JP2015061003A - Rigid flexible multilayer printed wiring board manufacturing method - Google Patents

Rigid flexible multilayer printed wiring board manufacturing method Download PDF

Info

Publication number
JP2015061003A
JP2015061003A JP2013194782A JP2013194782A JP2015061003A JP 2015061003 A JP2015061003 A JP 2015061003A JP 2013194782 A JP2013194782 A JP 2013194782A JP 2013194782 A JP2013194782 A JP 2013194782A JP 2015061003 A JP2015061003 A JP 2015061003A
Authority
JP
Japan
Prior art keywords
rigid
wiring board
printed wiring
flexible
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194782A
Other languages
Japanese (ja)
Other versions
JP6212339B2 (en
Inventor
一樹 藤沢
Kazuki Fujisawa
一樹 藤沢
幸子 生方
Sachiko Ubukata
幸子 生方
幸一 新里
Koichi Niisato
幸一 新里
通晴 林
Michiharu Hayashi
通晴 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2013194782A priority Critical patent/JP6212339B2/en
Publication of JP2015061003A publication Critical patent/JP2015061003A/en
Application granted granted Critical
Publication of JP6212339B2 publication Critical patent/JP6212339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of more easily manufacturing a compact size rigid flexible multilayer printed wiring board even when a splitting process is performed in two stages from a surface to from a rear face.SOLUTION: A manufacturing method of a rigid flexible multilayer printed wiring board composed of a rigid part capable of component mounting and a bendable rigid part comprises: a step of forming a rigid printed wiring board; a step of forming a first splitting process part 12 which reaches an intended depth from one surface in a flexible part formation region; a step of arranging an insulation adhesive layer in a region except the flexible part formation region ; a step of laminating a flexible substrate; and a step of forming a second splitting process part which reaches the first splitting process part from the other surface of the rigid printed wiring board. The splitting step of forming the second splitting process part is performed by setting a region which enters the flexible part by a position gap tolerance 22 in each of XY directions from a boundary between the flexible part and the rigid part as a set process range 23.

Description

本発明は、部品実装が可能なリジッド部と屈曲可能なフレキシブル部からなるリジッドフレックス多層プリント配線板の製造方法に関し、特に、フレキシブル基板が外層に配置されるリジッドフレックス多層プリント配線板の小型化に関する。   The present invention relates to a method for manufacturing a rigid-flex multilayer printed wiring board comprising a rigid part that can be mounted with a component and a flexible part that can be bent, and more particularly, to miniaturization of a rigid-flex multilayer printed wiring board in which a flexible board is disposed in an outer layer. .

従来のリジッドフレックス多層プリント配線板Paは、概ね図8に示した概略断面図のように構成されている。   A conventional rigid-flex multilayer printed wiring board Pa is generally configured as shown in the schematic cross-sectional view of FIG.

即ち、ポリイミドなどからなる可撓性ベース基板15と、当該可撓性ベース基板15の表裏に形成された配線パターン2と、当該配線パターン2を保護するカバーレイ18からなるフレキシブル基板16aと;当該フレキシブル基板16aの表裏に積層された後にフレキシブル部Fとなる部分に刳り貫き部14を有する層間絶縁層4と;当該層間絶縁層4上に形成された配線パターン2と;当該フレキシブル基板16a及び層間絶縁層4に設けられた配線パターン2を接続するベリードホール10(以降「ベリードホール」を「BH」と表記する)と;当該層間絶縁層4上に積層された後にフレキシブル部Fとなる部分に刳り貫き部14を有するビルドアップ絶縁層4d(以降「ビルドアップ絶縁層」を「BU絶縁層」と表記する)と;当該BU絶縁層4d上に形成された配線パターン2と;各層の配線パターン2を接続するスルーホール10a(以降「スルーホール」を「TH」と表記する)と;上下に隣接する配線パターン2を接続するブラインドバイアホール10b(以降「ブラインドバイアホール」を「BVH」と表記する)と;外層の配線パターン2を保護するソルダーレジスト17とからなるものである(図中の「R」は「リジッド部」、「F」は「フレキシブル部」を示している)。   That is, a flexible base substrate 15 made of polyimide or the like, a wiring pattern 2 formed on the front and back of the flexible base substrate 15, and a flexible substrate 16a made of a cover lay 18 that protects the wiring pattern 2; An interlayer insulating layer 4 having a penetrating portion 14 in a portion that becomes a flexible portion F after being laminated on the front and back of the flexible substrate 16a; a wiring pattern 2 formed on the interlayer insulating layer 4; the flexible substrate 16a and the interlayer A buried hole 10 for connecting the wiring pattern 2 provided in the insulating layer 4 (hereinafter, “believe hole” is expressed as “BH”); and a flexible portion F after being laminated on the interlayer insulating layer 4 A build-up insulating layer 4d (hereinafter, “build-up insulating layer” is referred to as “BU insulating layer”) having a penetrating portion 14 in the portion; A wiring pattern 2 formed on the U insulating layer 4d; a through hole 10a for connecting the wiring pattern 2 of each layer (hereinafter referred to as "TH"); and a wiring pattern 2 adjacent in the vertical direction is connected Blind via hole 10b (hereinafter referred to as “BVH”); and a solder resist 17 that protects the wiring pattern 2 on the outer layer (“R” in the figure is a “rigid portion”) "And" F "indicate" flexible part ").

このように、リジッドフレックス多層プリント配線板は、部分的に屈曲可能なフレキシブル部Fを備えているため、製品内への搭載自由度が求められる携帯電話のメイン及びサブ基板、各種モジュール基板などに多く採用されている。   As described above, the rigid-flex multilayer printed wiring board includes the flexible portion F that can be partially bent. Therefore, the rigid-flex multilayer printed wiring board can be used for mobile phone main and sub boards, various module boards, etc. Many have been adopted.

しかし、フレキシブル基板が中心部に配置される図8のようなリジッドフレックス多層プリント配線板は、総板厚が最大で1.2mmの仕様までしか一般的な信頼性{例えば、1000サイクルの冷熱衝撃試験(−65℃で30分、+125℃で30分を1サイクルとする)によるスルーホールの接続信頼性など}が確保されていなかったため、例えば、自動車関連機器のように、総板厚が1.2mmより厚い仕様で(例えば1.6mm)、更に過酷なスルーホール接続信頼性(例えば、冷熱衝撃試験による2000〜3000サイクルの確保)を要求される場合には対応できなかった。   However, the rigid-flex multilayer printed wiring board as shown in FIG. 8 in which the flexible substrate is disposed at the center has a general reliability up to a specification of a total board thickness of 1.2 mm at the maximum {for example, 1000 cycles of thermal shock Since the through-hole connection reliability by the test (30 minutes at −65 ° C. and 30 minutes at + 125 ° C. as one cycle) has not been secured, for example, the total plate thickness is 1 as in the case of automobile-related equipment. It was not possible to meet the requirements of thicker than 2 mm specifications (for example, 1.6 mm) and more severe through-hole connection reliability (for example, securing 2000 to 3000 cycles by a thermal shock test).

もう少し詳しく説明すると、熱間時に発生する応力は、多層プリント配線板の中心層に集中するため、元々、フレキシブル基板の有無に関係なく、板厚の上昇とともに、スルーホールの中心層に位置する部分にクラックが発生しやすくなるのだが、このような環境下で、線膨張係数の異なるフレキシブル基板が中心層に配置されるため、図8の破線○で囲んだ部分に、よりクラックが発生しやすくなるというわけである。   In more detail, since the stress generated during hot is concentrated in the center layer of the multilayer printed wiring board, the portion that is originally located in the center layer of the through-hole as the plate thickness increases regardless of the presence or absence of the flexible board In such an environment, a flexible substrate with a different linear expansion coefficient is arranged in the center layer, so that cracks are more likely to occur in the portion surrounded by the broken line ○ in FIG. That is why.

そこで、層構成の中で線膨張係数が異なるフレキシブル基板を外層に配置することによって、上記課題を解決するという手段が考えられるのだが、この構成については、本出願人も「特許文献1」で既に報告している。   Therefore, a means of solving the above problem by arranging flexible substrates having different linear expansion coefficients in the layer configuration in the outer layer is conceivable. It has already been reported.

図9に示したリジッドフレックス多層プリント配線板Pbがその一例である。
即ち、ガラスエポキシ基板などからなる絶縁基板1と、当該絶縁基板1の表裏に形成された配線パターン2と、当該配線パターン2を有する絶縁基板1の表裏に積層された層間絶縁層4と、当該層間絶縁層4上に形成された配線パターン2aと、当該配線パターン2、2a間を接続するBH10と、当該BH10の孔内を埋める孔埋め樹脂9からなるコア基板11と;当該コア基板11の表裏に積層されたフレキ積層用BU絶縁層4a及びBU絶縁層4bと;当該フレキ積層用BU絶縁層4a上に積層された可撓性ベース基板15とこの上に形成された配線パターン2bとからなるフレキシブル基板16と;当該BU絶縁層4b上に形成された配線パターン2bと;各層の配線パターン間を接続するTH10aと;上下方向に隣接する配線パターン2a、2b間を接続するBVH10bと;外層の配線パターン2bを保護するソルダーレジスト17と;当該外層の配線パターン2bのうち、フレキシブル部F形成領域部分に形成された配線パターン2bを保護するカバーレイ18と;当該フレキ積層用BU絶縁層4aおよび当該フレキ積層用BU絶縁層4aのフレキシブル基板16が積層される面とは反対側の面に積層されたリジッドプリント配線板21のそれぞれのフレキシブル部Fに相当する部分に形成された刳り抜き部14とを備えた構成である。
The rigid-flex multilayer printed wiring board Pb shown in FIG. 9 is an example.
That is, an insulating substrate 1 made of a glass epoxy substrate, a wiring pattern 2 formed on the front and back of the insulating substrate 1, an interlayer insulating layer 4 laminated on the front and back of the insulating substrate 1 having the wiring pattern 2, A wiring pattern 2 a formed on the interlayer insulating layer 4, a BH 10 connecting the wiring patterns 2, 2 a, and a core substrate 11 made of a hole-filling resin 9 filling the hole of the BH 10; From the flexible laminated BU insulating layer 4a and the BU insulating layer 4b laminated on the front and back; the flexible base substrate 15 laminated on the flexible laminated BU insulating layer 4a and the wiring pattern 2b formed thereon A flexible substrate 16; a wiring pattern 2b formed on the BU insulating layer 4b; a TH 10a connecting between the wiring patterns of each layer; and a wiring pattern adjacent in the vertical direction. BVH 10b that connects between the wirings 2a and 2b; a solder resist 17 that protects the wiring pattern 2b on the outer layer; and a wiring pattern 2b that is formed in the flexible portion F formation region of the wiring pattern 2b on the outer layer Each of the flexible printed circuit boards 21 laminated on the surface opposite to the surface on which the flexible substrate 16 of the flexible laminated BU insulating layer 4a and the flexible laminated BU insulating layer 4a is laminated; It is the structure provided with the hollow part 14 formed in the part corresponded to the part F.

しかし、上記構成のリジッドフレックス多層プリント配線板Pbにおいては、板厚が1.6mm以上の条件下に対する、TH10aの接続信頼性を確保するということに関しては解決できるものの、その製造過程において、以下のような課題を有していた。   However, in the rigid-flex multilayer printed wiring board Pb having the above-described configuration, although it is possible to solve the problem of securing the connection reliability of TH10a with respect to the condition where the plate thickness is 1.6 mm or more, It had such a problem.

即ち、外層にフレキシブル基板16を配置するリジッドフレックス多層プリント配線板Pbを得るには、フレキシブル部Fを屈曲可能とするために、リジッドプリント配線板21のフレキシブル部Fに相当する部分に分割加工を施す必要があるのだが、従来は、この分割加工として、フレキシブル部Fの寸法に合わせて刳り抜き部14を形成するようにしており、また、その際に、フレキシブル基板16に損傷を与えないようにするために、金属箔張りフレキシブル基板16b(ポリイミドなどの可撓性ベース基板15上に銅箔などの金属箔5が積層されたフレキシブル基板)を積層する前に、当該金属箔張りフレキシブル基板16bの積層面側からスリット加工を行うことによって、リジッドプリント配線板21の所望の深さまでスリット27を形成し(図10(a)参照)、その後、金属箔張りフレキシブル基板16bの積層や外層の回路形成、ソルダーレジスト形成などの工程を行った後(即ち、最終工程の後)に、裏面側から残りのスリット加工(スリット加工予定部27aに対するスリット加工)を行うという2段階に分けて刳り貫くようにしている(図10(b)参照)。   That is, in order to obtain the rigid-flex multilayer printed wiring board Pb in which the flexible substrate 16 is arranged on the outer layer, in order to make the flexible portion F bendable, the portion corresponding to the flexible portion F of the rigid printed wiring board 21 is divided. Conventionally, as this division processing, the cut-out portion 14 is formed in accordance with the dimension of the flexible portion F, and at that time, the flexible substrate 16 is not damaged. Therefore, before laminating the metal foil-clad flexible substrate 16b (flexible substrate in which the metal foil 5 such as copper foil is laminated on the flexible base substrate 15 such as polyimide), the metal foil-clad flexible substrate 16b is laminated. Slitting to the desired depth of the rigid printed wiring board 21 by slitting from the laminated surface side of 7 (see FIG. 10 (a)), and then the back surface after the metal foil-clad flexible substrate 16b is laminated, the outer layer circuit is formed, and the solder resist is formed (that is, after the final step). The remaining slit processing (slit processing for the slit processing planned portion 27a) is performed in two steps from the side (see FIG. 10B).

そのため、ワークシート(製造ラインに流す際の基板のことで、個片のリジッドフレックス多層プリント配線板を複数面付けしたもの)の面付け位置によっては、裏面側からのスリット加工の際に発生する加工位置ズレにより、そのズレた加工ズレ部28の近傍に位置する配線パターン2の絶縁信頼性や導通信頼性が確保できなくなるという問題があった(図10(b)の破線○で囲んだ部分参照。尚、図10(a)に示した符号27bは、金属箔張りフレキシブル基板16bに回路形成を施す際の支えとなる「基板支持体」である)。   For this reason, depending on the imposition position of the worksheet (the substrate to be flowed to the production line, which is a plurality of pieces of rigid flex multilayer printed wiring boards), it occurs when slitting from the back side. There is a problem that the insulation reliability and conduction reliability of the wiring pattern 2 located in the vicinity of the misaligned machining misalignment portion 28 cannot be ensured due to the misalignment of the machining position (the portion surrounded by the broken line ○ in FIG. 10B). (Reference numeral 27b shown in FIG. 10 (a) is a "substrate support" that serves as a support when a circuit is formed on the metal foil-clad flexible substrate 16b).

この問題に対して従来は、リジッドフレックス多層プリント配線板の寸法を、予め加工位置ズレ公差を考慮した寸法(大型化)とすることで対応していたのであるが、この方法では、近年ますます要求が高まる「小型化」への要求には応えられないため、新たな対応策が望まれていた。   Conventionally, this problem has been dealt with by setting the dimensions of the rigid-flex multilayer printed wiring board to the dimensions (upsizing) that take into account the machining position deviation tolerance. Since the demand for “miniaturization”, which is increasing in demand, cannot be met, a new countermeasure has been desired.

因みに、このような加工位置ズレが発生する原因としては、先に行なわれるスリット加工から、後に行なわれるスリット加工の間に、積層工程や回路形成、あるいはソルダーレジスト形成などの複数の製造工程が入ることが原因と考えられ(即ち、この間に発生する基板の伸縮が原因と考えられる)、この影響は、ワークシートの面付数を多くした場合に顕著に現れる。   By the way, the cause of such processing position misalignment includes a plurality of manufacturing processes such as a lamination process, circuit formation, or solder resist formation between the slit process performed first and the slit process performed later. (That is, it is considered that the expansion and contraction of the substrate that occurs during this time is the cause), and this effect is prominent when the number of impositions of the worksheet is increased.

特開2009−290193号公報JP 2009-290193 A

本発明は、リジッドプリント配線板の分割加工を、表裏面からの2段階に分けて行う場合においても、リジッドフレックス多層プリント配線板の寸法を、加工位置ズレ公差を考慮した寸法とする必要のない、リジッドフレックス多層プリント配線板の製造方法を提供することを課題とする。   The present invention does not require the dimensions of the rigid-flex multilayer printed wiring board to be a dimension that takes into account the processing position deviation tolerance, even when dividing the rigid printed wiring board into two stages from the front and back surfaces. An object of the present invention is to provide a method for producing a rigid-flex multilayer printed wiring board.

本発明は、部品実装が可能なリジッド部と屈曲可能なフレキシブル部とからなるリジッドフレックス多層プリント配線板の製造方法において、少なくとも、リジッドな絶縁層と配線パターンとを有するリジッドプリント配線板を形成する工程と、当該リジッドプリント配線板の一方の面から所望の深さにまで達する第1分割加工部を、当該リジッドプリント配線板におけるフレキシブル部形成領域内に形成する工程と、当該第1分割加工部が形成されたリジッドプリント配線板の一方の面に、当該フレキシブル部形成領域部分を除いて絶縁接着剤層を配置する工程と、当該絶縁接着剤層を介してフレキシブル基板を積層する工程と、当該リジッドプリント配線板の他方の面から当該第1分割加工部に達する第2分割加工部を形成する工程とを有し、且つ、当該第2分割加工部を形成する分割加工を、フレキシブル部とリジッド部の境界部からXY方向の加工位置ズレ公差分だけフレキシブル部側に入った領域を設定加工範囲として行なうことを特徴とするリジッドフレックス多層プリント配線板の製造方法により上記課題を解決したものである。   The present invention forms a rigid printed wiring board having at least a rigid insulating layer and a wiring pattern in a manufacturing method of a rigid flex multilayer printed wiring board comprising a rigid part capable of mounting components and a flexible part capable of bending. A step of forming a first divided processing portion that reaches a desired depth from one surface of the rigid printed wiring board in a flexible portion forming region of the rigid printed wiring board; and the first divided processing portion A step of disposing the insulating adhesive layer on one surface of the rigid printed wiring board on which the flexible portion is formed, excluding the flexible portion forming region portion, a step of laminating a flexible substrate via the insulating adhesive layer, Forming a second divided processing portion that reaches the first divided processing portion from the other surface of the rigid printed wiring board. In addition, the division processing for forming the second division processing portion is performed by setting a region that enters the flexible portion side by the machining position deviation tolerance in the XY direction from the boundary portion between the flexible portion and the rigid portion. The above-described problems are solved by a method for manufacturing a rigid-flex multilayer printed wiring board.

外層にフレキシブル基板を配置したリジッドフレックス多層プリント配線板の製造方法を本発明の構成とすれば、第2分割加工部を形成する分割加工が、フレキシブル部の領域外(即ち、リジッド部Rの領域内)に及ぶ懸念がなくなるため、リジッドフレックス多層プリント配線板のサイズを、加工位置ズレ公差を考慮した大きさに設定する必要がなくなり、結果、従来よりも小型のリジッドフレックス多層プリント配線板を容易に得ることができる。   If the manufacturing method of the rigid-flex multilayer printed wiring board which arrange | positioned the flexible substrate in the outer layer is made into the structure of this invention, the division | segmentation process which forms a 2nd division | segmentation process part will be outside the area | region of a flexible part (namely, area | region of the rigid part R). No need to set the rigid flex multilayer printed wiring board to a size that takes into account the processing position deviation tolerance. As a result, it is easier to make a rigid flex multilayer printed wiring board smaller than before. Can get to.

本発明リジッドフレックス多層プリント配線板の製造方法を説明するための概略断面製造工程図。The schematic cross-section manufacturing process figure for demonstrating the manufacturing method of this invention rigid-flex multilayer printed wiring board. 図1に続く概略断面製造工程図。FIG. 2 is a schematic cross-sectional manufacturing process diagram following FIG. 1. 図2に続く概略断面製造工程図。FIG. 3 is a schematic cross-sectional manufacturing process diagram following FIG. 2. 本発明の第2分割加工における設定加工範囲を説明するための概略断面図。The schematic sectional drawing for demonstrating the setting process range in the 2nd division | segmentation process of this invention. リジッドプリント配線板の突出部を配線パターン形成エリアとして利用することを説明するための概略断面図。The schematic sectional drawing for demonstrating utilizing the protrusion part of a rigid printed wiring board as a wiring pattern formation area. フレキシブル基板を内側にして折り曲げた際に、フレキシブル部に突出するリジッドプリント配線板の突出部を、フレキシブル基板の折り曲げ頂点をガードするバンパーとして利用することを説明するための概略断面図。The schematic sectional drawing for demonstrating using the protrusion part of the rigid printed wiring board which protrudes in a flexible part as a bumper which guards the bending vertex of a flexible substrate when it folds with a flexible substrate inside. フレキシブル部の輪郭に沿って形成するスリットを不要にする場合の構成を説明するための概略断面図で、(a)は絶縁接着剤層の樹脂がフレキシブル部に流れ込むのを防止するダムを設けた場合の概略案面図、(b)は絶縁接着剤層として樹脂フローの少ないものを用いた場合の概略断面図。It is a schematic sectional drawing for demonstrating the structure in the case of making the slit formed along the outline of a flexible part unnecessary, (a) provided the dam which prevents the resin of an insulating adhesive layer from flowing into a flexible part. The schematic plan view in the case, (b) is a schematic cross-sectional view in the case of using an insulating adhesive layer having a small resin flow. フレキシブル基板が中間層に配置される従来のリジッドフレックス多層プリント配線板の概略断面図。The schematic sectional drawing of the conventional rigid flex multilayer printed wiring board by which a flexible substrate is arrange | positioned in an intermediate | middle layer. 外層にフレキシブル基板を配置した従来のリジッドフレックス多層プリント配線板の概略断面図。The schematic sectional drawing of the conventional rigid flex multilayer printed wiring board which has arrange | positioned the flexible substrate to the outer layer. スリット加工で刳り抜き部を形成した場合に発生する加工位置ズレ状態を説明するための概略断面図で、(a)はフレキシブル基板を積層する前に、当該フレキシブル基板の積層面側からスリットを形成した状態、(b)は裏面側からスリット加工を行った際に、加工位置ズレが発生した状態を示したものである。It is a schematic sectional view for explaining a processing position shift state that occurs when a hollow part is formed by slit processing. (A) forms a slit from the laminated surface side of the flexible substrate before laminating the flexible substrate. (B) shows a state in which a processing position shift has occurred when slit processing is performed from the back side.

本発明の実施の形態を、図1乃至図7に示した概略断面工程図を用いて説明する。尚、文中に出てくる「層間絶縁層」「BU絶縁層」「フレキ積層用BU絶縁層」は、実際には半硬化状態の「絶縁接着剤層(例えば、ガラス繊維などの補強基材にエポキシ樹脂などの熱硬化性樹脂を含浸したプリプレグなどが挙げられる)」を、加熱・加圧プレスで硬化積層させたものを指すのであるが、説明の便宜上、加熱・加圧プレス工程の説明を省略し、初めから「層間絶縁層、BU絶縁層、フレキ積層用BU絶縁層を積層する」という形で説明する。   An embodiment of the present invention will be described with reference to schematic sectional process diagrams shown in FIGS. The “interlayer insulation layer”, “BU insulation layer” and “flexible laminate insulation layer” appearing in the text are actually semi-cured “insulation adhesive layers (for example, glass fiber and other reinforcing substrates). Prepreg impregnated with a thermosetting resin such as an epoxy resin, etc.) ”is indicated by being cured and laminated with a heating / pressing press. For convenience of explanation, the heating / pressing press process is described. The description is omitted from the beginning, in the form of “lamination of an interlayer insulating layer, a BU insulating layer, and a BU insulating layer for flexible lamination”.

まず、図1(a)に示したように、ガラスエポキシ基板などの絶縁基板1の表裏に配線パターン2を形成することによって、両面プリント配線板3を得る。   First, as shown to Fig.1 (a), the double-sided printed wiring board 3 is obtained by forming the wiring pattern 2 in the front and back of the insulating substrates 1, such as a glass epoxy board | substrate.

ここで、配線パターン2を形成する手段としては、金属箔(例えば「銅箔」)をエッチングして形成するサブトラクティブ法やめっき(例えば「銅めっき」)を析出させて形成するアディティブ法などにより形成することができる。   Here, as a means for forming the wiring pattern 2, a subtractive method in which a metal foil (for example, “copper foil”) is formed by etching, an additive method in which plating (for example, “copper plating”) is deposited, or the like is used. Can be formed.

次に、配線パターン2の表面を粗化処理(例えば、蟻酸やアミン系錯化剤を主成分とするソフトエッチング処理など)した後、両面プリント配線板3の表裏に、層間絶縁層4と銅箔などの金属箔5を順次積層する(あるいは金属箔5の片面に層間絶縁層4が予め積層された樹脂付き金属箔6を、層間絶縁層4が両面プリント配線板3と接するように積層する)ことによって、両面プリント配線板3の表裏に層間絶縁層4と金属箔5が積層された図1(b)の基板を得る。   Next, after roughening the surface of the wiring pattern 2 (for example, a soft etching process mainly composed of formic acid or an amine complexing agent), the interlayer insulating layer 4 and copper are formed on the front and back of the double-sided printed wiring board 3. A metal foil 5 such as a foil is sequentially laminated (or a metal foil with resin 6 in which an interlayer insulating layer 4 is previously laminated on one surface of the metal foil 5 is laminated so that the interlayer insulating layer 4 is in contact with the double-sided printed wiring board 3. Thus, the substrate of FIG. 1B in which the interlayer insulating layer 4 and the metal foil 5 are laminated on the front and back of the double-sided printed wiring board 3 is obtained.

次に、ドリル加工などによって、所望とする位置に貫通孔7を穿孔し、次いで、過マンガン酸ナトリウム溶液や過マンガン酸カリウム溶液などのデスミア処理を行うことによって、貫通孔7をクリーニングする(図1(c)参照)。   Next, the through-hole 7 is drilled at a desired position by drilling or the like, and then the through-hole 7 is cleaned by performing a desmear treatment such as a sodium permanganate solution or a potassium permanganate solution (see FIG. 1 (c)).

次に、無電解めっき処理(例えば「無電解銅めっき処理」)、電解めっき処理(例えば「電解銅めっき処理」)を順次行うことによって、貫通孔7を含む基板全面にめっき8を析出させ、次いで、めっき8が形成された貫通孔7に孔埋め樹脂9を充填することによって、図1(d)の基板を得る。   Next, by sequentially performing an electroless plating process (for example, “electroless copper plating process”) and an electrolytic plating process (for example, “electrolytic copper plating process”), the plating 8 is deposited on the entire surface of the substrate including the through holes 7. Next, the through-hole 7 in which the plating 8 is formed is filled with a hole-filling resin 9 to obtain the substrate shown in FIG.

次に、サブトラクティブ法により回路形成を行うことによって、ダミーパターン25を含む配線パターン2a及び各層の配線パターン2、2a間を接続するBH10が形成された4層のコア基板11を得る(図1(e)参照)。   Next, by forming a circuit by the subtractive method, a four-layer core substrate 11 on which the wiring pattern 2a including the dummy pattern 25 and the BH 10 connecting the wiring patterns 2 and 2a of each layer are formed is obtained (FIG. 1). (See (e)).

ここで、コア基板11におけるフレキシブル部F形成領域部分にダミーパターン25を設ける例を示したが、当該ダミーパターン25は必ずしも設ける必要はない。
しかし、後に積層される金属箔張りフレキシブル基板16bに回路形成を行う際に、当該金属箔張りフレキシブル基板16bとコア基板11とのギャップを小さくし(即ち、フレキシブル部Fでの撓みを抑制する)、良好な配線パターンを形成する上で、当該ダミーパターン25を形成するのが好ましい。
Here, although the example which provides the dummy pattern 25 in the flexible part F formation area part in the core board | substrate 11 was shown, the said dummy pattern 25 does not necessarily need to provide.
However, when forming a circuit on the metal foil-clad flexible substrate 16b to be laminated later, the gap between the metal foil-clad flexible substrate 16b and the core substrate 11 is reduced (that is, the flexure in the flexible portion F is suppressed). In forming a good wiring pattern, the dummy pattern 25 is preferably formed.

次に、当該コア基板11の一方の面A(第1分割加工がわ面)から所望の深さにまで達する第1分割加工部12を、当該コア基板11におけるフレキシブル部F形成領域領域内に形成するとともに、同じく一方の面Aから所望の深さにまで達するスリット13を、当該フレキシブル部F形成領域の輪郭に沿って形成する(図2(f1)参照。因みに図2(f2)は、「第1分割加工部12」と「スリット13」を上から見た場合の要部拡大平面図である)。   Next, the first divided processing portion 12 that reaches the desired depth from one surface A (the first divided processing side surface) of the core substrate 11 is within the flexible portion F forming region region of the core substrate 11. At the same time, a slit 13 reaching from the one surface A to a desired depth is formed along the contour of the flexible portion F formation region (see FIG. 2 (f1). Incidentally, FIG. 2 (f2) It is a principal part enlarged plan view when "first divided processing part 12" and "slit 13" are viewed from above.

ここで、「第1分割加工部12」と「スリット13」は、例えば、ルーター加工などにより形成することができる。   Here, the “first divided processing portion 12” and the “slit 13” can be formed by router processing, for example.

なお、本実施の形態においては、後に積層されるフレキ積層用BU絶縁層4aから流れ出る樹脂を逃がす手段として(即ち、フレキシブル部Fを確保するための手段)、スリット13を設ける例を示したが、例えば、図7(a)に示したように、樹脂の流入を防止するダム26をスクリーン印刷などで設けたり、あるいは図7(b)に示したように、フレキ積層用BU絶縁層4aとして、積層の際の樹脂フロー量が少ない材料(例えば、「ローフロープリプレグ4c」など)を設けたりすることによっても対応することができる。   In the present embodiment, an example is shown in which the slit 13 is provided as a means for escaping the resin flowing out from the flexible laminated BU insulating layer 4a to be laminated later (that is, means for securing the flexible portion F). For example, as shown in FIG. 7A, a dam 26 for preventing the inflow of resin is provided by screen printing or the like, or as shown in FIG. This can also be dealt with by providing a material with a small amount of resin flow during lamination (for example, “low flow prepreg 4c”).

次に、コア基板11の外層に形成された配線パターン2a(ダミーパターン25を含む)の表面を粗化した後、当該コア基板11の一方の面Aに第1ビルドアップ層Cを、他方の面B(後に行なわれる第2分割加工がわ面)に第2ビルドアップ層Dをそれぞれ積層する(図2(g)参照)。   Next, after roughening the surface of the wiring pattern 2 a (including the dummy pattern 25) formed on the outer layer of the core substrate 11, the first buildup layer C is applied to one surface A of the core substrate 11, and the other The second buildup layer D is laminated on the surface B (the second divided processing surface to be performed later) (see FIG. 2G).

ここで、コア基板11の一方の面Aに積層される第1ビルドアップ層Cは、フレキ積層用BU絶縁層4a{すなわちフレキシブル部F形成領域部分(図中の「刳り抜き部14」に相当)を除いて配置した絶縁接着剤層}と、当該フレキ積層用BU絶縁層4aを介して積層された金属箔張りフレキシブル基板16b(可撓性ベース基板15と金属箔5とからなるフレキシブル基板)からなり、また、コア基板11の他方の面Bに積層される第2ビルドアップ層Dは、BU絶縁層4bと、当該BU絶縁層4bを介して積層された金属箔5(あるいは、金属箔5の片面にBU絶縁層4bが予め積層された樹脂付き金属箔6a)とからなるが、可能であれば、最終的に出来上がるリジッドフレックス多層プリント配線板の反りを抑制するために、当該第1ビルドアップ層Cと第2ビルドアップ層Dの厚さを、略同じ厚さとなるよう設定するのが好ましい。   Here, the first build-up layer C laminated on one surface A of the core substrate 11 corresponds to the flexible laminated BU insulating layer 4a {that is, the flexible portion F forming region portion ("bent portion 14" in the figure). ), And a flexible substrate 16b (flexible substrate composed of the flexible base substrate 15 and the metal foil 5) laminated via the flexible laminated BU insulating layer 4a. And the second buildup layer D laminated on the other surface B of the core substrate 11 includes a BU insulating layer 4b and a metal foil 5 (or metal foil) laminated via the BU insulating layer 4b. 5 is a resin-coated metal foil 6a in which a BU insulating layer 4b is laminated in advance on one side. If possible, in order to suppress warping of the final rigid-flex multilayer printed wiring board, The thickness of the first buildup layer C and the second buildup layer D, preferably set to substantially the same thickness.

また、フレキ積層用BU絶縁層4a及びBU絶縁層4bとしては、特に限定されるものではないが、ガラス織布あるいはガラス不織布にエポキシ樹脂を含浸したプリプレグを用いるのが、配線パターン2aの樹脂埋めを良好に行う、あるいは反りや捩れを抑制する上で好ましい。   Further, the BU insulating layer 4a and the BU insulating layer 4b for flexible lamination are not particularly limited, but it is possible to use a prepreg in which a glass woven fabric or a glass nonwoven fabric is impregnated with an epoxy resin to fill the wiring pattern 2a with a resin. It is preferable to perform the process well or to suppress warping and twisting.

次に、層間接続用のビアホール(THやBVH)を形成する部分に、貫通孔7aや非貫通孔7bをドリル加工、レーザ加工などによって穿孔した後、当該貫通孔7a及び非貫通孔7b内をデスミア処理でクリーニングし(図2(h)参照)、次いで、無電解めっき処理(例えば「無電解銅めっき処理」)と電解めっき処理(例えば「電解銅めっき処理」)を順次行うことによって、両孔内を含む全面にめっき8を析出させる(図2(i)参照)。   Next, a through hole 7a and a non-through hole 7b are drilled by drilling, laser processing or the like in a portion where a via hole (TH or BVH) for interlayer connection is formed, and then the inside of the through hole 7a and the non-through hole 7b is formed. Cleaning by desmear treatment (see FIG. 2 (h)), and then performing electroless plating treatment (for example, “electroless copper plating treatment”) and electrolytic plating treatment (for example, “electrolytic copper plating treatment”) in order, Plating 8 is deposited on the entire surface including the inside of the hole (see FIG. 2 (i)).

次に、サブトラクティブ法で外層の回路形成を行うことによって、配線パターン2b、TH10a、BVH10bを形成し(図3(j)参照)、次いで、配線パターン2bを保護するソルダーレジスト17及び当該配線パターン2bのうちフレキシブル部F形成領域部分に形成された配線パターン2bを保護するカバーレイ18を形成する(図3(k)参照)。   Next, the circuit pattern of the outer layer is formed by the subtractive method to form the wiring patterns 2b, TH10a, and BVH10b (see FIG. 3J), and then the solder resist 17 that protects the wiring pattern 2b and the wiring pattern A cover lay 18 that protects the wiring pattern 2b formed in the flexible portion F formation region portion of 2b is formed (see FIG. 3 (k)).

ここで、当該ソルダーレジスト17においては、第2分割加工を良好に行うために(即ち、第2分割加工によって、ソルダーレジスト17にクラックが発生するのを防止するために)、少なくとも、第2分割加工予定部19aを避けるように、ソルダーレジスト抜き部17aを設けておくのが好ましい。   Here, in order to perform the second division processing satisfactorily in the solder resist 17 (that is, to prevent the solder resist 17 from being cracked by the second division processing), at least the second division processing is performed. It is preferable to provide a solder resist removal portion 17a so as to avoid the planned processing portion 19a.

また、フレキシブル部F形成領域部分に形成された配線パターン2bを保護するカバーレイ18としては、接着層を備えた可撓性フィルム、硬化後においても柔軟性を有する柔軟性絶縁接着剤層(所謂「ボンディングシート」)や柔軟性ソルダーレジストなどが挙げられるが、何れを選択しても構わない。   Further, as the coverlay 18 that protects the wiring pattern 2b formed in the flexible portion F formation region, a flexible film having an adhesive layer, a flexible insulating adhesive layer that has flexibility even after curing (so-called so-called) "Bonding sheet") and a flexible solder resist, etc. are mentioned, but any of them may be selected.

次に、図4に示したように、フレキシブル部Fとリジッド部Rの境界部からXY方向の加工位置ズレ公差22分だけフレキシブル部F側に入った領域を設定加工範囲23として第2分割加工(例えば、ルーター加工)を行うことによって、第1分割加工部12に達する第2分割加工部19が形成された図3(l)のリジッドフレックス多層プリント配線板Pを得る。   Next, as shown in FIG. 4, the second division processing is performed by setting an area that enters the flexible portion F side by a machining position deviation tolerance of 22 in the XY direction from the boundary between the flexible portion F and the rigid portion R as a set processing range 23. By performing (for example, router processing), the rigid-flex multilayer printed wiring board P of FIG. 3 (l) in which the second divided processing portion 19 reaching the first divided processing portion 12 is formed is obtained.

本発明の注目すべき点は、フレキ積層用BU絶縁層4aのフレキシブル基板16が積層される面とは反対側の面に積層されたリジッドプリント配線板21に分割部20(第1分割加工部12と第2分割加工部19からなる分割部)を形成する際、少なくとも、第1分割加工部12に達するように行われる裏面側からの第2分割加工を、フレキシブル部Fとリジッド部Rの境界部からXY方向の加工位置ズレ公差分だけフレキシブル部F側に入った領域を設定加工範囲として行うようにした点である(図3(l)、図4参照)。   The remarkable point of the present invention is that the divided portion 20 (first divided processing portion) is formed on the rigid printed wiring board 21 laminated on the surface opposite to the surface on which the flexible substrate 16 of the flexible laminated BU insulating layer 4a is laminated. 12 and the second divided processed portion 19), at least the second divided processing from the back side performed so as to reach the first divided processed portion 12 is performed between the flexible portion F and the rigid portion R. This is a point where an area that enters the flexible part F side by the machining position deviation tolerance in the XY direction from the boundary portion is set as the set machining range (see FIGS. 3 (l) and 4).

これにより、第2分割加工部19を形成する第2分割加工が、フレキシブル部Fの領域外、即ち、リジッド部R内に及ぶ懸念がなくなるため、リジッドフレックス多層プリント配線板Pのサイズを、分割加工位置ズレ公差を考慮した大きさに設定する必要がなくなる。
従って、従来よりもリジッドフレックス多層プリント配線板Pを小型化できる。
As a result, there is no concern that the second division processing for forming the second division processing portion 19 extends outside the area of the flexible portion F, that is, inside the rigid portion R. Therefore, the size of the rigid flex multilayer printed wiring board P is divided. It is not necessary to set the size in consideration of machining position deviation tolerance.
Therefore, the rigid flex multilayer printed wiring board P can be made smaller than before.

本発明を説明するに当たって、第2分割加工部19を、第1分割加工部12よりも小さく形成する例を用いて説明したが、当該第2分割加工部19が第1分割加工部12に達し、なお且つ、フレキシブル部Fの領域内で形成されていれば、当該第1分割加工部12よりも大きく形成することも可能である。
この場合、第1分割加工部12と第2分割加工部19との合わせズレが発生し難くなるというメリットがある。
In describing the present invention, the second divided processing unit 19 has been described using an example in which the second divided processing unit 19 is formed smaller than the first divided processing unit 12. However, the second divided processing unit 19 reaches the first divided processing unit 12. In addition, if it is formed within the region of the flexible portion F, it can be formed larger than the first divided processing portion 12.
In this case, there is an advantage that misalignment between the first divided processing unit 12 and the second divided processing unit 19 is less likely to occur.

因みに、本実施の形態で示したように、第2分割加工部19を第1分割加工部12よりも小さく形成した場合には、図5に示したように、フレキシブル部F内に突出したリジッドプリント配線板21の突出部24を、配線パターン形成エリアとして利用できるため、よりリジッドフレックス多層プリント配線板Pを小型化できる(図中では、突出部24の外層にのみ配線パターン2bを形成する例を示したが、本実施の形態よりもリジッドプリント配線板21の層数が多ければ、当該突出部24の領域に位置する内層にも配線パターンを形成することができる)。   Incidentally, as shown in the present embodiment, when the second divided processing portion 19 is formed to be smaller than the first divided processing portion 12, a rigid projecting into the flexible portion F as shown in FIG. Since the protruding portion 24 of the printed wiring board 21 can be used as a wiring pattern forming area, the rigid-flex multilayer printed wiring board P can be further downsized (in the figure, an example in which the wiring pattern 2b is formed only on the outer layer of the protruding portion 24) However, if the number of layers of the rigid printed wiring board 21 is larger than that of the present embodiment, a wiring pattern can also be formed on the inner layer located in the region of the protrusion 24).

更に上記のように、第1分割加工部12よりも小さく形成する第2分割加工部19の大きさとして、フレキシブル基板16が内側になるように折り曲げた際に、当該フレキシブル基板16の折り曲げ頂点16cが、フレキシブル部Fの両サイドに位置するリジッド部R(即ち、図6の突出部24に相当)よりもはみ出さない寸法で形成すれば、更に突出部24の配線パターン形成エリアを広く稼げるだけでなく(即ち、リジッドフレックス多層プリント配線板の更なる小型化を図れるだけでなく)、当該突出部24をフレキシブル基板16をガードするためのバンパーとして利用することができる。   Further, as described above, when the flexible substrate 16 is bent so that the second divided processing portion 19 is smaller than the first divided processing portion 12, the bending vertex 16c of the flexible substrate 16 is bent. However, if it is formed with dimensions that do not protrude beyond the rigid portion R (that is, corresponding to the protruding portion 24 in FIG. 6) located on both sides of the flexible portion F, the wiring pattern forming area of the protruding portion 24 can be further increased. In addition, the projection 24 can be used as a bumper for guarding the flexible substrate 16. In addition, the rigid flex multilayer printed wiring board can be further miniaturized.

なお、本発明を説明する際に用いたリジッドフレックス多層プリント配線板の例として、ビルドアップ構造のリジッドプリント配線板の一方の面に、フレキ積層用BU絶縁層とフレキシブル基板とを順次積層した構造のものを用いて説明したが、本発明の構成はこの限りでなく、例えば、リジッドプリント配線板として、複数の両面プリント配線板をプリプレグなどの絶縁接着剤層を介して積層する従来の多層プリント配線板としたり、あるいはフレキシブル基板を両面構造としたりするなど、本発明を逸脱しない範囲であれば、他の構成に利用することももちろん可能である。   In addition, as an example of the rigid-flex multilayer printed wiring board used in explaining the present invention, a structure in which a flexible laminated BU insulating layer and a flexible substrate are sequentially laminated on one surface of a rigid-printed wiring board having a build-up structure However, the configuration of the present invention is not limited to this. For example, a conventional multilayer print in which a plurality of double-sided printed wiring boards are laminated via an insulating adhesive layer such as a prepreg as a rigid printed wiring board. Of course, it can be used for other configurations as long as it does not depart from the present invention, such as a wiring board or a double-sided structure of a flexible substrate.

また、本発明の製造方法で得られるリジッドフレックス多層プリント配線板は、上記でも説明したように、板厚が1.6mm以上で苛酷なスルーホール接続信頼性を要求される製品をターゲットに開発されたものであるが、もちろんこれに関しても、上記条件の製品に限らず、例えば、板厚が0.8mm程度の場合でも、自動車の車室内や産業用ロボットなどに使用される製品のように、スルーホールの接続信頼性の条件が厳しい製品などにも利用できることは言うまでもない。   In addition, as described above, the rigid-flex multilayer printed wiring board obtained by the manufacturing method of the present invention was developed targeting products that have a plate thickness of 1.6 mm or more and require severe through-hole connection reliability. Of course, in this regard as well, the product is not limited to the above-mentioned conditions. For example, even when the plate thickness is about 0.8 mm, like a product used in an automobile interior or an industrial robot, Needless to say, it can also be used for products with strict requirements for through-hole connection reliability.

1:絶縁基板
2、2a、2b、:配線パターン
3:両面プリント配線板
4:層間絶縁層
4a:フレキ積層用BU(ビルドアップ)絶縁層
4b、4c、4d:BU(ビルドアップ)絶縁層
5:金属箔
6、6a:樹脂付き金属箔
7、7a:貫通孔
7b:非貫通孔
8:めっき
9:孔埋め樹脂
10:BH(ベリードホール)
10a:TH(スルーホール)
10b:BVH(ブラインドバイアホール)
11:コア基板
12:第1分割加工部
13:スリット
14:刳り抜き部
15:可撓性ベース基板
16、16a:フレキシブル基板
16b:金属箔張りフレキシブル基板
16c:折り曲げ頂点
17:ソルダーレジスト
17a:ソルダーレジスト抜き部
18:カバーレイ
19:第2分割加工部
19a:第2分割加工予定部
20:分割部
21:リジッドプリント配線板
22:加工位置ズレ公差
23:設定加工範囲
24:突出部
25:ダミーパターン
26:ダム
27:スリット
27a:スリット加工予定部
27b:基板支持体
28:加工ズレ部
P、Pa、Pb:リジッドフレックス多層プリント配線板
R:リジッド部
F:フレキシブル部
A:第1分割加工がわ面
B:第2分割加工がわ面
C:第1ビルドアップ層
D:第2ビルドアップ層
1: Insulating substrate 2, 2a, 2b: Wiring pattern 3: Double-sided printed wiring board 4: Interlayer insulating layer 4a: BU (build-up) insulating layer 4b, 4c, 4d for flexible lamination: BU (build-up) insulating layer 5 : Metal foil 6, 6a: Metal foil 7 with resin, 7a: Through hole 7b: Non-through hole 8: Plating 9: Filling resin 10: BH (Belede hole)
10a: TH (through hole)
10b: BVH (blind via hole)
11: Core substrate 12: First division processing portion 13: Slit 14: Bored portion 15: Flexible base substrate 16, 16a: Flexible substrate 16b: Metal foil-clad flexible substrate 16c: Bending vertex 17: Solder resist 17a: Solder Resist removal portion 18: Cover lay 19: Second division processing portion 19a: Second division processing scheduled portion 20: Division portion 21: Rigid printed wiring board 22: Processing position deviation tolerance 23: Set processing range 24: Projection portion 25: Dummy Pattern 26: Dam 27: Slit 27a: Slit processing planned portion 27b: Substrate support 28: Processing shift portion P, Pa, Pb: Rigid flex multilayer printed wiring board R: Rigid portion F: Flexible portion A: First division processing Side B: Second split processing side C: First buildup layer D: Second buildup layer

Claims (3)

部品実装が可能なリジッド部と屈曲可能なフレキシブル部とからなるリジッドフレックス多層プリント配線板の製造方法において、リジッドな絶縁層と配線パターンとを有するリジッドプリント配線板を形成する工程と、当該リジッドプリント配線板の一方の面から所望の深さにまで達する第1分割加工部を、当該リジッドプリント配線板におけるフレキシブル部形成領域内に形成する工程と、当該第1分割加工部が形成されたリジッドプリント配線板の一方の面に、当該フレキシブル部形成領域部分を除いて絶縁接着剤層を配置する工程と、当該絶縁接着剤層を介してフレキシブル基板を積層する工程と、当該リジッドプリント配線板の他方の面から当該第1分割加工部に達する第2分割加工部を形成する工程とを有し、且つ、当該第2分割加工部を形成する分割加工を、フレキシブル部とリジッド部の境界部からXY方向の加工位置ズレ公差分だけフレキシブル部側に入った領域を設定加工範囲として行なうことを特徴とするリジッドフレックス多層プリント配線板の製造方法。   In a manufacturing method of a rigid-flex multilayer printed wiring board comprising a rigid part capable of mounting a component and a flexible part capable of bending, a step of forming a rigid printed wiring board having a rigid insulating layer and a wiring pattern, and the rigid printing A step of forming a first divided processing portion that reaches a desired depth from one surface of the wiring board in a flexible portion forming region of the rigid printed wiring board, and a rigid print in which the first divided processing portion is formed A step of disposing an insulating adhesive layer on one surface of the wiring board excluding the flexible portion forming region, a step of laminating a flexible substrate via the insulating adhesive layer, and the other of the rigid printed wiring board Forming a second divided processed portion that reaches the first divided processed portion from the surface of the second portion, and the second divided portion. Rigid flex multi-layer printed wiring characterized in that the division processing that forms the processing portion is performed as a set processing range by entering the flexible portion side from the boundary between the flexible portion and the rigid portion by the processing position deviation tolerance in the XY direction. A manufacturing method of a board. 当該第2分割加工部の大きさを、第1分割加工部の大きさよりも小さく形成することを特徴とする請求項1に記載のリジッドフレックス多層プリント配線板の製造方法。   2. The method of manufacturing a rigid flex multilayer printed wiring board according to claim 1, wherein the size of the second divided processed portion is smaller than the size of the first divided processed portion. 当該第1分割加工部よりも小さく形成する第2分割加工部の大きさを、フレキシブル基板が内側になるように折り曲げた際に、当該フレキシブル基板の折り曲げ頂点が、フレキシブル部の両サイドに位置するリジッドプリント配線板よりもはみ出さない寸法で形成することを特徴とする請求項2に記載のリジッドフレックス多層プリント配線板の製造方法。   When the size of the second divided processing portion formed smaller than the first divided processing portion is bent so that the flexible substrate is on the inner side, the bending vertices of the flexible substrate are located on both sides of the flexible portion. 3. The method of manufacturing a rigid-flex multilayer printed wiring board according to claim 2, wherein the rigid-flex printed wiring board is formed so as not to protrude beyond the rigid printed wiring board.
JP2013194782A 2013-09-20 2013-09-20 Manufacturing method of rigid-flex multilayer printed wiring board Active JP6212339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194782A JP6212339B2 (en) 2013-09-20 2013-09-20 Manufacturing method of rigid-flex multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194782A JP6212339B2 (en) 2013-09-20 2013-09-20 Manufacturing method of rigid-flex multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2015061003A true JP2015061003A (en) 2015-03-30
JP6212339B2 JP6212339B2 (en) 2017-10-11

Family

ID=52818274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194782A Active JP6212339B2 (en) 2013-09-20 2013-09-20 Manufacturing method of rigid-flex multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP6212339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000007A (en) * 2017-06-21 2019-01-02 주식회사 코리아써키트 Rigid flexible circuit board manufacturing method
CN114217390A (en) * 2021-12-24 2022-03-22 苏州浪潮智能科技有限公司 Optical switch designing method, optical switch, electronic device, and storage medium
CN116546727A (en) * 2023-05-04 2023-08-04 江西景旺精密电路有限公司 Semi-rigid-flex product depth-control milling process capable of improving bending capability and depth-control precision

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031950A (en) * 2001-07-12 2003-01-31 Sony Corp Multilayered wiring board and manufacturing method therefor
JP2006237471A (en) * 2005-02-28 2006-09-07 Yamaha Corp Semiconductor wafer, semiconductor element using the same, wafer level chip size package, and method for manufacturing semiconductor element
JP2008288285A (en) * 2007-05-15 2008-11-27 Sharp Corp Cutting method of multilayer substrate, manufacturing method of semiconductor device, semiconductor device, light-emitting device, and backlight device
JP2009290193A (en) * 2008-04-28 2009-12-10 Cmk Corp Rigid flexible multilayer printed wiring board and its production method
JP2010147061A (en) * 2008-12-16 2010-07-01 Toshiba Corp Inter-printed board connection structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031950A (en) * 2001-07-12 2003-01-31 Sony Corp Multilayered wiring board and manufacturing method therefor
JP2006237471A (en) * 2005-02-28 2006-09-07 Yamaha Corp Semiconductor wafer, semiconductor element using the same, wafer level chip size package, and method for manufacturing semiconductor element
JP2008288285A (en) * 2007-05-15 2008-11-27 Sharp Corp Cutting method of multilayer substrate, manufacturing method of semiconductor device, semiconductor device, light-emitting device, and backlight device
JP2009290193A (en) * 2008-04-28 2009-12-10 Cmk Corp Rigid flexible multilayer printed wiring board and its production method
JP2010147061A (en) * 2008-12-16 2010-07-01 Toshiba Corp Inter-printed board connection structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000007A (en) * 2017-06-21 2019-01-02 주식회사 코리아써키트 Rigid flexible circuit board manufacturing method
KR101969643B1 (en) * 2017-06-21 2019-04-17 주식회사 코리아써키트 Rigid flexible circuit board manufacturing method
CN114217390A (en) * 2021-12-24 2022-03-22 苏州浪潮智能科技有限公司 Optical switch designing method, optical switch, electronic device, and storage medium
CN114217390B (en) * 2021-12-24 2024-02-23 苏州浪潮智能科技有限公司 Optical switch design method, optical switch, electronic device, and storage medium
CN116546727A (en) * 2023-05-04 2023-08-04 江西景旺精密电路有限公司 Semi-rigid-flex product depth-control milling process capable of improving bending capability and depth-control precision

Also Published As

Publication number Publication date
JP6212339B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP2009290193A (en) Rigid flexible multilayer printed wiring board and its production method
US9040837B2 (en) Wiring board and method for manufacturing the same
US9674969B2 (en) Flexible printed circuit board and manufacturing method thereof
KR101103301B1 (en) A build-up printed circuit board with odd-layer and Manufacturing method of the same
JP2007049004A (en) Printed wiring board and manufacturing method thereof
JP6212339B2 (en) Manufacturing method of rigid-flex multilayer printed wiring board
JP6338444B2 (en) Rigid flex multilayer printed wiring board
US20110036619A1 (en) Flex-rigid wiring board and method for manufacturing the same
JP2006140213A (en) Rigid flexible multilayer printed wiring board
KR20140108164A (en) Wiring substrate and method of manufacturing the same
JP5057653B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP2013008932A (en) Printed circuit board in which anticorrosive property and yield are improved
US8546698B2 (en) Wiring board and method for manufacturing the same
KR101415400B1 (en) Method of manufacturing printed wiring board
KR101229967B1 (en) Multilayer circuit board having cable portion and method for manufacturing same
JP5568487B2 (en) Method for manufacturing printed circuit board
JP6866229B2 (en) Rigid flex multi-layer printed wiring board
JP6224337B2 (en) Rigid flex multilayer printed wiring board and method for manufacturing the same
JP2011091312A (en) Rigid flex circuit board, method of manufacturing the same, and electronic device
JP5293692B2 (en) Flex-rigid wiring board and manufacturing method thereof
WO2004105453A1 (en) Through hole electrical connection structure for flexible multilayer circuit board and method for forming the same
JP5204871B2 (en) Partial multilayer flexible printed wiring board
JP4926676B2 (en) Manufacturing method of multilayer printed wiring board
JP2008060119A (en) Printed wiring board
JP2018190765A (en) Rigid-flex multilayer printed wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170915

R150 Certificate of patent or registration of utility model

Ref document number: 6212339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250