良好な進行波モードが維持されていると判断した。
図41(A)に示すように、導電薄膜204の位置Ls2は、80mm〜106mmまでの範囲で良好な反射率の値を示した。80mm〜106mmまでの長さは、λg/4に近い値である。
また、図41(B)に示すように、導電薄膜204の厚さDtは、30μm〜55μmの範囲で良好な反射率の値を示した。この範囲は、反射率rが0.27〜0.41になる範囲である。
<<E5.導電薄膜204の位置に関する変形例>>
図39で説明した形態においては、導電薄膜204は、第2導電壁11M2から距離Ls2(=λg/4)の位置に設けられていた。ここでは、Ls2=λg×(2n-1)/4で表される位置に導電薄膜204を配置する変形例について説明する。
nが2以上の場合、Ls2=λg×(2n-1)/4で表される距離Ls2は、図39に示す距離Ls2に比べて、第2空間V2における第2反射波Er22の伝搬路がλg×(n-1)だけ長くなるので、第1反射波Er21と第2反射波Er22が打ち消し合う関係は、図39に示す場合と同様である。
図42は、実施の形態2の変形例による電解分布のシミュレーション結果を示す図である。導電薄膜204を配置する位置は、図42(A)ではn=3, 図42(B)ではn=2、図42(C)ではn=1である。図42(C)は、図40(A)と同様のものを比較用に示す。図42(C)では、図40(A)とは電界の最小値Eminが異なる。
図42(A)〜図42(C)は、Ls2=λg×(2n-1)/4 [nは自然数] の位置に導電薄膜204を設けた無線通信システムにおける様々な位相の電波を重ね合わせた場合の電界分布を示している。
図42(A)〜図42(C)には、アンテナ103(図33参照)から水平偏波(電界成分がx軸方向に沿っている水平偏波)が送信された場合におけるy軸上(x=0及びz=0)での電界の大きさ|Ex|(ScalarX_Vector_E)を示す。電波の周波数は915MHzである。
第1導電壁11M1は、導波管の一端である原点(y=0)にあり、第2導電壁11M2は、導波管の他端(y=880mm)の位置にある。導電薄膜204は、図42(A)ではLs2=294mm(=3λg/4)の位置にあり,図42(B)ではLs2=490mm(=5λg/4)の位置にあり、それぞれ破線で位置を示す。
図42(A)、(B)に示すように、第1空間V1では、進行波のみが存在し、定在波は生じていない。図42(A)では、導電薄膜204と第2導電壁11M2との間の第2空間V2に定在波が生じており、節は3つである。節同士の間隔はλg/2=196mmである。図42(B)では、第2空間V2に定在波が生じており、節は2つである。節同士の間隔はλg/2=196mmである。
なお、図42(C)に示すように、破線の位置に導電薄膜204を配置した場合は、第1空間V1では、進行波のみが存在し、定在波は生じておらず、第2空間V2に生じる定在波の節は1つである。
図42(A)〜図42(C)に示す電界分布が得られている場合は、第1空間V1では任意の場所でRFIDタグ50(図33参照)は十分に高い強度の電波を受信できる。しかしながら、第2空間V2では定在波の節が生じているので、この付近に設けられたRFIDタグ50は十分に高い強度の電波を受信できない。
したがって、第2空間にRFIDタグを配置する場合には、電界が極端に低下する定在波の節を避けた配置をしなければならず、利用範囲の制限、利便性が低下する。従って、RFIDタグ50を設置領域としては、第1空間V1が好ましい。
但し、節が生じている位置以外の場所であれば通信は可能であるので、設置位置に注意するならば、第2空間V2にRFIDタグ50を設置して通信を行っても良い。
以上より、実施の形態2によれば、誘電体104を第2導電壁11M2からLs2=λg×(2n-1)/4の位置に配置することにより、導電壁11で囲まれた閉空間10Aにおける通信性能を改善することができる。
なお、誘電体104の位置は、Ls2=λg×(2n-1)/4から若干ずれていてもよく、実質的にλg×(2n-1)/4であればよい。一例として、距離Ls2は、λg×(2n-1)/4のプラスマイナス5%の範囲内にあればよい。
次に、図43及び図44を用いて、グラファイト製の導電薄膜204をテフロン製の基板204A(図39参照)に形成した場合の電界分布と反射係数のシミュレーション結果について説明する。
グラファイト製の導電薄膜204は、厚さDtが0.16μm、導電率は70000S/m、比誘電率er=1である。また、導電薄膜204の位置は、Ls2=96mmである。テフロン製の基板204Aの厚さは4mmであり、比誘電率は2.08、tanδは0.001である。
図43(A)は、閉空間10Aの中心軸(X=0/Z=0)上の電界分布を示す図である。図43(A)に示すように、第1空間V1、第2の空間V2の進行波に近い電界分布になった。電界の最大値Emaxが44V/m、電界の最小値Eminが39.5V/mである。また、このときの反射係数はS=0.05と良好である。
図43(B)、(C)は、中心から(X=0/Z=11cm),(X=11cm/Z=0)の電界分布であり、単体誘電体を用いた場合と同様な分布となった。
また、導電薄膜204の位置Ls2と厚さDtを調整した場合の反射係数Sを試算した。
図44は、位置Ls2と厚さDtを調整した場合の反射係数Sの特性を示す図である。
導電薄膜204の位置Ls2は、80mm〜110mmまで変化させた。入射波Eiの周波数が915MHzである場合に、管内波長λgの1/4の長さは約98mmである。
また、導電薄膜204の厚さDtは、0.12μm〜0.20μmの範囲で変化させた。この範囲は、反射率rが0.29〜0.40になる範囲である。
なお、その他の条件は、図43に示す電解分布を求める際の条件と同様である。また、反射係数Sが0.15以下であれば、良好な進行波モードが維持されていると判断した。
図44(A)に示すように、導電薄膜204の位置Ls2は、80mm〜106mmまでの範囲で良好な反射率の値を示した。80mm〜106mmまでの長さは、λg/4に近い値である。
また、図44(B)に示すように、導電薄膜204の厚さDtは、0.12μm〜0.19μmの範囲で良好な反射率の値を示した。この範囲は、反射率rが0.29〜0.39になる範囲である。
以上のように、グラファイト製の導電薄膜204を用いた場合でも、誘電体104を第2導電壁11M2からLs2=λg×(2n-1)/4の位置に配置することにより、導電壁11で囲まれた閉空間10Aにおける通信性能を改善することができる。
以上、通信性能を改善する無線通信モジュール、無線通信システム及び通信方法を説明してきたが、実施の形態は、説明された具体的な形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を認めるであろう。
実施の形態の理解を促すため具体的な数値例が使用されたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。また、実施の形態の理解を促すため具体的な数式が使用されたが、特に断りのない限り、それらの数式は単なる一例に過ぎず、同様な結果をもたらす他の数式が使用されてもよい。上記の説明における項目の区分けは実施の形態に本質的ではなく、2つ以上の項目に記載された事項が必要に応じて組み合わせて使用されてもよいし、ある1つの項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。様々な変形例、修正例、代替例、置換例等が当業者にとって明らかであり、そのような変形例、修正例、代替例、置換例等は添付の特許請求の範囲に包含されることが意図されている。
以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
前記アンテナに接続され、前記アンテナを介して前記閉空間内に存在するRFIDタグを読み取るタグリーダと、
前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射部とを含み、
前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定される、無線通信モジュール。
(付記2)
前記反射部は、誘電体製の板状部材である、付記1記載の無線通信モジュール。
(付記3)
λを前記閉空間を伝播する電波の管内波長、nを自然数とすると、前記反射部は、前記第2導電壁からλ×n/2の距離を隔てて配置される、付記1又は2記載の無線通信モジュール。
(付記4)
λを前記反射部の中を伝播する電波の波長とすると、前記反射部の厚さがλ/2より薄い、付記1乃至3のいずれか一項記載の無線通信モジュール。
(付記5)
前記第2空間の少なくとも一部に配設される誘電体をさらに含み、
前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間及び前記誘電体の内部を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定される、付記1乃至4のいずれか一項記載の無線通信モジュール。
(付記6)
前記誘電体は、誘電率が異なる2種類以上の誘電体で形成される、付記5記載の無線通信モジュール。
(付記7)
前記アンテナから送信される電波は、垂直偏波、水平偏波、又は円偏波である、付記1乃至6の何れか一項記載の無線通信モジュール。
(付記8)
前記複数の導電壁は、矩形断面又は円形断面を有する導波管を形成する、付記1乃至7の何れか一項記載の無線通信モジュール。
(付記9)
前記複数の導電壁は、窓を有する、又は、メッシュ構造であり、通信に使用する周波数の電波においては定在波が発生する導波管として機能する、付記1乃至8の何れか一項記載の無線通信モジュール。
(付記10)
前記反射部は、導電薄膜である、付記1記載の無線通信モジュール。
(付記11)
前記導電薄膜の反射率は、0.30〜0.40である、付記10記載の無線通信モジュール。
(付記12)
前記閉空間を伝播する電波の波長をλg、nを自然数とすると、前記導電薄膜と前記第2導電壁との間の距離は、λg×(2n-1)/4である、付記10又は11記載の無線通信モジュール。
(付記13)
前記導電薄膜は、グラファイト製薄膜、又は、アルミニウムを添加した酸化亜鉛製の薄膜であり、付記10乃至12のいずれか一項の無線通信モジュール。
(付記14)
前記導電薄膜は、テフロン、フェノール、エポキシ、ポリイミド等の樹脂基板に形成される、付記10乃至13のいずれか一項の無線通信モジュール。
(付記15)
閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
前記アンテナに接続されるタグリーダと、
前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射部と、
前記第1空間又は前記第2空間の内部に配設されるRFIDタグと
を含み、
前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定されており、
前記タグリーダは、前記アンテナを介して前記閉空間内に存在するRFIDタグを読み取る、無線通信システム。
(付記16)
閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
前記アンテナに接続される読み取り装置と、
前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射部と、
前記第1空間又は前記第2空間の内部に配設される子機と
を含み、
前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
前記読み取り装置から出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定されており、
前記読み取り装置は、前記アンテナを介して前記閉空間内に存在する子機を読み取る、無線通信システム。
(付記17)
閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
前記アンテナに接続されるタグリーダと、
前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射部と、
前記第1空間又は前記第2空間の内部に配設されるRFIDタグと
を含み、
前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定されている、無線通信システムにおける通信方法であって、
前記タグリーダが、前記アンテナを介して前記第1空間に前記電波を放射する工程と、
前記タグリーダが、前記RFIDタグから送信される応答信号を受信する工程と
を含む、無線通信システムにおける通信方法。
100、200 無線通信システム
50 RFIDタグ
10 導電構造体
10A 閉空間
11 導電壁
11M1 第1導電壁
11M2 第2導電壁
101 無線通信モジュール
102 RFIDタグリーダ
103 アンテナ
104、104−1、104−2 誘電体
204 導電薄膜

Claims (10)

  1. 閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
    前記アンテナに接続され、前記アンテナを介して前記閉空間内に存在するRFIDタグを読み取るタグリーダと、
    前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の所定の反射率を有する反射部と
    を含み、
    前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
    前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定される、無線通信モジュール。
  2. 前記反射部は、誘電体製の板状部材である、請求項1記載の無線通信モジュール。
  3. λを前記閉空間を伝播する電波の管内波長、nを自然数とすると、前記反射部は、前記第2導電壁からλ×n/2の距離を隔てて配置される、請求項1又は2記載の無線通信モジュール。
  4. λを前記反射部の中を伝播する電波の波長とすると、前記反射部の厚さがλ/2より薄い、請求項1乃至3のいずれか一項記載の無線通信モジュール。
  5. 前記第2空間の少なくとも一部に配設される誘電体をさらに含み、
    前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間及び前記誘電体の内部を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定される、請求項1乃至4のいずれか一項記載の無線通信モジュール。
  6. 前記反射部は、導電薄膜である、請求項1記載の無線通信モジュール。
  7. 前記導電薄膜の反射率は、0.30〜0.40である、請求項6記載の無線通信モジュール。
  8. 前記閉空間を伝播する電波の波長をλg、nを自然数とすると、前記導電薄膜と前記第2導電壁との間の距離は、λg×(2n-1)/4である、請求項6又は7記載の無線通信モジュール。
  9. 閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
    前記アンテナに接続されるタグリーダと、
    前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射部と、
    前記閉空間の内部に配設されるRFIDタグと
    を含み、
    前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
    前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定されており、
    前記タグリーダは、前記アンテナを介して前記第1空間又は前記第2空間の内部に存在するRFIDタグを読み取る、無線通信システム。
  10. 閉空間を囲む複数の導電壁のうちの第1導電壁に配設されるアンテナと、
    前記アンテナに接続されるタグリーダと、
    前記第1導電壁と、前記第1導電壁に対向する第2導電壁との間に配設される、薄膜状又は板状の反射部と、
    前記閉空間の内部に配設されるRFIDタグと
    を含み、
    前記閉空間は、前記反射部によって、前記第1導電壁側の第1空間と、前記第2導電壁側の第2空間とに分けられており、
    前記タグリーダから出力され、前記アンテナから放射される電波が前記反射部によって反射されて前記第1空間を伝播する第1反射波と、前記アンテナから放射される電波が前記反射部を透過して前記第2空間を伝搬して前記第2導電壁によって反射され、前記反射部を透過して前記第1空間を伝播する第2反射波とが相殺されるように、前記第1導電壁と前記第2導電壁との間における前記反射部の位置が決定されている、無線通信システムにおける通信方法であって、
    前記タグリーダが、前記アンテナを介して前記第1空間に前記電波を放射する工程と、
    前記タグリーダが、前記第1空間又は前記第2空間の内部に存在する前記RFIDタグから送信される応答信号を受信する工程と
    を含む、無線通信システムにおける通信方法。
JP2014135768A 2013-08-22 2014-07-01 無線通信モジュール、無線通信システム、及び通信方法 Withdrawn JP2015062273A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014135768A JP2015062273A (ja) 2013-08-22 2014-07-01 無線通信モジュール、無線通信システム、及び通信方法
US14/462,455 US9727762B2 (en) 2013-08-22 2014-08-18 Wireless communication module, wireless communication system, and communication method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013172236 2013-08-22
JP2013172236 2013-08-22
JP2014135768A JP2015062273A (ja) 2013-08-22 2014-07-01 無線通信モジュール、無線通信システム、及び通信方法

Publications (1)

Publication Number Publication Date
JP2015062273A true JP2015062273A (ja) 2015-04-02

Family

ID=52479835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135768A Withdrawn JP2015062273A (ja) 2013-08-22 2014-07-01 無線通信モジュール、無線通信システム、及び通信方法

Country Status (2)

Country Link
US (1) US9727762B2 (ja)
JP (1) JP2015062273A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032087A (ja) * 2016-08-22 2018-03-01 東芝テック株式会社 読取装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2612804A (en) * 2021-11-11 2023-05-17 Frisense Ltd A radio frequency identification reader

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180899B2 (ja) 1998-03-09 2001-06-25 鹿島建設株式会社 電波遮蔽面状体及び建物内電波遮蔽域
US20020183882A1 (en) * 2000-10-20 2002-12-05 Michael Dearing RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
JP4889180B2 (ja) 2002-10-17 2012-03-07 学校法人五島育英会 多周波帯対応電波吸収体
US7319397B2 (en) * 2004-08-26 2008-01-15 Avante International Technology, Inc. RFID device for object monitoring, locating, and tracking
JP4600114B2 (ja) * 2005-03-28 2010-12-15 ブラザー工業株式会社 無線タグ通信装置
US7606592B2 (en) 2005-09-19 2009-10-20 Becker Charles D Waveguide-based wireless distribution system and method of operation
US20070108296A1 (en) * 2005-11-14 2007-05-17 Konopka John A Radio frequency identification devices and methods
US7884718B2 (en) * 2006-12-20 2011-02-08 Symbol Technologies, Inc. Frequency selective surface aids to the operation of RFID products
JP4957481B2 (ja) 2007-09-20 2012-06-20 東レ株式会社 電磁波吸収体
JP2009075998A (ja) * 2007-09-25 2009-04-09 Aruze Corp 無線icタグ読み取り装置
JP4895982B2 (ja) 2007-10-01 2012-03-14 京セラ株式会社 フィルタ装置
JP2010081018A (ja) 2008-09-24 2010-04-08 Enegene Kk 壁背後アンテナシステム
JP2010114560A (ja) * 2008-11-05 2010-05-20 Toshiba Corp 読取装置及び管理システム
JP4949455B2 (ja) 2009-11-17 2012-06-06 東芝テック株式会社 周期構造体
US9208362B1 (en) * 2013-03-11 2015-12-08 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Methods, systems and apparatuses for radio frequency identification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032087A (ja) * 2016-08-22 2018-03-01 東芝テック株式会社 読取装置
JP2021106038A (ja) * 2016-08-22 2021-07-26 東芝テック株式会社 読取装置
JP7138211B2 (ja) 2016-08-22 2022-09-15 東芝テック株式会社 読取装置

Also Published As

Publication number Publication date
US9727762B2 (en) 2017-08-08
US20150054626A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP4892608B2 (ja) 電磁放射線の強化とデカップリング
Seo et al. A single-level low rank IE-QR algorithm for PEC scattering problems using EFIE formulation
US10394204B1 (en) Methods and systems for synthesis of a waveguide array antenna
JP2015062273A (ja) 無線通信モジュール、無線通信システム、及び通信方法
García-Castillo et al. A finite element method for the analysis of radiation and scattering of electromagnetic waves on complex environments
Fang et al. Self-adaptive retro-reflective Doppler cloak based on planar space-time modulated metasurfaces
Park et al. High-gain antenna using an intelligent artificial magnetic conductor ground plane
Lin et al. Compact shorted inverted‐L antenna with circular polarisation for RFID handheld reader
KR101605191B1 (ko) 이중 루프를 가지는 uhf 대역 다중 부착 알에프아이디 태그
Mei et al. Influence of UHF tags in the different material surface to RFID system
Mun et al. A Compact Dual‐Band RFID Tag Antenna Mountable on Metallic Objects
Zhou et al. Two‐Step Decoupling Design of a Microstrip Antenna Array by Using Waveguided Complementary Split‐Ring Resonators and a Fully Connected Neural Network
Bogataj et al. Readability and Modulated Signal Strength of Two Different Ultra‐high Frequency Radio Frequency Identification Tags on Different Packaging
Boutayeb et al. High Gain Slot Array with Fabry‐Perot Cavity Feeding Circuit
Gragnani et al. Design of printed log-periodic antennas for long range communication within a wireless sensor network for sea water quality monitoring
JP3246270U (ja) 無線周波数識別装置
Jayasukumari et al. Design of rectangular microstrip patch antenna using hybrid group teaching optimization algorithm and volcano Eruption algorithm
He et al. Multi-layer TDS approximation used to numerical solution for dielectric objects
Chen Simple Matrix Equation (SME) Method for Pattern Synthesis of Conformal Antenna Array with Arbitrary Architecture
US11475228B2 (en) Wireless tag reader
Di Massa et al. Planar Fabry–Perot directive antenna: a simplified analysis by equivalent circuit approach
Khac et al. Antenna array for a unified radio frequency identification system
Choi et al. Slot‐array antenna for UHF RFID shelf applications
Sirenko et al. Axially symmetric reflector antennas: Geometrical-optics models and efficient electrodynamic analysis of double-mirror structures
Zheng et al. A New Designed Navigation Microstrip Patch Antenna with Air Back Cavity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180122